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Abstract
Can Shamir’s secret-sharing protect its secret even when all shares are partially compromised?

For instance, repairing Reed-Solomon codewords, when possible, recovers the entire secret in the
corresponding Shamir’s secret sharing. Yet, Shamir’s secret sharing mitigates various side-channel
threats, depending on where its “secret-sharing polynomial” is evaluated. Although most evaluation
places yield secure schemes, none are known explicitly; even techniques to identify them are unknown.
Our work initiates research into such classifier constructions and derandomization objectives.

In this work, we focus on Shamir’s scheme over prime fields, where every share is required to
reconstruct the secret. We investigate the security of these schemes against single-bit probes into
shares stored in their native binary representation. Technical analysis is particularly challenging
when dealing with Reed-Solomon codewords over prime fields, as observed recently in the code
repair literature. Furthermore, ensuring the statistical independence of the leakage from the secret
necessitates the elimination of any subtle correlations between them.

In this context, we present:
1. An efficient algorithm to classify evaluation places as secure or vulnerable against the least-

significant-bit leakage.
2. Modulus choices where the classifier above extends to any single-bit probe per share.
3. Explicit modulus choices and secure evaluation places for them.
On the way, we discover new bit-probing attacks on Shamir’s scheme, revealing surprising correlations
between the leakage and the secret, leading to vulnerabilities when choosing evaluation places naïvely.

Our results rely on new techniques to analyze the security of secret-sharing schemes against side-
channel threats. We connect their leakage resilience to the orthogonality of square wave functions,
which, in turn, depends on the 2-adic valuation of rational approximations. These techniques, novel
to the security analysis of secret sharings, can potentially be of broader interest.
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3:2 Leakage-Resilience of Shamir’s Secret Sharing

1 Introduction

Secret-sharing schemes protect their secrets when only a few shares are compromised. Side-
channel attacks have repeatedly circumvented their security by accumulating partial informa-
tion from all shares [28, 29, 10]. For instance, repairing Reed-Solomon codes [20, 21], when
possible, recovers the entire secret in the corresponding Shamir’s secret sharing [40] by down-
loading a small amount of information per share. More alarmingly, ingenious side-channel
attacks have revealed critical information about cryptographic secrets (without completely
recovering them). Securing our secret-sharing schemes against various side-channel threats
has become even more compelling due to the ongoing NIST standardization efforts [8],
considering their wide use in key distribution [37, 43], masking schemes [10, 18], and other
higher-level primitives like secure computation [17].

Local leakage resilience [4, 19] is a security metric for secret sharing against a broad
spectrum of side-channel threats that leak from each share independently. Local leakages are
surprisingly powerful; even single-bit probes into every share partially reveal an additively
shared secret [33, 1, 34, 14]. Shamir’s secret-sharing is a more promising alternative – its
security depends on where its secret-sharing polynomial is evaluated. Most evaluation
places, in particular, ensure that the cumulative leakage from bit probes into shares is
statistically independent of the secret [33, 35]. However, not one choice is known explicitly;
even techniques to identify them have yet to be discovered. As a result, NIST can neither
recommend evaluation places for Shamir’s secret sharing nor certify their security against
such attacks. Towards alleviating this situation, it is natural to wonder:

Question: Is there an algorithm to determine whether the picked evaluation places
yield a locally leakage-resilient Shamir’s secret sharing?

Any meaningful classifier in this context must have the following features.

1. No false positives. No evaluation places can be incorrectly determined to be leakage-
resilient; otherwise, they could be picked unbeknownst to the honest parties.

2. A small number of false negatives. Ideally, the algorithm should correctly identify most
(or at least a significant fraction) of the leakage-resilient evaluation places.

3. Efficiency. The runtime of the classifier should not be “prohibitively large.”

In fact, explicitly identifying secure evaluation places would be ideal. Our work initiates
research into such classifier constructions and derandomization objectives.

Summary of our results. We consider Shamir’s schemes where shares of all parties are
required to reconstruct the secret and investigate their security against arbitrary single bit-
probe in each share. We present such classifiers for Mersenne and Fermat prime modulus.
Our algorithms have poly(log p) running time and √

p · poly(log p) false negatives for prime
modulus p. For the two-party case, we present secure evaluation places explicitly. The
technical workhorse is our classifier for the specific leakage that obtains each share’s least
significant bit (LSB); this classifier works for arbitrary prime modulus. Our classifier is
accurate; we present new bit-probing attacks on those identified to be insecure.

Summary of our key technical challenge. For an arbitrary prime modulus p ⩾ 3, define the
function LSB: Fp → F2 by LSB(x) := 0, for x ∈ {0, 2, . . . , (p − 1)}; otherwise, LSB(x) := 1.
Fix arbitrary elements α1, α2 ∈ Fp.
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Technical Question: For a uniformly random X ∈ Fp,
are the distributions LSB(α1 · X) and LSB(α2 · X) statistically independent?

Answering this technical question is challenging because x 7−→ LSB(x) is a non-linear map.
Linear maps are either (perfectly) independent or (completely) correlated; answering this
question for them is easy. Subtle correlations can surreptitiously manifest between non-linear
maps, which is the case here. The pattern of (α1, α2) resulting in statistically independent
distributions is highly non-trivial. We prove that it depends on the 2-adic valuation of their
rational approximation; our classifier algorithm is outlined below.

1. Solve for relatively prime integers u, v ∈
{

−
⌈√

p
⌉
, . . . , 0, . . . ,

⌈√
p
⌉}

such that
u · α2 = v · α1 mod p.

2. Distributions are independent if (and only if) u/v has non-zero 2-adic valuation; i.e.,
either u or v is even.

3. Otherwise, for odd u and v, the 2-adic valuation of u/v is 0, and the dependence
between these two distributions is 1/|u · v|. When this dependence is significant, we
identify new side-channel attacks.

The connection between 2-adic valuations with security of secret sharings is novel and
possibly of broader interest. Our work highlights the challenges in determining the leakage
resilience of secret sharing. There are several natural follow-up questions; Section 3 presents
a few and the hurdles in approaching them.

▶ Remark 1 (Recent relevant works). Maji et al. [35] and, very recently, Nguyen [38] drew
inspiration from our approach and constructed such classifiers over characteristic-2 composite-
order fields. The analogous map in their technical analysis is F2-linear, making their
technical question approachable via elementary “rank arguments” (a.k.a., dual distance of the
concatenated Reed-Solomon codes over the binary alphabet). Analyzing non-linear leakage
in the related literature on repairing Reed-Solomon codewords has also been technically
challenging; non-linear repairing was only recently addressed [13, 12]. We summarizes this
discussion and other prior relevant works in the full version [27] of the paper.

▶ Remark 2 (Other leakage-resilient alternatives). The additive and Shamir’s schemes are
deployed widely. It is crucial to determine their security; this work contributes to this effort.
New constructions (like [5, 2, 41, 3, 30, 6, 15, 41, 16, 26, 11, 36, 9]) cannot match their
simplicity and high information rate or replace them in security technologies.

1.1 Basic Definitions & Our Formal Problem Statement

Shamir’s secret-sharing scheme. Shamir’s secret-sharing scheme among n parties with
reconstruction threshold k over a finite field F and distinct evaluation places α1, α2, . . . , αn ∈
F ∗ proceeds as follows. To share a secret s ∈ F , sample a random F -polynomial P (X)
such that deg P < k and P (0) = s. Define the shares: s1 := P (α1), s2 := P (α2), . . . , and
sn := P (αn). Denote this secret-sharing by ShamirSS(n, k, α⃗) and the joint distribution of
the shares by Share(s) – other parameters will be clear from the context. This work only
considers n = k.

Representing prime field elements. Consider a prime field Fp of order p, where 2λ−1 <

p < 2λ and λ is the security parameter. The elements of Fp are represented as λ-bit binary
strings representing the elements {0, 1, . . . , (p − 1)}.

ITC 2025



3:4 Leakage-Resilience of Shamir’s Secret Sharing

▶ Remark 3. For a Fermat prime p = 2λ + 1, elements of Fp require (λ + 1) bits in their
binary representation. However, only the binary representation of 2λ has 1 in the most
significant bit. For simplicity of presentation, we assume that elements are represented using
λ bits only; disregarding the element 2λ ∈ Fp adds only an additive 1/p slack to the analysis.

Leakage functions & families. This work studies physical bit leakage PHYSi : Fp → {0, 1}
that outputs the i-th least significant bit, where i ∈ {0, 1, . . . , λ − 1}. For example, PHYS0
(also referred to as LSB) outputs 0 for the elements in {0, 2, . . . , (p − 1)}, where p ⩾ 3, and
PHYS1 outputs 0 for the elements in {0, 1, 4, 5, . . . }. For i = (i1, i2, . . . , in) ∈ {0, 1, . . . , λ −
1}n, the leakage function ⃗PHYSi : F n → {0, 1}n leaks the it-th bit of the t-th share, where
t ∈ {1, 2, . . . , n}. For a secret s ∈ F , the joint distribution of the leakage is ⃗PHYSi(Share(s)).
We consider two leakage families.

1. Physical bit leakage family: PHYS :=
{

⃗PHYSi : i = (i1, . . . , in) ∈ {0, 1, . . . , λ − 1}n
}

.

2. LSB leakage family: LSB :=
{

⃗PHYS0

}
, where 0 = (0, 0, . . . , 0)

Insecurity & randomized construction. Insecurity of ShamirSS(n, k, α⃗) against a leakage
family F is:

εF (α⃗) := max
f∈F

max
s∈F ∗

SD ( f(Share(0)) , f(Share(s)) ) . (1)

Low insecurity indicates the statistical independence of the leakage from the secret, i.e., the
secret-sharing is locally leakage-resilient [4, 19]. Recently, Faust et al. [14] connected this
definition to practice.

High insecurity indicates a leakage function can distinguish the secret 0 and some s∗ ∈ F ∗

using the leakage. Maji et al. [33] analyzed the insecurity against the PHYS leakage family
when evaluation places were chosen randomly. Their result implies the following corollary
for prime modulus p ⩾ 3 and n = k ⩾ 2.

For randomly chosen evaluation places α⃗ ∈
(
F ∗

p

)n, the insecurity εPHYS(α⃗) ⩽ p−1/2 with
probability ⩾ 1 − p−1/2.

Recently, [35] extended the randomized construction from prime fields to composite ones.
Our work investigates the security against the leakage family PHYS; i.e., the adversary

obtains arbitrary one physical bit leakage from each share. Our research question can be
rewritten using these terminologies and notations as follows.

Our Research Question: Given evaluation places α⃗ and prime modulus p,
identify whether (1) εPHYS(α⃗) ⩽ p−1/2 or (2) εPHYS(α⃗) > p−1/2.

If εPHYS(α⃗) > p−1/2, then output a secret s∗ ∈ F ∗
p such that the shares of 0 can be

distinguished from the shares of s∗ with (roughly) εPHYS(α⃗) advantage. All algorithms must
be computationally efficient – runtime is a polynomial in λ; i.e., poly(log p). Furthermore,
concrete security analysis (over asymptotic analysis) is prioritized.

1.2 Our Results
Below, for x, y, z ∈ R, the expression x = y±z is a concise representation for “x ∈ [y−z, y+z].”
For example, “x is close to y” is expressed using x = y ± ε, for a small ε. Section 2 presents
a high-level overview of the critical technical ideas underlying our results.
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Technical Result: Security against LSB Leakage when n = 2

Consider arbitrary prime p ⩾ 3 (not just a Mersenne/Fermat prime) and the LSB leakage.
The technical workhorse for our results is the classifier for (n, k) = (2, 2); other results
bootstrap from it.
1. Figure 1 presents our efficient algorithm to classify α⃗ as secure or not. If our algorithm

classifies α⃗ as secure, then Corollary 14 and Corollary 15 shows that

εLSB(α⃗) ⩽ 1 + 85/4
√

p
+ 13/2

p
⩽

14.46
√

p
,

which is exponentially small in the security parameter λ. The number of false negatives
is O

(√
p · log p

)
.

2. We present an efficient adversary (Corollary 16) that generates s∗ ∈ F ∗ such that it
distinguishes the secret 0 from s∗ by leaking the LS of each share with an advantage

⩾ εLSB(α⃗) − 2 · 85/4
√

p
− 13

p
⩾ εLSB(α⃗) − 26.91

√
p

.

Therefore, our efficient leakage attack achieves a comparable distinguishing advantage
when the insecurity εLSB(α⃗) is significant.

Result A: Security against Physical Bit Leakage when n = 2

For the n = k = 2 case, we analyze a prime field Fp, where p is a Mersenne/Fermat prime –
primes of the form 2λ ± 1. We reduce arbitrary physical bit leakage to LSB leakage for
related evaluation places over these fields. In this context, our work proves the following
results.
1. Figure 2 presents our efficient classifier against PHYS leakage. For α⃗ that is classified

secure, Corollary 19 shows that the insecurity is εPHYS(α⃗) ⩽ 14.46/
√

p and the number
of false negatives is O

(√
p · (log p)2

)
.

2. We present an efficient adversary that generates (s∗, f) ∈ F ∗
p × PHYS such that it

distinguishes the secret 0 from secret s∗ by leaking f ∈ PHYS from the shares with an
advantage ⩾ εPHYS(α⃗) − 26.91/

√
p. These are new side-channel attacks; their existence

demonstrates the tightness of our analysis and accuracy of our classifier.
This is direct consequence of the properties of Mersenne and Fermat primes and Corol-
lary 16.

3. We explicitly identify secure evaluation places against PHYS leakage: all (α1, α2) satisfying
α2 · α−1

1 ∈
{

γ, −γ, γ−1, −γ−1 }
, where γ = 2⌊λ/2⌋ − 1. For these evaluation places, we

get εPHYS(α⃗) ⩽ 8.49/
√

p, which Corollary 20 and Corollary 21 prove. We provide an
example for Mersenne prime p = 213 − 1 in the full version of our paper [27].

Result B: Security against Physical Bit Leakage when n > 2

Consider a prime field Fp such that p = 2λ ± 1 a Mersenne/Fermat prime. Figure 2 presents
an efficient classifier for α⃗ such that the corresponding ShamirSS(n, n, α⃗) is secure to physical
bit probes; the insecurity is at most 1/

√
p, as shown in Corollary 23.

Given evaluation places α⃗ := (α1, α2, . . . , αn) we efficiently compute an appropriate
β⃗ := (β1, β2, . . . , βn) (see Equation 3). Corollary 23 proves that if ShamirSS(2, 2, (β1, β2))
has ε-insecurity against physical bit leakage, then ShamirSS(n, n, α⃗) has 2ε-insecurity against
physical bit leakage. Clarifications below highlight the subtlety of this classifier:

ITC 2025



3:6 Leakage-Resilience of Shamir’s Secret Sharing

▶ Remark 4 (Clarifications).
1. High insecurity of ShamirSS(2, 2, (β1, β2)) does not imply high insecurity of

ShamirSS(n, n, α⃗); our result lifts security only in one direction.
2. Can the security of ShamirSS(2, 2, (αi, αj)), for all 1 ⩽ i < j ⩽ n, imply the security of

ShamirSS(n, n, α⃗)? This natural classifier has false positives. Consider n = 3, a prime
p = 4w2 + 6w + 9, and evaluation places α⃗ = (1, σ, σ2), where w ⩾ 4, w ̸= 0 mod 3,
and σ = 2w · 3−1. For example, p = 97 and σ = 35; Bunyakovsky conjecture [7] implies
infinitude of such primes. Against LSB leakage, although every ShamirSS(2, 2, (αi, αj))
is secure, ShamirSS(n, n, α⃗) is (2/π)3 > 0.25 insecure [34, 14]; Appendix C presents the
details.

So, the following randomized strategy suffices to construct secure schemes: (1) randomly
sample α⃗, (2) compute β⃗ using our map in Figure 3, and (3) test the security of secret sharing
scheme ShamirSS(2, 2, (β1, β2)) using Corollary 19.

We can obtain secure evaluation places for n = k > 2 case by bootstrapping from
the explicit secure evaluation places for n = k = 2 case. For example, α1 = (n − 1),
α2 = (n − 1) − (1 + γ), and αj = (j − 2) · (γ + 1), for j ∈ {3, 4, . . . , n}, is secure against one
physical bit probe per share if (1, γ) is secure evaluation place for n = k = 2 case. Specifically,
γ =

√
(p ± 1)/2 − 1 suffices for Mersenne/Fermat prime modulus.

2 Technical Overview

2.1 Technical Result: LSB Leakage (n, k) = (2, 2)

For any prime field Fp, we outline our classification algorithm for (n, k) = (2, 2) and, en
route, highlight our technical contributions (Figure 1 presents the pseudocode).

Step 1. The prime modulus p and the distinct evaluation places α1, α2 ∈ F ∗
p are in-

puts to the LSB classification algorithm. The security/vulnerability of evaluation places
(α1, α2) is identical to any evaluation places (u, v) satisfying α1 · α−1

2 = u · v−1 (follows
from Generalized Reed-Solomon codes’ properties [23]). We find “small norm” u, v ∈{

−
⌈√

p
⌉
, . . . , 0, 1, . . . ,

⌈√
p
⌉}

with the property mentioned above – a Dirichlet approximation
problem. We solve it with a small constant multiplicative slack using the LLL [32] algorithm
in poly(λ) runtime, where λ := ⌈log2(p + 1)⌉. The reasoning for choosing “small norm” u, v

will be evident below in Step 3.

Step 2. We proceed to solve the technical question from Page 2: determine whether the
bits LSB(u · X) and LSB(v · X) are statistically independent, for uniformly random X ∈ Fp.

We will calculate the similarity/dependence between these two distributions, which
is equivalent to the bias ε of the distribution LSB(u · X) ⊕ LSB(v · X). In this context,
the bias is the probability that LSB(u · X) = LSB(v · X) minus the probability that
LSB(u · X) ̸= LSB(v · X).

Step 3. To develop an efficient algorithm to compute ε, we express the quantity ε as the
inner product of two oscillatory {±1} sequences, approximated by the following integral.∫ 1

0
sign sin(2π|u| · t) · sign sin(2π|v| · t) dt.
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Input. Distinct evaluation places α1, α2 ∈ F ∗

Output. Decide whether the evaluation places (α1, α2) are secure to the LSB leakage
attack
Algorithm.
1. Define the equivalence class

[α1 : α2] :=
{

(u, v) : u = Λ · α1, v = Λ · α2, Λ ∈ F ∗
}

.

Use the LLL [31] algorithm to (efficiently) find (u, v) ∈ [α1 : α2] such that

u, v ∈ {−B, −(B − 1), . . . , 0, 1, . . . , (B − 1), B} mod p,

where B :=
⌈
23/4 · √

p
⌉
. Refer to Figure 4 in Appendix A.

2. Remark: Our algorithm interprets u, v ∈ {−B, . . . , 0, 1, . . . , B} mod p as integers
below.

3. Compute g = gcd(u, v).
4. If u · v/g2 is even: Declare ShamirSS(2, 2, (α1, α2)) is secure against LSB leakage
5. (Else) If u · v/g2 is odd and

∣∣u · v/g2
∣∣ ⩾ √

p: Declare ShamirSS(2, 2, (α1, α2)) is secure
against LSB leakage

6. (Else) Declare that the security of ShamirSS(2, 2, (α1, α2)) against LSB attacks may be
insecure

Figure 1 Identify secure evaluation places for Shamir’s secret sharing against LSB leakage.

Here, sign sin(2π|u| · t) ∈ {±1} is a square wave that oscillates |u| times in the domain
[0, 1]. The integral above measures the similarity/dependence between the two square
waves, the first oscillating |u| times and the second oscillating |v| times. The error of our
approximation is directly proportional to the total number of oscillations of the square waves.
The approximation error is ⩽ (|u| + |v|)/p = O

(
1/

√
p
)
, exponentially small in λ, for small

norm u, v. For simplicity, the presentation below ignores this approximation error.

Step 4. Finally, we present a closed-form expression for the integral; thus computing the
bias ε. For g := gcd(|u|, |v|) and ρ := |u| · |v|/g2, we prove that:

ε =
{

0, if ρ is even
1/2ρ, if ρ is odd.

Step 5. Consider the ε = 0 case. This happens when the highest powers of 2 dividing |u|
and |v| differ. In this case, we prove that LSB(u · X + s) is independent of LSB(v · X + s),
for every secret s ∈ Fp. Technically, we prove the following integral representing the bias for
this general case – a phase-shifted integral from Step 2 above – is 0 for all δ ∈ [0, 1).∫ 1

0
sign sin(2π|u| · t) · sign sin(2π|v| · t + 2π · δ) dt.

Note that the marginal LSB(u · X + s) is a uniformly random bit, and so is the marginal
LSB(v · X + s). Therefore, these leakage bits are uniformly and independently random.
Furthermore, the distribution of (u · X + s, v · X + s), for uniformly random X ∈ Fp, is
identical to the distribution of the shares (s1, s2) = (α1 · X + s, α2 · X + s) by properties
of General Reed-Solomon codes [23]. Consequently, Shamir’s scheme is secure in this case
because all secrets produce identical leakage distribution.

ITC 2025



3:8 Leakage-Resilience of Shamir’s Secret Sharing

When ε ̸= 0, |u| and |v| have the identical highest power of 2 dividing them. Theorem 10
presents a (closed-form) expression for a secret s∗ ∈ F ∗

p such that the distributions of LSB
leakage for secret 0 and secret s∗ are distinguishable with an advantage of ε. We achieve this
by giving the formula for the δ∗ ∈ {1/p, 2/p, . . . , (p − 1)/p}, such that the following integral’s
value is farthest from ε.∫ 1

0
sign sin(2π|u| · t) · sign sin(2π|v| · t + 2π · δ∗) dt

We then reconstruct s∗ from this δ∗.
Our classification algorithm for arbitrary physical bit probes will build on the classifier

outlined in this section.
▶ Remark 5. Our work connects the security of secret-sharing schemes against leakage attacks
with the orthogonality properties of a family of square waves [42, 25, 24]. Various families of
square waves, like the ones by Haar [22], Walsh [44], and Rademacher [39], are central to
science and engineering. These techniques are new to the security analysis of secret sharings
and possibly of broader interest.

2.2 Overview of Result A: Physical Bit Leakage (n, k) = (2, 2)
Suppose the evaluation places are α⃗ = (α1, α2). We aim to determine whether Shamir’s
secret-sharing scheme with these evaluation places is secure against all physical bit leakage
attacks in Mersenne prime fields. For i, j ∈ {0, 1, . . . , λ − 1}, consider the physical bit leakage
attack ⃗PHYSi,j . This leakage attack leaks the i-th LSB of the share s1 and the j-th LSB of the
share s2. For a Mersenne prime p and an element x ∈ Fp, the binary representation of x · 2−1

is the right rotation of the binary representation of x by one position. Therefore, ⃗PHYSi,j

leakage with evaluation places (α1, α2) is identical to the LSB leakage with evaluation places
(2−i · α1, 2−j · α2). By Generalized Reed-Solomon codes’ properties [23], the leakage is
identical to the LSB leakage with evaluation places (2j−i · α1, α2). Consequently,

εPHYS((α1, α2)) = max
{

εLSB( (α1, α2) ), εPHYS( (2α1, α2) ), . . . , εPHYS( (2λ−1α1, α2) )
}

.

Thus, security against PHYS leakage reduces to a sequence of LSB security estimations.
Figure 2 presents this pseudo-code.
▶ Remark 6 (An Edge Case). The algorithm determining the security of Shamir’s secret-
sharing scheme to LSB attack requires the evaluation places to be distinct. Even though α1
and α2 are distinct, it may be the case that 2tα1 = α2, for some t ∈ {0, 1, . . . , λ − 1}. So, the
call to the “LSB security check subroutine” with the argument (2tα1, α2) would be invalid.
Lemma 18 proves that this edge case is insecure. This case captures why evaluation places
(1, 2) are insecure against physical bit leakage.
For Fermat prime p, x ∈ Fp, and i ∈ {1, 2, . . . , λ − 1} we prove following identity.1

PHYSi−1(x) = PHYSi(2x + 1). (2)

Therefore, PHYSi(x) = LSB(2−i ·x+2−i −1). Like the Mersenne prime case above, arbitrary
physical bit leakage translates into LSB leakage, except the map here is an affine map instead
of a linear map. As a result, the secret s∗ ∈ F ∗

p witnessing the maximum insecurity is
different; it is still efficiently computable. See Section 5.1 for details.
▶ Remark 7. Investigating Mersenne prime modulus in the context of Shamir secret-sharing
has also been done by Faust et al. [14]; the ideas to analyze Fermat prime modulus are new.

1 For primes other than Mersenne and Fermat primes, there is no such affine transformation.
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Input. Distinct evaluation places α1, α2 ∈ F ∗
p , and p is a Mersenne/Fermat prime.

Output. Decide whether the evaluation places (α1, α2) are secure to an arbitrary single
physical bit leakage per share.
Algorithm.
1. If there is t ∈ {0, 1, . . . , λ − 1} such that 2tα1 = α2: Return insecure
2. For t ∈ {0, 1, . . . , λ − 1}:

a. Call the algorithm in Figure 1 with evaluation places (2tα1, α2)
b. If the algorithm returns “may be insecure,” return may be insecure

3. Declare ShamirSS(2, 2, (α1, α2)) is secure against physical bit attacks.

Figure 2 Identify secure evaluation places for Shamir’s secret sharing against physical bit leakage.

2.3 Overview of Result B: Physical Bit Leakage n = k > 2

Our objective is to choose n distinct evaluation places α1, α2, . . . , αn ∈ F ∗ such that the
corresponding ShamirSS(n, n, α⃗) is secure against physical bit leakage attacks. We prove a
lifting theorem (Theorem 22) that proves the following result. Given evaluation places α⃗,
consider β⃗ related to Lagrange multipliers (where i ∈ {1, 2, . . . , n}):

βi :=

αi

∏
j ̸=i

(αi − αj)

−1

. (3)

Now consider the ShamirSS(2, 2, (βi, βj)) secret-sharing scheme for all distinct i, j ∈ {1, . . . , n}.

Suppose one of these secret-sharing schemes is secure against physical bit leakage. In that
case, the ShamirSS(n, n, α⃗) secret-sharing scheme is also secure. More concretely, if the
insecurity of ShamirSS(2, 2, (βi, βj)) is ε, for some distinct i, j ∈ {1, 2, . . . , n}, then the
ShamirSS(n, n, α⃗) secret-sharing scheme is (at most) 2ε insecure.

Whether the evaluation places of ShamirSS(2, 2, (βi, βj)) is secure or not can be determined
efficiently using our algorithm in Figure 2. We can use this algorithm to detect if our chosen
α⃗ has such a secure (βi, βj) pair of evaluation places. Corollary 23 formally states this result;
its proof is entirely Fourier-analytic.

▶ Remark 8. Analyzing this classifier has some subtleties. The α⃗ 7→ β⃗ mapping is not a
bijection; few β⃗ have multiple preimages, most have one, and some have none. We prove
that (β1, β2) are (nearly) independent when α⃗ is chosen uniformly at random, for n ⩾ 3.

▶ Remark 9 (Clarifications).

1. High insecurity of ShamirSS(2, 2, (β1, β2)) does not imply high insecurity of the corres-
ponding ShamirSS(n, n, α⃗); our result lifts security only in one direction.

2. Can the security of ShamirSS(2, 2, (αi, αj)), for all 1 ⩽ i < j ⩽ n, imply the security of
ShamirSS(n, n, α⃗)? This natural classifier has false positives. Consider n = 3, a prime
p = 4w2 + 6w + 9, and evaluation places α⃗ = (1, σ, σ2), where w ⩾ 4, w ̸= 0 mod 3,
and σ = 2w · 3−1. For example, p = 97 and σ = 35; Bunyakovsky conjecture [7] implies
infinitude of such primes. Against LSB leakage, although every ShamirSS(2, 2, (αi, αj))
is secure, ShamirSS(n, n, α⃗) is (2/π)3 > 0.25 insecure [34, 14]; Appendix C presents the
details.
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Input. Distinct evaluation places α⃗ = (α1, α2, . . . , αn) ∈ (F ∗
p )n, and p is a Mersenne or

Fermat prime
Output. Decide whether the evaluation places α⃗ are secure to all physical bit leakage
attacks
Algorithm.
1. For i ∈ {1, 2, . . . , n}, compute

βi :=

αi

∏
j ̸=i

(αi − αj)

−1

.

2. If there exist 1 ⩽ i < j ⩽ n such that ShamirSS(2, 2, (βi, βj)) is secure per the algorithm
in Figure 2, then declare that ShamirSS(n, n, α⃗) is secure.

3. Otherwise, the algorithm states that ShamirSS(n, n, α⃗) may be insecure.

Figure 3 Identify secure evaluation places for ShamirSS(n, n) against physical bit leakage.

3 Future Research Directions

There are several natural research directions for future work. A few immediate ones and
their respective technical hurdles are presented below.

LSB classifier construction for n > 2. To illustrate the challenges, consider n = 3 and
evaluation places (α1, α2, α3). The rational approximation problem will require finding
small-norm u, v, w such that α1 : α2 : α3 = u : v : w. Dirichlet approximation theorem only
guarantees |u|, |v|, |w| ⩽ p(n−1)/n. Therefore, the accuracy error in estimating the summation
by an integral will be p(n−1)/n/p = p−1/n ≫ p−1/2, for n ⩾ 3.
Moreover, for φ(x) = sign sin(2πx), the estimate of the integral below is not known.∫ 1

0
φ(ut) · φ(vt) · φ(wt) dt. (4)

Arbitrary physical bit leakage in general prime modulus. Against arbitrary physical bit
leakage, extension to general prime modulus seems challenging. For example, when n = 2,
the technical challenge is to characterize (α1, α2) such that the distributions PHYSi(α1X) is
independent of PHYSj(α2X), where X is chosen uniformly at random. The bottleneck is to
establish an integral that estimates this expression for a general prime modulus.

More physical probes. Consider (n, k) = (2, 2), evaluation places (α1, α2), a Mersenne
prime modulus p, and physical bit leakage probing the first share twice & the second share
once. The technical problem is to show the independence of the following three distributions(

PHYSi(α1X), PHYSj(α1X), PHYSk(α2X)
)

,

where X ∈ Fp is chosen uniformly at random. The analysis reduces to estimating the integral
in Equation 4, where u = 2−iα1, v = 2−jα1, and w = 2−kα2, which is not known.

More general (n, k). For concreteness, consider (n, k) = (3, 2) and resilience to LSB leakage.
This resilience requires t-wise independence of the leakage bits, where k ⩽ t ⩽ n. The 2-wise
independence of leakage bits can be tested using the classifier in Figure 1. The 3-wise
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independence test has identical hurdles as the “LSB classifier construction for n > 2” case
discussed above. There are evaluation places where the LSB leakage is 2-wise independent but
3-wise correlated for (n, k) = (3, 2). The evaluation places of Appendix C with (n, k) = (3, 2)
(instead of (n, k) = (3, 3)) have this property.

4 Security against Least Significant Bit Leakage

This section presents our results regarding the security of Shamir’s secret-sharing scheme
when n = k = 2 against the LSB leakage. We begin with a powerful technical result.

▶ Theorem 10 (Technical Result). Consider the ShamirSS(2, 2, (α1, α2)) secret-sharing scheme
over a prime field Fp, where p ⩾ 3.

max
s∈F

SD
(

⃗LSB(Share(0)) , ⃗LSB(Share(s))
)

=


4(|u| + |v|) − (3/2)

p
, if |u| · |v|/g2 is even,

(
2 − 1

2p

)
· g2

|u| · |v|
± 4(|u| + |v|) − (3/2)

p
if |u| · |v|/g2 is odd,

where α1 · α−1
2 = u · v−1 and g = gcd (|u|, |v|).

Furthermore, for s ∈ F ∗
p satisfying (2−1 · s) · (u−1 − v−1) ∈ (2Z+1)·p±1

2|u||v| , if

SD
(

⃗LSB(Share(0)) , ⃗LSB(Share(s))
)

>
4(|u| + |v|) − (3/2)

p

then there is an efficient distinguisher to distinguish the secret 0 and s with advantage at
least(

2 − 1
2p

)
· g2

|u| · |v|
− 4(|u| + |v|) − (3/2)

p

using the LSB leakage on the secret shares.

Essentially, this theorem helps estimate the insecurity efficiently. Section 4.1 presents the
proof outline for this result and we presents the complete proof in the full version of our
paper [27]. With this theorem, we will state and prove the corollaries mentioned in Section 1.2.

4.1 Proof outline of Theorem 10
For any s ∈ F ∗, we start by obtaining a closed-form estimate of

SD
(

⃗LSB(Share(0)) , ⃗LSB(Share(s))
)

.

Then, we can solve for the optimal s ∈ F ∗ that maximizes the statistical distance. Below,
we present a high-level overview of the proof of Theorem 10.

Step 1. We connect the statistical distance between the leakages to the difference between
two sums of oscillatory functions. We define the function signp : Z → ±1.

signp(X) :=
{

+1, if X ∈ {0, 1, . . . , (p − 1)/2} mod p

−1, if X ∈ {−(p − 1)/2, . . . , −1} mod p.
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For u, v, ∆ ∈ F , we define the following measurement of similarity between two lines uT and
v(T − ∆) on F .

Σ(∆)
u,v :=

∑
T ∈F

signp(uT ) · signp(v(T − ∆)). (5)

▶ Lemma 11. Consider the ShamirSS(2, 2, (α1, α2)) secret-sharing scheme over a prime field
Fp. For any secret s ∈ Fp and (u, v) ∈ [α1 : α2],

SD
(

⃗LSB(Share(0)) , ⃗LSB(Share(s))
)

= 1
2p

·
∣∣∣Σ(0)

u,v − Σ(∆)
u,v

∣∣∣,
where ∆ :=

(
s · 2−1)

·
(
u−1 − v−1)

, a linear automorphism over Fp.

Step 2. Next, our objective is to estimate the sum 1
p · Σ(∆)

u,v using the integral I
(δ)
u,v defined

as an inner product of two square wave functions as follow.

I(δ)
u,v :=

∫ 1

0
sign sin(2π|u| · t) · sign sin(2π|v| · (t − δ)) dt.

▶ Lemma 12. For any u, v, ∆ ∈ Fp, and δ = signp(∆)·|∆|
p ∈ Q,

1
p

· Σ(∆)
u,v = signp(u) · signp(v) · I

(δ)
|u|,|v| +

signp(u∆) − signp(v∆)
p

± 4(|u| + |v|) − 2
p

.

Step 3. Finally, we compute the value of the integral I
(δ)
u,v.

▶ Lemma 13. Let △ : R → [−1, +1] be the triangle wave function defined as

△(t) := 4 ·
∣∣∣∣t + 1

2 − ⌈t⌉
∣∣∣∣ − 1.

Then, for any u, v ∈ {1, 2, . . . }, δ ∈ R, and g = gcd(u, v)

I(δ)
u,v =


0, if u · v/g2 is even

△ (uv · δ) · g2

uv
, if u · v/g2 is odd.

Intuitively, if the highest power of 2 dividing u is different from the highest power of 2
dividing v, then uv/g2 is even and I

(δ)
u,v = 0. If the highest power of 2 dividing u is identical

to the highest power of 2 dividing v, then uv/g2 is odd and I
(δ)
u,v ̸= 0.

Step 4. Sequentially performing the substitutions above, we can estimate the statistical
distance using the integrals, which yields Theorem 10 after maximizing over every s ∈ F ∗.

Efficient distinguisher construction. We present an efficient maximum likelihood distin-
guisher in Appendix B.
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4.2 Insecurity Estimation: Statement and proof of Corollary 14
Using Theorem 10, we prove that the estimated insecurity achieved by our classifier in
Figure 1 is close to the true insecurity.

▶ Corollary 14. Consider distinct evaluation places α⃗ = (α1, α2) and the corresponding
ShamirSS(2, 2, α⃗) secret-sharing scheme over the prime field Fp, where p ⩾ 3. Let (u, v) ∈
[α1 : α2] such that |u|, |v| ⩽ B, where B =

⌈
81/4 · √

p
⌉
. Let △ : R → [−1, +1] be the triangle

wave function △(t) := 4 ·
∣∣t + 1

2 − ⌈t⌉
∣∣ − 1. Let g = gcd(|u|, |v|). Define

ε
(est)
LSB (α⃗) :=


0, if |u| · |v|/g2 is even,

△ (|u||v| · δ) · g2

|u| · |v|
, if |u| · |v|/g2 is odd.

Then,

ε
(est)
LSB (α⃗) = εLSB(α⃗) ±

(
85/4
√

p
+ 13/2

p

)
.

Proof. Use the LLL algorithm [32] to efficiently find (u, v) ∈ [α1 : α2] with properties
mentioned in the corollary (see Appendix A for details). Observe that the LHS of the
expression in Theorem 10 is identical to εLSB(α⃗) by our definition in Equation 1. From this
observation, the corollary is immediate. ◀

Next, we state the corollaries mentioned in Section 1.2 through this tight estimation.

4.3 Insecurity Identification: Statement of Corollary 15
▶ Corollary 15. Consider distinct evaluation places α⃗ = (α1, α2) and the corresponding
ShamirSS(2, 2, α⃗) secret-sharing scheme over the prime field Fp, where p ⩾ 3. Suppose the
algorithm in Figure 1 determines α⃗ to be secure. Then,

εLSB(α⃗) ⩽ 1 + 85/4
√

p
+ 13/2

p
.

Among all possible distinct evaluation places α1, α2 ∈ F ∗
p , the algorithm of Figure 1 determines

at least

⩾ 1 −
1
4 · √

p · ln p + 3
2 · √

p + 1
2

p − 2 ⩾(∗) 1 −
(

ln p

4√
p

+ 5/2
√

p

)
.

fraction of them to be secure. The (∗) inequality holds for any prime p ⩾ 11.

4.4 Advantage of Adversary: Statement of Corollary 16
▶ Corollary 16. Consider distinct evaluation places α⃗ = (α1, α2) and the corresponding
ShamirSS(2, 2, α⃗) secret-sharing scheme over the prime field Fp, where p ⩾ 3. If εLSB(α⃗) >
2·85/4

√
p + 13

p , then there is an efficient algorithm that generates s ∈ F ∗
p and can distinguish the

secret 0 from the secret s with an advantage

⩾ εLSB(α⃗) − 2 · 85/4
√

p
− 13

p

by leaking the LSB of the secret shares.
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Consider an efficient adversary outputs the s indicated in Theorem 10. After observing the
leakage (ℓ1, ℓ2), the algorithm performs maximum likelihood decoding – computes whether
secret 0 or secret s is more likely to have generated the observed leakage. Then, it predicts
the most likely of the two events.

5 Security against all Physical Bit Leakage

We consider ShamirSS(n = 2, k = 2, (α1, α2)) over prime field Fp of order p ⩾ 3. Let λ be
the security parameter. This section considers Mersenne and Fermat primes, i.e., primes
of the form p = 2λ ± 1. Some initial Mersenne primes are 3, 7, 31, 127, 8191, and 131071,
and Fermat primes are 3, 5, 17, 257, and 65537. Mersenne and Fermat’s primes satisfy the
following property.

▶ Proposition 17. Let λ be the security parameter. Fix an arbitrary i ∈ {0, 1, 2, . . . , λ − 1}.
For all x ∈ Fp,

PHYSi(x) =
{

PHYS0(2−i · x) if p = −1 mod 2i+1

PHYS0(2−i · x + (2−i − 1)) if p = 1 mod 2i+1

5.1 Leakage attack when 2kα1 = α2

Although α1 ̸= α2, it may be possible that 2kα1 = α2, for some k ∈ {0, 1, . . . , λ − 1}. We
prove that the secret-sharing scheme is insecure, taking care of this case in the algorithm of
Figure 2. Suppose we are leaking the i-th bit of the first secret share and the j-th bit of the
second secret share, such that j − i = k.

Suppose the secret is s ∈ Fp. Then, the secret share at evaluation place α is s + uα, for
uniformly random u ∈ F . The joint distribution of leakage is

(PHYSi(s + uα1), PHYSj(s + uα2)) .

Let v := u2−j and t := s2−j . When the order of the field is a Mersenne or Fermat’s prime,
Proposition 17 implies that the joint distribution of leakage is equivalent as (for uniformly
random v ∈ F )(

PHYS0(t2k + vα12k), PHYS0(t + vα2)
)

≡
(
PHYS0(t2k + vα2), PHYS0(t + vα2)

)
,

because 2kα1 = α2. When t = 0, both the leakage bits are identical. On the other hand, for
t = t∗ := (2k − 1)−1, the joint distribution of leakage is

(PHYS0(1 + t∗ + vα1), PHYS0(t∗ + vα2))

These two leakage bits are different with (1 − 1/p) probability. Therefore, one can distinguish
the secret 0 and secret t∗2j with (1 − 1/p) ∼ 1 advantage by leaking ⃗PHYSi,j ; whence the
following lemma.

▶ Lemma 18. Let F be the prime field of order p = 2λ ± 1. Consider distinct evaluation
places α1, α2 ∈ F ∗ such that 2k · α1 = α2 for some k ∈ {0, 1, . . . , λ − 1}. Then,

SD
(

⃗PHYSi,j(Share(0)) , ⃗PHYSi,j(Share(s))
)

⩾ 1 − 1
p

,

where i, j ∈ {0, 1, . . . , λ − 1}, j − i = k mod λ. If p = 2λ − 1, s = (2k − 1)−1 · 2j and if
p = 2λ + 1, s = (2k − 1)−1 · 2j − 1.
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5.2 Upper Bound on insecurity
▶ Corollary 19. Let F be the prime field of order p = 2λ ± 1. Consider distinct evaluation
places α⃗ = (α1, α2) and the corresponding ShamirSS(2, 2, α⃗) secret-sharing scheme over the
prime field F . Suppose the algorithm in Figure 2 determines α⃗ to be secure. Then,

εPHYS(α⃗) ⩽ 1 + 85/4
√

p
+ 13/2

p
.

Among all possible distinct evaluation places α1, α2 ∈ F ∗, the algorithm of Figure 1 determines
at least

⩾ 1 − ln p

ln 2 ·
1
4 · √

p · ln p + 3
2 · √

p + 1
2

p − 2 ⩾(∗) 1 − ln p

ln 2 ·
(

ln p

4√
p

+ 5/2
√

p

)
.

fraction of them to be secure. The (∗) inequality holds for all p ⩾ 11.

5.3 Derandomization
We conclude this section by presenting a “derandomization” result that is a direct consequence
of Theorem 10.

▶ Corollary 20. Let F be the prime field of Mersenne prime order p = 2λ − 1 where λ > 3.
Define t := ⌊λ/2⌋. Consider α⃗ = (α1, α2) ∈ [1 : 2t − 1] respectively. Then

εPHYS(α⃗) ⩽
4 ·

(
2⌊λ/2⌋ + 2⌈λ/2⌉)

− 6
p

.

A similar result holds for Fermat primes as well. Note that if p = 2λ + 1 is a prime, then
λ/2 is an integer because λ must be a power of 2.

▶ Corollary 21. Let F be the prime field of Fermat prime order p = 2λ + 1. Define t := λ/2.
Consider α⃗ = (α1, α2) ∈ [1 : 2t − 1] respectively. Then

εPHYS(α⃗) ⩽ 8 · 2λ/2 − 3/2
p

.

6 Extension to arbitrary Number of Parties

We extend our derandomization results to Shamir’s secret-sharing scheme with the recon-
struction threshold k equal to the number of parties n ∈ {2, 3, . . . }. We begin by stating the
following general lifting theorem.

▶ Theorem 22. Consider ShamirSS(n, n, α⃗) over a prime field F . For every i ∈ {1, 2, . . . , n},
define

βi :=

αi

∏
j ̸=i

(αi − αj)

−1

.

Suppose there are two indices 1 ⩽ i∗ < j∗ ⩽ n such that ShamirSS(2, 2, (βi∗ , βj∗)) has ε-
insecurity against physical bit leakages. Then, ShamirSS(n, n, (α1, α2, . . . , αn)) has at most
2ε-insecurity against physical bit leakages.

ITC 2025



3:16 Leakage-Resilience of Shamir’s Secret Sharing

The proof of this theorem is Fourier-analytic and uses properties of the Generalized
Reed-Solomon (GRS) codes. Corollary 23 is a consequence of this theorem.

▶ Corollary 23. Let Fp be the prime field of order p = 2λ ± 1 and n ∈ {2, 3, . . . }. Consider
distinct evaluation places α⃗ = (α1, α2, . . . , αn) and the corresponding ShamirSS(n, n, α⃗) secret-
sharing scheme over the prime field Fp. Suppose the algorithm in Figure 3 determines α⃗ to
be secure. Then,

εPHYS(α⃗) ⩽ 2 · 85/4
√

p
+ 13

p
.

Among all possible distinct evaluation places α⃗ ∈ (F ∗
p )n, the algorithm of Figure 3 determines

at least

1 −
(

1
4 ln 2 ·

(ln p)2√
p

p − n
+ 5

2 ln 2 ·
(ln p)√p

p − n

)
fraction of them to be secure.
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A Solving Simultaneous Diophantine Equations

Figure 4 presents our algorithm. In this section, the “LLL algorithm” refers to the algorithm
with the following guarantees.

▶ Theorem 24 (LLL [32, Proposition 1.39]). There exists a polynomial-time algorithm that,
given a positive integer d and rational numbers r1, r2, . . . , rd, ε satisfying 0 < ε < 1, finds
integers s1, s2, . . . , sd, and t for which

|si − t · ri| ⩽ ε,

for 1 ⩽ i ⩽ d and 1 ⩽ t ⩽ 2d(d+1)/4 · ε−d.

Input. α1, α2 ∈ F ∗, where F is the prime field of order p

Output. Elements u, v ∈ F ∗ such that (u, v) ∈ [α1 : α2] and

u, v ∈ {−B, −(B − 1), . . . , 0, 1, . . . , (B − 1), B} mod p,

where B :=
⌈
23/4 · √

p
⌉
.

Algorithm.
1. Interpret α1, α2 ∈ {0, 1, . . . , p − 1} as positive integers
2. Define d = 2
3. Define r1 = α1/p ∈ Q and r2 = α2/p ∈ Q
4. Define ε = B/p ∈ Q
5. Use the LLL algorithm to find integers s1, s2, and t

6. Interpret t as an element of F . Define u = α1 · t ∈ F and v = α2 · t ∈ F

Figure 4 Our Algorithm to obtain (u, v) from (α1, α2) using the LLL-algorithm.

Let us proceed to analyze our algorithm of Figure 4. The parameter setting needs
to ensure that t ⩽ 2d(d+1)/4ε−d < p. Recall that ε = B/p. Substituting this value and
rearranging, one needs to ensure that 2d(d+1)/4 · pd−1 < Bd. Therefore we have chosen
B =

⌈
2(d+1)/4p1−1/d

⌉
. Consequently, one can interpret t as an F ∗ element.

By definition, (u, v) ∈ [α1 : α2] because u = t · α1 and v = t · α2. Next, note that

|α1 · t − s1 · p| ⩽ ε · p = B, and |α2 · t − s2 · p| ⩽ ε · p = B.

This argument completes the analysis that for every (α1, α2) how we obtain (u, v) ∈ [α1 :
α2] such that u and v are “small (positive/negative) numbers.”

B Efficient Distinguisher Construction

Consider the following security game (illustrated in the figure below). The attacker picks a
secret s ∈ F ∗

p and sends it to the challenger. The challenger picks a random bit b ∈ {0, 1}. If
b = 0, the challenger samples (ℓ1, ℓ2) from distribution D0 := ⃗LSB(Share(0)) and sends it to
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the attacker. Otherwise, the challenger samples (ℓ1, ℓ2) from distribution D1 := ⃗LSB(Share(s))
and sends it to the attacker. The attacker aims to guess which distribution (ℓ1, ℓ2) is sampled
from. It uses the maximum likelihood decoder and then returns its guess b̃ to the challenger.
The attacker wins the security game if b = b̃.

Attacker Challenger

s∗ ∈ F ∗
p D0 = ⃗LSB(Share(0))

D1 = ⃗LSB(Share(s∗))
b←$ {0, 1}

b̃ = ML(ℓ1, ℓ2) (ℓ1, ℓ2) (ℓ1, ℓ2)←$ Db

b̃ Test b
?= b̃

The maximum likelihood distinguisher outputs

b̃ =
{

0 if Pr[(ℓ1, ℓ2)|s = 0] ⩾ Pr[(ℓ1, ℓ2)|s = s∗]
1 if Pr[(ℓ1, ℓ2)|s = 0] < Pr[(ℓ1, ℓ2)|s = s∗]

In other words, the output depends on sign (Pr[(ℓ1, ℓ2)|s = 0] − Pr[(ℓ1, ℓ2)|s = s∗]). The
maximum likelihood distinguisher can compute (−1)ℓ1+ℓ2 · signp(u) · signp(v). If (−1)ℓ1+ℓ2 ·
signp(u) · signp(v) > 0, then it outputs b̃ = 0. Otherwise, it outputs b̃ = 1. We provide a
complete proof of the distinguishing advantage and security guarantee of this adversary in
the full version of our paper [27].

C Attack on ShamirSS(3, 3, α⃗)

Consider ShamirSS(3, 3, α⃗) and the underlying prime field F of order p = 4w2 + 6w + 9 where
w ⩾ 4 and w ̸= 0 mod 3. The evaluation places are α⃗ = (1, σ, σ2) for σ = 2w · 3−1 ∈ Fp.

▷ Claim 25.
(
2w · 3−1)3 = 1 mod p when p = w2 + 6w + 9 and w ⩾ 4.

Proof.
(
2w · 3−1)3 = 1 mod p ⇐⇒ (2w)3−33 = 0 mod p ⇐⇒ (2w−3)·(4w2+6w+9) = 0

mod p holds since p = 4w2 + 6w + 9. ◁

Observe that 2w <
√

p and 3 <
√

p. Then, by our classifier in Figure 1, [1 : σ] is a good
evaluation place since [1 : σ] = [3 : 2w], gcd(3, 2w) = 1, and 3 · 2w is an even integer.

Note that 1 + σ + σ2 = 1; therefore, this secret sharing inherits the vulnerability of the
additive secret sharing against LSB leakage [33]. Therefore, ShamirSS(3, 3, α⃗) is insecure
against LSB leakage, where its insecurity is ⩾ (2/π)3 ⩾ 0.25 [34, 14].

D Derandomization for n = k = 3

Consider β1 = 1
α1(α1−α2)(α1−α3) and β2 = 1

α2(α2−α1)(α2−α3) , we want to ensure β1
β2

= Λ
where Λ ∈ F ∗ is a good evaluation place in the ShamirSS(2, 2, [1 : Λ]) case. After expanding
the expressing and solving the corresponding linear constraints, we obtain the following
assignment.

α1 = 2
1 + Λα3 α2 = 1 − Λ

1 + Λα3.

Specifically, α1 = 2, α2 = 1 − Λ, and α3 = 1 + Λ suffices. We can ensure that [β1 : β2] is
secure with these evaluation places.
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