Information-Theoretic Random-Index PIR
Sebastian Kolby =

Aarhus University, Denmark

Lawrence Roy &
Aarhus University, Denmark

Jure Sternad =

Aarhus University, Denmark

Sophia Yakoubov &

Aarhus University, Denmark

—— Abstract

A Private Information Retrieval (PIR) protocol allows a client to learn the ith row of a database held

by one or more servers, without revealing ¢ to the servers. A Random-Index PIR (RPIR) protocol,
introduced by Gentry et al. (TCC 2021), is a PIR protocol where, instead of being chosen by the
client, i is random. This has applications in e.g. anonymous committee selection. Both PIR and
RPIR protocols are interesting only if the communication complexity is smaller than the database
size; otherwise, the trivial solution where the servers send the entire database suffices.

Unlike PIR, where the client must send at least one message (to encode information about i),
RPIR can be executed in a single round of server-to-client communication. In this paper, we study
such one-round, information-theoretic RPIR protocols. The only known construction in this setting
is SimpleMSRPIR (Gentry et al.), which requires the servers to communicate approximately %
bits, N being the database size. We show an Q(\/N) lower bound on communication complexity
for one-round two-server information-theoretic RPIR, and a sublinear upper bound. Finally, we
show how to use a sublinear amount of database-independent correlated randomness among multiple
servers to get near-optimal online communication complexity (the size of one row plus the size of
one index description per server).

2012 ACM Subject Classification Security and privacy — Information-theoretic techniques
Keywords and phrases Private information retrieval, Multi-server, Lower bounds
Digital Object Identifier 10.4230/LIPIcs.ITC.2025.5

Funding Danish Independent Research Council under Grant-ID DFF-2032-00122B and DFF-2064-
00016B (YOSO)

Acknowledgements Supported by the Danish Independent Research Council under Grant-ID DFF-
2032-00122B and DFF-2064-00016B (YOSO).

1 Introduction

PIR (private information retrieval [4]) enables a client to retrieve the ith row of a database
from one or more servers in such a way that ¢ remains unknown to the server(s). The trivial
solution involves the server(s) sending the client the entire database; however, it is desirable
to bring the communication complexity down so that it is strictly smaller than the size of
the database.

RPIR (random-index PIR [7]) is a relaxation of PIR, where instead of learning a database
row of her choice, the client learns a random row. Just like PIR, RPIR guarantees that the
index i of that row is unknown to the server(s). Any PIR construction can be converted to a
RPIR construction, simply by having the client choose the index 7 at random. However, while
PIR constructions require at least one message from the client (to communicate something
about) followed by at least one message from the server(s) (to communicate something
about the database), not all RPIR constructions require the client to communicate.

? Sebastian Kolby, L.awrence Roy, JL.lre Sternad, and Sophia Yakoubov;
oY icensed under Creative Commons License CC-BY 4.0

6th Conference on Information-Theoretic Cryptography (ITC 2025).

Editor: Niv Gilboa; Article No. 5; pp. 5:1-5:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sk@cs.au.dk
https://orcid.org/0009-0005-3228-7194
mailto:ldr709@gmail.com
https://orcid.org/0009-0003-8436-0029
mailto:jsternad@cs.au.dk
https://orcid.org/0009-0005-3831-5993
mailto:sophia.yakoubov@cs.au.dk
https://orcid.org/0000-0001-7958-8537
https://doi.org/10.4230/LIPIcs.ITC.2025.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

5:2

Information-Theoretic Random-Index PIR

Random-index PIR constructions that only take one round of server-client communication
are termed “non-interactive”. Gentry et al. [7] show how to build one-server non-interactive
RPIR from homomorphic encryption. They also show how to build two-server non-interactive
information-theoretic RPIR (which they dub SimpleMSRPIR), the communication complexity
of which is 22 + log(d) (where the database contains d rows each of size w).

Our Contributions

In this paper, we take steps towards understanding the communication complexity of non-
interactive information-theoretic RPIR. We prove that non-interactive two-server information-
theoretic RPIR must have communication complexity at least O(v/d)w.

On the positive side, we give an upper bound with communication complexity

dw dw

log log(d) + log(d)
d Teeld) loglogd

+ O(dlog(d))

+1

bits, showing that the communication complexity can in fact be sub-linear in the database
size dw (when w = w(log(d))). *

Finally, we describe a construction that uses a sublinear amount of correlated randomness,
but gets the near-optimal online communication complexity of nlog(d)w (where n is the
number of servers, d is the number of database rows, and w is the size of each row).

Related Work

Information-theoretic Private Information Retrieval (PIR) was first introduced by Chor
et al. [4], who provided a general construction for the case of n servers, achieving a total
communication complexity of O(d%). Additionally, they proposed a specialized construction
for the two-server case with a communication complexity of O(d%). Shortly after, Ambainis [1]
significantly improved the upper bound for the n-server setting, reducing the complexity to
O(d%%l). Beimel and Ishai [2] made further progress, considering a scenario in which up to
t servers may collude. They presented a construction achieving a communication complexity
of O(dTE=D7T).

Wehner and de Wolf [11] made a key contribution to lower bounds in information-
theoretic PIR, where they additionally parametrized the communication complexity by probe
complexity b — a measure of the number of actual bits the client reads from the messages sent
by the servers — as an additional parameter in the communication complexity analysis. In
particular, they established a lower bound of Q(db%l) for the two-server case. Complementing
this, they presented a scheme with b = 1 and communication complexity O(v/d). Their
results also demonstrated that the original scheme by Chor et al. [4], which with some
modifications can be adapted to have b = 3, already achieved near-optimal complexity of
O(d%). Moreover, in the general case where the probe complexity equals the length of the
messages sent by the two servers, their result implies a lower bound of 5log d, which remains
the best-known lower bound for two servers.

For the two-server setting, the upper bound of Chor et al. was finally improved by

log log d
Dvir and Gopi [5], who established an upper bound of nOW S), which remains the
best known result for this case. In the multi-server setting, the currently best-known upper

! Note that there is a qualitative gap between our lower and upper bounds as they are currently presented:
Our lower bound relies on perfect correctness, while our upper bound allows a failure to occur with
some probability. The lower bound can be extended to account for a fixed probability of failure.

S. Kolby, L. Roy, J. Sternad, and S. Yakoubov

bound is due to works [6, 9, 3]. Efremenko [6] provided a three-server construction with
communication complexity exp(O(y/logdloglogd)) and a general 2"-server construction with
a communication complexity of exp(O(3/logdlog” 'logd)). Recently, Ghasemi, Kopparty
and Sudan [8] improved Efremenko’s three-server construction, reducing the exponent from
square root to the cube root. Other improvements — such as a reduction of the number of
required servers of Efremenko’s 2"-server construction — were made by Itoh and Suzuki [9],
and Chee et al. [3].

1.1 Technical Overview

In Section 2 we describe our definitions of non-interactive multi-server RPIR, adapted from
Gentry et al. [7]. In Section 3 we describe our lower bound for the communication complexity
of such protocols. We use the fact that in non-interactive two-server RPIR without correlated
randomness, the client can combine any message msg; from the first server with any message
msg, from the second server to retrieve a database row. So, if we take v/d messages msg, and
V/d messages msg,, the client can retrieve Vd x v/d = d database rows. Some of these may
be the same, but we prove that, in expectation, the client ends up with cd different database
rows for some constant ¢, which amounts to cdw bits of information. Communicating cdw
bits of information naturally requires that many bits; so, if this much information can be
extracted from 2v/d messages, on average each of these messages must have size at least
e — O(Vdyw.

In Section 4 we describe our sublinear upper bound (without correlated randomness). We
build on the SimpleMSRPIR construction of Gentry et al.. In SimpleMSRPIR, one server
sends a random database row, and the other server randomly pairs the rows and sends an
XOR of each pair (as well as a concise description of the pairing). The client uses row ¢ sent
by the first server and the XOR of row ¢ and row j sent by the second server to recover
row j as well. With probability % it returns row ¢; the rest of the time, it returns row j. In
SimpleMSRPIR, the servers send a total of dTw + 2log(d) + w bits, which is linear in the size
dw of the database. In our construction (which we dub “Bucket-PIR”), instead of sending a
single row, the first server sends each row with probability p. Instead of pairing the database

rows, the second server partitions them into buckets of size b. By setting p = W and
d log(d)
b= lololﬂ + 1, we ensure that the client retrieves a database row with probability at least
g log(d)

half, while pushing the total communication complexity to be sublinear in the size dw of the
database as long as w = O(log(d)). (The probability that the client retrieves a row can be
boosted arbitrarily close to 1 via parallel repetition; notice that the number of repetitions
depends only on the desired probability of success, and not on the database size, so it does
not impact the sublinearity of our communication complexity.)

In Section 5, we describe our final construction, which uses correlated randomness. We
consider a setting with n > 2 servers, each of which holds Shamir shares of u random one-hot
vectors (with zeros in all but one place) of length s. By locally taking the tensor product of
all of its vectors of shares, each server ends up with shares of a size-d random one-hot vector,
with a one at i. Each server takes the dot product of this vector of shares with the database,
and sends the resulting value to the client. The client can treat the messages it receives as
shares which reconstruct exactly to the ith database row.

2 Definitions

We use a definition of multi-server random-index PIR based on that of Gentry et al. [7,
Definition 3]. Consider n servers Si,...,S,, and a client C. Since we limit ourselves
to non-interactive (one-round) protocols, we can describe the entire protocol in terms of

5:3

ITC 2025

5:4

Information-Theoretic Random-Index PIR

algorithms Server, (for p € [n]) and Client. Each server S, runs the algorithm Server,
on the database D and randomness p, (from distribution Rs) to obtain message msg,. The
client C runs the algorithm Client on messages msgy,...,msg, and randomness pe (from
distribution Re) to obtain (i, D;).

Sometimes, the servers use database-independent correlated randomness. We use cr,, to
denote server S,’s correlated randomness, and CR to denote the distribution from which
(cri,...,cry) is drawn. We use to denote elements of an MS-RPIR scheme that are only
present when correlated randomness is used.

» Definition 1 (MS-RPIR: Multi-Server Random-Index PIR for Databases With d Rows of Size
w). A semi-honest, non-interactive (one-round) c-correct n-server threshold-¢ random-index
PIR scheme ({Server,},c(n), Client. (1) must satisfy the following properties:
c-Correctness (0 < ¢ < 1): For every database D € {0,1}**? and index i € [d], the client’s
probability of outputting D; is 5.
More formally, for every database D € {0,1}**9,

(i, D[i]) = Client(msg,,...,msg,;pc)

where .
Pr pp < Rs for p € [n], pc < Re; =2
msg, < Server(D.cr ;p,) for p € [n]

for every index i € [d]. (Any other output of Client is interpreted to be L.)

Client Privacy For every database D € {0,1}**%, for every set of corrupt servers I C [n]
s.t. |I| <t, the index of the row output by the client is independent of the view of the
corrupt servers.

More formally, the following two distributions should be statistically indistinguishable:

(4, {pp }pel)
where

pp < Rs for p € [n], pc < Re;

(@, {pp bper)

where
~ pp < Rs for p € [n];

msgy < Sexver(D i ;p,) for p € [n];
(i, D[i]) = Client(msg,,...,msg,;pc)

i < [d] with pr. ¢, i = L otherwise

» Remark 2. Notice that we allow the client to output | with constant probability. Parallel
executions can bring ¢ down arbitrarily close to 0.

Finally, the trivial solution of the server(s) sending the client the entire database, and
the client selecting a random index ¢ and outputting (¢, D[i]), satisfies the above definitions.
In order to be interesting, a MS-RPIR scheme must also be non-trivial:

» Definition 3 (Non-Triviality). An MS-RPIR scheme is non-trivial if the communication
complexity of the protocol is asymptotically smaller than the size of the database.

More formally, let CC(n,w,d) be the expected communication complexity of the protocol
(that is, the expected sum of |msg,|,...,|msg,|). The scheme is non-trivial if there exists a
do s.t. for all d > dy, there exists a wg s.t. for all w > wy,

CC(n,w,d) < wd.

S. Kolby, L. Roy, J. Sternad, and S. Yakoubov

3 A Q(v/dw) Lower Bound on Communication Complexity

In this section, we focus on the scenario where we have two servers, one of which is corrupt. In
this setting, the servers must send Q(\/aw) bits. We will prove this by showing that choosing
a random size v/d subset from the space of each server’s possible messages in expectation
allows recovering a constant fraction of the database.

» Theorem 4 (1-out-of-2 IT MS-RPIR Lower Bound). Any MS-RPIR protocol with perfect
security for two servers, where one may be corrupt, must have at least Q(\/&w) expected
communication.

Proof. Let D € ({0,1}*)? be the database held by the two servers. For i € {1,2} let s; be
the number of possible random tapes for S; and sy be the number of possible random tapes
for C. For a fixed random tape a server will always send the same message; some distinct
tapes may result in the same message.

For servers S and Sz we define a matrix M € [d]*1*%2, indexed by the choices of S; and
S, randomness. Entry M, . encodes the index 4 € [d] which may be recovered by the client
for server randomnesses r and ¢. More formally,

(¢, D[i]) < Client(Servery(D;r),Servery(D;c); Tr.c),

where client randomness 7. . is chosen uniformly and independently for each of the s; - so
entries of M.

First, we address the case where S; has fewer than v/d possible choices of randomness. If
we take all messages that might be sent by &1 and any single message sent by Ss it must
be possible to recover the entire database. This follows by correctness and privacy, as the
client must always be able to recover some row of the database given a pair of messages, and
all rows must still be equally likely even when fixing the message of one server. Iterating
over all < v/d of S; messages and client randomness will allow the recovery of the database,
and therefore the messages of S (together with any one message of S2) on average contains
> V/dw bits of information. A symmetric argument can be made for S, with fewer than v/d
possible random tapes.

From now on we will only consider the case where s1, 59 > v/d. We will analyse how much
of the database is recovered given server messages for k1 choices of S randomness and ko
choices of S randomness. Sample k; distinct choices of randomness for server ¢ € {1,2} as

R=(Ry,...,Ry,), C=(Ci,...,Cy,).

For all rows 4 € [d] in the database, and a € [k1],b € [k2], define the random variable:

i _J1 if (i, D[i]) = Client(Server;(D; R,), Servers(D; Cp); Ta p)
R.,Cy — .
0 otherwise
We may count the occurrences of each row i € [d] across the sampled rows and columns,
3—3,0 = Z M;‘%a,cb'
a€[k1],b€ k2]

And define an indicator variable for whether row ¢ € [d] is recovered for any pair,

B 0 ifA}é’Czo
RO 1 otherwise

5:5

ITC 2025

5:6 Information-Theoretic Random-Index PIR

To prove Theorem 4, it suffices to show that

i d
E Z Brco| ~ 2
i€[d|

since this expectation describes how many database rows can be retrieved in expectation
from our Q(v/d) messages.?

By linearity of expectation, F {Zie[d] B?%,C} = D ica E[Bj ¢]; so, we can focus on
E[B} o] = Pr[A% o > 0] for a single i.
Going forward we suppress the superscript 4, as we will only handle one row i € [d] at a time.
By the second moment method,

E[Ag,c]?

Pr{Apc > 0] > ARCL
i E[A%%,C]

We can tackle E[Ag ¢] and E[A%] separately.

Bounding the expectation of Ar ¢

First, we handle the simple case for E[Ag ¢]. By linearity of expectation,

E[Apcl= Y. E[Mg,cl= Y Pr[Mg,c,l.
a€k1],b€ k2] a€k1],bEk2]

For all ¢ € [s2], privacy implies Pr[Mp,] = 1/d. Therefore, Pr[Mpg, ¢,] = 1/d, and it
follows,

1 ki-ke
BlAgcl=), == —
a€lk1],be[k2]
Bounding the expectation of A%,

Expanding the definition and by linearity of expectation,

2

E[(Arc)’) =E > Mg, = Y E[Mg,.c, Mg.c,l
a€lk1],bE k2] a€lk1],bE k2]
c€lky],d€k2]

We wish to derive an upper bound for this expectation. The terms in the sum may be split
into four disjoint cases, (1) when a = ¢ and b = d, (2) when a = ¢ but b # d, (3) when a # ¢
but b =d, and (4) when a # c and b # d.

We start with case (1) where a = c and b = d,

> E[Mg,c,-Mg.c,)= >, PrMg,c,Mg.cl= > Pr[Mg,c,

a=c€[k1] a=c€[k1] a€lk1]
b=de (k2] b=d€lks2] be(ka]
= ¥ =t
o d d
a€lk1],bEk2]

2 Tt would suffice to show that E [Zl cld) B}é’ C} ~ cd for any constant ¢; however, the math works out

,— 1
for c= 5.

S. Kolby, L. Roy, J. Sternad, and S. Yakoubov

Before we proceed to the next cases, it will be helpful to define some notation. Let sg
be the number of choices of client randomness. For r € [s1] and ¢ € [s2] let p, . be the
number of client randomness choices for which the client outputs (¢, D[é]) for server messages
Servery(D;r),Servery(D;c).

For any fixed ¢ € [s] privacy implies the message ¢ must occur for a fraction 1/d of the
client choices and server 1 randomness,

S1

S
E Pr.c =
r=1

Similarly, for any fixed r € [s1],

52 - 30
§ Pr.c =

Let ¢1 = s1580/d and t2 = s2s0/d. It will be convenient to consider a random variable px y
which is equal to p, . when X =7 and Y = c.
Now we may proceed to case (2) when a = ¢ but b # d,

E[Mg, c, Mg, c,] =Pr[Mg, c,, Mg, c,] -

For any outcome r € [s1] such that R, =7,

Pru P
PY[MT,CN er = Z AL TU- r[Cb:u7C’d=v] m Z ProuPrv

S0
UAVE[Ss2] UAVE[Ss2]

The sum may be simplified as,

2

Z Prou Prov = Z Proau Z pru = t2 Z p7 [

uAVE[s2] u€[s2] u€[s2] u€[ss2]

As f(x) = 22 is convex we may apply Jensen’s inequality to see t3/so < >

<t) _ <Z” p> T

S2 82 o 82

uE[s2] pr u’

Putting things together we see,

< (8- 8) (11
DERT TR = g2 gy (sp — 1) 2 s $3 - s2(s2 — 1) S9
_ 3(2)~s§ se—1) 1
o d?s3 - sa(sy — 1) (S) T a2

For this case we may conclude, E [Mg, ¢, - Mg,,c,] < .

Moving on to case (3) where a # ¢ but b = d, here an analogous argument to that of
case (2) gives

1
E [MRa;Cb ’ MRme] < ﬁ

5:7

ITC 2025

5:8 Information-Theoretic Random-Index PIR

We proceed to the final case: (4) a # ¢ but b # d.

E[Mg, c, - Mg, c,

ERIDIDIDIE R

u€[s1] vE[s1] n€[s2] mE[s2]

’U«75U n#m

Pr[R, = u, R. = v,Cy = n,Cyq = m]

— (81_182 2_1 Z Z Z Z punpvm
u€[s1] vE[s1] n€[s2] W:Li[fs

uFv

Using Jensen’s inequality as we did previously, for any u # v € [s1]

Z Zpunpvm: Zpun Zpun_t2(1)
nels)

neE(sa]

n€(s2] me([sa]

n#m
Therefore,
E[Mg,c, Mr.c. < 52 2t ()
s1(s1 — 1)sa(sy —

ue[sﬂvG[Sl]
uFv

_osi(s1—1)(s2 — 1) 2 1 (5250)2_i

Csils D32 D83 0 s3sp N d S d

Having bounded all terms for cases (2), (3) and (4) by 1/d?, we see
koki(k1 — 1) + kika(ke — 1) + k1 (k1 — 1)ko(ka — 1)
d? ’

Z E[Mg,.c, Mg.c,] <

a,c€ k1]
b,de (k2]
aFcVb#d

= /d this simplifies to

_2Vd-1)+(Vd-1)? d-1
= d T4

letting kl = kg

a,c€ k1]
b,d€[ka]
aFcVb#d

Combining this with our bound from case (1) we arrive at

Vi d-1_, 1

> E[Mg,c, Mg < 4 T4 pi
a,c€[Vd)
b,de[Vd]
which approaches 2 for increasing d.
So, we get
i i 1
E[BR,C] = Pr[AR,C > 0] > 9 _1°
d
d _d
Z BR C 2 1 2
—d

i€[d]

as desired.

S. Kolby, L. Roy, J. Sternad, and S. Yakoubov

| SimpleMSRPIR [7] |

Server; (D) : Pick ¢ < [d] and return msg, = (4, D[i]).

Servers(D) : Choose a random mask & < [d]. If § = 0, set D’ = L. otherwise, let p1,...,p4/2
be the list of pairs of indices px = (jk,1, jk,2) such that ji 1 D jr,2 = § (ordered by increasing
smallest value in the pair). Define D’ such that D'[k] = D[jx,1] ® D[jk,2]. (D’ has size
4w) Return msg, = (8, D’).

Client(msg, = (¢, D[i]),msg, = (9§, D’)) : If § = 0, return (3, D[i]). Else, find pj such that
i € px. Return (: @ 6, D'[k] ® Dl[i]).

Figure 1 Description of SimpleMSPIR [7].

4 Bucket-RPIR

In this section, we present a construction based on splitting the database into random subsets,
which we refer to as buckets. This construction is inspired by SimpleMSPIR of Gentry et
al. [7], in which S; sends a single random row, and Ss pairs the rows and sends the XOR of
each pair, for total communication %” + O(1). The client returns the row which S1’s row
was paired with. We reproduce SimpleMSPIR in Figure 1.

SimpleMSPIR has communication complexity linear in the size of the database. In this
section, we describe a generalization of SimpleMSPIR where, instead of pairing rows, Sy
distributes the rows into larger buckets. In order to enable the client to retreive a row from
XORs of larger sets, S; sends many random rows instead of just one. Balancing the size of
S2’s buckets and the number of rows §; sends allows us to get communication complexity
sublinear in the database size. We describe our protocol in Figure 2, where p is the probability
that S sends any given row, and b is the size of Sa’s buckets.

- Bucket-RPIR |} \

Server; (D) : Let I = (). For each row index ¢ € [d], add i to I with probability p. Return
msg, = {(i, D[i]) }ier-

Servery(D) : Pick a random mapping : [d] — [4] subject to the constraint that exactly
b indices map to each value. (7 can be represented in dlog(%) bits.) Define D’ such
that D'[k] = Dl[i1] @ --- & Dl[is) where n[i1] = --- = 7[is] = k. (D’ has size 42.) Let
msg, = (m, D').

Client(msg, = {(¢, D[i]) }icr,msg, = (7, D’)) : Let mx denote the set of indices 41,. ..,
such that w[i1] = - - = 7[is] = k.
If there does not exist a bucket k where exactly all but one of 7, are included in msg,,

abort.

[msg |

Otherwise, with probability =7, output a random value from msg; .

With probability 1 — @, pick a random bucket k£ for which all but one of 7 are
included in msg;. Let ¢ be such that m(:) = k and ¢ is missing from msg;. Return
(i, D'[k] & (&jemc\ 1y DA))-

Figure 2 Description of Bucket-RPIR, Parametrized by p and b.

5:9

ITC 2025

5:10

Information-Theoretic Random-Index PIR

Next, we need to determine what p and b should be. The probability that the client is
able to retrieve a row is

(number of buckets) x Pr[all but one row in some bucket is sent by S|

d
= x b1 =p)p"t =d(1 —p)p"".

We need to pick b and p such that this probability is greater than half. Set

__log(d) b=
log log(d) ’ diloilgoé()d) '

Let’s check that with these parameters, the probability of success is indeed greater

than half:

Pr[successful row retrieval] = d(1 — p)p°®~*

log(d)
- 1 Tog ig(d)+1_1
- d(l - p) log log(d)

d Tog(d)

=1-p.

For large enough d, p becomes smaller than half, and thus 1 — p becomes greater than
half.
Circling back to what each server sends:

S1 sends pd = —zL_r = o(d) separate rows, which amounts to o(d)w bits.
d log(d)

S5 sends % = ﬁl XORed buckets, as well as a description of the function 7. This
loglog(d)

amounts to o(d)w + dlog($) bits.
The total amount of communicated information is thus sublinear in dw.

» Theorem 5. Bucket-RPIR (Figure 2) is a secure MS-RPIR protocol (Definition 1) when p
and b have the values described above.

Proof. We start with correctness. The probability that the client outputs L is equal to the
probability that there is no bucket k£ such that msg, contains all but one row from 7. We
have set this probability to be 1 — p. Next, subject to the constraint that there is such a
bucket, because of the randomness of 7 every row 7 not in msg, is equally likely to be the row
missing from bucket k. The client chooses a row in msg; and not in msg; with proportional
probabilities. So, Bucket-RPIR is (1 — p) correct.

We argue privacy against S; and S separately. S; learns nothing about ¢ because, since
the client chooses a row in msg; and not in msg; with proportional probabilities, whether a
row is included or excluded from msg; does not correlate with its probability of being chosen.
If a row in msg; is chosen, it is chosen randomly from msg;; if a row outside of msg; is chosen,
that choice is dictated by the choice of 7, where any row outside of msg; is equally likely to
be grouped with b — 1 rows in msg;.

S similarly learns nothing about ¢. This is because each row is included in msg; with the
same probability, and due to the fact that 7 partitions the rows into buckets of equal size,
each bucket is equally likely to be almost full (and each row is equally likely to be excluded
from the almost-full bucket). <

» Theorem 6. Bucket-RPIR (Figure 2) is non-trivial (Definition 3) when p and b have the
values described above.

Proof. S; communicates pd(log(d) + w) bits; when p = - and w = Q(logd), this is
d log(d)
sublinear in dw. S, communicates dlog(%) + %2 bits; when b = lolgc,)lgo(gd() ay T 1, this is also

sublinear in dw. <

S. Kolby, L. Roy, J. Sternad, and S. Yakoubov

5 OneHot-RPIR

In this section, we present a construction based on one-hot vectors. We start by recalling the
Shamir secret sharing scheme upon which we provide a high-level overview of the protocol
and then offer a formal description in Figure 3.

5.1 Building Block: Secret Sharing

» Definition 7 (t-out-of-n secret sharing scheme). A t-out-of-n secret sharing scheme is a
pair of algorithms (share,reconstruct), such that:

($1,--+,8n) & share(s, n,t; p) is a randomized algorithm that, on input a secret s, outputs
a set of n shares (s1,...,Sy) using randomness p and fizes the threshold t.

s < reconstruct(s;,,...,s;,) is a deterministic algorithm that on input t shares
(Siys---58i,), where (i1,...,it) C [n], outputs the secret s.

A secret sharing scheme must satisfy the following properties:
Correctness: Vs,VT = (i1, ...,it) C [n],Vp we have:

P t t(Siy,.--,8i,) = =1.
share(s,n,t;p)r—>(sl,...,sn)[recons rue (S“, 78“) S]
Perfect Security: Vs, s',\VI C {1,...,n},Vp where |I| < n, the following distributions are
indistinguishable:

{(si:i€l)|(s1,...,8,) < share(s,n,t;p)}
{(s,:iel)|(s),...,s),) < share(s’,n,t;p)}

We describe the Shamir secret sharing scheme [10], which we use to instantiate the
construction from expendable correlated randomness.

Let F, be a finite field, where ¢ is chosen as the smallest prime greater than n; and let
s € F4 be the secret we want to share. We start by picking a uniformly random polynomial
p € Fg[X] of degree t — 1, such that p(0) = s, and for ¢ € [n] define the shares s; = p(4). For
1 € [n] we distribute p(i) to the i-th party. Now, observe that given that p is a t — 1 degree
polynomial, any set of at least ¢ shares uniquely determines p. Upon collecting this set of at
least t shares, we can reconstruct via polynomial interpolation.

For the sake of completeness, we formally describe the Shamir secret sharing scheme
using the share and reconstruct algorithms:

» Definition 8 (Shamir secret sharing scheme [10]).
share(s,n,t; p): Using randomness p, sample aq, ..., a;_1 L Fq, build the polynomial p(x)
as p(z) = s+ Zf;i a;xt and construct the shares (si1,...,s,) as s; < p(i).
reconstruct(s;,,..., s;,): Interpolate the polynomial p(x) for each (i1, ...,i;) C [n] points
corresponding to the secret shares and output s = p(0).

Properties

Additive homomorphism: Let s' and s? be two secrets that we secret share using
polynomials pi,ps € F, both of degree ¢t — 1. Now, observe that in order to perform the
addition of s and s?, each party can just locally add the two of its shares - e.g. the party
P; can compute s} + s? which corresponds to the i-th share of the polynomial p; + py (of
the same degree t — 1) and therefore the secret s! + s2.

5:11

ITC 2025

5:12

Information-Theoretic Random-Index PIR

Multiplicative homomorphism: Let s' and s be two secrets that we secret share
using polynomials p1, ps € F, of different degrees, ¢; — 1 and ¢t — 1. Now observe that if
each party locally performs the multiplication of its shares, it obtains still a valid share
of the polynomial p; - po but of degree t; + to — 2. In order for the reconstruction to still
naively work,? n must be such that t; +t, — 1 < n.

5.2 Overview of the construction

Let S&1,...,S, denote the set of servers, where each server holds a copy of the database
D € ({0,1}w)4,
Let vy, ..., v, represent a set of randomly generated one-hot vectors, each of length s, and

let v; ; denote the j-th component of the i-th one-hot vector. As the correlated randomness
setup, we assume that each server holds a secret share of every component of every one-
hot vector. More formally, server S, holds a set of secret shares {v’; j}iG[u],jG[S]? where
f_, ; is the p-th share of the component v; ;, generated using the secret sharing algorithm
share(v; ;,n,t+1,p). We argue that although we heavily rely on this correlated randomness,

A%

this can easily be established in a pre-processing phase, for example, using a multi-party
computation protocol.

Note that the tensor product of one-hot vectors results in another one-hot vector, but of
a multiplied length (that is, the tensor product of our one-hot vectors will have length s*).
We refer to the resulting vector as the tensored one-hot vector v. In the online phase, each
server S, computes the tensor product over its shares of the one-hot vectors. Specifically,
each server computes

Vp:V€®"'®V5,

where for i € [u], the vector v} is formed by stacking the shares {v{,}c[s into a single
column vector.

Because Shamir sharing has a limited form of multiplicative homomorphism, by mul-
tiplying their shares locally as described above, the servers end up with shares of each
component of the tensored one-hot vector. However, the degree of the sharing of the tensored
one-hot vector will be the sum of the degrees of the sharings of the individual one-hot vectors.
We must tune the threshold ¢ (the degree of the polynomials used to share the individual
components of the one-hot vectors) such that, after multiplication, there are still enough
shares to reconstruct the vector. This can be achieved by setting the parameters ¢ and u
such that the number of servers n >t - u.

For the final step of the protocol, each server computes the inner product of its shares of
the tensored one-hot vector with the database. This corresponds to obtaining a share of the
database row at the position where v? is non-zero. Specifically, server S, computes:

msg, = (D, v’)

and sends msg,, to the client. To ensure correctness, we set the size of the original one-hot
vectors s such that s* = d, where d is the number of rows in the database.

Upon receiving the messages msgy,...,msg,,, the client obtains a random row of the
database by computing:

D, < reconstruct(msg,,...,msg,).

3 To work without using techniques such as degree reduction that require additional communication.

S. Kolby, L. Roy, J. Sternad, and S. Yakoubov

,-[MS-RPIR Protocol based on One-Hot Vectors } ~

Servers Si, ..., Sn each hold the database D € ({0,1}*)%.

Setup: Each server S, for p € [n] holds shares of one-hot vectors vy, ..., v, of length s. These
shares are computed over the individual components of the vectors as share(v; j,n,t + 1, p),
for ¢ € [u],j € [s], where v; ; is the j-th component of the vector v;. Namely, each server S,

holds {v} ; }ie[u),jels]-

Online Phase:

Server, (D, {v} ;}icu),jels)) : Compute vP = v{ ® - -- ® vi, where for i € [u], the vector v} is
formed by stacking the shares {Vv} ;}c[s) into a single column vector. Set msg, = (D, Vv”) and
send msg, to the client.

Client(msg,,...,msg,) : Compute D, < reconstruct(msg,,...,msg,) and output (x, D).

% We assume that the database has the index of each row encoded inside that row.

Figure 3 Description of the One-Hot Vectors Protocol.

» Theorem 9. Let g be a [max {log(d) + w,log(n)}]-bit prime and F, be a finite field. Then
the one-hot vectors protocol from Figure 3 is a mon-trivial n-server threshold-t MS-RPIR
protocol, satisfying Definition 1, with communication complexity CC(n,w, d) = n(log(d)w+1).

The protocol is non-trivial (Definition 3), since we replace communication complexity with
pre-processing size. During the online phase, each server sends one message of size [logq];
since the client obtains n messages (one from each server), the communication complexity is

CC(n,w,d) = n[logq| = n [max {log(d) + w,log(n)}] .

The protocol also requires pre-processing of size non-trivially less than the number of rows d
as long as u > 1, which can only happen as long as n > 2t.

Proof.

Correctness. Let f; j(x) be the random polynomial used for the secret sharing of the j-th
component of the i-th one-hot vector. After establishing the setup, the server S, has shares
{fii(P) et jers) = Vi, ticjels) Which can be rearranged as a set of one-hot vectors
{vl,vE, ..., vP} where

p
vi

p
Vi2

p= M

p

7,8

1

Note, however, that only one of the rows corresponds to a share of 1, whereas the other rows
correspond to some share of 0.

Next, each server S, computes the tensor product v¥ = v @ vb ® ... ® v£, which more
closely looks like

5:13

ITC 2025

5:14

Information-Theoretic Random-Index PIR

P)
Via Va1 Vuo11 Vo
p p P
Vi1 Ve Vu-1,1"Vu,2

P p p P
vP= | Vi Va1 V19 Vs (2)

D p P P

vl,s V2,s Vu-1,s" V'u,,l
D P p P

vl,s) v2,s V1,5 vu,2
PP P P

—Vl,s v2,s Vufl,s VU,S—

Lastly, the server computes the message msg, as the inner product (v”,D). Let the
indices of the database range from 0 to d — 1. Then, we can rewrite

msg, = (D,vF) = Z D[Z (s —1)- 8“7 H V?)Sj.

s1vesu€ls] i€lu] j€lu]

Notice that this expression is a summation of s* values where each of the values is a
database row (some constant in F;), multiplied by a product of exactly u shares. Since every
share corresponds to a polynomial of degree ¢, the product of u shares corresponds to a secret
share of a polynomial of degree ¢ - u. As the client obtains n > ¢ - u shares, it can successfully
interpolate the polynomial in all n points.

Observe again that since v? is a tensor product of u one-hot vectors, only one row is a
share of 1 while the others are shares of 0. With that follows the correctness of the client’s
output.

The argument that any row in the database is obtained with the same probability é follows
directly from the randomness of one-hot vectors vy, ..., v,, as the position of the non-zero row
in each of the vectors is picked uniformly at random results in the position of the non-zero row
in the vector v, obtained by the tensor product v = v; ®...®v,, also being uniformly random.

Client Privacy. To argue for client privacy, we need to show that the distribution of the
index output by the client, along with the view of up to threshold-t¢ colluding servers, is
indistinguishable from the distribution where the index is sampled uniformly at random.
This follows from the randomness of the one-hot vectors: the index of the row received by
the client corresponds to the position of the non-zero entry in the one-hot vector v, which is
computed as the tensor product v=v; ® --- ® v,,. As in the correctness argument, each
vector v, ..., v, has its non-zero position chosen uniformly at random. Consequently, the
non-zero position in v is also uniformly random, ensuring that the client’s obtained index
remains uniformly distributed.

The view of up to threshold-t colluding servers is exactly t shares of each vector vy, ..., v,.
As we use the Shamir sharing scheme, which has perfect security, this set of shares reveals
no information about the non-zero position in vectors and the index obtained by the client.
Therefore, the two distributions are indistinguishable. <

S. Kolby, L. Roy, J. Sternad, and S. Yakoubov

—— References

1

10

11

Andris Ambainis. Upper bound on communication complexity of private information retrieval.
In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, editors, I[CALP
97, volume 1256 of LNCS, pages 401-407. Springer, Heidelberg, July 1997. doi:10.1007/
3-540-63165-8_196.

Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval: A unified
construction. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, I[CALP
2001, volume 2076 of LNCS, pages 912-926. Springer, Heidelberg, July 2001. doi:10.1007/
3-540-48224-5_74.

Yeow Meng Chee, Tao Feng, San Ling, Huaxiong Wang, and Liang Feng Zhang. Query-efficient
locally decodable codes of subexponential length, 2010. arXiv:1008.1617.

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In 36th FOCS, pages 41-50. IEEE Computer Society Press, October 1995. doi:
10.1109/SFCS.1995.492461.

Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communication. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 577-584. ACM Press, June
2015. doi:10.1145/2746539.2746546.

Klim Efremenko. 3-query locally decodable codes of subexponential length. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 39-44. ACM Press, May / June 2009. doi:
10.1145/1536414.1536422.

Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia Yakoubov.

Random-index PIR and applications. In Kobbi Nissim and Brent Waters, editors, TCC 2021,
Part III, volume 13044 of LNCS, pages 32—61. Springer, Heidelberg, November 2021. doi:
10.1007/978-3-030-90456-2_2.

Fatemeh Ghasemi, Swastik Kopparty, and Madhu Sudan. Improved pir schemes using matching
vectors and derivatives, 2024. doi:10.48550/arXiv.2411.11611.

Toshiya ITOH and Yasuhiro SUZUKI. Improved constructions for query-efficient locally
decodable codes of subexponential length. IEICE Transactions on Information and Systems,
E93-D(2):263-270, 2010. doi:10.1587/transinf.e93.d.263.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, November 1979.

doi:10.1145/359168.359176.
Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable codes and
private information retrieval. In Luis Caires, Giuseppe F. Italiano, Luis Monteiro, Catuscia

Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of LNCS, pages 1424—1436.

Springer, Heidelberg, July 2005. doi:10.1007/11523468_115.

5:15

ITC 2025

https://doi.org/10.1007/3-540-63165-8_196
https://doi.org/10.1007/3-540-63165-8_196
https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-48224-5_74
https://arxiv.org/abs/1008.1617
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1145/2746539.2746546
https://doi.org/10.1145/1536414.1536422
https://doi.org/10.1145/1536414.1536422
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.48550/arXiv.2411.11611
https://doi.org/10.1587/transinf.e93.d.263
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/11523468_115

	1 Introduction
	1.1 Technical Overview

	2 Definitions
	3 A Lower Bound on Communication Complexity
	4 Bucket-RPIR
	5 OneHot-RPIR
	5.1 Building Block: Secret Sharing
	5.2 Overview of the construction

