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—— Abstract

The bounded quantum storage model aims to achieve security against computationally unbounded
adversaries that are restricted only with respect to their quantum memories. In this work, we
provide the following contributions in this model:

1. We build one-time programs and utilize them to construct CCAl-secure symmetric key encryption
and message authentication codes. These schemes require no quantum memory from honest
users, yet they provide information-theoretic security against adversaries with arbitrarily large
quantum memories, as long as the transmission length is suitably large.

2. We introduce the notion of k-time program broadcast which is a form of program encryption that
allows multiple users to each learn a single evaluation of the encrypted program, while preventing
any one user from learning more than k evaluations of the program. We build this primitive
unconditionally and employ it to construct CCAl-secure asymmetric key encryption, encryption
tokens, signatures, and signature tokens. All these schemes are information-theoretically secure
against adversaries with roughly eV™ quantum memory where m is the quantum memory
required for the honest user.

All of the constructions additionally satisfy disappearing security, essentially preventing an adversary
from storing and using a transmission later on.
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1 Introduction

Most of the interesting cryptographic concepts of security are unattainable when dealing with
completely unrestricted adversaries. The conventional approach to resolve this conundrum
is to focus solely on adversaries operating within polynomial time. Nevertheless, given our
current understanding of complexity theory, security in this setting can only be guaranteed
under the assumed hardness of solving certain problems, such as factoring, computing the
discrete log, or learning with errors. As a consequence, security in the computational model
is usually conditional.

An alternative approach is to constrain the quantum memory (qmemory) available to the
adversary. This model is called the Bounded Quantum Storage Model (BQSM) and was first
introduced in 2005 by Damgérd, Fehr, Salvail, and Schaffner [9, 30]. They demonstrated
that non-interactive oblivious transfer and bit-commitment can be achieved information-
theoretically in this model! Surprisingly, these schemes demand no qmemory from honest
participants and can be made secure against adversaries with arbitrarily large qmemories by
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sufficiently extending the transmission length. Subsequently, this oblivious transfer scheme
was later adapted to the more useful variant of non-interactive 1-2 oblivious transfer® [10].
Henceforth, we denote this 1-2 oblivious transfer scheme as BQS-OT.

Concretely, in the BQSM, an adversary Ag has access to unlimited resources at all times
except at certain points. At these points, we say the memory bound applies, and the adversary
is forced to reduce its stored state to s-qubits. We emphasize that the adversary is again
unrestricted with respect to its gqmemory after the bound applies and is never restricted with
respect to its computational power or classical memory.

In practice, the point when the memory bound applies can be implemented by pausing and
delaying further transmissions which enforces the bound given the technological difficulties of
maintaining a quantum state. Even in the foreseeable future, gmemory is not only expected to
be very expensive but also very limited in size to allow for good enough fidelity. Consequently,
this model appears to provide an apt characterization of real-world adversaries.

1.1 Our Results

In this paper, we delve deeper into the BQSM. We first adapt conventional definitions, such
as those pertaining to encryption and one-time programs, to the BQSM. We then proceed to
construct a variety of cryptographic primitives as elaborated on below.

We first build information-theoretic secure one-time programs 2 through utilizing the
BQS-OT scheme. We then leverage one-time programs to construct information-theoretic
secure CCA1-symmetric encryption. All these schemes are secure against any computationally
unbounded adversary with s qmemory where s can be any fixed polynomial (in the security
parameter) whereas honest users do not need any qmemory.

Next, we address the challenges associated with information-theoretic asymmetric key
cryptography, particularly the task of hiding the secret key from the public key without
relying on computational assumptions. We propose the novel primitive termed program
broadcast as a natural solution.

Roughly speaking, a k-time program broadcast of a function P allows arbitrarily many
users to each (1) obtain a single evaluation of the program, and, at the same time, (2) cannot
be used by any user to learn more than k evaluations of the program. We proceed to
construct an information-theoretically secure program broadcast and employ it to build
CCA1l-secure asymmetric key encryption. In the full paper, we also use program broadcast
to build information-theoretically secure signatures, signature tokens, and encryption tokens.
A signature token, as first defined in [5], can be used to sign a single message (without the
signing key) and then self-destructs. We similarly define decryption tokens — each such token
allows its holder to decrypt a single ciphertext and then self-destructs.

The schemes built from program broadcast are secure against any computationally
unbounded adversary with s qmemory where s can be any fixed polynomial in the security
parameter but require lgk (M) gqmemory for the receiver where k € R can take any value larger
than 2. This implies that the gap between the qmemory required of the honest user and the
needed gmemory to break security approaches lg? (M) vs. poly(A) which translates to a gap
of m vs. eV™ by setting m = lg* (M\). While we cannot assert that the required gmemory for

1-2 oblivious transfer is a primitive allowing a sender to transmit two strings so that (1) a receiver can
choose to receive anyone of the two strings without learning anything about the other one and (2) the
sender is oblivious of the receiver’s choice.

A one-time program (as introduced in [15]) (1) can be used to obtain a single evaluation of the program
on any input chosen by the user, and at the same time, (2) (black-box obfuscation) cannot be used to
obtain any other information about the program (see Definition 11).
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the honest receiver in the asymmetric setting is optimal, we show in the full paper that it is
not possible to achieve asymmetric key cryptography without requiring any qmemory for the
honest user. Given that our gqmemory requirements are already quite minimal, there is little
room for improvement. For simplicity, in the rest of the paper we work with k = 3, however,
our results easily apply to any value k£ > 2.

Prior to this work, none of the aforementioned primitives have been achieved in the
BQSM and all are impossible information-theoretically in the plain model.

Our constructions additionally satisfy disappearing security which shall be formally
defined in Sec. 5 but we provide a brief overview here. A transmission, say a ciphertext or
signature, is deemed disappearing if it can no longer be used after a certain point [21]. In
the encryption setting, an adversary cannot decrypt a ciphertext even if the private key is
revealed afterward. While in the authentication setting, an adversary cannot forge a signature
of a message p even if it has received a signature of p earlier! Such disappearing properties
are impossible in the plain model for obvious reasons, but in the BQSM an adversary cannot
necessarily store a ciphertext or signature for later use.

1.2 Notes on Feasibility

The gmemory requirements for the receiver in our program broadcast, asymmetric key
encryption, and signature schemes make these constructions difficult to actualize with current
technology given the difficulty of storing quantum states. It is worth noting, however, that
the users only need a small amount of gmemory and only need it at the start in order to
process the public keys. Therefore, we hope that these schemes will become feasible with
further advancements.

Meanwhile, our one-time programs, symmetric key encryption, and message authentication
codes can be realized with current technology as they only require the ability to prepare,
send, and measure a single qubit in the BB84 basis. Specifically, these constructions can
be implemented on hardware designed to run quantum key distribution (QKD), albeit with
a caveat. Indeed, popular weak coherent pulse sources require interaction as the receiver
needs to tell the sender which pulses were received. However, other technologies can enable
non-interactive quantum transmissions to allow for non-interactive primitives such as one-time
programs, encryption, and signature schemes. For instance, heralded photon sources can, in
principle, remove the need for interaction.

Note also that our constructions can be modified to allow for users with imperfect
apparatus to perform non-interactive error correction without compromising the security of
the scheme as we briefly discuss in Sec. 9. With all that being said, in this work, we focus
on building the theory and leave it as an open research direction to properly prepare the
theoretical constructions for real-world applications.

1.3 Related Work

We compare our results with similar contributions in alternative models.

1.3.1 Plain Model

One-time programs in the plain model are impossible for the simple reason that any software
can be stored and then reused to obtain multiple evaluations. Broadbent, Gutoski, and
Stebila [7] extended this idea to the quantum realm and showed that quantum one-time
programs are also impossible. These results do not apply to the BQSM as one-time programs
are indeed feasible.

2:3
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That being said, the works [15, 18] constructed one-time programs by leveraging one-time
memory devices. These hardware devices essentially implement 1-2 oblivious transfer — each
device holds two secrets and allows the device holder to choose and learn one and only one
secret. Essentially, a circuit is encrypted and sent along with appropriate one-time memory
devices. A receiver can only obtain enough keys from the devices to learn one evaluation from
the encrypted circuit. Our one-time program construction involves replacing the one-time
memory devices with the BQS-OT scheme, which serves the same purpose, although our
proof requires novel analysis.

1.3.2 Bounded Classical Storage Model (BCSM)

Memory limitations were first considered in the classical setting. Specifically, in 1992
Maurer [26] introduced the bounded classical storage model (BCSM) where adversaries are
restricted only with respect to the size of their classical memory. A cipher was shown to
guarantee privacy unconditionally, even against adversaries having access to a larger memory
than what is needed for honest players. Subsequent works [20, 11, 28, 12] have achieved
information-theoretic (interactive) oblivious transfer, key agreement, and symmetric key
encryption and signatures in this model. Furthermore, Guan, Wichs, and Zhandry [19]
recently provided constructions for disappearing ciphertext and signature schemes based on
public-key cryptography and one-way functions, respectively.

Overall, the BQSM seems to provide stronger security guarantees when compared to the
BCSM for several reasons. First of all, in the BCSM, the gap between the required memory
to run many of these schemes securely and the size of the memory needed to break for various
primitives, including asymmetric encryption, is typically on the order of m vs. m2, which is
optimal [12]. This memory gap is a notable vulnerability as if it is feasible for honest users
to store m bits, it does not seem too difficult for a determined adversary to store m? bits. In
contrast, the memory gap of m vs. eV™ for primitives in the BQSM is far more significant.
Moreover, certain primitives achievable in the BQSM are completely unattainable in the
BCSM. For instance, non-interactive oblivious transfer was shown to be impossible in the
BCSM [11] which implies the impossibility of the stronger one-time program primitive.

1.3.3 Noisy Quantum Storage Model

In the Noisy Quantum Storage Model, which was first introduced in [31], the qmemory of the
adversary is not limited in size but is intrinsically noisy. The BQS-OT schemes proposed
in [9, 10] can, essentially as such, be shown secure against adversaries with noisy qmemories.
In this work, we only study the BQSM and an interesting research direction is to generalize
our results to the Noisy Quantum Storage Model.

2 Technical Overview

We now discuss each of our results in more detail. We first describe how to construct one-time
programs and then, how to use them to build symmetric key encryption. Next, we explain
why we need a new tool to tackle asymmetric cryptography. Correspondingly, we introduce
the notion of program broadcast and describe how to build it in the BQSM. We then show
how program broadcast can be used to build asymmetric encryption. Finally, we discuss two
impossibility results related to the gqmemory requirements and disappearing properties of the
schemes.
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2.1 One-Time Programs

We now present a quantum algorithm O that converts any polynomial classical circuit to
a one-time program in the BQSM (Theorem 17). Fortunately, the BQSM dodges all the
impossibility proofs of one-time programs. The work showing the impossibility of quantum
one-time programs [7] does not apply to our setting since our programs cannot be stored by the
adversary to be reused. Moreover, the proof of the impossibility of quantum obfuscation [7]
does not apply since it requires the adversary to run the quantum circuit homomorphically.
Adversaries in our setting are forced to continuously perform measurements on quantum
states (due to the memory bound) which interrupts a quantum homomorphic evaluation.

Before describing the construction, we discuss its intuition. A natural first attempt
is to apply previous one-time program constructions [15, 18] based on one-time memory
devices but replace the devices with BQS-OT transmissions. The problem is that simulating
an adversary requires determining which 1-out-of-2 strings are received from the oblivious
transfer transmissions. This information allows the simulator to deduce which evaluation the
adversary has learned from the program. In earlier constructions, this is not a problem since
the adversary must explicitly ask which string it wishes to receive from the one-time memory
devices. Note that Kilian [23] builds a similar notion known as oblivious circuit evaluation
from OT but the simulator is also assumed to be given this information. In these works, the
simulator can simply run the adversary and “know” which strings are requested. However,
in our case, it is not clear this extraction is always possible — a complex adversary might not
know itself which 1-out-of-2 strings it has received! To make matters worse, our adversary
is a quantum and computationally unbounded algorithm. Note that the proof of security
for BQS-OT does not provide a method to extract the receiver’s chosen bit but rather just
shows that such a bit must exist.

To solve this issue, we construct a simulator that (inefficiently) analyzes the circuit of
the adversary gate-by-gate to extract the chosen bit. In particular, the simulator takes the
circuit of the adversary and runs it an exponential number of times on all possible BQS-OT
transmissions. This allows the simulator to approximately determine the distribution of
the measurement results obtained by the adversary given the transmission provided to the
adversary. This then allows the simulator to determine the distribution of the BQS-OT
transmission from the perspective of the adversary given the measurement results obtained.
In other words, the simulator can infer which part of the transmission the adversary is
uncertain about which can be used to determine which string the adversary is oblivious to.

The rest of the construction involves adapting Kilian’s approach [23] for building one-time
programs from oblivious transfer to the quantum realm. Readers are referred to Sec. 6 for
the formal statement of our result. However, the construction and proof are given in the full
paper as they are quite long and detailed.

2.2 Symmetric Key Encryption

We use one-time programs to build a symmetric key encryption scheme that satisfies in-
distinguishability under (lunchtime) chosen ciphertext attack (IND-CCA1) [8] and with
disappearing ciphertexts. IND-CCA1 tests security against an adversary that can query the
encryption oracle at any point in the experiment and can query the decryption oracle at
any point before the challenge ciphertext is received. To satisfy disappearing security under
CCA1, we require that such an adversary cannot win the IND-CCA1 experiment even if the
private key is revealed after the challenge ciphertext is given.

2:5
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To achieve IND-CPA (where the adversary is not given access to a decryption oracle), the
ciphertext can simply consist of a one-time program that evaluates to L on every input except
on the private key, where it outputs the message. By the security of one-time programs, an
adversary has a negligible chance of guessing the key and learning the message. Upgrading
to CCAl-security turns out to be far more involved as we now discuss.

First of all, it is trivial to show that we must rely on quantum ciphertexts for unconditional
security in the BQSM. Now, traditionally, a CPA-secure scheme can be upgraded to a CCA-
secure one by simply authenticating ciphertexts using message-authentication codes or a
signature scheme. However, it seems difficult to authenticate a quantum ciphertext in a
way that allows verification without any qmemory. Alternatively, we could authenticate the
output of the one-time programs in the CPA construction. Specifically, instead of sending
programs that map the secret key to the message, we send programs that map the key to
the message along with a tag or signature of the message.

This solution fails due to the following attack: an adversary queries the encryption oracle
on an arbitrary message u, receives a one-time program, modifies the one-time program so
that it outputs L on any input starting with 0, and forwards the modified one-time program
to the decryption oracle. Depending on the response received from the oracle, the adversary
can successfully determine the first bit of the secret key. This attack can be repeated a
polynomial number of times to deduce the entire secret key. It turns out an adversary can
perform a variety of attacks of this sort due to a fundamental problem with the BQSM:
this model provides security by ensuring that users only receive partial information from
a transmission. Hence, it is difficult to detect whether an adversary has tampered with a
transmission.

To thwart such attacks, we rely on a construction where a ciphertext consists of two
interdependent one-time programs. The first program initiates some randomness and this
randomness is used to ensure that the second one-time program is evaluated on a seemingly
random input during decryption. To prevent the adversary from choosing the first one-time
program, we authenticate the output of the first program in the second program using
the secret key. We show that it is difficult to modify both programs simultaneously in a
meaningful way without being detected. Proving this rigorously is somewhat technical as
the adversary can still perform various modifications successfully — the reader is referred to
Theorem 22 for the formal proof.

2.3 The Obstacle to Asymmetric Cryptography

Asymmetric cryptography utilizes a pair of related keys, a secret and a public key, to enable
versatile cryptographic applications. Specifically, our goal is to build information-theoretic
secure asymmetric key encryption and digital signatures in the BQSM. However, the task of
concealing the secret key from the public key without relying on computational assumptions
poses a significant challenge. Such assumptions should be avoided in the BQSM given the
goal of this model is to base security purely on the memory limitations of the players.

This implies we need to impose the memory bound in some way during the public key
transmission in order to hide the secret key. In the classical bounded storage model, this can
be done by announcing a large classical public key [12]. However, in our scenario, imposing
the memory bound necessitates the use of quantum public keys. Unfortunately, due to
no-cloning, we need to create and distribute multiple copies of the quantum key — this is
the general approach taken in the computational setting as well [17, 13, 22]. Here we face a
critical problem: if a computationally unbounded adversary gains access to multiple copies
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of the key, it can repeatedly reuse its quantum memory to process multiple keys. Such
an adversary could gradually extract classical information from each key copy until it has
learned the entire quantum public key.

To prevent this attack, it is imperative that every public key copy needs additional
gqmemory to process, preventing an adversary from processing an unlimited number of keys.
In other words, we need to distribute keys in a way so that all users must process the keys
simultaneously or in parallel. More abstractly, we want to distribute quantum information in
a way that allows every user to learn some information while preventing a computationally
unbounded adversary from learning too much information. This goal is a recurring theme in
various settings, hence, we introduce a new notion which we term program broadcast that
formalizes and captures this objective. We build this primitive unconditionally in the BQSM
and employ it to build asymmetric cryptography.

All in all, this is the first work to achieve information-theoretic asymmetric key encryption
in any of the bounded (classical or quantum) storage models. This is the main focus and
contribution of this paper. In the following, we first discuss program broadcast, which may be
of independent interest, and then how this can be used to realize asymmetric cryptography.

2.4 Program Broadcast

In many situations, we would like to send multiple one-time programs to multiple users
while ensuring that no adversary can take advantage of all the information to learn the
program. This is the goal of program broadcast. Recall that a k-time program broadcast of
a function P allows an unbounded polynomial number of users to each (1) obtain at least a
single evaluation of the program, and, at the same time, (2) cannot be used by any user to
learn more than k evaluations of the program. Essentially, an adversary with access to the
broadcast can be simulated with access to k queries to an oracle for P.

In Sec. 7, we present a scheme for an information-theoretically secure program broadcast
in the BQSM. The idea is to distribute a polynomial number of augmented one-time programs
of P in a fixed time period. Unlike the one-time programs discussed in the previous section,
these augmented versions require a small amount of gmemory to process.

More rigorously, there is a set time where the sender distributes one-time programs of
the form O(P @ ¢;) where O is our one-time compiler. In each one-time program, the output
of P is padded with a different value ¢;. A quantum ciphertext is generated which encrypts
the value ¢; and is sent with the corresponding one-time program. Users can evaluate the
one-time program but need to store the ciphertext states until the encryption key is revealed
to make use of their evaluation. The key is revealed at a set time after all users have received
a one-time program copy. By revealing this classical key at the end, we are essentially forcing
users to process the programs in a parallel fashion, limiting the number of evaluations that
can be learned. In other words, an adversary with bounded gmemory can store the ciphertext
states for a limited number of one-time programs and thus can only learn a limited number
of evaluations of P.

To prove this rigorously, we need a new min-entropy lower bound (Lemma 7) which
roughly states that if Hoo (X0X7...X,-1|Q) > o, where X; € {0,1}" and @ is some quantum

information, then there exists i € [p] and negligible € such that roughly HE (X;) > a/p.

Konig and Renner [24] established such a bound but only in the case when n is sufficiently

large with respect to p. Unfortunately, in our applications, n is very small with respect to p.

Informally, we resolve this issue by using their bound when p is small and then use this as a
base case to an inductive argument for larger values of p achieving the required result. This
result is of independent interest in the field of information theory.

2:7
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Note that while one-time programs can be built from one-time memory devices in the
plain model, this is insufficient to build program broadcast in the plain model. Specifically, we
need to use the gqmemory bound outside the one-time programs as well in order to construct
this primitive. Hence, program broadcast acts as a more pronounced advantage of the BQSM.

2.5 Asymmetric Key Encryption

We now discuss how we upgrade our symmetric key encryption scheme to a CCAl-secure
asymmetric key scheme using program broadcast. We let the private key be a large program P
while the public key is a quantum program broadcast of P. A user can use the broadcast to
learn a single evaluation of P which can be used to encrypt messages in the same way as in
the private key setting. However, an adversary can only learn a limited number of evaluations
by the security of the program broadcast. If P is large enough then this knowledge is not
sufficient to predict the output of P on a random input. In other words, the adversary
cannot predict the encryption key of another user, so security is reduced to the symmetric
key setting.

It is not difficult to show that the public keys need to be mixed-state for information-
theoretic security in the BQSM. This might seem unfortunate, but we believe that it is
not very relevant whether keys are pure or mixed-state. Some works, such as [4], require
that the quantum public keys be pure since this would provide some level of certification by
allowing users to compare keys with a SWAP test. However, this test is not always feasible
to perform in the BQSM given that keys cannot necessarily be stored. Instead, we provide a
more secure way to certify mixed-state quantum keys without establishing authenticated
quantum channels in a companion work [2]. That being said, in this work, we do not certify
public keys and it is always assumed that honest users receive authentic quantum public
keys. This is a common assumption for the quantum public key schemes, such as those in
[17, 13, 22], as a quantum state cannot be signed [3].

2.6 Impossibility Results

We briefly discuss two interesting impossibility results that we present in the full paper. First,
we show that it is impossible to implement asymmetric schemes (with unbounded public key
copies) in the BQSM without requiring qmemory from the honest user. The fundamental
idea is that if the public keys require no gqmemory to process then an adversary can request
and process an unbounded number of key copies which would reveal information about the
secret key. The technical argument is more involved since the public keys may be mixed-state
which could aid in hiding information.

The second impossibility result is concerned with the disappearing property of our
constructions. The ciphertexts and one-time programs satisfy disappearing security providing
interesting applications as we discussed earlier. However, this disappearing property can
also be disadvantageous in some scenarios. For instance, sometimes, it is more beneficial to
have an obfuscation that can be stored and reused multiple times instead of a disappearing
one-time program. The final contribution of this paper is to provide a negative result showing
that non-disappearing obfuscation and one-time programs are impossible in the BQSM.

The proof relies on a new approach since our simulator is computationally unbounded,
which nullifies adversarial attacks used in standard impossibility proofs [1, 14, 6, 7]. Essentially,
we show that if a computationally unbounded adversary can perform a single evaluation after
the gmemory bound applies then it can rewind the program and perform another evaluation.
By the gentle measurement lemma [32], this rewinding introduces only a negligible error
each time which allows the adversary to learn a super-polynomial number of evaluations
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with non-negligible probability. These evaluations can be used to learn more information
regarding the hidden program than any simulator can learn using only a polynomial number
of oracle queries. We refer the reader to the full paper for more details.

3 Preliminaries

3.1 Notation

In the following, we denote Hilbert spaces by calligraphic letters: #H, V, etc... The set
of positive semi-definite operators in Hilbert space H are denoted Pos(#H). When Hilbert
space X holds a classical value, we denote the random variable for this value by X.

We denote the density matrix of a quantum state in a register E as pg. If a quantum
state depends on a classical variable X, then we denote p%, as the density matrix of the state
given X = x. Meanwhile, to an observer who does not know the value of X, the state is

given by pg ==Y P(X = z)p}, and the joint state by pxp = >, P(X = z) |z) (z| ® p}.

Such states having a quantum part depending on a classical value are called cg-states. The
random variable X then corresponds to the classical state px == > P(X = x)|z) (z|.

We denote the trace distance between two density matrices as d(p, o) and the trace norm
as [[pll1

Notice that pxg = px ® pg if and only if pg is independent of X (i.e. p§, = pg) which
means that no information can be learned regarding pg from X and vice versa. More generally,
if pxg is e-close to pg ® px in terms of trace distance denoted as é(px g, px @ pr) < € or
equivalently px g ~. px ® pg, then no observer can distinguish between the two systems
with advantage greater than e. We write (p4, pp) to denote a sequential transmission where
register A is sent and then register B.

The rectilinear or + basis for the complex space C? is the pair {|0), |1)} while the diagonal
or X basis is the pair {|0)«,|1)x} where |0)x = % and [1)x = %. To choose
between the + and x basis depending on a bit b € {0,1}, we write {4, X }.

We say = €g X if x is chosen uniformly at random from the values in X. We let 1
denote the density matrix of a uniformly distributed variable on k elements. Also, let
[n] = 1[0,1,...,n — 1] and let negl(n) be denoting any function that is smaller than the
inverse of any polynomial for large enough n.

We say an algorithm A is QPT if it is a quantum polynomial-time algorithm. We let A"
denote an algorithm with access to a polynomial number of classical oracle queries to the
program P and let A9” denote access to ¢ classical oracle queries.

Recall a Pauli pad [27] information-theoretically hides a n-qubit state using a 2n-bit
key k. We denote PPy (p) to be the Pauli pad of the state with density matrix p using key k.

By abuse of notation, if x is a binary string and M is a matrix then, for simplification,
we let M - x denote the string representation of the vector M - Z.

3.2 Rényi Entropy

We remind the reader of the notion of quantum Rényi Entropy and its variants. See [25] for
more detailed definitions.

» Definition 1 (Conditional Min-Entropy). Let pxp € Pos(Hx ® Hp) be classical on Hx.
The min-entropy of pxp given Hp is defined as

HOO(X‘B),) == lg (pguess(X|B)p)

where Pguess(X|B), is the mazimal probability to decode X from B with « POVM on Hp.

2:9
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» Definition 2 (Smooth Min-Entropy). Let € > 0 and pxp € Pos(Hx ® Hp). The e-smooth
min-entropy of pxp given Hp is defined as

HS (X|B), = sup Hw(X|B)z
12

where the supremum is taken over all density operators pxp acting on Hx ® Hp such that
§(pxp,pxB) <€

3.3 Uncertainty Relations

This section discusses lower bounds on the average min-entropy and presents a new generalized
min-entropy splitting lemma conditioned on quantum states. This will be fundamental in
our program broadcast construction.

The min-entropy satisfies the following chain rule.

» Lemma 3 (Chain Rule for Min-Entropy [29]). Let € > 0 and pxyp € Pos(Hx @ Hu @ HEg)
where register & has size m. Then,

HE(X|UE), > HY(XE|U), —m.

» Lemma 4 (Uncertainty Relation [9]). Let p € P(HS™) be an arbitrary n-qubit quantum
state. Let © €r {4, x}™ and let X be the outcome when p is measured in basis ©. Then for
any 0 < v < %,

1
H (X]|©), > <2 - 27) n,

2n
where € = eXp(—m).
If X = XX has high entropy, then it was shown in [10] that, in a randomized sense,
one of Xy or X; has high entropy.

» Lemma 5 (Conditional Min-Entropy Splitting Lemma [10]). Let € > 0 and let Xy, X1 and
Z be random variables. If HS (XoX1|Z) > «, then there exists a binary random variable C
such that HST< (X1_¢|ZC) > a2 — 1 —log(1/€') for any € > 0.

More generally, min-entropy sampling gives lower bounds on the min-entropy of a subset
of a string given the min-entropy of the entire string. In [24], it was shown how to sample min-
entropy relative to quantum knowledge which allows us to give a lower bound on min-entropy
conditioned on a quantum state.

» Lemma 6 (Quantum Conditional Min-Entropy Splitting Lemma [24]). Let € > 0 and let
Px.x.B be a quantum ccq-state where Xo and Xy are classical random variables on alphabet
X of dimension d =1g|X| > 14. Then, there exists a binary random variable C such that for
all >0,

HZ (XoX1|B),

HE ™ (Xo|CB), = =220

2

_3d
where € .= 2737 1,

Proof. Notice that any distribution Pe over {0, 1} is a (2,3/4, 0)-sampler (Definition 2.1 [24]).
Corollary 6.19 in [24] gives the result. <
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In Lemma 6 the size of the sampled string X is half the size of the original string X.

The results in [24] do not give strong lower bounds when the sampled string is small relative
to the size of the original string. Hence, we present the following generalization of Lemma 6
which will be used in constructing program broadcast and asymmetric key encryption.

» Lemma 7 (Generalized Min-Entropy Splitting Lemma). Let € > 0. Let pxp be a quantum
cq-state where X = XoX1...Xy and each X; is a classical random variable over alphabet X
of dimension d > 14. There exists a random variable C (with [lg €] bits) such that for all
720,

HL(X|B),

HET(XelCB), = ==

4

_3d
where € = 272 T2,

Proof. We only consider the case ¢ = 2%, however, the same argument works for the general
case. We prove the following slightly stronger bound using induction on k:

cntr HZ (X|B) 1
where ¢, = Zf;ol 2-2'd+1 The base case k = 1 follows trivially from the Quantum

Conditional Min-Entropy Splitting Lemma 6. Assume the claim holds for & = n. For
k =n+1, we apply Lemma 6 on the two variables Yy = Xj...Xon and Y] == Xon 1. Xon+1

to deduce that there exists a binary variable Cy such that Ht7(Ye, |BCy) > w -2
where ¢ := 272"4+1 By the inductive hypothesis, there exists C’ such that:
/ HEAT (Yo, | BC 1
H 7T (Xeyor| BCICT) > == (2§1| Uy (1 - 2> =
HL(X|B) _ T
224(11)H°0(X|B)4(1 1 ) <
mn an 2n+1 2n+1 :

3.4 Privacy Amplification

For the rest of this work, we let H,, ; denote a two-universal class of hash functions from
{0,1}™ to {0,1}*. Remember that a class of hash functions is two-universal if for every
distinct z, 2’ € {0,1}™ and for F € Hp, ¢, we have Pr[F(z) = F(z2/)] < 7.

» Theorem 8 (Privacy Amplification [29]). Let € > 0. Let pxp € Pos(Hx @ Hp) be a cq-state
where X s classical and takes values in {0,1}™. Let F €p Hp, ¢ be the random variable for a
function chosen uniformly at random in a two-universal class of hash functions Hy, 0. Then,

1 e
$(pr(x)yrB, 1 ® prp) < 52_%(H°°(X|B)"_e) +e.

3.5 Algebra

The following result shows that it is difficult to learn a large matrix using a small number of
samples and is proven in the full paper.

» Theorem 9. Let M be an arbitrary £ X n binary matriz. Let A be an algorithm that is given
as input: (a1,b1), ..., (am,bm) and (a1,b1), ..., (ap, b,) where a;,a; € {0,1}", b;, b; € {0,1}*,
m <mn, pis a polynomial in £, by = M - a; and b; # M - a;. Then the following statements
hold:

2:11
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1. For any vector a € {0,1}"™ not in the span of (ai,...,am), if A outputs a guess b’ of
b= M -a, then Pr[b/ =b] = O(27").

2. Let zg,21 € {0,1}™ be any two distinct vectors not in the span of (a1, ...,am). Choose
r €r {0,1}. If A is additionally given xo,x1,y, where y. == M - x, and outputs a guess
' then Prlr’ =r] < 2 +0(27).

4 Definitions: Obfuscation and Variants in the BQSM

In this section, we adapt the notions of obfuscation and one-time programs to the BQSM
and introduce a related notion termed program broadcast.

» Definition 10 (BQS Obfuscation). A algorithm O is a (r,s)-BQS obfuscator of the class

of classical circuits F if it QPT and satisfies the following:

1. (functionality) For any circuit C € F, the circuit described by O(C) can be used to
compute C on an input T chosen by the evaluator.

2. For any circuit C' € F, the receiver requires r gmemory to learn an evaluation of C using
0(C).

3. (security) For any computationally unbounded adversary As there exists a computationally
unbounded simulator Ss such that for any circuit C' € F,

| Pr[As(0(C) = 1] = Pr[S(10)*1) = 1]| < negl(|C]).

One-time programs, introduced in [7], are similar to obfuscation but can only be used to
learn a single evaluation of the program. We adapt this notion to the BQSM.

» Definition 11 (BQS One-Time Program). An algorithm O is a (r, s)-BQS one-time compiler

for the class of classical circuits F if it is QPT, satisfies the first three conditions of

Definition 10, and the following:

4. (security) For any computationally unbounded adversary As there exists a computationally
unbounded simulator Ss such that for any circuit C € F

|Pr [A,(0(0)) = 1] - Pr[S2C(0)I) = 1]] < negl(|C).

We introduce the notion of BQS program broadcast which is similar to one-time programs
but additionally requires that multiple copies of the encrypted program can only be used
to learn a limited number of evaluations. While one-time programs allow for symmetric
key cryptography, program broadcast allows for powerful applications such as asymmetric
cryptography and tokens.

» Definition 12 (BQS Program Broadcast). A (g, s, k)-BQS program broadcast for the class

of circuits C consists of the following QPT algorithms:

1. KeyGen(1*,tenq) : Outputs a classical key ck.

2. Br(s,ek,C) : Outputs a quantum transmission O¢ for the circuit C € C during broadcast
time (before tena). Outputs ek after broadcast time.

3. Eval((O¢,ek),x) : Outputs an evaluation y on input x from the transmission (O¢, ek)
Uusing q qgmemory.

Correctness requires that for any circuit C € C and input x,

ek «— KeyGen(1*,tena)

Pr | Eval({Oc,ek),z) = C(x) Oc¢c <« Br(s,ek,C)

> 1 —negl()).

Security requires that for any computationally unbounded adversary As there exists a computa-
tionally unbounded simulator Ss such that for any circuit C € C, and ek < KeyGen(1*,tend),

| PrIAZO(j0)) = 1] — Pr(sEC(10)¥1) = 1]| < negl(N).
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5 Definitions: Disappearing Cryptography

In this section, we initiate the study of disappearing cryptography in the BQSM. These
concepts were defined earlier in [21, 16] but we adapt the definitions to the BQSM. We define
these notions for oblivious transfer, one-time programs, and asymmetric key encryption.

Informally, a state |¢) is disappearing if any adversary that receives |¢) cannot produce a
state with the same “functionality” as |¢) after a certain point in the transmission. In the
BQSM, this point is when the adversary’s gqmemory bound applies.

5.1 One-Time Programs

We present the following experiment to define disappearing security for one-time programs.
Intuitively, the experiment checks whether an adversary that receives a one-time program
can retrieve the evaluation on a random input x that is only revealed after the program. The
experiment focuses on matrix branching programs but the same experiment can be applied
to any circuit class where sampling can be done efficiently.

Experiment 1TP1'?IifA(m,n,£): Let II(m, P) be the one-time program protocol with
security parameter m on the matrix branching program P : {0,1}" — {0, 1}%.

1. Sample z €x {0,1}" and a matrix branching program P : {0,1}" — {0, 1}¢ uniformly
at random.

Protocol II(m, P) is executed between the experiment and adversary A.

After the execution ends, send z to A.

A outputs a guess p for P(z).

The output of the experiment is 1 if p = P(z) and 0 otherwise.

LAl

» Definition 13. A one-time program protocol 11 is disappearing in the BQSM if for any
adversary As,

1

Pr{ITPR} 4, (m,n,0) = 1] < o

+ negl(min(n, m)).

5.2 Encryption

We first recall the definition of a quantum asymmetric (public) key encryption scheme on
classical messages. Note that the public key in this setting is quantum so multiple copies
must be created and distributed due to the no-cloning theorem. Hence, we add an algorithm
KeySend that outputs a copy of the quantum public key when queried. In our security
experiment, the adversary is allowed to receive a polynomial number of public key copies. We
also introduce an algorithm KeyReceive which describes how to extract a reusable classical
key from a public key copy to use for encryption.

» Definition 14 (Quantum Asymmetric Key Encryption). A quantum asymmetric key encryp-
tion scheme II over classical message space M consists of the following QPT algorithms:

Gen(1*) : Outputs a private key sk.

KeySend(sk) : Outputs a quantum public key copy ppk.
KeyReceive(ppy) : Extracts a key k from ppy.

Enc(k, ) : Outputs a ciphertext pey for p € M.
Dec(sk, pet): Outputs a message p' by decrypting pet.

2:13
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» Definition 15 (Correctness). A quantum asymmetric key encryption scheme 11 is correct
if for any message 1 € M,

sk« Gen(1)
ppi < KeySend(sk)
k <« KeyReceive(ppr)

Pr | Dec(sk,pect) = p (
pet < Enc(k, n)

> 1 —negl()).

We now present an experiment to test disappearing security under lunchtime chosen
ciphertext attack (¢QDCCA1) in the BQSM. Recall, IND-CCAL1 [8] tests security against an
adversary that can query the encryption oracle at any point in the experiment and can query
the decryption oracles at any point before the challenge ciphertext is received. To satisfy
disappearing security under CCA1, we require that an adversary cannot win the IND-CCA1
experiment even if the private key is revealed after the challenge ciphertext is given.

Experiment AsyK(I‘-ID’S‘EAl (N):

. Sample a private key sk < Gen(1*) and bit b € {0,1}.

. Generate a public key ppi < KeySend(sk).

. Extract key k < KeyReceive(pps).

. Adversary outputs two messages mg, m < AKeySend(sk)Enc(k,),Dec(sk,-)
. Send AKeySend(sk).Bnc(k,-) the ciphertext pe; < Enc(k,my).

. Give AKeySend(sk).Enc(k,) the private key sk.

AKeySend(sk).Bnc(k.) gutputs a guess b'.

. The output of the experiment is 1 if b’ = b and 0 otherwise.

We can similarly construct disappearing experiment in the symmetric key case, denoted

Sym K%Df‘cm (M) by deleting steps 2 & 3 and replacing k with sk in the asymmetric experiment.

» Definition 16 (Security). An asymmetric key encryption scheme Il satisfies disappearing
indistinguishability against chosen ciphertext attacks (qDCCA1) if for any adversary As,

1
Pr[AsyKiC S0 () = 1] < 5 + negl(V),

6 One-Time Programs

In this section, we give the result for an information-theoretic secure one-time program in
the BQSM. The construction and proof are provided in the full paper as they are long and
technical. Our construction is also disappearing meaning a one-time program cannot be
evaluated after the transmission ends.

» Theorem 17. There exists an algorithm O that is a disappearing information-theoretically
secure (0,s) one-time compiler for the class of polynomial classical circuits against any
computationally unbounded adversary with s gmemory bound.

7 Program Broadcast

In this section, we construct a BQS program broadcaster as introduced in Definition 12. This
will allow us to tackle asymmetric key encryption in later sections. Let Cy, = {Cp m frn<om
where C,, ,, is a set of polynomial-size circuits in n, of input size n, and output size m. Note
that any polynomial-size circuits belongs to such a class by adding null outputs to ensure
that n < 2™,
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» Construction 18 (BQS Program Broadcaster). The (12m, s, 5>-)-BQS program broadcast
scheme for the class Cy, until time tenq is as follows:
KeyGen(1*,tena): Choose uniformly at random a (12m) x (12m) binary matriz M and
let F(z) == M - x be the corresponding program. Choose a two-universal hash function
H er Hiom.m. Output ek == (M, H,tend)-
Br(s,ek, P) : Let P € Cy,. If queried before time tong, then:
Randomly choose r,x € {0,1}12™.
Compute 0 = F(r) and ¢ .= H(x).
Send |X)g = |T1)g, .| T12m)01,, -
Send Os(P @ c).
Send r.

The entire transmission is denoted as O;’m.

LAl o

If queried after time tenq, then apply the gmemory bound and output ek.
Eval({(O%", ek),v) :

Store |x)g.

Evaluate the one-time program Os(P & ¢) on v to obtain P(v) ® c.
After r and F are received, compute 6.

Measure |x)g in the basis 0 to obtain x.

Use H to compute ¢ = H(x) and obtain P(v).

Al

» Theorem 19 (Security). Construction 18 is a (12m, s, 53 )-BQS program broadcaster for
the class Cy,.

Proof. Let P € C,,. It is clear that the receiver requires 12m gmemory to learn a single
evaluation of P from the broadcast.

In terms of security, an adversary Ag can receive a polynomial number, say p, outputs of
the broadcast Br(s, ek, P). From these states, the adversary obtains (|X;)g, )ic[p] and one-time
programs (Og(P @ ¢;))ie[p) Where ¢; == H(x;).

As can be simulated by Sg which has access to a single oracle query to P & ¢; for each
i € [p] by the security of one-time protocol (Theorem 17). The lemma below shows that
Ss can learn at most 5> values in {c;};c[p. This implies that As can learn at most 5>~
evaluations of P from the broadcast thus achieving program broadcast security.

» Lemma 20. S; can distinguish at most 5>~ terms in {c;}ic[p) from random.

Proof. Assume that there exists 5>~ values x; , ..., x; . that are distinguishable from random.

m

Instead of the broadcaster sending |x;)g,, a staridard purification argument shows it is
sufficient to show security for the protocol with the following modification. For each qubit
supposed to be sent, the broadcaster instead prepares an EPR state %(|00) + |11)) and
sends one half to Sg and keeps one half. Then the broadcaster measures its halves of the
EPR pairs in a random BB84 basis in {+, x }}?2™ after the memory bound of Ss applies. Let
O, and X; be the random variables representing the broadcaster’s choice of measurement
basis and outcome. Let X := X“Xb"'Xigin and O = @h@iz---@iﬁ- The Uncertainty
Relation (Lemma 4) implies that for v = 1—12, there exists e (negligible in m) such that
HS,(X1©1) = (3 — 27)(6s) = 2s. Let B be the random s qubit state the adversary stores
when the memory bound applies. By the chain rule for min-entropy (Lemma 3),

HSO(X]|@[B) 2 H;o(X]‘@]) — S Z S.
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Hence, by the Generalized Min-entropy Splitting Lemma 7, there exists a random variable C
and negligible value ¢ > 0 such that,

HE (X;.|0;CB) > 2m — 4.
By the Privacy Amplification Theorem 8,

§(pr(x,,)cHe,B: 1®pCHS, B)

< %2*%@;(&0‘@’03)”*’”) +e=0(2"™) = negl(n).

The final equality is because m > 1g2(n) which means 27 is negligible in n. This gives a
S

contradiction so there is less than 5>~ values ¢; which are distinguishable from random. <«

This completes the proof of Theorem 19. |

8 Encryption Schemes

We construct information-theoretically secure symmetric encryption in the BQSM and, then,
show how to upgrade it to the asymmetric setting.

8.1 Symmetric Key Encryption

In this section, we present a private key encryption scheme that satisfies disappearing
indistinguishability under chosen ciphertext attacks (qDCCAL).

» Construction 21. The symmetric key encryption scheme llsymk against adversaries with
gmemory bound s is as follows.
Gen(1*): Let m == [(1gA\)3/2]. Choose at random strings q,w € {0,1}™, a (2m) x (2m)
invertible binary matriv M and string z €g {0,1}?>™. Define S(x) == M -z + 2z, and
S'(z) = qx +w mod 2™. The private key is k = (q,w, M, z).
Enc(s,k,p): Let ¢ == |u|. Choose strings a,b €r {0,1}™ and define f(z) == ax + b
mod 2™. Construct the following program:

S'(f@)llp ify = Sz f(x))

1 otherwise.

By ru(y) = {

The encryption is per < (Os(f), Os(Ek,f,u)) sent in sequence; first O (f) and then
OS(Ek‘:f,u)-

Dec(k, pet): Check per has the correct format (see note below). Evaluate the first one-time
program on a random input v to obtain f(v). Evaluate the second one-time program on
S| f(v)). If the output is of the form S'(f(v))||ii (for some string ji) then output fi and
1 otherwise.

» Theorem 22 (Security). Construction 21 (symk) satisfies gDCCA1 security against
computationally unbounded adversaries with gmemory bound s.

Proof. An adversary Ag in the qDCCA1-security experiment requests a polynomial number,
say @, of encryption queries and a polynomial number, say @4, of decryption queries. Denote
the ciphertexts produced by all encryption queries to the oracle as (O(f;), O(Ek,f, u:))ic[0.]
and denote the decryption queries submitted to the oracle as (O(fj), O(Ej)>je[Qd] for NC!
functions f; : {0,1}™ — {0,1} and E; : {0,1}*>™ — {0,1}"*. Any decryption query not
of this form is immediately rejected as an invalid ciphertext.
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As cannot learn anything from the encryption queries alone as such attacks can be
simulated with only a single oracle query to each program in (Eg,f, ., )ic[q.]- All such
queries will yield L except with negligible probability by the security of one-time programs
(Theorem 17).

Now, consider what A, learns from the first decryption query (O(fo), O(Eo)). Suppose
As requested the encryption queries (O(f;), O(Ek,f,,u;))icldo] Prior to requesting the first
decryption query. These ciphertexts may be utilized in the construction of the decryption
query. Let Ag be the sub-algorithm of Ag which produces the first decryption query using
these ciphertexts. Hence, we write (O5(fo), Os(Eo)) <+ Ao((O(f:), O(Eg, 1,1, ))ieldo])-

As a side note, prior to sending Og(Ey), the memory bound for (Os(fi))ieldo) must have
already been applied; thus there exists values (v;);e[q,] such that A can only distinguish
fi(x) from random on z = v; for all ¢ € [dp]. This is because these functions are of the
form f;(xz) = a;xz +b; mod 2™ so learning one evaluation is not sufficient to distinguish the
evaluation on another input from random.

When the oracle receives the first decryption query, it evaluates the first one-time program
on a random input say 9y to get fo (). Next, it evaluates the second one-time program
on S (2| fo(p0)) and gets an output say 9ol|fio (or L). Let Org denote the sub-algorithm of
the oracle which performs this evaluation. Then this entire interaction can be described as
ollfto = Oro(Ao({O(fi), O(Ek,f:,1;))icldo])) Critically, the algorithm Ag is oblivious of S
and Org has access to only a single evaluation of S, namely S(v|| fo(%))-

The purpose of this description is to highlight that this entire procedure is essentially
performed by an algorithm with access to only a single evaluation of S. By Theorem 9,
this algorithm cannot guess S(x) on any input = # || fo (?9). By the security of one-time
programs, this algorithm can be simulated with a simulator that has access to only a single
query to each program (Ey, , ., )ic(d,] instead of (Os(E,f;.u;))iciao]- The query to Eg y;
will yield L except with negligible probability unless 6o ||f;(90) = 9ol|fo(90) since the simulator
cannot guess S(z) on x # || fo(fo). If the condition || f;(60) = Dol fo(fo) is not satisfied
for any ¢ € [do] then the simulator will receive L from all its oracle queries except with
negligible probability and thus there is a negligible probability that gy = S’( fo(ﬁo)). Note
that, there is at most a single value i that satisfies this condition except with negligible
probability since the parameters of the functions (f;);c(q,) are chosen independently and at
random.

Assume this condition is satisfied only by the function f, where n € [dg]. There is
negligible chance that 99 = v, and so As cannot distinguish f,,(?) or equivalently fo (Do)
from random. The other values used by the oracle in the decryption query are: v, S(v|| fo (D))
and S'(fo(99)). Even if Ag learns all these values, it does not help in determining functions
S and S since fo(dp) is indistinguishable from random.

At the end of this argument, Ag cannot distinguish the key & from random. Notice
that the only requirement to apply this argument on a decryption query is that A cannot
distinguish k£ from random when it submits the query. Hence, this argument can be applied
to all decryption queries and it can be deduced inductively that Ag cannot distinguish & from
random when it receives the challenge ciphertext. Let (Os(f), Os(Ek, fm,)) be the challenge
ciphertext. By one-time program security, the adversary’s access to these programs can be
simulated with a single evaluation to each program. Hence, it is clear that the probability
that the adversary guesses b is upper bounded by 3 + negl(n). This still holds if k is later
revealed since one-time programs disappear after their transmission ends by Theorem 17. <«
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8.2 Asymmetric Key Encryption

We now look into the asymmetric key setting and construct an asymmetric key encryption
scheme with information-theoretic disappearing security under chosen-ciphertext attacks in
the BQSM. The private key is a large matrix and the public key is a program broadcast of
the matrix. Since different users will likely learn different evaluations, an evaluation can be
used as a secret key to encrypt messages in the same way as in Construction 21. Note that
honest users need a small qmemory to process the broadcast as described in Construction 18.
This is in contrast to the private key setting where no qmemory is required.

» Construction 23. Let I = (Gen, Enc, Dec) be given in Construction 21 for symmetric key
encryption and let Il g, = (KeyGen, Br, Eval) be the algorithms for program broadcast given
in Construction 18. The asymmetric key encryption scheme Ilasi against adversaries with
gmemory bound s is as follows:

Gen(1*,s): Let m = 100[(Ig A)*] and n = max([%2]+1,m). Choose uniformly at random

m X n binary matric M and for x € {0,1}™, let P(x) := M - x be the corresponding

program. Generate ek < KeyGen(1*,tenq). The private key is sk = (ek, P).

KeySend(s, sk): If queried before tepnq, then output Op < Br(s, ek, P).

If queried after tenq, the gmemory bound applies and output ek.

Let ppi < (Op,ek) denote the public key copy.

KeyReceive(ppy): Randomly choose v €g {0,1}". Ewvaluate the public key P(v) <«

Eval(ppr,v) and output the key k, = (v, P(v)).

Enc(s, ky, p1): Output (v, Enc(s, P(v), ) 3.

Dec(sk, (v, pet)): Obtain P(v) using sk and v. Output Dec(P(v), pet)-

The algorithm KeyReceive requires 100(Ig A)?> gmemory to run and the scheme is secure
against adversaries with s qmemory, where s can be any polynomial in A\. Hence, by setting

m = 100(1g \)3, the gap between the qmemory of the honest user and the adversary is m vs.
Im
eVm,

» Theorem 24 (Security). Construction 23 (Ilask) satisfies gDCCA1 security against
computationally unbounded adversaries with gmemory bound s.

Proof. An adversary A in the qDCCA1 security experiment can request a polynomial

number of public key copies ppr. The proof can be realized in the following steps.

1. By the security of our program broadcast protocol (Theorem 19) A can be simulated
with an algorithm S that is given % queries to P.

2. By Theorem 9, since M is a matrix of dimension [{5] x n and n > %, Ss cannot guess
the output of P(x) = M -z on a random input except with negligible probability.

3. This means that there is negligible chance Ss can determine the sub-key k, extracted
from the public key pp; in the experiment which reduces the proof to the private key
setting. Theorem 22 gives the result. |

9 Note on Noisy Communication

Our protocols assume that the communication between the sender and receiver is error-free.
It is assumed that the sender has a perfect quantum source which when requested will
produce one and only one qubit in the correct state. Note if the source accidentally produces

3 The string P(v) is of length m = 100[(Ig X)?], so it is of sufficient length such that it can be interpreted
as the secret key in the symmetric-key encryption scheme II.
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two copies of a qubit then the adversary can measure the qubit in two bases and break the
1-2 oblivious transfer scheme. Furthermore, it requires the honest evaluator to measure all
qubits without error.

Fortunately, in [10] the authors used techniques based on information reconciliation to

allow an honest evaluator and sender in the quantum 1-2 oblivious transfer scheme with

imperfect apparatus to perform error correction without compromising the security of the

scheme. The same techniques are applicable to our protocols since the quantum component

of our one-time programs consist of oblivious transfer transmissions. However, we leave a
more rigorous treatment of these issues as an avenue for future work.
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