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Abstract
Truncation of cryptographic outputs is a technique that was recently introduced in Baldimtsi et
al. [2]. The general idea is to try out many inputs to some cryptographic algorithm until the output
(e.g. a public-key or some hash value) falls into some sparse set and thus can be compressed: by
trying out an expected 2k different inputs one will find an output that starts with k zeros.

Using such truncation one can for example save substantial gas fees on Blockchains where storing
values is very expensive. While [2] show that truncation preserves the security of the underlying
primitive, they only consider a setting without preprocessing. In this work we show that lower
bounds on the time-space tradeoff for inverting random functions and permutations also hold with
truncation, except for parameters ranges where the bound fails to hold for “trivial” reasons.

Concretely, it’s known that any algorithm that inverts a random function or permutation with
range N making T queries and using S bits of auxiliary input must satisfy S · T ≥ N log N . This
lower bound no longer holds in the truncated setting where one must only invert a challenge from a
range of size N/2k, as now one can simply save the replies to all N/2k challenges, which requires
S = log N · N/2k bits and allows to invert with T = 1 query.

We show that with truncation, whenever S is somewhat smaller than the log N · N/2k bits
required to store the entire truncated function table, the known S · T ≥ N log N lower bound applies.
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1 Introduction

1.1 Truncation

In [2] Baldimtsi, Chalkias, Chatzigiannis and Kelkar suggested truncation as a technique
to shorten outputs of cryptographic primitives like hash values, signatures or public keys.
The technique applies whenever there’s a part of the input that can be chosen arbitrarily,
like the randomness in signing and key generation or parts of the input when hashing. The
general idea is to simply try out many different inputs until the output lands in some sparse
domain, say it starts with ∆ zeros, and such an output can be encoded using ∆ less bits
than a general output.

While the applicability of this technique is limited by the fact that finding an output that
starts with ∆ zeros will require around 2∆ invocations of the primitive (so e.g., compressing
by 20 bits already requires around a million invocations), in [2] interesting applications are
identified where this can make a big difference, including in the context of the Ethereum
blockchain, where saving a few bits to be stored on-chain can lead to significant savings.
We discuss another application to proofs of space as used in the Chia network in the open
problems Section 6.
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4:2 Time-Space Tradeoffs of Truncation with Preprocessing

While truncation puts extra burden on the evaluator (say, a signer), there’s no extra
cost for the parties that use the output (say, verify the signature). Moreover [2] show that
truncation preserves security in the bit security framework of [9]. Informally, a primitive
has bit security κ, if every adversary who breaks the security with advantage ϵ must run in
time 2κ · ϵ.

1.2 Time-Space Tradeoffs
While the preservation of bit security under truncation gives some confidence in this technique,
it only considers a setting without precomputation. Unfortunately, truncation can decrease
the security of primitives when the adversary is given some auxiliary input. Let us illustrate
this considering the one-wayness of a permutation over n bits, which we’ll denote with
f : [N ] → [N ] where N = 2n. A random permutation f does have n bits of bit security, i.e.,
given a random y ∈ [N ], finding x, f(x) = y will require N/2 invocations to f in expectation.
But given S bits of advice (that depend on f but not the challenge y), it’s possible to invert
f using just T invocations whenever

S · T ≥ N log(N) (1)

The general idea is to compute and store values x0, xT , x2T , . . . where xi = f(xi−1). On
challenge y one now applies f until one of the stored xi·T values is hit, and then continues to
apply f to x(i−1)T until one hits y. For functions the best space-time tradeoff are somewhat
worse. For random functions an attack with

S2 · T ∈ Θ(N2 log(N))

is achieved by Hellman tables [7] or rainbow tables [8]. So, any permutation can be inverted
with time and space, e.g. T = S ≈ N1/2 while random functions can be inverted with
T = S ≈ N2/3 (for functions that are not random the existing bounds are somewhat
worse [5]).

De, Trevisan and Tulsiani [4] (building on work by Yao [11], Gennaro-Trevisan [6] and
Wee [10]) prove that the attack as in eq. (1) is basically optimal as any adversary who inverts
a random permutation or function with a range of size N must satisfy

S · T ∈ Ω(N) (2)

Note that the above is seemingly wrong if T = 0 or S = 0 as one can invert with no space but
N queries or N log N space and no queries. The proof of the lower bound assumes adversary
must always query f on its output, so T is at least 1, and S is assumed to be at least log N

which is required to store the challenge.
The same lower bound applies for random functions, though note that in this case it’s

not matching the upper bound. The actual lower bound is slightly more general showing
that S · T ∈ Ω(ϵ · N) must hold for any adversary who inverts with some probability ϵ, but
for this introduction we assume ϵ is some constant.

1.3 Time-Space Tradeoffs with Truncation
Now consider the truncated setting, where we have a random function or permutation
f : [N ] → [N ], but must only invert it on outputs sampled from some truncated range, say
where the first ∆ bits are set to zero. We’ll denote this range with [δN ] where δ = 2−∆.
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Now one can store the δN preimages of f on [δN ] using S = δN log N bits, and using
this advice, it’s possible to find the preimage x, f(x) = y for any y ∈ [δN ] without invoking
f at all. As outlined above, this means T = 1, but it still contradicts the lower-bound from
eq. (2) as δN log N ̸∈ Ω(N) for δ ∈ o(1/ log N).

The main result in this work is Theorem 4, which basically states that the issue just
described is the only reason for the lower bound to fail: as long as S is too small to basically
store the entire function table of the truncated function, the S ·T ∈ Ω(N) lower bound applies.
While we state and prove the bound for functions, it can easily be adapted to permutations.
We discuss other truncated primitive in the open problems Section 6.

The technical result implying Theorem 4 is stated in Lemma 5. It uses a so-called
compression argument: it shows how an adversary that inverts a random function f can
be turned into an encoding for the function table of f , where the length of the encoding
depends on the space and time efficiency of the adversary. As the function table of a random
function is incompressible, as stated in Fact 1, we can derive a lower bound on the space and
time complexity of the adversary.

1.4 The Compression Argument

The starting point for proving the Lemma is a proof of the S · T ≥ N log N lower bound
for inverting random functions from [1]. This proof is less elegant than the proof of De et
al. from [4], which uses a high level argument about sets, while [1] provide pseudocode of the
encoding and argue about the length of its output.

Their encoding is basically Algorithm 1 in this paper for δ = 1. It takes as input an
adversary A who is guaranteed to invert some function f : [N ] → [N ] on an ϵ fraction of the
range and making no more than T queries.

A is then invoked on some challenges, and every time A inverts a challenge we get one
entry in the function table “for free”. With every invocation, A can make up to T queries to
f , and those queries can later no longer be used as challenges, i.e., we “spoil” up to T of the
ϵ · N challenges with every succesful inversion. Overall we can get A to invert something in
the order of ϵ · N/T challenges before running out of unspoiled challenges, and thus get an
encoding that is around ϵ · N/T bits shorter than the function table. As a random function
is incompressible, this then implies that the advice used by A must be around S ⪆ ϵ · N/T .
That’s how the S · T ∈ Ω(ϵ · N) lower bound in [1] is proven.

In the truncated setting when δ ≪ 1, A is only guaranteed to invert on an ϵ fraction of
the sparse domain [δN ], and the above argument would only gives us a S ⪆ δ · ϵ · N/T bound.

A key observation is the fact that we get a S ⪆ ϵ · N/T lower bound even in the truncated
case if we assume that not much more than a δ fraction of the queries made by A map to
the sparse [δ · N ] domain, as then each compressed entry only spoils around δ · T of the [ϵN ]
available challenges.

To prove our lemma we now make a case distinction. If for every compressed value we
typically do not spoil more than Tg ≤ 12δT potential challenges, we use the observation
above, so in this case we use basically the same argument as in [1].

In the other case the queries made by A fall into the sparse [δN ] set at least 12 times
more often than a random query would. Knowing that the output f(x) on a query x is in
[δN ] means we can encode it using just log N − log 1/δ bits. We will encode the positions
of the queries made by A that fall into [δN ] (there are around ϵδN such queries) and then
encode each output using just log N − log 1/δ bits. As the queries that fall into [δN ] are
sufficiently dense (i.e., 12 times denser than a random query would), encoding those positions

ITC 2025



4:4 Time-Space Tradeoffs of Truncation with Preprocessing

uses a bit less per entry than the log 1/δ bits we save knowing the entry is in [δN ]. So overall
we save ϵδN bits, and thus for this case can conclude (again using the incompressibility of a
random function table) that the space used by A must be at least S ⪆ ϵδN .

2 Notation and Basic Facts

We use brackets like (x1, x2, . . .) or {x1, x2, . . .} to denote ordered sets (aka. lists) and un-
ordered sets, respectively. [N ] denotes some domain of size N , and for notational convenience
we assume N = 2n is a power of two and identify [N ] with {0, 1}n. For some ∆ ≤ n and
δ = 2−∆, we’ll denote with [δN ] some subset of [N ] of size δN (the truncated range), say
0∆∥{0, 1}n−∆, the set of n bits strings that start with ∆ zeros, but in principle any subset
whose elements can be compressed to (not much more than) n − ∆ bits will do.

For a function f : [N ] → [M ] and a set S ⊆ [N ], we denote with f(S) the set
{f(S[1]), . . . , f(S[|S|])}, similarly for a list L ⊆ [N ], f(L) is the list (f(L[1]), . . . , f(L[|L|])).

Randomized adversaries are treated as if they were deterministic. However, this is w.l.o.g.
as they are only invoked within encoding/decoding procedures that have access to a shared
randomness that can be used to derandomize them.

The following well known fact captures the fact that one cannot compress a random
string.

▶ Fact 1 (from [4]). For any randomized encoding procedure Enc : {0, 1}r ×{0, 1}n → {0, 1}m

and decoding procedure Dec : {0, 1}r × {0, 1}m → {0, 1}n where

Pr
x←{0,1}n,r←U|r|

[Dec(r, Enc(r, x)) = x] ≥ δ

we have m ≥ n − log(1/δ)

▶ Fact 2. If a set X is at least ϵ dense in Y , i.e., X ⊂ Y , |X| ≥ ϵ|Y |, and Y is known,
then X can be encoded using |X| · log(e/ϵ) additional bits.

This fact follows from the inequality
(

n
ϵn

)
≤ (en/ϵn)ϵn, which implies log

(
n
ϵn

)
≤ ϵn log(e/ϵ).

Encoding X can be done by identifying which ϵ|Y | elements to choose from Y .

3 Main Theorem and Lemma

De, Trevisan and Tulsiani [4] show that the simple time-space tradeoff eq. (1) for inverting
permutations is basically tight.

▶ Theorem 3 ([4], as stated in [1]). Fix some ϵ ≥ 0 and an oracle algorithm Aaux that
takes an advice string aux of length |aux| = S and makes at most T oracle queries. If with
non-neglibile probability for a random function (or permutation) f : [N ] → [N ] there exists a
string aux such that

Pr
y←[N ]

[f(Af
aux(y)) = y] ≥ ϵ

then

T · S ∈ Ω(ϵN) . (3)

In this work we show that this result extends to the case where the challenge comes from a
sparse set [δN ]
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▶ Theorem 4 (main). Fix some ϵ ≥ 0 and an oracle algorithm Aaux that takes an advice
string aux of length |aux| = S and makes at most T oracle queries. If with non-neglibile
probability for a random function (or permutation) f : [N ] → [N ] there exists a string aux
such that

Pr
y←[δN ]

[f(Af
aux(y)) = y] ≥ ϵ

then either

S ∈ Ω(δϵN) or T · S ∈ Ω(ϵN) . (4)

The theorem is proven using a compression argument as stated in the following lemma.

▶ Lemma 5 (generalized version of a Lemma from [1]). Let Aaux, T, S, ϵ and f be as Theorem 4,
and assume T ≤ δϵN/40. There are randomized encoding and decoding procedures Enc, Dec
such that if f : [N ] → [N ] is a function and for some aux, |aux| = S

Pr
y←[δN ]

[f(Af
aux(y)) = y] ≥ ϵ

then

Pr
r←U|r|

[Dec(r, Enc(r, aux, f)) = f ] ≥ 0.9 (5)

and the length of Enc(r, aux, f) is at most

N log N︸ ︷︷ ︸
=|f |

−ϵδN

2Tg
+ S + log(N) (6)

Moreover for some Tg, 1 ≤ Tg ≤ T which is defined by the encoding algorithm: if Tg ≥ 12δT ,
we can improve the length of the encoding to

N log N︸ ︷︷ ︸
=|f |

−ϵδN

2Tg
+ S + log(N) − δϵN (7)

The Tg above is the average number of f queries that land in the sparse set (i.e., x s.t.
f(x) ∈ [δN ]) that Af

aux (when invoked by Enc as defined by Algorithm 1 below) makes for
every value it inverts. As A makes at most T queries per challenge we have Tg ≤ T . For a
random query x ∈ [N ] we have f(x) ∈ [δN ] with probability δ, so if Tg is significantly larger
than δT , this means that the queries made by Aaux are special in the sense that they map to
[δN ] much more often than random queries would. We use this crucial observation for a case
distinction, deriving the left or the right hand side of eq. (4), depending on whether Tg is
below or above 12δT .

4 How Theorem 4 follows from Lemma 5

4.1 Proof of Thm. 4 if Tg ≤ 12δT

If Tg ≤ 12δT , the theorem follows from Lemma 5 using Fact 1 as follows: assume the function
table of f in the lemma is chosen uniformly at random (i.e., x in Fact 1 is a uniform N log N

bit string), then the term in eq. (6) can be lower bounded as

N log N︸ ︷︷ ︸
=|f |

−ϵδN

2Tg
+ S + log(N) ≥ N log N − log(1/0.9).
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4:6 Time-Space Tradeoffs of Truncation with Preprocessing

Reordering we get

S ≥ ϵδN

2Tg
− log(N) − log(1/0.9)

using our assumption that Tg ≤ 12δT

S ≥ ϵN

24T
− log(N) − log(1/0.9)

T · S ≥ ϵN

24 − T · log(N) − T · log(1/0.9).

So T · S ∈ Ω(ϵN) as claimed (on the rhs of eq. (4) in the Theorem). Note that the extra
assumption that T ≤ ϵN/40 in the lemma doesn’t matter, as if it’s not satisfied the theorem
is trivially true.

4.2 Proof of Thm. 4 if Tg > 12δT

If Tg > 12δT , the theorem again follows from Lemma 5 using Fact 1, i.e., we again assume
the function table of f in the lemma is chosen uniformly at random (i.e., x in Fact 1 is a
uniform N log N bit string), and now the term in eq. (7) can be lower bounded as

N log N︸ ︷︷ ︸
=|f |

−ϵδN

2Tg
+ S + log(N) − δϵN ≥ N log N − log(1/0.9).

Note that, as in this case we use eq. (7) rather than eq. (6), we have an extra −δϵN term on
the lhs. Reordering we get

S ≥ ϵδN

2Tg
− log(N) − log(1/0.9) + δϵN

and thus S ∈ Ω(δϵN) as claimed.

5 Proof of Lemma 5

We always assume that if Af
aux(y) outputs some value x, it makes the query f(x) at some

point. This is basically w.l.o.g. as we can turn any adversary into one satisfying this by
making at most one extra query. If at some point Af

aux(y) makes an oracle query x where
f(x) = y, then we also w.l.o.g. assume that right after this query A outputs x and stops.

5.1 The Size of the Encoding
We will now upper bound the size of the encoding of G, f(Q′), (|q1|, . . . , |q|G||), f([N ]−{G−1 ∪
Q′}) as output in line (15) of the Enc algorithm.

Let Tg := |B|/|G| be the average number of elements we added to the bad set B for every
element added to the good set G, then

|G| ≥ Nϵδ/2Tg . (8)

To see this we note that when we leave the while loop (see line (8) of the algorithm Enc) it
holds that

|B| ≥ |J |/2 = ϵδN/2 so |G| = |B|/Tg ≥ |J |/2Tg = Nϵδ/2Tg (9)
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Algorithm 1 Enc.

1: Input: A, aux, randomness r and a function f : [N ] → [N ] to compress (using that
Af

aux(·) inverts f on some ϵ fraction of [δN ] )
2: Initialize: B, G := ∅, c := −1
3: Throughout we identify [N ] with {0, . . . , N − 1} and [δN ] with {0, . . . , δN − 1}
4: Pick a random permutation π : [δN ] → [δN ] (using random coins r)
5: Let J := {y ∈ [δN ] : f(Af

aux(y)) = y}, |J | = ϵδN ▷ The set J ⊂ [δN ] where A inverts
6: For i = 0, . . . , δN − 1 define yi := π(i). ▷ Randomize the order
7: For y ∈ J let q(y) denote all queries made by Af (y) except the last query (which is x s.t.

f(x) = y).
8: while |B| < |J |/2(= ϵδN/2) do ▷ While the bad set contains less than half of J

9: c := min{c′ > c : yc′ ∈ {J \ B}} ▷ Increase c to the next yc in J \ B

10: G := G ∪ yc ▷ Add this yc to good set
11: B := B ∪ (f(q(yc)) ∩ J) ▷ Add spoiled queries to bad set
12: end while
13: Let G = {g1, . . . , g|G|}, Q = q(g1), . . . , q(g|G|), and define Q′ = (q′1, . . . , q′|G|), q′i ⊆ q(gi)

to contain only the “fresh” queries in Q by deleting all but the first occurrence of every
element. E.g. if (q(g1), q(g2)) = ((1, 2, 3, 1), (2, 4, 5, 4)) then (q′1, q′2) = ((1, 2, 3), (4, 5)).

14: Let G−1 = {Af
aux(y) : y ∈ G}

15: Output an encoding of (the set) G, (the lists) f(Q′), (|q′1|, . . . , |q′|G||), (the remaining
outputs) f([N ] − {G−1 ∪ Q′}) and (the advice string) aux. ▷ We discuss
how exactly this encoding looks in the proof. The encoding of f(Q′) will depend on the
average number of spoiled queries per challenge Tg = |B|/|G| (≈ ϵδN/2|G|)

G: Instead of G we will actually encode the set π−1(G) = {c1, . . . , c|G|}, from this encoding
Dec (who gets r, and thus knows π) can then reconstruct G = π(π−1(G)). We claim that
the elements in c1 < c2 < . . . < c|G| are whp. at least ϵδ/2 dense in [c|G|] (equivalently,
c|G| ≤ 2|G|/ϵδ). By Fact 2 we can thus encode π−1(G) using |G| log(2e/ϵδ) + log N bits
(the extra log N bits are used to encode the size of G which is required so decoding later
knows how to parse the encoding). To see that the ci’s are ϵδ/2 dense whp. consider
line (9) in Enc which states c := min{c′ > c : yc′ ∈ {J \ B}}. If we replace J \ B with
J , then the ci’s would be whp. close to ϵδ dense in [N ] as J ⊂ N has size ϵδN and the yi

are uniformly random. As |B| < |J |/2, using J \ B instead of J will decrease the density
by at most a factor 2. If we don’t have this density, i.e., c|G| > 2|G|/ϵδ, we consider
encoding to have failed.

(|q′
1|, . . . , |q′

|G||): Require |G| log T bits as each q′i ≤ qi ≤ T . A more careful argument
(using Fact 2 and that the q′i are on average at most Tg) requires |G| log(eTg) bits.

f([N ] − {G−1 ∪ Q′}): Requires (N − |G| − |Q′|) log N bits (using that G−1 ∩ Q′ = ∅ and
|G−1| = |G|).

aux: Is S bits long.

f(Q′): This is a list of |Q′| elements in [N ] and can be encoded using |Q′| log N bits, but
we’ll encode it with less if Tg is large.

ITC 2025



4:8 Time-Space Tradeoffs of Truncation with Preprocessing

Algorithm 2 Dec.

1: Input: A, r and the encoding (G, f(Q′), (|q′1|, . . . , |q′|G||), f([N ] − {G−1 ∪ Q′}), aux).
2: Let π be as in Enc.
3: Let (g1, . . . , g|G|) be the elements of G ordered as they were added by Enc (i.e., π−1(gi) <

π−1(gi+1) for all i).
4: Invoke A(·)

aux(·) sequentially on inputs g1, . . . , g|G| using f(Q′) to answer Aaux’s oracle
queries.

5: Combine the mapping G−1 ∪ Q′ → f(G−1 ∪ Q′) (which we learned in the previous step)
with [N ] − {G−1 ∪ Q′} → f([N ] − {G−1 ∪ Q′}) to learn the entire [N ] → f([N ])

6: Output f([N ])

Summing up we get

|Enc(r, aux, f)|
= |G| log(2e/ϵδ) + log N︸ ︷︷ ︸

encoding of G

+ |Q′| log N︸ ︷︷ ︸
f(Q′)

+ |G| log(eTg)︸ ︷︷ ︸
(|q′

1|,...,|q′
|G||)

+ (N − |G| − |Q′|) log N︸ ︷︷ ︸
f([N ]−{G−1∪Q′})

+ S︸︷︷︸
aux

= |G| log(2e2Tg/ϵδ) + (N − |G| − |Q′|) log N + |Q′| log N + S + log N.

Using the assumption Tg ≤ T ≤ ϵδN/40 in the statement of the lemma, which in turn implies
log(2e2Tg/ϵδ) ≤ log(N) − 1, we get

≤ |G|(log N − 1) + (N − |G| − |Q′|) log N + |Q′| log N + S + log N

= (N − |Q′|) log N + |Q′| log(N) − |G| + S + log N (10)
= N log N − |G| + S + log N

Plugging in the bound from eq. (8) for |G| we get

|Enc(r, aux, f)| ≤ N log N − Nδϵ

2Tg
+ S + log N

proving eq. (6) in the Lemma.

5.2 Improved bound if Tg > 12δT

We’ll now prove a bound on the length of the encoding as stated in eq. (7) in the lemma.
Here we assume that Tg is large, i.e., Tg > 12δT . The bound on the length of the encoding
improves the expression we got without this assumption, i.e., eq. (6), by δϵN bits. We will
achieve this by improving the length of the encoding of f(Q′) from the trivial |Q′| log(N) to
|Q′| log(N) − δϵN by exploiting the fact that now a large fraction of the elements in f(Q′)
falls into the sparse set [δN ], i.e.,

▷ Claim 6. If Tg > 12δT , f(Q′) can be encoded using |Q′| log N − δϵN bits.

With this claim we can improve eq. (10) to (N − |Q′|) log N + |Q′| log(N) − |G| + S + log N ,
which now gives eq. (7) from the Lemma.

It remains to prove the claim. By eq. (8) and eq. (9) |G| ≥ δϵN/2Tg, |Q′| ≤ T · |G| and
|B| ≥ δϵN/2, which implies

|B|/|Q′| ≥ δϵN/2T · |G| ≥ Tg/T ≥ 12δ
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I.e., a 12δ fraction of the queries made during decoding falls into B ⊂ [δN ]. Using this with
Fact 2 we can encode which of the |B| queries from Q′ map into B using |B| log(e/12δ) bits.
For any x ∈ B, we can encode f(x) using log(N) − log(1/δ) bits as f(x) ∈ [δN ].

We can now encode f(Q′) by first encoding the positions of B in Q′, and then f(B) and
f(Q′ \ B) separately, which requires

(|Q′| − |B|) log N + |B| (log(e/10δ) + log(N) − log(1/δ))
= |Q′| log N + |B| log(e/12)
≤ |Q′| log N − |B| · 2
≤ |Q′| log N − δϵN

bits as claimed.

6 Conclusion and Open Problems

In this work we showed that the known time-space tradeoff S · T ≥ N for inverting random
functions or permutations f : [N ] → [N ] also holds for truncated outputs almost up to the
point where S is big enough to store the entire truncated function table. This shows that the
general idea of truncating cryptographic primitives as suggested in [2] is secure even when
preprocessing is considered (as long as the truncated function table is big enough so it can’t
be stored in practice).

While in this paper we only considered one-wayness of random functions, we believe
that our result can be adapted to time-space lower bounds for other primitives, showing the
bounds apply also for their truncated analogues. An interesting example considered in [2] is
the discrete logarithm problem, for which a S · T 2 ≥ N time-space lower bound is known [3].

A likely more challenging but particularly interesting case is the adaption of the “beyond
Hellman” proofs of space from [1] to the truncated setting. The key primitive in [1] are
functions [N ] → [N ] for which a time-space lower bound of Sk · T ≥ Nk (for any constant k)
can be proven. This improves on the S · T ≥ N lower bound for “normal” functions, and the
reason this doesn’t contradict known upper bounds (by rainbow tables) is the fact that those
functions cannot be efficiently evaluated in forward direction (but their entire function table
can be computed in time N). A proof that truncation is secure for these functions would allow
for better security. Currently those functions are deployed in the proof of space underlying
the chia.net blockchain, but there’s a trade-off that farmers (who are supposed to dedicate
space analogous to miners dedicating computation in Bitcoin) can make: by dropping a few
bits of every entry, they save space at the cost of having to do some extra computation when
computing the proofs1. One could use a truncated version of those functions, which would
make the initialization of the space for the farmers somewhat more costly, but it would make
such “bit dropping” attacks much less attractive.
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