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Abstract
A Distributed Oblivious RAM is a multi-party protocol that securely implements a RAM functionality
on secret-shared inputs and outputs. This paper presents two information-theoretically secure
DORAMs whose communication costs are asymptotic improvements over the state of the art. Let n

be the number of memory locations and let d be the bit-length of each location.
The first, MetaDORAM1, is statistically secure, with n−ω(1) leakage. It has amortized

O(logb(n)d + bω(1) log(n) + log3(n)/ log(log(n))) bits of communication per memory access. Here,
b ≥ 2 is a free parameter and ω(1) is any super-constant function (in n). The most communication-
efficient prior statistically secure DORAM was that of Abraham et al (PKC 2017), which has cost
O(logb(n)d + bω(1) logb(n) log2(n)). MetaDORAM1 is a Θ(ω(1) log(log(n)))-factor improvement
over the work of Abraham et al whenever d = O(log2(n)).

The second protocol, MetaDORAM2, achieves perfect security. It has amortized communication
cost O(logb(n)d + b log(n) + log3(n)/ log(log(n))) where, again, b ≥ 2 is a free parameter. The best
prior perfectly secure DORAM is that of Chan et al (ASIACRYPT 2018) which has communication
cost O(log(n)d + log3(n)). MetaDORAM2 is therefore a Ω(log(log(n)))-factor improvement over the
DORAM of Chan et al under any parameter range (by setting b = log(n)) and is a Θ(log(n))-factor
improvement for d = Ω(nϵ) for any constant ϵ > 0 (by setting b = d/ log(n)). Our work is the first
perfectly secure DORAM with sub-logarithmic communication overhead. MetaDORAM2 comes at
the cost of a once-off (for any given n) setup phase which requires exponential (in n) computation.

Both DORAMs are in the 3-party setting with security against 1 semi-honest, static corruption.
By a trivial transformation, these can be transformed, respectively, into statistically and perfectly
secure active 3-server ORAM protocols secure against 1 corrupt server, with the same communication
costs. These multi-server ORAM protocols are likewise asymptotic improvements over the state of
the art.
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1 Introduction

Generic secure Multi-Party Computation (MPC) has historically been designed in the circuit
model [40, 20, 6], in which the computation is represented as a circuit on bits or group
elements. However, many computations are more naturally and efficiently implemented in
the RAM model, in which it is possible to access locations in memory according to index
variables. For instance, RAM is assumed in many classic algorithms and data structures,
such as implementations of dictionaries, pointers, graphs and priority queues. An efficient
implementation of a RAM functionality for MPC would therefore enable the adoption of
generic efficient MPC.

Distributed Oblivious RAM (DORAM) is a functionality that implements RAM for MPC.
It stores n d-bit blocks of data in a secret-shared memory, and allows accesses to that memory
(reads or writes) at secret-shared locations. A DORAM is secure if the views of the parties
can be efficiently simulated without knowledge of any private values. See section 5 for a
complete definition of the DORAM functionality.

In this work we construct information-theoretically secure DORAMs in the 3-party
honest-majority setting. Our results show new asymptotic results for DORAM as a category
of problem, but are also significant because the 3-party honest-majority setting is prevalent
in both research and practice. An honest majority is necessary to achieve information-
theoretically secure generic MPC [6], so the 3-party honest-majorty setting is the minimal
setting for achieving generic information-theoretic DORAM. Furthermore, there are certain
techniques which are extremely efficient in the 3-party honest majority setting (e.g. [13, 29]).
Due to these factors, the 3-party honest-majority setting has received particular attention
from both academia [16, 2, 18, 24, 3] and industry [7, 23].

DORAM is closely related to the problem of Oblivious RAM [21], which solves the problem
of a client outsourcing memory to an untrusted server (or servers). In particular a w-party
DORAM can be converted into an ORAM with w active (i.e. computation-performing)
servers and vice-versa, usually without increase in the communication cost. See section 2
for more details. Therefore, efficient DORAM is intrinsically tied to efficient multi-server
active ORAM. A primary metric of this efficiency is the total amount of communication per
memory access. This is often measured as the overhead, that is the number of blocks (of
size d) of communication required per memory access.

Our Contribution. In this work, we present two novel DORAM protocols for the 3-party
semi-honest honest-majority setting. The first, MetaDORAM1, achieves statistical security.
That is, the statistical distance between the adversary’s view and a simulated view is
negligible in n. Unlike most statistically secure DORAMs, our protocol’s security does not
deteriorate with the number of accesses to the DORAM; the leakage remains negligible
in n even as the number of accesses tends to infinity. The statistically secure protocol
achieves amortized communication cost Θ(logb(n)d + bω(1) log(n) + log3(n)/ log(log(n))).
Here b ≥ 2 is a free parameter. The best prior work is that of Abraham et al (PKC 2017) [1]
which has communication cost Θ(logb(n)d + bω(1) logb(n) log2(n)). MetaDORAM1 and
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Abraham et al [1] are asymptotically equivalent when d = ω(log2+ϵ(n)). However, when
d = O(log2(n)), the communication cost of MetaDORAM1 is Θ(log3(n)/ log(log(n))) (e.g.
by setting b = log(n)/ log(log(n))) whereas the work of Abraham et al has communication
cost Θ(ω(1) log3(n)).

Our second DORAM protocol, MetaDORAM2 achieves perfect security. That is, the
adversary’s view is chosen from an identical distribution as the simulated view. MetaDORAM2
requires communication cost Θ(logb(n)d + b log(n) + log3(n)/ log(log(n))). The best prior
work by Chan et al. (ASIACRYPT 2018) [10] has communication cost Θ(log(n)d + log3(n)).
MetaDORAM2 is an asymptotic improvement over all parameter ranges. When b = log(n),
MetaDORAM2 has communication cost Θ(log(n)d/ log(log(n)) + log3(n)/ log(log(n))), that
is a log(log(n))-factor improvement over Chan et al for all parameter ranges. Additionally, the
free parameter b allows MetaDORAM2 to have improved performance for large d. Whenever
d = Ω(nϵ) for some constant ϵ > 0, setting b = d/ log(n) yields a protocol with communication
cost Θ(d), that is the overhead is constant, which is a Θ(log(n))-factor improvement over
the DORAM of Chan et al. MetaDORAM2 is the first perfectly secure DORAM protocol
with sub-logarithmic overhead over any parameter range.

MetaDORAM2’s perfect security comes at a cost in setup computation. MetaDORAM2
requires hash tables with well chosen hash functions. These hash functions must be chosen
such that whichever m inputs are chosen (from a universe of size 2n), it must be possible to
build the hash table. Using Θ(log(n)) hash functions that map to disjoint spaces, causes this
to occur with high probability [41]. The problem is that it is difficult to verify that a given
choice of hash functions satisfies this property. As such, MetaDORAM2 achieves perfect
security by first verifying that all subsets of size m from {1, . . . , 2n} can be successfully built
into a hash tables of size Θ(m) using the chosen hash functions. Each verification takes
poly(n) time, but there are

(2n
m

)
< 2n log(n) subsets to verify. While this computation need

only occur once for any given value of n, this limits the feasibility of this construction in
practice to tiny n. Note that the setup phase, while requiring exponential computation,
does not require any communication, so does not affect the amortized communication cost
of the protocol. Therefore, MetaDORAM2 shows for the first time that the problem of
perfectly-secure DORAM has sub-logarithmic communication overhead.

Note that in the non-uniform model of computation, the expensive setup phase can be
avoided. The hash functions can simply be provided in the advice string, as they do not
depend on the access pattern, but only on the size of the DORAM, n.

Due to the conversion between DORAMs and ORAMs, MetaDORAM1 (resp. Meta-
DORAM2) can be converted to a 3-server active ORAMs that is statistically (resp. perfectly)
secure and has communication cost Θ(logb(n)d + bω(1) log(n) + log3(n)/ log(log(n))) (resp.
Θ(logb(n)d + b log(n) + log3(n)/ log(log(n)))).

It has been proven that an ORAM must access Ω(log(n)d) bits of physical memory for
each d-bit virtual memory access [21, 27]. (This lower bound is normally phrased as Ω(log(n))
overhead, that is Ω(log(n)) blocks each of size d bits.) This bound applies even if there are
multiple servers [28, 25]. If the servers are passive (non-active) this implies a Ω(log(n)d)
bound on communication. In an active ORAM, the Ω(log(n)d) bound applies to the number
of bits accessed, but need not apply to the amount of communication. This work, like [1],
achieves sub-logarithmic communication overhead in the information-theoretic setting. This
result is slightly surprising: it means that server-side computation is useful at reducing
the asymptotic communication complexity even without the introduction of computational
assumptions. Our result, taken with [1], shows that the asymptotic bounds on the DORAM
problem are, as of yet, not well understood, and opens up many interesting questions
regarding what lower bounds exist for DORAMs, as well as for active information-theoretic
ORAMs in general (see section 7).

ITC 2025
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MetaDORAM1 and MetaDORAM2 also have lower communication overhead than most
DORAM protocols that use computational assumptions. See Table 2 in section 2 for more
details. MetaDORAM1 and MetaDORAM2 also have reasonable performance in other
metrics. The computation and local memory access overheads are poly-logarithmic. The
persistent memory usage is logb(n)d ≤ log(n)d bits. The round complexity per query is
O(log(n) log(log(n))). Throughout, the hidden constants in our asymptotic notation are
small: most are single-digit and all are less than 20.

Organization. Our paper is organized as follows. Section 2 provides a short history of
prior ORAM and DORAM protocols. Section 3 provides a technical overview of our results
and techniques. Section 4 explains the notation used, in particular the various types of
secret-sharing used and how they are represented. The formal DORAM functionality is
presented in section 5, as well as the functionalities for Secret-Shared Private Information
Retrieval (SSPIR) and secure routing, which are used by our DORAM protocol. Section 6
presents our full DORAM protocol, and analyzes its security and communication costs.
Section 7 concludes by discussing some interesting open questions. The functionalities for
SSPIR and secure routing can be implemented using standard techniques. For completeness,
these are presented explicitly in appendices A and B.

2 Prior Works

Many DORAMs are constructed from instances of a related, well-studied, primitive called
Oblivious RAM (ORAM). ORAMs were first identified by Goldreich and Ostrovsky in the
1980s [19, 33]. Consider a program which is running in a secure environment with very
limited memory. The program wishes to make use of general memory on a device, but an
adversary may be able to observe access patterns on this device. For instance, the program
may be running in a secure enclave, such as Intel SGX [12], and may need to protect sensitive
information even if the operating system is corrupted. The program can encrypt the data;
this will hide the data’s contents, but will not hide the memory locations accessed by the
program, which might leak sensitive information. An ORAM is an intermediary between the
program and the main memory. It provides a RAM functionality to the program using the
device’s memory in such a way that the access pattern on the device (the physical access
pattern) reveals no information about the memory accesses by the program (the virtual
access pattern), except for the number of accesses.

In a normal RAM, the cost of retrieving a block of data from memory is equal to the
size of the block, denoted d. Adding obliviousness comes at a price; the overhead is the
multiplicative increase in the number of bits that need to be accessed relative to a normal
RAM. Goldreich initially presented an ORAM that had O(

√
n log(n)) overhead, where

n is the number of blocks of memory [19], Ostrovsky constructed the first solution with
poly-logarithmic overhead of O(log3(n)) [33, 34] (the so-called “Hierarchical” solution). A
series of improvements reduced the overhead to O(log2(n)) [38, 22], O(log2(n)/ log(log(n)))
[26, 9], O(log(n) log(log(n))) [36] and finally O(log(n)) [4, 5] (i.e. accessing O(log(n)d) bits
of memory). This final result matches the proven asymptotic lower bound of Ω(log(n))
[21, 27, 28, 25, 37]. These ORAMs consider the setting where the untrusted memory is
passive (i.e. performs no computation on behalf of the ORAM) and the ORAM only has
enough memory to store Θ(1) blocks (and Θ(1) κ-bit PRF keys).

ORAM was quickly recognized as a solution to another challenge: outsourcing memory
in a network such as the internet. Here, a client with limited memory capacity wishes to
store data on an untrusted server such that the access pattern on the server’s memory leaks
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no information about the actual memory access pattern by the client. The formalism of
the original ORAM use-case is immediately applicable, with the client taking the place of
the secure environment and the server replacing the device memory. However, this new
application led several works to consider extensions of the model. First, the server is likely
to also have significant computational resources, so may be able to perform computation
to reduce communication overhead, a variant referred to as active ORAM [15, 11]. Second,
some works observed that the client could easily interact with multiple servers, which under
appropriate conditions could be assumed to not collude [31, 1, 10]. This was referred to as
multi-server ORAM.

ORAM can be used to construct Distributed Oblivious RAM (DORAM). Any client-server
ORAM can be transformed into a DORAM by evaluating the client’s circuit inside of a
secure computation and allowing one of the parties to act as a server, as was first observed
in [35]. There is now no trusted client. Instead, there is a “virtual client” that is simulated
by a secure computation. Furthermore, the extensions to the ORAM model that resulted
from the memory outsourcing application are immediately relevant to DORAMs. Since
DORAMs already have multiple non-colluding parties, they can trivially take advantage
of multi-server ORAMs by having the parties act as different servers. Since the parties
already perform computation as part of the MPC protocol, they can naturally perform the
computation needed by servers in an active ORAM. In general, a s-server active ORAM
tolerating t corrupt parties can be transformed into a (w, t)-secure DORAM protocol for any
w ≥ s by simulating the client in a (w, t)-secure MPC and having each server’s role taken
by a distinct party. Note that it is also possible to convert a DORAM into a multi-server
active ORAM by a trivial transformation. Any (w, t)-secure DORAM can also be converted
to a (w, t)-secure multi-server active ORAM by each server acting as one party, and by the
client initially secret-sharing their query to the servers, and the servers sending the client the
shares to reconstruct the result.

While simulating an ORAM client in a MPC protocol is always possible, doing so may
increase the communication costs of the protocol, or increase the number of parties required.
If information-theoretic security is required, the MPC requires an honest majority so at
least 3 parties are required even if the ORAM only uses 1 or 2 servers. Furthermore, any
computation which was performed locally by the client, requiring no communication, must
instead be evaluated within a MPC protocol. Depending on the computational complexity of
the client, the communication cost of simulating the client may increase the total asymptotic
communication costs. (In contrast, converting a DORAM to a multi-server ORAM will
never increase the asymptotic communication, as it only requires 1 secret-sharing and
1 reconstruction.)

Table 1 presents the communication cost of the best prior information-theoretic secure
DORAMs and of the DORAMs presented in this work. Note that while MetaDORAM2
requires a setup phase with exponential computation, this does not affect its communication
complexity. Abraham et al. created an efficient 2-server ORAM using PIR [1]. Their ORAM
is Tree-based, in which the number of children of each vertex is a configurable parameter,
b ≥ 2. This protocol achieved a communication cost of Θ(logb(n)d + bω(1) logb(n) log2(n)).
The parameter b should be set to reduce the amortized cost. For d ≥ 2ω(1) log2(n) the
cost is minimized by setting b = d

ω(1) log2(n) , which results in a cost log(n)
log(d) d. For smaller d,

the cost is minimal when b = 2. Note that while Abraham et al. constructed a 2-server
ORAM, converting it to a DORAM while maintaining information-theoretic security requires
a third party, to help simulate the virtual client. Chan et al. [10] created an efficient 3-server
passive ORAM scheme with perfect security. Their DORAM is Hierarchical, but unlike most
Hierarchical ORAMs which use PRFs, Chan et al. store items using truly random position

ITC 2025
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Table 1 Comparison with prior state of the art. Note that while the ORAM of Abraham et al.
requires only 2 servers, converting it to an information-theoretic DORAM requires an honest-majority
MPC protocol, therefore necessitating at least 3 parties. For statistically secure protocols, ω(1) is a
super-constant function in n and the statistical leakage is 2−ω(log(n)).

Protocol Amortized Communication Cost (bits) Security
Abraham et al. [1] Θ(logb(n)d + bω(1) logb(n) log2(n)) Statistical
Chan et al. [10] Θ(log(n)d + log3(n)) Perfect

MetaDORAM1 (this work) Θ
(

logb(n)d + bω(1) log(n) + log3(n)
log(log(n))

)
Statistical

MetaDORAM2 (this work) Θ
(

logb(n)d + b log(n) + log3(n)
log(log(n))

)
Perfect

Table 2 Complexity of select DORAM protocols. κ = ω(log(n)) is a cryptographic security
parameter. ω(1) is any super-constant function in n and the statistical leakage is 2−ω(log(n)).

DORAM Protocol Amortized Communication Cost (bits) Security
Faber et al. [16] O

(
ω(1) log2(n)d + κω(1) log4(n)

)
Computational

Jarecki and Wei [24] O
(
log(n)d + κ log3(n)

)
Computational

Bunn et al. [8] O
(
(d + κ)

√
n
)

Computational
Lu et al. Falk et al. [31, 17] O (log(n)d + κ log(n)) Computational
DuORAM [39] O (κ · d · log n) Computational

MetaDORAM1 (this work) Θ
(

logb(n)d + bω(1) log(n) + log3(n)
log(log(n))

)
Statistical

MetaDORAM2 (this work) Θ
(

logb(n)d + b log(n) + log3(n)
log(log(n))

)
Perfect

labels. These are stored in a position label ORAM, which is implemented recursively. The
communication cost is Θ(log(n)d + log3(n)). Both prior works are multi-server ORAMs
with simple clients, which can be converted to 3-party honest-majority DORAMs without
increasing the amortized asymptotic communication cost.

Several works also investigated building Distributed Oblivious RAMs directly without
simulating a client-server ORAM. While these works generally did not achieve the same
asymptotic efficiency as [1] and [10], many had good concrete efficiency. They took advantage
of the existence of multiple non-colluding servers by using Distributed Point Functions [8, 39],
secret-shared PIR (SSPIR) [24] and secure shuffles/routing [17]. See Table 2 for details.
These works all depended on computational assumptions. In comparison, the MetaDORAM
protocols are information-theoretically secure. The MetaDORAM protocols also have strictly
better asymptotic communication cost than these protocols over all parameter ranges, except
for Lu et al. and Falk et al. [31, 17], which can have a lower asymptotic communication cost,
and that only when κ + d = o(log2(n)/ log(log(n))).

3 Technical Overview

In this section we provide a broad overview of how the MetaDORAM1 and MetaDORAM2
protocols work. These protocols are, in fact, almost identical and only differ in how hash
functions are chosen. Therefore, in this overview, we only discuss the common framework
of the solution, which we refer to simply as MetaDORAM. Section 6 later presents Meta-
DORAM1 and MetaDORAM2 in full detail, including the different approaches used to select
hash functions.
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At a very high level, MetaDORAM uses Secret-Shared Private Information Retrieval
to access items, and always writes the accessed item (whether modified or not) to a pre-
determined new location. It uses an oblivious “metadata map” that maintains a mapping
from indices to their locations. This is accessed in order to obtain shares of the location to
input to the Secret-Shared PIR.

A simple way to instantiate this is to simply store the original secret-shared array in
memory, and to always write new items to the next free location in memory. The metadata
map would then consist only of the last access time for each index. If the index has been
accessed, this uniquely determines the item’s current position; if the index has never been
accessed, the position is determined by the index itself. This protocol is simple, but requires
performing SSPIR over an array of size Ω(n).

In order to perform SSPIR over small arrays, we instead store items in hash tables, each
with h ∈ Ω(log(n)) hash functions. As before, items are written to the next free location in
memory, but when there are c such items, these too are built into a hash table. To limit
the number of hash tables, when there are b tables of a given size, the contents of these
tables are extracted and rebuilt into a single table. Let T1,i, . . . , Tb,i be the tables of the
ith smallest size. Furthermore, every n accesses, there is a DORAM refresh in which the
contents of all tables are extracted and rebuilt into a single hash table. As a result, there are
only ever at most O(logb(n)b) tables, so the SSPIR need only be performed over arrays of
size O(c + b logb(n)h) = poly(log(n)).

Restricting the number of locations accessed improves efficiency, but introduces several
security and logistical challenges. Let G(x) be a function returning a 3-D array, such that
G(x)i,u,k is the kth location accessed in table Ti,u when querying x.
1. The first challenge is that G(x) must leak no information about x (even to a computa-

tionally unbounded adversary). This is essential, because the parties who access data
during a read will inevitably learn G(x) by the locations they access.

2. Additionally, each time x is accessed, G(x) must be a new 3-D array, independent of the
previous value(s) of G(x), to avoid leaking that repeated queries occurred. This implies
G(·) must be stateful.

3. The parties need an efficient protocol for building hash tables which does not leak any
correlation between indexes and the locations in which they are stored.

4. The SSPIR-index depends not only on the index and the last access time (as in the
Ω(n)-sized SSPIR solution presented above) but also on which of the h hash functions is
being used to store the item, which was determined during the hash table build.

It is standard when a hash table satisfies properties (1) and (3) above, that it is called an
oblivious hash table. Therefore, throughout all of the hash tables in this work are oblivious
hash tables (OHTables).

We solve these by separating the required properties of stateful-updates, randomness and
collision-resistance. We set G(x)i,u,k = Hi,k(Rand(UniqueNonce(x)), where:

UniqueNonce is a stateful function. This function returns a different value for each x.
Furthermore, each time x is queried by the DORAM, the value of UniqueNonce(x) is
updated. This is implemented simply by defining UniqueNonce(x) = x for every x which
has not been accessed (since the last DORAM refresh) and defining UniqueNonce(x) =
n+LastAccess(x) for each x which has been accessed. (Here LastAccess(x) ∈ {1, . . . , n}
is the last time x was accessed, measured from the last DORAM refresh.)
Rand is a random permutation on {1, . . . , 2n}.
Hi,k are public, fixed hash functions. They are collision-resistant, but do not need to
have any other security properties.

ITC 2025
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We define Rand(UniqueNonce(x)) as the rune (Random Unique NoncE) of x (also
written rune(x)). Note that when x is updated, it will be assigned a new rune.

This solution simultaneously resolves challenges (1) and (2) presented above. rune(x)
will be information-theoretic independent of x, so G(x) will be as well, solving (1). Since
UniqueNonce(x) will return a distinct value each time an index is queried (between each
DORAM refresh), and Rand is a permutation, rune(x) will also be a distinct value chosen
uniformly at random (without replacement) from {1, . . . , 2n} for each queried x. Therefore,
the locations distribution will be independent of the access pattern, and in particular
independent of whether indexes are repeated in queries.

To solve challenge (3), we distinguish the roles of the parties. One party, P0, will be the
Builder. The other two parties, P1 and P2, will be Holders. The Holders will store the tables
and will learn rune(x) when x is queried, allowing them to compute G(x). The Builder picks
and stores Rand. Observe that when building a new table, the items which are being built
have been accessed before, and so UniqueNonce(x) depends only on the last access time of x.
We write items to secret-shared memory each time they are accessed, according to a fixed
schedule. Let Mem(x) represent the location in secret-shared memory of item with index x

at a given point in time. The mapping from Mem(x) to LastAccess(x) is therefore public,
as is the mapping from LastAccess(x) to UniqueNonce(x). The Builder, knowing Rand(·)
therefore also knows the mapping from Mem(x) to Rand(UniqueNonce(x)) = rune(x)
without knowing x. The Builder can therefore locally compute Hi,k(rune(x)) and locally
determines how the memory must be permuted in order to build the oblivious hash table.
The Builder then provides this permutation to a secure routing protocol, resulting in a very
efficient protocol for constructing oblivious hash tables.

Meanwhile the mapping from x to rune(x) is stored in a smaller DORAM, which we refer
to as the sub-DORAM, which is implemented recursively. During an access, this is queried
and rune(x) is provided to the Holders, who can use this to calculate G(x), and determine
which locations in the oblivious hash tables are to be used for the SSPIR. Note that the
Builder knows Rand, but does not learn the runes obtained during queries, or the memory
locations accessed by the Holders in the tables, so does not learn any information about the
access pattern.

We turn to challenge (4). Note that the table, Ti,u, in which an item is stored is fully
determined by the item’s last access time. However, to perform SSPIR, we also need to obtain
a secret-sharing of which of the h hash functions was used to store the item in this table.
Observe that when the Builder is determining the permutation for building an oblivious hash
table, this does not depend on the access pattern, but only depends on Rand(·). Furthermore,
the Builder picks Rand(·) at the start of each DORAM refresh. Therefore, the Builder is
able to pre-determine the permutations it will use, and therefore which hash function will be
used for each rune in each oblivious hash table. This may be surprising, since the mapping
from runes to indexes has not even be determined at this point. This is possible because,
regardless of which index is accessed at time t, the item will be stored in the same initial
location in memory, will be assigned the same unique nonce, the same rune, and will be
placed in the same locations in each oblivious hash table. This means that the Builder can
secret-share a position schedule which determines the SSPIR-index of the rune at each point
in time (until the next DORAM refresh).

A final challenge is that SSPIR assumes that the 2 Holders have identical copies of the
tables (rather than a secret-sharing of the tables). To provide privacy from the Holders, we
therefore mask each item in each table with a rune-dependent information-theoretic mask
(one-time pad). During each table rebuild, new masks are applied. This is achieved by the
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Builder adding (as secret-shares) the masks for the new table, prior to the secure routing
protocol. The Builder pre-determines all new masks at the start of each DORAM refresh,
and secret-shares a mask schedule among the Holders, akin to the position schedule.

The metadata mapping therefore consists of mappings from indices to runes, from runes
to a position schedule and from runes to a mask schedule. The position schedule and
mask schedule are simply secret-shared arrays (with the runes public and the schedules
secret-shared). The mapping from indices to runes is implemented using a sub-DORAM,
which is implemented recursively.

Novel contributions. In addition to providing the communication-efficient DORAM with
information-theoretic security, our paper introduces a number of new techniques. Specifically,
we use time-stamping and novel data structures to obtain the precise location of data blocks,
we make asymmetric use of the participating compute servers to allow efficient and oblivious
construction and querying of these data structures, we use as a subroutine tiny-size PIR
protocols where the “databases” are constructed on the fly during query execution, and we
show a novel strategy for DORAM that bridges techniques from different ORAM strategies
in conjunction with ideas explained above.

4 Preliminaries

We use lower-case Latin characters to represent parameters in the protocol. n is the size of
the RAM, d is the bit-length of each item. h represents the number of hash functions used
by the hash tables. For an explicit integer or integral parameter, a, [1, a] denotes the set of
integers {1, . . . , a}. We use upper-case Latin characters to represent arrays and matrices,
which are indexed using standard subscript notation. lg represents the base-2 log. For
asymptotic annotation, any constant base is equivalent, in which case log represents some
arbitrary constant-base log.

We denote the 3 parties as P0, P1 and P2. P0 is the Builder. P1 and P2 are the Holders.
The Adversary A, is able to corrupt at most one of the parties. The corruption is semi-honest
(passive), that is the corrupted party will still follow the protocol, but A is able to view all
data visible to the corrupted party. The corruption is static, that is A cannot change which
party is corrupted during the protocol. Our protocols are information-theoretically secure,
that is A may perform an arbitrarily large amount of computation.

We utilize hash functions. Our hash functions are fixed and public. The hash functions
implicitly map to ranges of different sizes (depending on the size of the OHTable). In this
cases, the hash functions are calculated modulo the required range.

Table 3 Types of Secret-Sharing with Notation.

Sharing type Notation Party Share Construction
P0 P1 P2

3RSS (Replicated) [x] (x0, x1) (x1, x2) (x2, x0) x0 ⊕ x1 ⊕ x2 = x

2XORS (2-Party XOR) [x]1,2 ∅ x0 x1 x0 ⊕ x1 = x

1-2XORS (1-and-2 Party XOR) [x]0,(1,2) x0 x1 x1 x0 ⊕ x1 = x

2-Priv (2-Party Private) [x](1,2) ∅ x x

1-Priv (1-Party Private) [x]0 x ∅ ∅
Public x x x x

ITC 2025



6:10 MetaDORAM: Info-Theoretic Distributed ORAM with Less Communication

We use several kinds of secret-sharing, all of which are bit-wise (Boolean) secret-sharings.
These are summarized in Table 3. Since all of these sharings are linear, they can easily be
converted between each other. A sharing of an l-bit variable can be converted to a fresh
sharing of any other l-bit variable by each party creating a fresh sharing of their share in the
new sharing and XORing the resulting shares. (If 2 parties hold the same share, only one of
them need send a sharing.) This requires only Θ(l) communication.

The most common sharing we use is a 3-party replicated secret sharing (3RSS) [2]. Here,
x ∈ {0, 1}ℓ is secret-shared by having x0, x1, x2 ∈ {0, 1}ℓ that are uniformly random subject
to x0 ⊕ x1 ⊕ x2 = x. Pi holds xi and x(i+1) mod 3. When variable x is held using this
secret-sharing, it is represented as [x].

We also use a 2-party XOR secret-sharing (2XORS), where 2 parties hold the secret-
sharing and the third party is not involved. If P1 and P2 hold a 2-party XOR secret-sharing
of variable x, this is denoted as [x]1,2. Here P1 holds x0 and P2 holds x1 where x0 and x1
are randomly chosen subject to x0 ⊕ x1 = x. We also use a variant of XOR secret-sharing in
which 2 parties hold one of the shares, and the third party holds the other. For instance,
when P0 holds one share, and P1 and P2 hold the other share, this is denoted [x]0,(1,2), that
is P0 holds x0 and P1 and P2 both hold x1 where x0, x1 ← {0, 1}ℓ subject to x0 ⊕ x1 = x.

Sometimes a variable is held privately. If x is held privately by one party (1-Priv), for
instance, by P0, we denote this as [x]0. Sometimes a variable is known to 2 parties but not
the third (2-Priv). If x is known to P1 and P2, but not P0, this is denoted [x](1,2).

For conciseness, conversions between types of secret-sharing are typically implicit in our
pseudocode, indicated by the sharing-type of the result. For instance, [Cj ](1,2) = [vnew]⊕ [e]
means that [vnew] and [e], both stored using 3RSS, are first XORed to create a result that is
shared using 3RSS. This result is then revealed to P1 and P2 (but not P0), who store the
result and label it Cj .

We use the Arithmetic Black Box (ABB) model [14] to formalize the guarantees provided
by secret-sharing and operations on secret-shares. This treats 3RSS, 2XORS and 1-2XORS
secret-shared values as stored in a reactive functionality FABB. FABB can also perform
operations on secret-shares (e.g. AND, XOR) with the result again being stored by FABB.
Only when a FABB-stored value is converted to a private (2-Priv or 1-Priv) or public value
(corresponding to share reconstruction) is that value released by FABB to the appropriate
parties. The protocol of Araki et al. [2] securely implements FABB for any Boolean
operation (AND, OR, NOT, XOR) over 3RSS-shared values. Locally XORing shares securely
implements FABB for the XOR operation over 2XORS and 1-2XORS sharings.

5 Functionality

We wish to implement the following DORAM functionality:

Functionality FDORAM

I ← Init(n, d, [A]): Store array A containing n items of size d.
[v]← I.ReadWrite([x], [y], f): Given an index x ∈ [1, n], set v to Ax. Set Ax = f([v], [y]).
[A]← I.Extract(): Return the current state of the memory, A, as an array of secret-shares.

Our definition of a DORAM combines the Read and Write functionalities, allowing for
reads, writes, or more complex functionalities. This is done by setting the public function f

appropriately. For a read, define f(v, y) = v. For a write, define f(v, y) = y. Allowing the
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written value to be a function of the input provides additional flexibility, such as writing to
only particular bits of the data-value or applying a bit-mask to the memory value. Implicitly,
f must be representable using a Boolean circuit containing Θ(d) AND gates.

Security is defined using the simulation paradigm, which is standard for proving the
security of MPC protocols [30]. A simulator, given only a party’s inputs and outputs from a
protocol must generate a view consistent with the real view of a corrupted party during an
execution. The DORAM is perfectly secure if the simulated view is from the same distribution
as the real view. It is statistically secure if the distance between the distributions of the
views is negligible in n. A protocol has information-theoretic security if it has either perfect
or statistical security. It is computationally secure if a computationally-bounded adversary
has a negligible advantage in distinguishing views in the simulated and real executions. All
of our protocols have information-theoretic security. We present two DORAMs, one that is
statistically secure and another that is perfectly secure. The only difference between the two
protocols is the choice of hash functions: the perfectly secure protocol selects hash functions
which allow for the construction of oblivious hash tables on all possible inputs, whereas the
statistically secure protocol picks random hash functions which allow for the construction of
oblivious hash tables on all possible inputs except with negligible probability. This is the
only type of leakage in the statistically secure protocol. Apart from this all components of
both protocols are perfectly secure.

Our DORAM implementation makes use of the following functionalities. These can be
implemented with perfect security using standard techniques. We present explicit instanti-
ations of the SSPIR and routing functionalities in appendices A and B respectively. The
communication cost of SSPIR is Θ(

√
md + d) while that of Route is Θ((d + log(q))q).

Functionality FSSP IR

[v]←SSPIR (m, d, [A](1,2), [x]): Given an array A held (duplicated) by P1 and P2, containing
m elements of size d, and a share of x ∈ [1, m], return a fresh secret-sharing of Ax.

Functionality FRoute

[B]← Route ([A], [Q]0): Given a secret-sharing of array A, of length m, and an injective
mapping Q, held by P0, of length q ≥ m, create a fresh secret-sharing B such that BQ(i) = Ai

for all i ∈ [1, m] and Bj is distributed uniformally at random for all j /∈ {Q(i)}i∈[1,m].

6 DORAM Protocol

6.1 Overview
This section presents MetaDORAM1 and MetaDORAM2 in full and analyzes their security
and communication costs. Since MetaDORAM1 and MetaDORAM2 have only minor
differences, we first present the generic protocol, which we refer to as MetaDORAM, which
does not specify how hash functions are chosen. We then show how the hash functions can be
chosen to either provide statistical security or perfect security. For reference, the reader can
also refer to the high-level technical overview of the MetaDORAM protocol from section 3.

The MetaDORAM protocol is presented in detail in sections 6.2 and 6.3. Section 6.4 then
shows how a statistically secure DORAM (MetaDORAM1) and a perfectly secure DORAM
(MetaDORAM2) can be instantiated depending on how the hash functions are chosen, and
proves that these protocols achieves the desired security properties. Finally section 6.5
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analyzes the complexity of these protocols. We assume the existence of functionalities for
secret-shared PIR and secure routing, implementations of which are presented in appendices
A and B respectively.

6.2 Writes and Rebuilds
We first show how the data-structure storing the blocks is written to and rebuilt. Initially, all
blocks are stored in a single, large, OHTable. When an index is queried, it is assigned a new
rune, which is picked by the Builder, and the sub-DORAM is updated with this information.
A new block is then created which holds the new value for that index. This block is placed
in an area called the cache. The cache is filled sequentially. The cache is of size c. When the
cache becomes full, its contents are extracted and built into an OHTable.

We implement the OHTables using cuckoo hashing with many (h ∈ Ω(log(n))) hash
functions. The block may be stored in locations corresponding to the output of the hash
functions on the block’s rune. Since the Builder knows the runes of every block, the Builder is
able to locally compute an assignment from runes to locations. It can then collaborate with the
Holders to securely route the blocks to their correct locations. It is important for the Holders
not to be able to tell how the blocks were permuted. It is therefore necessary to mask the
blocks using fresh masks during each build. All masks are achieved information-theoretically
using one-time pads (OTPs), which are picked by the Builder.

We periodically combine multiple OHTables into a single OHTable. Once there are b

OHTables of a given size, the contents of all of these OHTables are built into a single new
OHTable. We refer to the OHTables as being arranged in levels. The first, or top, level, L0,
contains the cache. The next level, L1, contains OHTables that were built using the contents
of the cache. We label these tables T1,1, . . . , T1,b. Since the cache is of capacity c, each
OHTable in L1 will also be of capacity c. L1 will contain at most b such OHTables; when
there are b such tables, their contents will be combined into an OHTable of size bc which
will be placed in L2, and so on. Note that, once the bth OHTable in a level is built, it is
immediately combined with all other OHTables in that level to construct an OHTable in the
next level. Therefore, during queries there are only at most b− 1 tables at any level. Since
each level’s capacity is b times larger than that of the level before it, a total of Θ(logb(n/c))
levels will be needed to store the blocks created by n queries. After n queries, the refresh
occurs, the contents of all OHTables and the cache are extracted, and the active blocks are
rebuilt into a single, large OHTable of size n, as at the start of the protocol. To simplify
the OHTable builds, we store an append-only secret-shared array, [V ], containing all values
written (including for reads) since the last refresh. We use subsets of this array and not the
existing OHTables to build new OHTables, which avoids the complexity of actually extracting
the contents from existing OHTables and removing previous masks. The Rebuild protocol is
presented in Figure 1, together with the overall DORAM ReadWrite function and the Write
function.

6.3 Reads and Refreshes
The question remains as to how the function Read([x]) can be implemented efficiently.
Firstly, we reveal the rune of x to the Holders, let it be called r. This greatly simplifies
the problem. It is known that the block is stored either in the cache, or in location Hk(r)
of some table Ti,j , for some i ∈ [1, ℓ], j ∈ [1, b − 1], k ∈ [1, h]. This reduces the number of
possible locations to c + ℓ(b− 1)h.
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DORAM: ReadWrite Write Rebuild

Parameters:
Cache size: c = b · h

Tables per level: b (Configurable parameter)
Number of levels: ℓ = ⌈logb(n/c)⌉
Number of hash functions: h (Configurable parameter)
Hash functions: H1, . . . , Hh

DORAM.ReadWrite([x], [y], f):
1. [v] =Read([x]) (Defined in Figure 4)
2. [vnew] = f([v], [y])
3. Write([x], [vnew])
4. Rebuild() (Performs rebuilds, if needed)
5. t = t + 1 (Counter indicating the number of queries)
6. Return [v]

Write([x], [vnew]):
1. P0 sets [r]0 = [Rn+t]0. This will be a rune from [1, 2n] which has not been used since the

past refresh, and is chosen at random with replacement. (See Init in Figure 2.)
2. j = t mod c

3. P0 sets [e]0 = [E1,[r]0 ]0. That is, [e]0 is a OTP from {0, 1}d, and P0 selects it consistantly
with the mask schedule it generated during Init (Figure 2).

4. [Cj ](1,2) = [vnew]⊕ [e]
5. For future rebuilds and refreshes, the secret-shared vnew and x are stored in append-only

arrays:
[Vn+t] = [vnew]
[Xn+t] = [x]

Rebuild():
1. if t = 0 mod c:

a. Set i to the largest value such that t = 0 mod cbi.
b. Set u = (t/(bic)) mod bi+1c (the number of tables in Li+1).
c. The parties obtain the runes, values and (new) masks for the cbi most-recently written

items and build these into a new table.
for j ∈ [1, bic] (in parallel):
i. P0 sets [r]0 = [Rn+t−c·bi+j ]0
ii. P0 sets [e]0 to the new mask for rune r: [e]0 = [Ei+1,[r]0 ]0.
iii. [Zj ] = [Vn+t−c·bi+j ]⊕ [e].

d. P0 locally builds an OHTable using Ri,1...bic, and hash functions H1, . . . , Hk. Let [Q]0
be the injective mapping from [1, bic] to [1, 2(1 + ϵ)bic] that maps Ri,1...bic to satisfying
locations with these hash functions.

e. Use this mapping to build an OHTable containing the newly masked blocks:
[Ti+1,u](1,2) = FRoute([Z], [Q]0)

f. Delete the old cache C and old tables T1,1, . . . , Ti,b−1.
2. if (t = n) Refresh()

Figure 1 DORAM protocol overview, write function and rebuild function.
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These locations constitute the array for the SSPIR; the protocol now needs to obtain
secret-shares of the desired item’s location in this array. P0 knows, for each rune and each
time, the location at which each item is stored. However, r cannot be revealed to P0 during
a read, since P0 knows when the index with rune r was last accessed, which would allow P0
to link access times of indices. In short, the Builder knows the location of each rune, but
there seems no way to make use of this without leaking information about the current rune
being queried.

Recall that in the description of the DORAM write protocol, P0 gets to pick the rune.
P0 should pick the runes such that each rune is unique, but apart from this runes are chosen
uniformly at random from [1, 2n]. Therefore, the choice of runes does not depend on any
other activity in the protocol. Hence, P0 is able to pick all of the runes at the beginning of
the protocol. In other words, P0 can predetermine the runes that it will assign at each point
in time, and during the protocol can assign runes consistently with this original assignment.

Observe, further, that P0 builds the OHTables based solely on the hash functions and
the runes. Since these are both known at the start of the protocol, P0 can also pre-calculate
all assignments in all hash tables at the beginning of the protocol. This allows P0 to locally
create a position schedule, that is a data-structure storing exactly where each rune will be
located at each point in time.

This allows us to sidestep the conundrum described above. The Builder can secret-share
the position schedule containing all information about the locations of all of the runes, once,
at the start of the protocol. The Holders can then access the relevant parts of the position
schedule dynamically as they learn the rune of each queried block. Note that this location is
the location among all of the possible locations that the block may have been located based
on the rune (up to c cache locations, and up to ℓ(b− 1)h table locations).

Given secret-shares of the location of the block, the protocol now engages in a secret-
shared PIR (SSPIR) to obtain a secret-sharing of the block. SSPIR can be implemented
using a simple modification of any 2-party PIR protocol. The SSPIR protocol we use is
explained in more detail in appendix A.

This allows us to obtain secret-sharings of the masked value, but how can this be
unmasked? P0 knows which rune is masked using which OTP, but this information somehow
needs to be accessed without revealing to P0 which rune is being queried. This is the same
problem we had with the location mapping, and it can be solved using the same solution.
Since the Builder gets to pick the OTPs, he can pre-determine, at the initialization of the
protocol, which OTPs it will use. He can then secret-share the OTPs that will be used for all
runes at all points in time. Recall that each time a block is moved, it will be masked using a
new OTP. Therefore, P0 will secret-share a mask schedule, analogous to the position schedule,
that contains the OTP used to mask each block at each point in time, and which can be
accessed dynamically during reads to unmask blocks. This allows us to obtain a secret-sharing
of the queried value, performing a read. The read protocol is presented formally in Figure 4.

Although we say above that the Builder will pre-determine all runes, locations and masks
at the initialization of the protocol, in fact they will only pre-determine these for the first n

queries so that the position schedule and mask schedule are not too large. The protocol will
therefore have 2n runes (n initial index runes, and n which are assigned during the queries).
The Builder only predetermines the assignment of runes and movement of blocks, for the
next n queries, and therefore only creates and shares schedules for locations and masks over
n points in time. After n queries, the DORAM is refreshed and the Builder generates new
runes, position schedules and mask schedules for the next n queries. We stress that the
Builder pre-determines the mapping from runes to access times and does not pre-determine
the mapping from runes to indices. The mapping from access times to indices (and therefore
runes to indices) is only determined during the execution of the DORAM as queries occur.
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DORAM: Init

Init(n, d, [V]):
1. P0 creates a random permutation which determines the assignment of runes, [R]0 : [1, 2n]→

[1, 2n]. The first n of these are the initial runes of the indices. [Rn+t]0 is the rune which
will be assigned to the index that is accessed at time t.

2. Initialize a new sub-DORAM containing these runes (with adjacent pairs appended together
into a single entry).
a. for i ∈ [1, n/2], [Bi] = [R2i−1]0||[R2i]0
b. subDORAM = FDORAM .Init( n

2 , 2(lg(n) + 1), [B])
3. P0 locally builds all the OHTables for the next n queries, based on its knowledge of the

runes involved, and the hash functions.
If there is no satisfying assignment for one of the OHTables, P0 tells P1 and P2 to abort
the protocol.
Otherwise, P0 can determine where each rune’s block will be when, and it creates the
position schedule which consists of these three matrices:

[Si,r]0 contains the time rune r’s block starts to be in its ith position.
[Fi,r]0 contains the time rune r’s block finishes to be its ith position.
[Pi,r]0 contains the ith position of rune r’s block.

4. P0 creates a mask-schedule. Note that the times will be the same as the position schedule.
Therefore all that is needed is one addition matrix containing the OTPs:
[Ei,r]0 contains the OTP used to mask rune r’s block when it is in its ith position.

5. P0 XOR secret-shares the position schedule and mask schedule between P1 and P2:
[S]1,2, [F ]1,2, [P ]1,2, [E]1,2.

6. P0 provides the masks to the blocks, based on his previous selection: [Ei]0 = [E0,r]0 for
Ri = r.

7. Based on the Builder’s previous assignment of the initial locations of the initial runes, he
sets [Q]0 to be the injection from [1, n] to [1, 2(1 + ϵ)n] that builds the initial table.

8. The parties create the OHTable containing the initial items, and P1 and P2 store the masked
blocks:
[Tℓ+1](1,2) ← FRoute([V ]⊕ [E]0, [Q]0)

9. The values of the initial items are stored for future reference in [V1,...,n].
10. The indexes are stored in an array [X], that is for i ∈ [1, n]:

[Xi] = [i]
11. Initialize the query counter: t = 1.

Figure 2 DORAM: Init functionality.

We now describe the method for refreshing in more detail. The refresh can be divided
into two parts. First, the contents of the up-to-date memory is extracted. This is achieved by
randomly permuting all blocks and revealing their runes to the Holders. The Holders know
which runes have been queried, so can identify these blocks as obsolete, leaving only the
blocks which contain the most recently written value for each index. The extract protocol
returns a secret-shared array of the current memory; that is using the same format as that
provided for the Init function. The refresh protocol then simply call the Init function using
this secret-shared array to create all of the data-structures necessary for a further n queries.
The Extract functionality is useful in its own right, and may be called by the environment
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at an arbitrary time (i.e. when there have been fewer than n queries since the last refresh).
The Refresh and Extract protocols are presented formally in Figure 3, while the Init protocol
is presented in Figure 2.

DORAM: Extract and Refresh

[V ]← Extract():
1. Set m = n + t. Observe that [V ] and [X] are both of length m, due to the initial n values

stored during the refresh, and the t writes which have occured since.
2. Set [R] = [R1,...,m]. This remove any runes from [R] which have not been assigned to an

index since the last refresh.
3. P1 picks a random permutation S : [1, m] → [1, m]. Let all items be securely routed

according to [S]1:
[R] = FRoute([R], [S]1), [V ] = FRoute([V ], [S]1), [X] = FRoute([X], [S]1)

4. P2 similarly picks a random permutation, U : [1, m]→ [1, m] which is used to permute all
items:
[R] = FRoute([R], [U ]2), [V ] = FRoute([V ], [U ]2), [X] = FRoute([X], [U ]2)

5. The values R are revealed to P1 and P2. Note that R will contain a random subset of m

items from [1, 2n]: [R](1,2) ← [R].
6. P1 and P2 identify all runes which have already been revealed to them. The locations of

these items in the permuted arrays are made public, and the items are deleted:
For i ∈ [1, m], Ii = 0 if [Ri](1,2) ∈ [D](1,2), else 1
If Ii = 0, delete [Xi] and [Vi] (and re-assign indices).

7. Reveal [X] to all parties. (This will contain all indices in [1, n] in a random order.) Sort
[V ] locally according to [X].

8. Return [V ].
9. Delete all variables and the subDORAM.

Refresh():
1. [V ]← Extract()
2. Init(n, d, [V ])

Figure 3 Extract and Refresh functionalities.

6.4 Security Analysis
In this section, we show how to instantiate the MetaDORAM protocol so as to achieve
statistical security (MetaDORAM1) and perfect security (MetaDORAM2). In short, Meta-
DORAM1 picks hash functions at random, and is secure in the event (which occurs except
with negligible probability) that the hash functions are suitably chosen. MetaDORAM2
instead manually verifies that the hash functions are suitably chosen. We first prove the
security of the protocol in the event that the hash functions are suitably chosen.

▶ Theorem 1. Let H1, . . . , Hh satisfy the property that for all i ∈ [0, l], for m = cbi and for
all subsets M of size m of [1, 2n], there exists an assignment a1, . . . , am ∈ [1, h]m such that
Hai

(Mi) mod 2(1 + ϵ)m are distinct. In this case, the MetaDORAM protocol, as presented
in Figures 1, 2, 3 and 4 is perfectly secure in the FABB, FSSP IR, FRoute-hybrid model.
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DORAM: Read

Read([x]):
1. Access the subDORAM to learn the rune of x. Note that indices are stored in the

subDORAM in pairs, so the subDORAM will return a share of both x’s rune and a share
of x’s neighbor’s rune. The protocol reveals (only) x’s rune to P1 and P2. Also, in order to
access the subDORAM only once per query, the protocol takes the opportunity to use this
access to also write the new rune that is being assigned to x.
a. Let [xln(n)] be the least significant bit of [x] (i.e. if x is odd it is 1, otherwise 0).
b. Set [xsig] to be the lg(n)− 1 most significant bits of [x], (i.e. drop the last bit).
c. P0 supplies the new rune [rnew]0 which will be assigned to x when it is re-written.
d. We define f to overwrite x with its new rune, while leaving x’s neighbor as is. Formally

f(v, y), v ∈ {0, 1}2(lg n+1), y ∈ {0, 1}lg(n)+2 is defined such that if y0 = 0 (which
will happen when x is even) f(v, y) = v1,...,lg(n)+1||y1,...,lg(n)+1 (the second half of the
value is overwritten with the remaining bits of y) and if y0 = 1 (x is odd), f(v, y) =
y1,...,lg(n)+1||vlg(n)+2,...,2 lg(n)+1 (the first half is overwritten).

e. [vsub]← subDORAM.ReadWrite([xsig], [xln(n)]||[rnew], f).
f. If [y0] = 1, securely set [rold] to be the first half of [vsub], otherwise securely set it to be

the second half of [vsub].
g. Reveal x’s (old) rune to P1 and P2: [r](1,2) ← [rold].
h. Append [r](1,2) to [D](1,2), the set of runes which P1 and P2 have already observed.

2. P1 and P2 create an array Y containing all of the (masked) blocks which may hold rune r’s
block:
a. [Y1,...,c](1,2) contains the blocks from the cache. These are padded to length c with empty

blocks if the cache is not full.
b. For i ∈ [1, ℓ + 1], u ∈ [1, b − 1], k ∈ [1, h], set [Yc+(i−1)bh+(u−1)h+k](1,2) ←

[Ti,u,Hk([r](1,2))](1,2). This is, the Hk([r])th location in table Ti,u. If table Ti,u does
not exist, set location to an empty block.

3. Securely determine which time-slot is being used. That is, for j ∈ [0, ℓ + 1]:
a. Set [Sj ]← [Sj,[r](1,2) ]1,2 ≥ t

b. Set [Fj ]← [Fj,[r](1,2) ]1,2 < t

c. Set [Jj ]1,2 ← [Sj ] ∧ [Fj ]
4. Securely select the correct location and OTP from the position and mask schedules:

a. For j ∈ [0, ℓ + 1], [Pj ]← [Pj,[r](1,2) ]1,2

b. For j ∈ [0, ℓ + 1], [Ej ]← [Ej,[r](1,2) ]1,2

c. For j ∈ [0, ℓ + 1], securely set [p] to [Pj ] if [Jj ] = 1
d. For j ∈ [0, ℓ + 1], securely set [e] to [Ej ] if [Jj ] = 1

5. [v]← FBalancedSSP IR(c + ℓ(b− 1)h, d, [Y ](1,2), [p])⊕ [e]
6. Return [v]

Figure 4 DORAM read protocol.

Proof. All steps of the protocol are one of three cases. Either:

A secure functionality is being accessed, that only outputs secret-shared results. This
can either be a basic ABB functionality, like ⊕, or a more sophisticated functionality like
SSPIR.

The operations are on public, predetermined values (e.g. t, u).

Some value is revealed to some party, or subset of the parties.
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We need to examine all revealed values and examine whether they can be simulated
without knowledge of the private inputs.

Init. No information is revealed to P0, rather all private variables it holds are the result of
its own random choices (the runes and OTPs) and public parameters (the hash functions).
In the case that H1, . . . , Hh have satisfying assignments for all subsets of size m of [1, 2n],
then P0 will never abort. Therefore, the only information P1 and P2 learn during the Init
function are the values Tℓ+1. All of these blocks have been masked by fresh OTPs, so this is
simulatable by generating a uniformly random string.

Read. No information is revealed to P0.
P1 and P2 learn the rune queried. The runes are distributed uniformly at random from
[1, 2n], subject to the fact that they are each unique.

Write. No information is revealed to P0.
P1 and P2 learn Cj . This has been masked using a fresh OTP, so can be simulated by
generating a random string.

Rebuild. No information is revealed to P0.
P1 and P2 learn Ti,u. This contains blocks which have been masked under fresh OTPs, so
can be simulated by generating random strings.

Extract. P0 learns X. This will contain the items [1, n] in a randomly permuted order.
This can be seen by induction. The protocol maintains the invariant that at each point in
time, each index x has a single rune assigned to it which has not been observed by P1 and P2.
In other words, there is a single rune Ri, such that Xi = x and Ri /∈ D. Therefore, when the
indices corresponding to viewed runes are deleted, a single instance of each index will remain.
They will be in a random order because they have been shuffled according to a permutation
known to no parties.
P0 also learns I. This contains n 1s and m−n 0s in a random order, for the reasons explained
above.
P1 and P2 additionally learn R after it has been permuted. This contains a subset of m

runes from [1, 2n]. It will necessarily include all m− n runes from D, since these runes are
definitely stored in the system. The other n runes are distributed uniformly at random from
the set of the remaining 2n − (m − n) runes, so are efficiently simulatable. The ordering
must be consistent with I, that is the m− n previously observed runes must have Ii = 0.

Therefore, the views of all parties are perfectly simulatable, so the protocol is secure in
the semi-honest setting against an adversary that corrupts any one of the parties. ◀

In the case that H1, . . . , Hh are such that there is no satisfying assignment for some
subset of [1, 2n] of some size m = cbi, then there is some small leakage. In the case that this
subset is chosen, this leads to an abort, so does not leak any information. However, if such a
subset is not chosen, P1 and P2 learn that such a subset was not chosen. Since P1 and P2
learn the rune of items when they are accessed, they can therefore conclude that certain
access patterns were impossible, as they would have led to tables that were unconstructable.
Note that this type of leakage can occur even if the probability of P0 actually choosing a
rune assignment that would lead to an abort is negligible: P1 and P2 could learn of some
access pattern which for certain did not occur.

We present two solutions to this problem. MetaDORAM1 selects ω(1) log(n) hash
functions at random, for any super-constant function ω(1). We show that, except with
negligible probability in n, this results in a choice of hash functions which have a satisfying
assignment for all subsets of size m of [1, 2n], for all m = cbi. This results in a protocol
which has a negligible probability of any leakage, and is therefore statistically secure.
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In MetaDORAM2, the protocol instead selects Θ(log(n)) hash functions at random and
manually verifies that this choice of hash functions result in a satisfying assignment for all
subsets of size m of [1, 2n], for all m = cbi. The verification stage requires an exponential
time setup phase (which need only be done once for any value n). This allows for a perfectly
secure protocol.

We prove both protocols secure by making use of Yeo’s analysis of Robust Cuckoo
Hashing [41]. Yeo was concerned with an adversary that could pick the indices of items in
a hash table, and attempted to pick these such that would cause a build failure, given the
predetermined hash functions. His analysis works in general for determining the probability
that, given a large set of elements there exists some subset of these that would result in a
build failure. Specifically, from his proof of Lemma 3 we can derive the following:

▶ Lemma 2 (Derived from proof of [41] Lemma 3). For some m ≤ 2n, let C be a disjoint-table
cuckoo hash table with αm locations (α ≥ 1), and h random hash functions H1, . . . , Hh.
Furthermore, each location in C is of capacity l = 1 and C does not have a stash (s = 0).
Then all subsets of [1, 2n] of size m can be successfully built by C, except with probability:

ϵ ≤
(

2n

2h−3

)h+1

Note that this probability does not depend on m, except for requiring that m ≤ 2n. For
h = lg(n) + 5, this simplifies to(

1
2

)lg(n)+6
= 1

64n

For any h = ω(log(n)) this is negligible in n.

6.4.1 MetaDORAM1
For MetaDORAM1, we set h = lg1.5(n)/ lg(lg(n)) = ω(log(n)). We select h independent
random hash functions. By Lemma 2, this means that the failure probability is negligible in
n. Note that this gives the failure probability for a given m, but as there are fewer than n

such values of m to consider (even given the recursive implementation of the sub-ORAM)
the probability that there is any m for which a subset of size m could not have a satisying
assignment is also negligible. Therefore MetaDORAM1 is perfectly secure, except in the
case of an event (poorly chosen hash functions) which occurs with probability negligible in n.
This leads to our desired result:

▶ Corollary 3. MetaDORAM1 is a statistically secure implementation of functionality
FDORAM in the FABB, FSSP IR, FRoute-hybrid model.

Note that the subDORAMs, even though they have smaller sizes, use the same parameter
h as the top level, so that the failure probability remains negligible in the size of the top
DORAM, n.

6.4.2 MetaDORAM2
For MetaDORAM2, we set h = lg(n) + 5. This means that the choice of hash functions
satisfies all subsets of a given size m with probability 1

64n . Therefore, it also satisfies all
subsets for all m ≤ n except with probability at most 1

64 . The protocol selects a random
H1, . . . , Hh and then attempts to build the hash tables using all subsets of [1, 2n] of size m,
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for all h ≤ m ≤ n. If any subset does not have a satisfying assignment, new random hash
functions are selected and the process is repeated. If all subsets have a satisfying assignment,
these hash functions are used for the protocol.

Unfortunately, iterating over all subsets of [1, 2n] of size m requires
(2n

m

)
iterations.

Further iterating over all m ∈ [h, n] results in nearly 22n−1 iterations. This exponential-time
setup phase makes the protocol infeasible for practical applications. Nevertheless, it does not
affect the communication cost of the protocol, nor does it undermine its perfect security.

By thus choosing the hash functions, the condition of Theorem 1 is satisfied:

▶ Corollary 4. MetaDORAM2 is a perfectly secure implementation of functionality FDORAM

in the FABB, FSSP IR, FRoute-hybrid model.

6.5 Complexity Analysis
The complexity analysis is presented in the full version of the paper [32].

7 Future Work

A discussion of future work is included in the full version [32].
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A Secret-Shared Private Information Retrieval

The full version [32] presents an instantiation of the SSPIR protocol, using standard tech-
niques.

B Secure Routing

The full version [32] presents an instantiation of the secure routing protocol using standard
techniques.
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