
Linear-Time Secure Merge in O(loglog n) Rounds
Mark Blunk #

Stealth Software Technologies, Inc., Los Angeles, CA, USA

Paul Bunn #

Stealth Software Technologies, Inc., Los Angeles, CA, USA

Samuel Dittmer #

Stealth Software Technologies, Inc., Los Angeles, CA, USA

Steve Lu #

Stealth Software Technologies, Inc., Los Angeles, CA, USA

Rafail Ostrovsky #

Departments of Computer Science and Mathematics, UCLA, Los Angeles, CA, USA

Abstract
The problem of Secure Merge consists of combining two sorted lists (which are either held separately
by two parties, or secret-shared among two or more parties), and outputting a single merged (sorted)
list, secret-shared among all parties. Just as insecure algorithms for comparison-based sorting are
slower than merging (i.e., for lists of size n, Θ(n log n) versus Θ(n)), we explore whether an analogous
separation exists for secure protocols; namely, if there exist techniques for performing secure merge
that are more performant than simply invoking secure sort.

We answer this question affirmatively by constructing a secure merge protocol with optimal Θ(n)
communication and computation, and Θ(log log n) rounds of communication. Our results are based
solely on black-box use of basic secure primitives, such as secure comparison and secure shuffle.
Since two-party secure primitives require computational assumptions, while three-party do not,
our protocols achieve these bounds against semi-honest adversaries via a computationally secure
two-party (resp. an information-theoretically secure three-party) secure merge protocol.

Secure sort is a fundamental building block used in many MPC protocols, e.g., various private set
intersection protocols and oblivious RAM protocols. More efficient secure sort can lead to concrete
improvements in the overall run-time. Since secure sort can often be replaced by secure merge – as
inputs (from different participating players) can be presorted – an efficient secure merge protocol has
wide applicability. There are also a range of applications in the field of secure databases, including
secure database joins, as well as updatable database storage and search, whereby secure merge can
be used to insert new entries into an existing (sorted) database.

In building our secure merge protocol, we develop several subprotocols that may be of independent
interest. For example, we develop a protocol for secure asymmetric merge (when one list is much
larger than the other).

2012 ACM Subject Classification Security and privacy → Cryptography; Security and privacy →
Database and storage security

Keywords and phrases Secure Merge, Secure Sort, Secure Databases, Private Set Intersection

Digital Object Identifier 10.4230/LIPIcs.ITC.2025.7

Related Version Full Version: https://eprint.iacr.org/2022/590

Funding This work was performed under the following financial assistance award number
70NANB21H064 from U.S. Department of Commerce, National Institute of Standards and Techno-
logy. The statements, findings, conclusions, and recommendations are those of the author(s) and do
not necessarily reflect the views of the National Institute of Standards and Technology or the U.S.
Department of Commerce.

© Mark Blunk, Paul Bunn, Samuel Dittmer, Steve Lu, and Rafail Ostrovsky;
licensed under Creative Commons License CC-BY 4.0

6th Conference on Information-Theoretic Cryptography (ITC 2025).
Editor: Niv Gilboa; Article No. 7; pp. 7:1–7:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mblunk@gmail.com
https://orcid.org/0000-0002-1264-5100
mailto:paul@stealthsoftwareinc.com
https://orcid.org/0000-0002-7393-2883
mailto:sam@stealthsoftwareinc.com
https://orcid.org/0000-0003-0018-6354
mailto:steve@stealthsoftwareinc.com
https://orcid.org/0000-0003-1837-8864
mailto:rafail@cs.ucla.edu
https://orcid.org/0000-0002-1501-1330
https://doi.org/10.4230/LIPIcs.ITC.2025.7
https://eprint.iacr.org/2022/590
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

7:2 Linear-Time Secure Merge in O(loglog n) Rounds

Rafail Ostrovsky: This research was supported in part by DARPA under Cooperative Agreement
HR0011-20-2-0025, the Algorand Centers of Excellence programme managed by Algorand Foundation,
NSF grants CNS-2246355, CCF-2220450, CNS-2001096, US-Israel BSF grant 2022370, Amazon
Faculty Award and Sunday Group. Any views, opinions, findings, conclusions, or recommendations
contained herein are those of the author(s) and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of DARPA, the Department of Defense, the Algorand
Foundation, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes, notwithstanding any copyright annotation therein.

1 Introduction

As the practice of collecting and analyzing data has increased in recent decades, combined
with the growing desire of examining data of different types held by different organizations,
there has been a corresponding desire for protocols that are able to compute on aggregated
data without actually requiring the raw data to be combined or exposed. Indeed, the field of
secure multiparty computation (MPC) within cryptography seeks to address exactly such
scenarios. Meanwhile, with the sort functionality being a prominent component of several
desired analyses, there has been significant work in optimizing secure sort functionality (e.g.

sort under MPC), as well other basic secure functionalities that require sort as a subroutine.
For example, in research in the MPC subfields of Private-Set Intersection (PSI) [8,17,24] and
Oblivious RAM (ORAM) [20,23], it is often the case that the secure sort is the bottleneck in
resulting protocols in these areas.

While MPC protocols for sort – and related functionalities that build upon it – have
become extremely efficient, there is an unavoidable cost of e.g., a security parameter multiplier
in measuring the complexity of any secure computation, on top of the Θ(n log n) cost of
performing (insecure) sort (here n is the size of the list in question). Given the common
scenario in which a handful of organizations each have access to their own data, and require
a sort on their aggregated lists, it is natural to ask if one can avoid the inherent overhead of
securely implementing sort by first having parties locally sort their own data (which can be
done insecurely, and hence without incurring this overhead), and then performing a secure
merge on the individual sorted lists. Indeed, this approach has the promise of adding security
at minimal cost, since the overhead of adding security is now only applied to the Θ(n) merge
protocol, which effectively means there is an extra Θ(log n) cushion to absorb the overhead
cost of performing the computation securely, and still having an overall Θ(n log n) secure
sort protocol.

Unfortunately, attempting to minimize the overhead of secure computation by first
performing a local (insecure) sort followed by secure merge has to-date been an ineffective
strategy, due to the fact that much less is known about secure merge protocols than secure
sort protocols. Indeed, prior to our work, there was no known secure merge protocol that
simultaneously achieved near-optimal asymptotic performance in the three key metrics:
computation, communication, and round complexity (see Section 2.2 and Table 1 for a
summary of prior works exploring secure merge, and how they perform in these three
metrics). In this work, we present a secure merge protocol that effectively eliminates all
inefficiencies, thereby substantially reducing the cost of secure sort (where the above strategy
of first locally sorting one’s own data can be employed) and any secure protocol that builds
on top of it. Namely, we construct a protocol that instantiates the following:

▶ Theorem 1 (Informal). There exists a secure merge protocol for two or three parties with
Θ(n) run-time (computation and communication) and Θ(log log n) rounds that relies only
on black-box access to the secure functionalities defined in §3.4: comparison, shuffle, and
conditional-select (mux).

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:3

Theorem 1 is asymptotically optimal in two of the three key metrics (computation and
communication), and near-optimal in round-complexity. Our theorem gives a two-party
secure merge under standard cryptographic assumptions, and a three-party secure merge
with information-theoretic setting with semi-honest security and no collusion. Indeed, in
the two-party case, all black-box functionalities referenced in the theorem above can be
efficiently realized using two standard cryptographic assumptions: Oblivious transfer (OT)
and the existence of an additively homomorphic public key cryptosystem. Meanwhile, in the
three-party case, these black-box functionalities can be realized with information-theoretic
security, see e.g., [11]. While there are ways to extend our results to more parties beyond
three, see for example the discussion in the full version; we do not explore these extensions
directly in this paper.

Besides being useful as a stand-in for secure sort in scenarios where two or more parties
can each locally sort their own data (“in the clear”), the secure merge functionality has
broader relevance in many other applications as well. In the area of database management, for
example, in settings where records are encrypted, our secure merge protocol can be used for
database operations such as joins, or for inserting new records into the database [2, 9, 18, 27].

1.1 Paper Structure
In §2 we summarize previous work on the secure sort/merge problem, and provide a com-
parison of our main result with relevant earlier works in Table 1. In §3 we set notation
and discuss the high level techniques and primitives on which our merge protocols rely. We
present our main secure merge protocols, together with statements and proof sketches of
their properties, in §4; and then analyze their complexity in §5. In §6 we present the two
underlying secure merge protocols required by our protocols in §4. Supplementary material
including a survey of applications whose performance could be improved by the adoption
of our secure merge protocol as well as an expanded discussion of our main results with
additional protocols – including the description of a separate constant round secure merge
protocol in the asymmetric case that is a generalization of the protocol ΠSAM-n1/3 of §6
(where one list has size n and the other nα for fixed α < 1) – can be found in the full version.

2 Previous Work

As the merging/sorting of lists is a fundamental problem in computer science, there has been
enormous research in this area. Consequently, we summarize here only the most relevant
works; see cited works and references therein for a more complete overview and discussion.
Not surprisingly, many of the protocols for securely merging/sorting lists draw inspiration
from their insecure counterparts (not to mention the generic approach of converting insecure
protocols to secure protocols, e.g., via garbled circuits or ORAM or Garbled RAM (GRAM)
or fully-homomorphic encryption). We discuss below previous work for both insecure and
secure variants, and compare previous results to our main result in Table 1.

2.1 Insecure Merge Algorithms
Sorting Networks. The relationship between secure merging and secure sorting can be traced
back to [3], which built a sorting network of size O(n log2 n) from log n merging networks, each
of size O(n log n). There are (2n)! = 2O(n log n) permutations on 2n elements, but

(2n
n

)
= 2O(n)

possible ways two sorted lists can be merged together. This gives combinatorial lower bounds
of Ω(n log n) and Ω(n) comparators for sorting and merging networks, respectively. Although
an asymptotically optimal sorting network of size O(n log n) was later achieved by Ajtai,

ITC 2025

7:4 Linear-Time Secure Merge in O(loglog n) Rounds

Komlos, and Szemeredi [1], merging networks cannot achieve the combinatorial lower bound
of n comparators. A merging network on lists of size Θ(n) require Ω(n log n) comparators,
as shown by Yao and Yao [26], and depth of Ω(log n), as shown by Hong and Sedgewick [16].

RAM and PRAM. The classical merge algorithm requires O(n) work on a RAM machine,
see e.g., [21]. As discussed below, [10] uses an approach that is inspired by this classical merge
algorithm, and achieves matching asymptotic work (albeit with O(n) round-complexity).

A parallel RAM machine (PRAM) allows multiple processors to act on the same set of
memory in parallel. We are in particular interested in Concurrent-Read-Exclusive-Write
(CREW) PRAM, where all processors can read the same memory simultaneously, but
processors cannot write to the same memory address at the same time, see e.g., [4] for more
formal definitions and a discussion of various PRAM models. For PRAM machines, Valiant
showed in [25] that O(n) processors could merge two lists of size O(n) in time O(log log n).
This was improved by Borodin and Hopcroft [4] to O(n/ log log n) processors, who also
showed that the time bound of O(log log n) is optimal when limited to O(n) processors. As
a rough heuristic, we expect the number of processors and total work done by a PRAM
algorithm to serve as a lower bound for the round complexity and communication complexity
of a corresponding secure protocol, motivating the following:

▶ Conjecture. Any linear-time protocol for two parties to securely merge their lists (each of
size Θ(n)) requires Ω(log log n) rounds of communication.

Notice that if the above conjecture is valid, then our secure merge protocol (§4) is asymptot-
ically optimal in all three key metrics. To lend weight to this conjecture, we note that if a
2-party protocol Π securely realizes some functionality F in R rounds and C communication,
and each party can execute each round of the protocol in O(1) time on a CREW PRAM
with C processors, then there exists an algorithm A that realizes F on a single CREW
PRAM machine with C processors, O(RC) total work, and O(R) time. Indeed, A merely
executes Π, playing the role of all parties. If a protocol for secure merge existed with C = n,
R = o(log log n), this would immediately imply an insecure merge algorithm with O(n)
processors and o(log log n) time, contradicting the lower bound of [4] cited above. Thus the
conjecture is true for the special case of secure merge protocols where each round of the
protocol can be executed in O(1) time on a CREW PRAM with O(n) processors.

Both the Valiant and the Borodin-Hopcroft algorithms rely on the following basic con-
struction: Split each list into blocks of size

√
n, with

√
n medians. Running all pairwise

comparisons between medians identifies which block of the opposite list each median is
mapped to; then another round of pairwise comparisons identifies the exact position the
median is mapped to within that block. This creates

√
n subproblems of size

√
n, giving

the recurrence c(n) =
√

n · c(
√

n), if c(n) is the cost of merging two lists of length n. With
sufficiently many processors, this recurrence yields O(log log n) run-time. Our protocols in §4
use similar techniques as a starting point, though many additional ideas are needed to handle
the secure setting, e.g. securely handling the case where blocks from one list potentially span
more than one block of the other list.

2.2 Secure Merge Algorithms
Notation. To aid the comparison to prior work, we introduce the following constants: κ

is a computational security parameter (e.g., κ = 128 is standard), βHE (resp. βFHE) is the
ciphertext expansion of an additively homomorphic (resp. fully homomorphic) cryptosystem,
γ is the cost of decryption, and µ is the cost of multiplication in the FHE cryptosystem.

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:5

The parameters βHE , βFHE , γ, and µ depend on the cryptosystem and on κ. Asymptotically,
κ ≫ log n is necessary so that a random bit-string of length κ cannot be guessed in the
time it takes to traverse the list, and (for suitable choice of cryptosystems) βHE and βFHE

approach 1 as the plaintext size grows. In practice, fully homomorphic encryption schemes
are more costly than additive-only homomorphic ones, so we expect βFHE > βHE and µ > γ.

We assume the objects to be sorted are contained in O(1) memory words of size W

bits. Unless explicitly stated otherwise, our communication and computational complexity
numbers are given in terms of memory words and primitive operations on memory words.

Security via Generic Transformation. We explore here two naïve solutions for transforming
an insecure merge algorithm to a secure one (see Table 1 for a succinct comparison of our
secure merge protocol to these naïve solutions):

Garbled Circuits. By choosing any (insecure) sorting algorithm that can be represented
as a circuit, the parties can use garbled circuits to (securely) sort their list in O(1) rounds.
As discussed above in §2, for comparison-based merging networks, Ω(n log n) comparisons
and Ω(log n) depth are necessary, and achievable by the Batcher merging network [3].

We note that obtaining κ bits of computational security when merging lists whose elements
have size W bits requires κ · W bits, or κ words of communication for each comparison. Thus,
obtaining secure merge via a garbled circuit approach (for a circuit representing a merging
network) would result in a constant-round protocol with Ω(κ · n log n) communication.

On the other hand, using GMW-style circuit evaluation (see [12]) instead of garbled
circuits can reduce the overhead of each comparison (from κ down to constant), but it incurs
a hit in round complexity (proportional to the depth of the circuit instead of constant-round).

Fully Homomorphic Encryption (FHE). An O(1) round protocol can also be constructed
by having one party encrypt their inputs under FHE and send the result to the other party,
who performs the desired calculations on ciphertexts. The other party then subtracts a
vector of random values r from the (encrypted) merged list and sends the result back to the
first party, who decrypts to obtain the merged list shifted by r. Now the parties hold an
additive sharing of the sorted list.

As with garbled circuits, however, the calculations the second party performs on the
ciphertexts must be input-independent (in order to avoid information leakage), and so the
calculation must be represented by a circuit. This means that communication is (asymp-
totically) lower than the garbled circuit approach, since the first party need only provide
ciphertexts of his list (which correspond to inputs to the circuit), as opposed to providing
information for each gate. Therefore the communication required for FHE is O(βHEn).

However, while communication in the FHE approach may be (asymptotically) reduced
(compared to the garbled circuit approach), notice that the computation is still Ω(µn log n),
where µ is the cost of a multiplication under FHE, as the circuit requires Ω(n log n) comparison
(multiplication) operations. Additionally, since the circuit has depth Ω(log n), FHE will
require bootstrapping to avoid ciphertext blowup, which will be expensive in practice.

ORAM and GRAM. ORAM incurs at least an Ω(log n) overhead [13,19]. Currently known
GRAM constructions are built using ORAM as a building block. Therefore, if one is to take
an insecure merge implementation and try to compile it into a secure circuit using ORAM or
GRAM, both the computational and communication complexity will be O(n log n), and thus
these techniques are inapplicable if we aim to achieve linear complexity.

ITC 2025

7:6 Linear-Time Secure Merge in O(loglog n) Rounds

Shuffle-Sort Paradigm. One challenge facing any comparison-based secure merge (or sort)
protocol is that the results of each comparison must be kept secret from each party, or else
security is lost. One approach to allowing the results of the comparisons to be known without
information leakage is to first shuffle (in an oblivious manner) the input lists. However, since
shuffling will destroy the property that the input lists are pre-sorted, this approach reduces a
secure merge problem to a secure sort problem, hence incurring the log n efficiency loss.

Comparison-based sorting has O(n log n) communication and computation and O(log n)
rounds, while secure shuffling requires O(n) communication and O(1) rounds, see e.g., [11,15].
Therefore, a secure sort using the shuffle-sort paradigm requires O(n log n) communication
and computation and O(log n) rounds, which is worse than our results in all three metrics.

Oblivious Sort. Because the constant from [1] is too large for practical applications, a
number of other approaches to secure sorting have been explored. The shuffle-sort paradigm
mentioned above is one example of a large family of oblivious sort protocols, which allow
for a variable memory access pattern as long as it is independent of the underlying list
values, or data oblivious. We mention here the radix sort of Hamada et al. [14], which
achieves O((W log W + W)n + n log n) communication (in memory words) and O(1) round
complexity in the three-party honest majority setting with constant bit lengths of elements.
The communication complexity was later improved by Chida et. al [8], to O(n log n) memory
words. However, the round complexity depends linearly on W , so when W ≈ log n, this
matches the round complexity of the other protocols.

Secure Merge Protocols. There are several works that investigate secure merge directly.
The first, due to Falk and Ostrovsky [11], achieves O(n log log n) communication complexity
with O(log n) round complexity. The second, due to Falk, Nema, Ostrovsky [10], achieves
the asymptotically optimal O(n) communication complexity (with small constants), but
requires O(n) rounds of communication. For many cryptographic applications, a high round
complexity causes more of a bottleneck than a high communication complexity due to network
latency. Therefore, the secure merge protocol of [10], while both simple and asymptotically
optimal in terms of communication, may still not be practical due to high round complexity.

In a subsequent work [6], Chakraborty et al. present a series of secure merge protocols,
optimizing for concrete efficiency. Some of their protocols use similar machinery to our work
presented here – and indeed, their paper cites our work here as inspiring some of their ideas.
In [6], the authors explore the trade-offs between communication and rounds, giving protocols
with worse asymptotic performance than our protocols. See the full version for a discussion
of the concrete efficiency of our protocols and comparisons with standard (insecure) merge
protocols.

Three Party Sort and Merge protocols. The three party honest majority setting is a
natural fit for real-world protocols in the client-server model, including ORAM and PSI
protocols. Prior work in this area has shown how the use of three parties facilitates more
efficient protocols, including through the use of one party to generate randomness for the
other parties and more efficient shuffling protocols (see e.g., [11]). The oblivious sort protocols
mentioned above [8, 14] use three parties for shuffling and to enable the use of a Shamir
secret sharing scheme. In [7] Chan et al. give a three-server merge protocol in the course of
building a three-server ORAM scheme. This merge protocol, which requires three servers
and an honest client, is most similar to the FNO protocol [10], and similarly requires O(n)
round complexity.

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:7

2.3 Comparison of Results
In Table 1 we give the communication, computation, and round complexity of our secure
merge protocols, in comparison with the approaches described above. Our main result is
a secure merge protocol that has (optimal) communication and computation O(n), and
round complexity O(log log n) (see Theorem 1). Notice that O(log log n) round complexity
is superior to all other protocols in Table 1 except the constant-round garbled circuit and
FHE approaches, each of which is inferior in the other two metrics (computation and
communication). We also describe an asymmetric merge protocol on lists of size (nα, n)
for fixed α < 1 that achieves the same asymptotic complexity as our general secure merge
protocol, but in only O(1) rounds.

The parameters βHE and γ arise out of the use of homomorphic encryption for two-party
shuffle, and so are only relevant for comparing secure merge protocols against two-party
merge networks with standard MPC. Namely, in the three-party setting (which is assumed
for [8, 15]), we can set βHE = γ = 1 for the last four protocols of Table 1.

Table 1 Comparison of secure merge protocols, with parameters as in §2.2; namely: n is the
list size, α < 1 is any fixed constant, κ is a computational security parameter, µ is the cost of FHE
multiplication, βHE and βFHE are ciphertext expansions, and γ is the decryption cost (βHE = γ = 1
in the three-party setting). We set the word size W = Θ(log n) to simplify the formulas.

Protocol Computation Communication Rounds
(Garbled) Merge Network [Folklore] O(κ · n log n) O(κ · n log n) O(1)
(GMW) Merge Network [Folklore] O(n log n) O(n log n) O(log n)
(FHE) Merge Network [Folklore] O(µ · n log n) O(βFHEn) O(1)
Shuffle-Sort [15] O(n log n) O(n log n) O(log n)
Oblivious Radix Sort [8] O(n log n) O(n log n) O(log n)
Secure Merge of [11] O(n log log n+γn) O(n log log n+βHEn) O(log n)
Secure Merge of [10] O(γn) O(βHEn) O(n)

Our Secure (nα, n) Merge [Fig. 5] O(21/(1-α)3
γn) O(21/(1-α)3

βHEn) O(1/(1-α)3)
Our Secure (n, n) Merge [Fig. 4] O(γn) O(βHEn) O(log log n)

While our primary focus in this paper is on asymptotic performance (rounds, communic-
ation, computation), our protocols have many degrees of freedom that allow customization
for concrete performance as well. By making different choices based on actual conditions
(list size, network bandwidth, etc.) – in terms of which sub-protocols to use and when to
stop recursing between our high-level merge protocols – we can give specializations of our
protocol that provide high concrete performance. For example, our protocol will outperform
a generic instantiation of the secure merge protocol that is based on the Batcher odd-even
merge network, in both round complexity and the number of secure comparisons – see the
full version for details.

3 Overview of Techniques

At a high level, the strategy of our secure merge protocols is to partition the original lists into
several blocks, then align these blocks (find the appropriate block(s) from the other list that
span the “same” range of values); perform secure merge on these blocks; and finally combine
(concatenate) the blocks together to obtain the final merged list. Ignoring for the moment
issues in aligning the blocks (e.g. a block from one list spanning numerous blocks from the
other list), this “partition-align” strategy – of using partitioning to achieve secure merge on

ITC 2025

7:8 Linear-Time Secure Merge in O(loglog n) Rounds

larger lists via several smaller secure merge subproblems – has the following appeal: If we
partition the lists into k blocks, each with n/k elements, then for e.g. k = n/ log log n, we
could apply the linear protocol of [10] to each block. Since each block contains n/k = log log n

elements, each subproblem requires O(log log n) communication, computation, and round-
complexity. Furthermore, since each subproblem can be performed in parallel, the total
cost across all k = n/ log log n blocks will be O(n) computation and communication (and
O(log log n) rounds). This matches our target complexity in all three metrics.

Figure 1 Merging the k medians (blue dots) from the top list into the correct locations with
respect to the bottom list (the k medians of the bottom list are shown in red).

Figure 2 Merging a smaller list (9 elements) into a larger list, and then classifying the elements
in the first list and blocks from the second list that are “poorly-aligned.” Namely, poorly-aligned
elements in the first list (depicted as white) means multiple (in this case three or more) elements
from the first list map to the same block of the second list; and similarly the blocks in the second list
that contain three or more elements from the first are poorly-aligned (and also depicted as white).

3.1 Identifying Poorly-Aligned Blocks
Of course, the above simplified strategy and analysis ignores several challenges that arise in
practice:
Block Alignment. In order for the partition-align strategy to make sense when merging

together two blocks (one from each list): Given a block (contiguous set of values) from
one list, we must identify the appropriate block(s) from the other list that contains the
“same” range of values.

Poorly-Aligned Blocks. If we partition say the first list into equal block sizes of n/k elements,
the simplified analysis above assumed these blocks precisely align with exactly one block
from the second list. In practice, a given block from the first list can align with arbitrarily
many blocks from the second list, including e.g. the extreme case where a single block
from the first list has a range of values that encompasses the entirety of the second list
(see Figure 2).

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:9

Obliviousness of Alignment. Notice that being able to observe how the blocks from one
list overlap with the blocks of the other list can leak information about the (relative)
values on each list, thereby compromising overall security. In particular, any secure merge
protocol employing the partition-align approach must hide all information regarding the
nature of the alignments.

Our main contribution in this paper can be viewed as resolving the above three challenges:
1. We resolve the “Block Alignment” challenge by running a secure merge protocol to identify

where the k partition points (“medians”) of one list belong within the second list. This
requires a secure asymmetric (since one of the lists – of size k – is smaller than the
other list – of size n) merge protocol. However, since this protocol is only invoked twice
(once in each direction to merge the k medians of one list into the other), it can have
complexities proportional to the larger list size n and still achieve our overall target
metrics; we leverage this fact in our secure asymmetric merge protocol (Figure 5).

2. We resolve the “Poorly-Aligned Blocks” challenge as follows. First, we classify a block
as “poorly-aligned” if (the range of values in) it spans “too many” blocks of the other
list (or vice-versa). Then for merging poorly-aligned blocks, we again employ a secure
asymmetric merge (merging one block from one list with multiple blocks from the other
list). Depending on how “poor” the alignment (e.g. a single block from one list might
span all blocks of the other list), this secure asymmetric merge protocol might have the
larger list of size comparable to the original list.

3. We resolve the “Obliviousness of Alignment” challenge in three ways. First, we hide
the classification of which blocks are well/poorly-aligned. Second, for the merging of
“well-aligned” blocks, we apply a remarkable lemma (Lemma 2 below) about k-medians
that allows the introduction of dummy elements to each block to ensure they are perfectly
aligned, and then merge the resulting (slightly larger) blocks (see Figure 3). Third, for
the poorly-aligned blocks, we observe that a “worst possible” alignment scenario can
be defined, which provides a bound on the number and nature of the poorly-aligned
blocks. In particular, we bound the number of highly unbalanced invocations of the
secure asymmetric merge protocols – those in which a single block from one list spans
many blocks from the other – which are costly to run. In particular, we always perform
the same set of secure asymmetric merges (i.e. for a (fixed, known) set of list sizes)
for the poorly-aligned blocks, regardless of how many blocks are actually classified as
poorly-aligned (and the specific nature of their “poor” alignment).

▶ Lemma 2. Let L1 and L2 denote two (sorted) lists of size n, and let M1,k and M2,k

denote their k medians. Let L′
1 = L1

⊔
M2,k denote the list (of size 2n) resulting from

merging M2,k with L1, with each element in M2,k duplicated n/k times in L′
1. Let M′

2k

denote the 2k medians of L′
1. Then the 2k medians of L′

1 are exactly the (merged) k medians
of L1 and L2: M′

2k = M1,k

⊔
M2,k.

While several details need to be worked out – such as tuning parameters and specifying
how to handle dummy values and superfluous merging of (phantom/ non-existent) poorly-
aligned blocks, the above strategy describes our high level approach. After introducing the
notation that will be used in the remainder of this paper, we next go into more detail on the
specific techniques and subroutines that will be employed in our secure merge protocols.

For a given block from one list, we need to identify which block(s) from the other list
span a similar range of values. We first count the number of blocks from the second list that
span the range of values in the first list, and then classify the blocks as “poorly-aligned” if
the number of blocks from the second list is too large (greater than some constant). We

ITC 2025

7:10 Linear-Time Secure Merge in O(loglog n) Rounds

Figure 3 The Expanding Medians strategy for converting “well-aligned” to perfect alignment:
The k-medians of L1 and L2 are identified (top-left) and merged into the opposite list (top-right).
Then each median is duplicated in place n

k
times (bottom), and the resulting lists will consist of 2k

blocks that are perfectly aligned (can be merged in parallel).

then collect all poorly-aligned blocks/elements from L1 and L2 (marked white in Figure 2)
and treat them as an additional subproblem, after padding with dummy elements to avoid
leaking information, and explain how to bound the number of poorly-aligned blocks in §5.2.

3.2 The Tag-Shuffle-Reveal Paradigm
We make repeated use of the tag-shuffle-reveal paradigm, which should be considered
analogous to the shuffle-sort paradigm of prior sorting protocols, see e.g. [11, 15], or an
extension of the shuffle-reveal paradigm of [14]. Succinctly, the tag-shuffle-reveal paradigm
starts with each element of a list (obliviously) tagged with some label. This label can be (a
secret sharing of) its current index, or it can be the result of some multiparty computation,
for example a bit representing the output of a comparison against another value. Then, after
shuffling the list, the tag is revealed, and the list entries are rearranged accordingly. Because
the shuffle step ensures that the tags are randomly ordered, the only requirement to ensure
security is to ensure that the set of values the revealed tags take on do not depend on the
underlying data. We use x̂i to denote the element x in position i after shuffling.

3.3 Extraction Protocols
One central application of the tag-shuffle-reveal paradigm is our collection of extraction
protocols for pulling marked elements from a larger list into a smaller list or set of lists. Marked
elements can be extracted and kept in their original order (ΠExt-Ord), or extracted and
shuffled (ΠExtract), or extracted into bins based on a tag they are marked with (ΠExt-Bin).
Of course, each of these protocols should reveal nothing about the location or number of
tagged elements, and so the outputs will be padded with dummy elements where necessary.
We use extraction protocols in a black box way in §4-6; full descriptions and proofs of the
ΠExtract, ΠExt-Ord, and ΠExt-Bin protocols can be found in the full version.

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:11

3.4 Primitive Functionalities
We recall the secure merge protocol from [10] discussed above, which requires O(n) commu-
nication and O(n) rounds, which we call ΠSM−FNO in this work. Additionally, we use the
trivial O(n2) communication, O(1) round merge protocol, which makes every possible pair
of comparisons. We call this protocol ΠSM-ALL (see the full version for a full description of
this protocol and a proof of its properties).

The protocols we present below are realized with black box calls to five “primitive”
functionalities: ΠReveal, ΠComp, ΠSel, ΠShuffle, ΠDup that act on additively shared secret
values. Oblivious transfer and the existence of an additively homomorphic rerandomizable
public key cryptosystem are sufficient assumptions to realize these functionalities (and
ΠSM-FNO), as described below.

In ΠReveal, parties begin with secret-shares of a value [x] and end with the value x.
In ΠComp, parties have shares of two values x and y, and as output they receive

shares of a bit denoting the result of a comparison operator [x > y], [x ≥ y] or [x == y].
These comparisons can be computed by converting to shares of bits and applying garbled
circuits, which requires at least O(W log W) boolean gates on words of W bits. A promising
alternative is the GMW-based approach of Nishide and Ohta [22], which requires O(W) bits
of communication and O(1) rounds of communication and is concretely efficient.

In ΠSel, parties perform multiplication of two values [b] and [x], where b is either 0 or
1, and x can be any value. Equivalently, parties compute shares of the ternary operator
b ? x : 0, where b is either XOR shared or additively shared over a larger field. ΠSel can be
realized using MPC multiplication or via string-OTs with rerandomizable encryption.

In ΠShuffle, parties begin with shares of a list, and end with shares of the same list,
in a new (unknown) order. To get the desired asymptotics, we require that the shuffle
have O(1) rounds and O(n) total communication. Such protocols exist and can be realized
via an additively homomorphic, semantically secure cryptosystem with constant ciphertext
expansion. At a high level, the shuffle works by allowing each party to hold an encryption of
the list under the other party’s secret key, and then shuffling and re-randomizing; see [11] for
the full protocol and a more thorough treatment.

In ΠDup, parties begin with shares of a list of size n in which exactly k elements are
marked with a given “tag” value (the tag value and the number of elements k that have this
value are both public knowledge). After this protocol, each element with the specified tag
value has been duplicated m times (for arbitrary public integer m), so that the final list
size is n + km. We demonstrate in the full version how ΠDup can be instantiated via two
invocations of ΠShuffle and n invocations of ΠComp.

3.5 Security Model
We provide security analyses of our protocols within the Universally Composable (UC)
framework, against a semi-honest adversary corrupting one of the two parties. UC security
is essential since our protocols are built on recursive calls to sub-protocols. We present the
protocol in the input setting where each party holds shares of each list being sorted, although,
as mentioned in the introduction, the protocol can be adapted to other, more specific settings.
We remark that the adversary does not have direct access to the memory access pattern
of the other party. However, outside of the shuffling protocol, both parties have identical
memory access patterns, and so the adversary can deduce most of the memory accesses of
the honest party, and our proofs of security show the adversary learns nothing from these
memory accesses.

ITC 2025

7:12 Linear-Time Secure Merge in O(loglog n) Rounds

We prove UC security of the protocols in this paper against static semi-honest adversaries
under the standard simulator definition of security, see e.g. [5]. It is straightforward to
simulate the behavior of the adversary during the protocol in any environment, since the
adversary is semi-honest and must follow the protocol. What remains to be checked is the
behavior of the adversary on the input, i.e. that the adversary input is still extractable
without the simulator being able to “rewind” the adversary. We address this in the standard
way by requiring both parties to commit to their inputs under an extractable commitment,
so that the adversary input can be recovered without rewinding. We omit the details.
An ideal functionality F for each protocol interacts with the parties in the following way:

Setup. Each party sends their inputs to F , who stores them plus an id sid.
Execution. Each party sends the command (Execute, sid) to F , who computes the
desired output and stores it.
Reveal. Each party sends the command (Reveal, sid) to F , who sends the output of the
execute step to each party.

Note that we could instead combine multiple ideal functionalities into a black-box functionality
Fblack-box with a family of execution commands (Executei) corresponding to each of the
protocols defined in this paper. This provides an alternate way to address composability,
and guarantees that inputs to one protocol match outputs from another protocol.

3.6 Notation
For any sorted lists L1 and L2, let

⊔
denote the “merge” of two lists (i.e.

⊔
is functionally

equivalent to (multi-)set union followed by sort): L1
⊔

L2 = Sort(L1 ∪ L2). For any sorted
list Lj of size n, and for any k|n, let Mj,k denote the k “medians” of Lj . Namely, if list
Lj = {u1, . . . , un}, then: Mj,k := {u ℓ·n

k
}k

ℓ=1. Basic properties that follow from the definition
of medians can be found in the full version.

Throughout the paper we distinguish between secure symmetric merge ΠSSM and secure
asymmetric merge ΠSAM. For symmetric merge, the lists are of roughly the same size or
differ by a constant factor (since one list can be padded with dummies to match the length
of the other). For asymmetric merge, the ratio of list sizes is larger than constant.

4 Description of Secure Merge Protocols

Our merge protocols come in two variants: symmetric merge, where the two lists are of
equal size, and asymmetric merge, where one list is significantly smaller than the other. One
useful technique that we employ in both settings is using black box calls to one flavor of
merge to solve the other. This iterative process then terminates with a “base” version of each
variant (symmetric and asymmetric merge), and we introduce in §6 two efficient protocols
– ΠSSM- log log and ΠSAM−n1/3 – that can be used as the base protocols, allowing us to
achieve our overall target metrics for secure merge as stated in Theorem 1. We summarize
the dependency of our main protocols on these subprotocols in Table 2. That table, together
with the asserted metrics of the primitive functionalities (such as ΠExtract), is sufficient to
establish the stated asymptotics of Theorem 1.

In this section, we present our secure symmetric and asymmetric merge protocols. Each
follows the partition-align approach, which has four phases:

Partition. We invoke a subprotocol to determine where the partition points (medians)
of one list lie within the other list (see e.g. Figure 1).
Align Blocks. A (lightweight) MPC protocol is run to determine, for each block in one
list, which block(s) in the other list span the same range of values (see e.g. Figure 2).

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:13

Table 2 Protocol and subprotocol relations. The Cost column uses:
For ΠSSM(n): Set k = n

log log n
, ΠSAM(k, n) = Fig. 5, ΠSSM(n

k
) = ΠSM-FNO.

For ΠSAM(k, n): ΠSSM(k) = ΠSSM- log log(k) (Fig. 7), ΠSSM(n
k

) = ΠSM-FNO.

Name Calls to Subprotocols Cost
ΠSSM(n) [Fig. 4] 2 · ΠSAM(k, n), 2k · ΠSSM(n/k) O(n)
ΠSAM(k, n) [Fig. 5] 2 ·ΠSSM(k), k ·ΠSSM(n/k) O(n + k log log k)
ΠSSM-loglog(n) [Fig. 7] O(loglog n)·[ΠShuf(n), O(n)·ΠRev,Comp,Sel] O(n loglog n)
ΠSAM-n1/3(n1/3, n) [Fig. 9 (full version)] 2n1/3 · ΠSM-ALL(n1/3, n1/3) O(n)

Merge Blocks. This phase involves the merging of both the “well-aligned” blocks and
the “poorly-aligned” blocks (see e.g. Figure 3 for well-aligned blocks).
Combine Blocks. The results from the previous step are combined, and any dummy
elements that were added are removed, producing the final merged list.

4.1 Secure Symmetric Merge
Our Secure Symmetric Merge protocol ΠSSM(n) is sketched in Figure 4. For the Partition
phase, it uses a secure asymmetric merge protocol to merge the k-medians of one list into the
other list (and vice-versa). For the Align Blocks phase, we expand each median (in its merged
location within the other list) into k-copies; which by Lemma 2 guarantees that each block of
n/k elements is perfectly aligned (see Figure 3). Thus, there are no “poorly-aligned” blocks for
the Merge Blocks phase, and each block is merged via a secure symmetric merge protocol (for
lists of size n/k). Specification of our “abstract” secure symmetric merge protocol is presented
in Figure 4; this protocol is made concrete by specifying choices for partition/block size k and
the specific merge sub-protocols used in the Partition and Merge Blocks phases. In particular,
the metrics of Theorem 1 are obtained by setting k = n/ log log n and using ΠSSM′(n/k) =
ΠSSM-FNO and ΠSAM(k, n) = ΠSAM(k, n, ΠSSM-FNO, ΠSSM- log log), which refers to the
secure asymmetric merge protocol of Figure 5, using for its subprotocols ΠSSM′(n/k) =
ΠSSM- log log n and ΠSSM′′(k) = ΠSSM-FNO.

Secure Symmetric Merge Protocol

Input. Two parties P1, P2 (additively) secret-share two sorted lists L1 and L2, each of size n. Also
as input, a parameter k with k|n, and specifications of subprotocols ΠSSM′ (n/k) and ΠSAM(k, n).
Output. The two lists have been merged into an output list L1

⊔
L2, which has size 2n and is

(additively) secret-shared amongst the two parties.
Protocol (sketch).
1. Partition. Invoke secure asymmetric merge protocol ΠSAM(k, n) (Fig. 5) to merge the k

medians of L2 with list L1 (and vice-versa).
2. Align Blocks. Expand Medians (Fig. 3) by running the duplicate values ΠDup protocol twice,

which expands the sizes of the output lists from Step 1 to be 2n and ensures they are “aligned”.
3. Merge Blocks. Run the secure symmetric merge protocol ΠSSM′ (n/k), in parallel, on each of

the 2k (aligned) blocks.
4. Combine Blocks. Concatenate the results of the 2k parallel invocations of secure symmetric

merge from the previous step, and run the secure ordered extract ΠExt-Ord protocol to remove
dummy elements.

Figure 4 Overview of our Secure Symmetric Merge Protocol. For the top-level protocol, use
k = n/ log log n, and use ΠSAM(k, n, ΠSSM−FNO, ΠSSM- log log) for the asymmetric merge protocol
in Step 1, and use ΠSSM−FNO for each of the symmetric merge protocols run in parallel in Step 3.

ITC 2025

7:14 Linear-Time Secure Merge in O(loglog n) Rounds

4.2 Secure Asymmetric Merge
Our Secure Asymmetric Merge protocol ΠSAM(k, n) is sketched in Figure 5. For the Partition
phase, it uses a secure symmetric merge protocol to merge the k medians of the larger list
with the (entirety of the) smaller list. For the Align Blocks phase, we use the ΠExt-Bin
protocol (§3.3) to securely classify elements/blocks as poorly-aligned vs. well-aligned. For the
Merge Blocks phase: for the well-aligned items, we apply a secure symmetric merge protocol
to merge (at most) n/k elements from L1 into the appropriate block of n/k elements of L2.
For the poorly-aligned items, we first argue that the cumulative number of elements in L2
that lie in a poorly-aligned block is at most k (and the same is trivially true for L1, which
only has k elements), and therefore we use another secure symmetric merge protocol (for
lists of size k) to merge poorly-aligned elements from L1 into poorly-aligned blocks of L2.

The “abstract” secure asymmetric merge protocol in Figure 5 is made concrete by
specifying choices for the specific merge sub-protocols used in the Partition and Merge
Blocks phases. In particular, the metrics of Theorem 1 are obtained by using ΠSSM′(n/k) =
ΠSSM-FNO and ΠSSM′′(k) = ΠSSM- log log.

5 Analyses of Protocols in Section 4

In analyzing the performance of a protocol, RCost will denote the round-complexity, and
CCost the computation and overall communication complexity.

5.1 Analysis of Abstract Secure Symmetric Merge Protocol of §4.1
Security. The security of the ΠSSM(n) protocol follows immediately from the security of
the underlying ΠDup, ΠExt-Ord, ΠSSM′ , and ΠSAM protocols.

Correctness. Assuming correctness of ΠSSM′(n/k), ΠSAM(k, n), ΠDup, and ΠExt-Ord
subprotocols, we need only demonstrate that the concatenation done in Step 4 above is
correct, that is, that the blocks “align” as per the partitioning. Namely, this follows from
Lemma 2, which demonstrates that lists L′′

1 and L′′
2 have the same list of 2k medians (both

equal M1,k

⊔
M2,k).

Cost. Step (1) invokes the ΠSAM(k, n) protocol (Figure 5) twice; Step (2) invokes the
ΠDup(k, n/k) protocol twice; Step (3) invokes the ΠSSM′(n/k) protocol 2k times; and Step
(4) invokes the secure ordered extract ΠExt-Ord(4n, 2n) protocol. Using the ΠDup(k, n/k)
and the ΠExt-Ord(4n, 2n) protocols, and assuming constant-round and linear secure protocols
for ΠComp, ΠReveal, and ΠShuffle, adding up these costs yields:

RCost(ΠSSM(n)) = RCost(ΠSAM(k, n)) + RCost(ΠDup(k, n/k))+
RCost(ΠSSM′(n/k)) + RCost(ΠExt-Ord(4n, 2n))

= O(1) + RCost(ΠSAM(k, n)) + RCost(ΠSSM′(n/k))
CCost(ΠSSM(n)) = 2 · CCost(ΠSAM(k, n)) + 2 · CCost(ΠDup(k, n/k)) +

2k · CCost(ΠSSM′(n/k)) + CCost(ΠExt-Ord(4n, 2n))
= 2 · CCost(ΠSAM(k, n)) + 2k · CCost(ΠSSM′(n/k)) + O(n)

Using ΠSM−FNO for ΠSSM′(n/k), and using for ΠSAM(k, n) our protocol of Fig. 5 – with
subprotocols ΠSSM−FNO for ΠSSM′(n/k) and ΠSSM- log log for ΠSSM′′(k) – and using
k = n/ log log n, the cost becomes:

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:15

Secure Asymmetric Merge Protocol ΠSAM(k, n)

Input. Two parties P1, P2 (additively) secret-share sorted list L1 of size k and L2 of size n. Also,
specification of subprotocols ΠSSM′ (n/k) and ΠSSM′′ (k).
Output. The two lists have been merged into an output list L1

⊔
L2, which has size k + n and is

(additively) secret-shared amongst the two parties.
Protocol.
1. Partition(Fig. 1). Run ΠSSM′′ (L1, M2,k) to merge L1 and the k medians of L2.
2. a. Align Blocks: Label(Fig. 2). Partition L2 into k blocks, each of size n/k (the k medians of

L2 define the right-boundary of each block). Define a block of L2 to be “well-aligned” if it has
fewer than n/k elements of L1 that map to it. Well-aligned blocks are identified by doing (in
parallel, via ΠComp) a linear scan of the merge positions of L1 (from Step 1), and comparing
whether elements i and (i + n/k + 1) are in the same block. Meanwhile, define elements of L1
to be “well-aligned” if they lie in a well-aligned block.

b. Align Blocks: Extract Poorly-Aligned(Fig. 2). Using the merge positions from the
previous step, run the ΠExt-Ord protocol on L1 (respectively on L2) to extract all “poorly-
aligned” (i.e. not well-aligned) elements of L1 (resp. L2), and let LP A

1 (resp. LP A
2) denote

the extracted elements. Note that there are at most k poorly-aligned elements from each list
(Observation 4), so LP A

1 and LP A
2 will each have size k, with ΠExt-Ord extracting dummy-

elements to pad each list to exactly this size.
c. Align Blocks: Extract Well-Aligned(Fig. 2). For the well-aligned elements of L1, run

the ΠExt-Bin protocol to extract the well-aligned elements of L1 into the separate lists (each
of size n/k), based on which block of L2 they lie in (this information is available from the
merge done in Step 1). By definition of “well-aligned,” there are at most n/k such elements
for each block, and ΠExt-Bin extracts exactly this many elements into each list, padding with
dummy elements when necessary. Let {LW A

1,m }m denote the k output lists of the ΠExt-Bin

protocol. Meanwhile, for L2, we simply extract all elements of the ith block into LW A
2,i if and

only if block i is well-aligned (otherwise LW A
2,i is filled with dummy elements). Using the labels

created in Step 2, this can be done by running the ΠExt-Ord protocol on each block of L2.
3. a. Merge Blocks: Poorly-Aligned. Run ΠSSM′′ (k) on LP A

1 and LP A
2 .

b. Merge Blocks: Well-Aligned. Run ΠSSM′ (n/k), in parallel, on each of the k (aligned)
blocks {LW A

1,m }m and {LW A
2,m }m.

4. Combine Blocks. The final index of any element in the merged list is:(
#LeftW A

1
)

+
(
#LeftP A

1
)

+
(
#LeftW A

2
)

+
(
#LeftP A

2
)

+ Block_Index

where e.g. #LeftW A
1 denotes the number of well-aligned elements of L1 that lie in a block to

the left of this element’s block, and Block_Index is this element’s index within its block. Each
element’s final index is computed from the outputs of the merges done in Steps 1, 3a, and 3b, as
per the analysis in the Correctness argument (Section 5.2).

Figure 5 Secure Asymmetric Merge Protocol. In our main protocol, we take k = n/ log log n,
ΠSSM′ := ΠSSM-FNO, and ΠSSM′′ := ΠSSM- log log.

RCost(ΠSSM(n)) = [RCost(ΠSSM- log log(k) + RCost(ΠSSM-FNO(n/k)] +
RCost(ΠSSM-FNO(n/k))

= O(log log k) + O(n/k) = O(log log n).
CCost(ΠSSM(n)) = 2 · [2 · CCost(ΠSSM-log log(k) + k ·CCost(ΠSSM-FNO(n/k)] +

2k · CCost(ΠSSM-FNO(n/k)) + O(n)
= [O(k log log k) + k · O(n/k)] + 2k · O(n/k) + O(n) = O(n).

5.2 Analysis of Abstract Secure Asymmetric Merge Protocol of §4.2
For all steps in this subsection, we refer to Figure 5.

ITC 2025

7:16 Linear-Time Secure Merge in O(loglog n) Rounds

Security. For Steps 1, 2a, 2b, 2c, 3a, and 3b: security follows from the security of the
underlying subprotocols. Namely, a simulator for the protocol for either party calls the
simulator for each subprotocol: ΠSSM′′ , ΠComp, ΠExt-Ord, ΠExt-Bin, ΠSSM′′ , and ΠSSM′ ,
respectively. Meanwhile, the correctness property ensures that the indices revealed in Step 4
are unique and are a (random) permutation of the values in [1, . . . , (k + n)]. Therefore, the
simulator for Step 4 generates a random permutation of (k + n) elements.

Correctness. We first clarify that the merges done in Steps 1, 3a, and 3b are done “in-place”:
rather than actually constructing an output merged list, these merges instead determine
each element’s index in what would be the merged list, and then append (shares of) this
index as a tag applied to the element (in its original list). In this way, we may manipulate
(add, subtract, etc.) the indices produced by the merges in Steps 1, 3a, and 3b, to compute
each element’s index in the final merged list based on its indices in the outputs of the earlier
“in-place” merges.

To verify correctness, it will be useful to set notation corresponding to the formula in
Step 4 of Figure 5 as follows:

(U, V) =
(

#LeftWA
1, #LeftP A

1
)
: (#(L1.WA), #(L1.PA)) in all blocks to the left

(W, X) =
(

#LeftWA
2, #LeftP A

2
)
: (#(L2.WA), #(L2.PA)) in all blocks to the left

(Y, Z) = (#Same1, #Same2): (#L1, #L2) in same block but to the left

where Block_Index = Y + Z denotes the index of an element in its own block. Thus, any
element’s final index in the merged list is: U + V + W + X + Y + Z. This quantity can be
computed for each element based on information available from Steps 1-3, as follows:
L1.W A: (U + V + Y) is available from each element’s original position in L1; (W + X) is

available as j · n/k, where j is the block of L2 that this element maps to (from Step 1);
(Y + Z) is the output index from Step 3b; and -Y is this element’s position after merging
its well-aligned block (Step 2c).

L2.W A: (U + V) is available from Step 2a; (W + X) is available as j · n/k, where j is the
block of L2 that this element lies in; and (Y + Z) is the output index from Step 3b.

L1.P A: (U + V + Y) is available from each element’s original position in L1; (W + X) is
available as j · n/k, where j is the block of L2 that this element maps to (from Step 1);
(V + X + Y + Z) is the output index from Step 3a; (−V − Y) is from Step 2b; and −X

is n/k times the number of poorly-aligned blocks to the left, which is computable from
the info in Step 2a.

L2.P A: (U + V) is available from Step 2a, while −V is available by using the information
from Step 1 applied just to the poorly-aligned items extracted in Step 2b; (W + X) is
available as j · n/k, where j is the block of L2 that this element lies in; (V + X + Y + Z)
is the output index from Step 3a; and −X is n/k times the number of poorly-aligned
blocks to the left, which is computable from the info in Step 2a.

It remains to show that the pre-conditions of the ΠExt-Ord and ΠExt-Bin protocols are
satisfied. Namely, how to (efficiently) construct the input parameters C and T ′ of the
ΠExt-Bin protocol; and that at most n/k elements are extracted from each list into each
well-aligned block and at most k elements are extracted from each list into the poorly-aligned
block. These are stated and proved in the following observations:

▶ Observation 3. (Shares of) the parameters C and T ′ to the ΠExt-Bin protocol used in
Step 2c can be securely computed locally in O(n) computation.

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:17

Proof. For each i ∈ [1..k], let ιi denote the position of the kth median of L2 in the output
list of Step 1; and let δi be an indicator on whether ti > 0. Then formulas for C = {cj} can
be expressed iteratively as: c1 = δ1 and cj+1 = δj+1 · (1 +

∑
i≤j t′

i); and for T ′ = {t′
j}

as: t′
1 = ι1 − 1 and t′

j+1 = ιj+1 − j −
∑

i≤j t′
i. While these expressions can be computed

securely without introducing additional overhead to the overall protocol, the multiplication
by δi in the expression of cj+1 would require a secure (non-local) computation. However, we
leverage the fact that the ΠExt-Bin protocol (see full version) works correctly even if cj is an
arbitrary value when t′

j = 0. Thus, the δi terms can be dropped from the above expression,
and then, by linearity of the secret-sharing scheme, each party can locally compute their
shares of C and T ′ by using their shares of the relevant variables on the RHS of each of the
above expressions for t′

j and cj . ◀

▶ Observation 4. For both L1 and L2, the number of poorly-aligned elements in Step 2b of
the ΠSAM(k, n) protocol of Figure 5 is at most k.

Proof. Since L1 has size k, this statement is trivially true for L1. Meanwhile, for each poorly-
aligned segment of L2, by definition there are at least n/k + 1 elements from L1 that are
assigned this segment. Thus, the k elements of L1 can cause at most m = k/(n/k +1) < k2/n

poorly-aligned segments. Since each segment has size n/k, this corresponds to at most
m · n/k < k elements of L2. ◀

▶ Observation 5. For both L1 and L2, the number of well-aligned elements in each block of
Step 2c of the ΠSAM(k, n) protocol of Figure 5 is at most n/k.

Proof. Blocks are defined as the n/k elements to the left of (and including) each (of the k)
median of L2, so this is trivially true for L2. Meanwhile, for L1, any block that contains more
than n/k elements of L1 will be a poorly-aligned block, and consequently the corresponding
elements from L1 will all be labelled “poorly-aligned,” which means no elements from L1
will be extracted by ΠExt-Bin in Step 2c for this block. ◀

Cost.
Step (1) has RCost(ΠSSM′′(k)) and CCost(ΠSSM′′(k)).
Step (2a) has RCost(ΠComp) and Θ(k) · CCost(ΠComp).
Step (2b) has RCost(ΠExt-Ord(k, k)) + RCost(ΠExt-Ord(n, k)) and
CCost(ΠExt-Ord(k, k)) + CCost(ΠExt-Ord(n, k)).
Step (2c) has RCost(ΠExt-Bin(k, k, n/k)) + k · RCost(ΠExt-Ord(n/k, n/k))
and CCost(ΠExt-Bin(k, k, n/k)) + k · CCost(ΠExt-Ord(n/k, n/k)).
Step (3a) has RCost(ΠSSM′′(k)) and CCost(ΠSSM′′(k)).
Step (3b) has RCost(ΠSSM′(n/k)) and k · CCost(ΠSSM′(n/k)).
Step (4) has RCost(ΠExtract(2(k + n), k + n)) + RCost(ΠReveal) and
CCost(ΠExtract(2(k + n), k + n)) + (k + n) · CCost(ΠReveal).

Using the costs of subprotocols ΠExtract, ΠExt-Ord, and ΠExt-Bin, and assuming constant-
round and linear secure protocols for ΠComp, ΠReveal, and ΠShuffle, we add up the contri-
butions from each step to obtain:

ITC 2025

7:18 Linear-Time Secure Merge in O(loglog n) Rounds

RCost(ΠSAM(k,n)) =RCost(ΠSSM′′(k)) + RCost(ΠSSM′(n/k))+
RCost(ΠComp) + RCost(ΠReveal)+
RCost(ΠExt-Ord(k, k)) + RCost(ΠExt-Ord(n, k))
RCost(ΠExt-Bin(k, k, n/k)) + RCost(ΠExt-Ord(n/k, n/k))
RCost(ΠExtract(2(k + n), k + n))

=O(1) + RCost(ΠSSM′′(k)) + RCost(ΠSSM′(n/k))
CCost(ΠSAM(k,n)) =2 · CCost(ΠSSM′′(k)) + k · CCost(ΠSSM′(n/k))+

Θ(k) · CCost(ΠComp) + (k + n) · CCost(ΠReveal)+
CCost(ΠExt-Ord(k, k)) + CCost(ΠExt-Ord(n, k))
CCost(ΠExt-Bin(k, k, n/k))+k ·CCost(ΠExt-Ord(n/k, n/k))
CCost(ΠExtract(2(k + n), k + n))

=O(k +n)+2 ·CCost(ΠSSM′′(k)) + k ·CCost(ΠSSM′(n/k))

Using ΠSM−FNO for ΠSSM′(n/k) and ΠSSM- log log for ΠSSM′′(k), the cost is:

RCost(ΠSAM(k,n)) = O(log log k) + O(n/k) = O(n/k + log log k) = O(log log n)
CCost(ΠSAM(k,n)) = O(k +n)+O(k log log k)+O(n) = O(n+k log log k) = O(n)

where the final equality for costs comes as a result of setting k = n/ log log n.

6 Description of Base Protocols: ΠSSM- log log and ΠSAM-n1/3

In this section, we present our ΠSSM- log log and ΠSAM−nα base protocols (for α = 1/3; the
general case for α < 1 can be found in the full version).

6.1 Secure Symmetric Merge with O(n log log n) Communication

As an ingredient for ΠSAM(k, n), we need a secure symmetric merge with O(n log log n)
communication and O(log log n) rounds, which we call ΠSSM- log log. We give this protocol in
Figure 7. For the Partition phase, it uses a secure asymmetric merge protocol (namely, the
ΠSAM-n1/3 in the next section) to merge the k = n1/3 medians of each list into the other
list. The 2k medians of both lists thus partition each list into 2k blocks of size at most n/k.
For the Align Blocks phase, we group each block from L1 with the corresponding block from
L2, as shown in Figure 6, and pad each block with dummies so that it has length exactly
n/k. For the Merge Blocks phase, each pair of matching blocks are merged together; and
then the Combine Blocks phase simply concatenates and removes dummy elements that were
introduced to hide the alignment of blocks.

The protocol is recursive, and, if implemented naïvely, the problem sizes would double at
each step of the recursion, for O(n log n) computation (instead of the desired O(n log log n)),
because there are log log n steps total. In Fig. 7, we show how to discard sub-problems along
the way to avoid this blow-up.

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:19

Figure 6 Each list is partitioned into 2k blocks by the k medians from both lists. The two grey
blocks appended to the end of the top list are made up entirely of dummy elements, and show how
to handle medians from one list that merge to a location outside the other list. Each block is padded
with the appropriate number of dummy elements to ensure it has n/k elements. Each pair of aligned
blocks (visualized via the connecting line segments) are then merged in 2k sub-problems (run in
parallel) for ΠSSM(n/k), with the final result obtained by concatenating the results of these 2k

merges and removing dummy elements.

6.2 Analysis of the ΠSSM- log log(n) Protocol of §6.1
Security. To simulate either player’s view during an execution of the protocol, a simulator
can call the simulator of the sub-protocols on every step except for Step 11, since that is
the only step where values are revealed to the parties. For Step 11, the parties only see a
random permutation of {1, 2, . . . , 2n}, so their views can be simulated by randomly sampling
such a permutation.

Correctness. The overall goal will be to show that the subproblems extracted in Step 10
contain a partition of the 2n elements into well-ordered blocks, so that the real elements of
each block are either all greater than or all less than the real elements from another block.
We must show this well-orderedness property and that all elements are included, so that it is
truly a partition. We proceed step-by-step.

In Step 4, the ΠSAM-n1/3 protocols are performed “in-place”, so that each element gets a
(secret-shared) tag of their destination under this merge. These tags can be transformed into
shares of the number of medians from the opposite list less than a given element, or shares
of the number of elements from the opposite list less than a given median.

In Step 5, the shares of the destination block are computed by adding the shares of the
number of medians of the opposite list less than a given element to the floor of the element’s
index divided by n

2/3
k−1, which counts the number of medians from the same list less than a

given element, and is a public value.
In Step 6, again, the number of elements less than a given median from the opposite list

is a secret shared value generated in Step 4, and the number of elements less than a given
median in the same list is a public value. This time, when we run ΠSM-ALL, we do not run
it “in-place”, but return the output list of tagged medians. Note that we tag all medians first
with an A1-tag (counting elements from A1 less than that median), then with an A2-tag,
so that after merging, the A1 medians and A2 medians are indistinguishable, and we can
compute the correct auxiliary information without leaking information. The index of the
first element of A1 (resp. A2) in the j-th bin is the A1-tag (resp. A2-tag), since the first
element in the j-th bin is the first element not less than the j-th median. The number of
elements from A1 (resp. A2) in the j-th bin is equal to the (j + 1)-th A1-tag (resp. A2-tag)
minus the j-th tag, since this is the difference between the start index of two adjacent bins.

For Step 7, we have just shown the correctness of the auxiliary information generated for
ΠExt-Bin. It remains to show that the assumed bound on the size of each bin holds. The
union of the values from M1,n

1/3
k−1

and M2,n
1/3
k−1

will partition each list A1 and A2 into 2n
1/3
k−1

ITC 2025

7:20 Linear-Time Secure Merge in O(loglog n) Rounds

Secure Symmetric Merge ΠSSM- log log

Input. Parties P1, P2 (additively) secret-share sorted lists L1, L2 of size n.

Output. The two lists have been merged into an output list L1
⊔

L2, which has size 2n

and is (additively) secret-shared amongst the two parties.

RCost. O(log log n) rounds.

CCost. O(log log n) · [n ·CCost(ΠReveal +ΠComp +ΠSel)+CCost(ΠShuffle(n))].

Protocol.
1. Compute d = log log n

log(3/2) − O(1) such that 4 ≤ n(2/3)d

< 8.

2. Define P0 := {(L1, L2, 0)}, to be the top-level array of sub-problems of size n. Each subproblem
has lists L1, L2 and final offset ω. Define nk := n(2/3)k

. Then, for k = 1, . . . , d, do Steps 3-10.
3. For each tuple (A1, A2, ω) ∈ Pk−1, do Steps 4 through 8.

4. Partition (Fig. 6). Run ΠSAM-n1/3 twice to merge the n
1/3
k−1 medians M1,n

1/3
k−1

of A1 with A2

and the n
1/3
k−1 medians M2,n

1/3
k−1

of A2 with A1.

5. Align Blocks: Label Label each element of A1 and A2 with a destination block by counting
the number of medians from either list that are less than that element, which can be computed
from the (secret-shared) destination indices under the merges in the previous step.

6. Align Blocks: Auxiliary Information Tag each of the medians from both lists with the
number of elements less than it from A1. Then tag all medians from both lists with the number
of elements less than it from A2. Merge the tagged medians M1,n

1/3
k−1

and M2,n
1/3
k−1

by running
ΠSM-ALL. Then each party computes locally the auxiliary information for each bin: The number
of elements from each list, and the index of the first element from each list.

7. Align Blocks: Extract Run the ΠExt-Bin protocol to extract all elements from A1 into
2n

2/3
k−1 = 2nk bins of size n

1/3
k−1. Run the same ΠExt-Bin protocol for A2. This requires the

auxiliary information computed in the previous step.
8. Match corresponding bins from these two ΠExt-Bin outputs to give new subproblems

(Bj,1, Bj,2, ωj); compute the new offsets ωj by adding auxiliary information to ω. Append
these subproblems to Pk.

9. Compute: Sk := 1 + 2
∑k

i=1 n(1− 2i

3i).

10. Call ΠExtract on Pk to extract all the subproblems with at least one non-dummy element. There
are at most Sk such subproblems by Lemma 6.

11. Block Merge Phase. Perform ΠSM-ALL on every pair (A1, A2, [ω]) ∈ Pd, and add [ω] to all
resulting destination indices to give the final destination index of all real elements. Call ΠExtract
on the union of all lists in Pd to extract the 2n real elements, open the secret-shared destination
tags, and place each element in its correct destination.

Figure 7 O(n log log n) Secure Symmetric Merge Protocol

blocks (since the list of both medians includes the maximum of both lists, no non-median
element can lie to the right of all medians, see Fig. 6). Each block will have at most nk real
elements, since each block is either composed of the interval between two adjacent medians
of the same list, which has exactly nk elements, or a sub-interval of such an interval.

In Step 8, we obtain the new offset ωj by adding ω (the offset for the current subproblem)
to the j-th A1-tag and the j-th A2 tag. These two tags count the number of elements from
A1 and A2 less than the j-th median, but we must verify that all of these elements are real.
But all dummy elements are sorted to the right of all real-valued medians, so either the entire
subproblem will be dummy, and the subproblem will be discarded in Step 10, or all elements
counted by the A1-tag and the A2-tag are non-dummy, and our computation of ωj is correct.

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:21

The value Sk and the bound on non-dummy subproblems in Step 10 follow from Lemma 6,
below. The correctness of the final indices in Step 11 follows from the correctness of the
offsets ωj computed along the way and the correctness of ΠSM-ALL, and since we have
verified that Pd contains a partition of the 2n real elements, the bound on real elements for
the final ΠExtract call is also correct.

▶ Lemma 6. At a depth of d, there are at most Sd := 1 + 2
∑d

i=1 n1− 2i

3i sub-problems without
all elements dummy. For d = log log n

log(3/2) − O(1), Sd ≤ 4n1−(2/3)d

.

Proof. Let Nk be the number of subproblems at depth k with at least one non-dummy
element, that is, the cardinality of the set |Pk| after the extraction in Step 10. Then we
have N0 = 1 and we will prove that Nk+1 ≤ Nk + 2n1−(2/3)k , which is sufficient to prove
the lemma. To prove this recurrence relation, we will divide the subproblems generated
before the extraction in Step 10 into three categories: A group of subproblems that have
an average density of at least 1/2 real elements, one special subproblem, and a group of
subproblems made up entirely of dummy elements. Since subproblems at level k have 2n(2/3)k

elements, and there are 2n real elements total, there can be at most 2n/n(2/3)k = 2n1−(2/3)k

subproblems in the first category. There will also be, of course, Nk special subproblems,
which will prove the recurrence. It remains to describe this categorization.

Let (A1, A2, ω) be a subproblem at level k − 1, and let m1 and m2 be the number of
median elements that are real in A1 and A2 respectively. Then the first m1 + m2 blocks (as
determined in Step 5) will include at least the first m1n(2/3)k real elements of A1 and the first
m2n(2/3)k real elements of A2. Thus these m1 + m2 subproblems will have 2(m1 + m2)n(2/3)k

elements and at least (m1 + m2)n(2/3)k real elements, which proves that their average density
is at least 1/2. Because the next median of each list is a dummy element, all remaining real
elements of both A1 and A2 will be mapped into the m1 + m2 + 1-th block, which is the
special subproblem.

For the final bound on Sd, note that there exists a unique value of d, with d < log log n
log(3/2) ,

such that 4 ≤ n(2/3)d

< 8. We thus have for k < d the desired bound:

n1−(2/3)k

n1−(2/3)k+1 = n− 2k

3k+1 ≤ 1
2 ⇒ Sd ≤ 2n(2/3)d

d∑
i=0

(
1
2

)d−i

< 4n(2/3)d

. ◀

Cost. At a depth k, Steps 4 through 8 of Figure 7 require O(n(2/3)k) communication
and computation and O(1) rounds for each element of Pk, since the computations in each
of Steps 4 through 8 are linear. By Lemma 6, at a depth of k, there are at most Sk =
2n1−(2/3)k + O(n1−(2/3)k+1) = O(n1−(2/3)k) subproblems, so the total work for Steps 4
through 8 is O(n) communication and computation and O(1) rounds. Steps 4 through 8 have
the effect of doubling the total number of elements, so the total size of the lists in Pk before
the extraction in Step 10 is 2Skn1−(2/3)k = O(n), and so Step 10 requires O(n) work each
time it is called. Since Steps 3-10 are called log log n − O(1) times, the total communication
is O(n log log n) and the round complexity is O(log log n), as desired.

6.3 Secure Asymmetric Merge on (n1/3, n)
For the special case where |L1| = O(n1/3) and |L2| = O(n), succinctly describe

an asymmetric merge protocol with communication complexity O(n) and round complexity
O(1). By calling ΠSM-ALL on L1 and the n2/3 medians of L2, we can identify every block
of L2 which contains an element of L1 after merging the two lists. Because there are O(n1/3)

ITC 2025

7:22 Linear-Time Secure Merge in O(loglog n) Rounds

elements of L1, there are O(n1/3) such blocks of L2. After extracting these blocks, we run
ΠSM-ALL again on L1 and the O(n2/3) elements of the extracted blocks of L2. After some
careful accounting of the index shifts during these steps, we get the destination indices for
all the elements, which gives the desired merge protocol. Due to space considerations, we
refer the reader to Fig. 9 of the full version for details.

References
1 M. Ajtai, J. Komlós, and E. Szemerédi. An o(n log n) sorting network. In Proceedings of the

Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages 1–9, New York,
NY, USA, 1983. Association for Computing Machinery. doi:10.1145/800061.808726.

2 Arvind Arasu and Raghav Kaushik. Oblivious query processing. In Proc. 17th International
Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 26–37.
OpenProceedings.org, 2014. doi:10.5441/002/icdt.2014.07.

3 K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–May 2,
1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages 307–314, New York, NY,
USA, 1968. Association for Computing Machinery. doi:10.1145/1468075.1468121.

4 Allan Borodin and John E. Hopcroft. Routing, merging, and sorting on parallel models
of computation. J. Comput. Syst. Sci., 30(1):130–145, 1985. doi:10.1016/0022-0000(85)
90008-X.

5 Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptol.,
13(1):143–202, 2000. doi:10.1007/s001459910006.

6 Suvradip Chakraborty, Stanislav Peceny, Srinivasan Raghuraman, and Peter Rindal. Logstar:
Efficient linear* time secure merge. IACR Cryptol. ePrint Arch., page 159, 2024. URL:
https://eprint.iacr.org/2024/159.

7 T.-H. Hubert Chan, Jonathan Katz, Kartik Nayak, Antigoni Polychroniadou, and Elaine Shi.
More is less: Perfectly secure oblivious algorithms in the multi-server setting. In Advances in
Cryptology – ASIACRYPT 2018, volume 11274 of Lecture Notes in Computer Science, pages
158–188. Springer, 2018. doi:10.1007/978-3-030-03332-3_7.

8 Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Naoto Kiribuchi, and Benny Pinkas.
An efficient secure three-party sorting protocol with an honest majority. IACR Cryptol. ePrint
Arch., page 695, 2019. URL: https://eprint.iacr.org/2019/695.

9 Saba Eskandarian and Matei Zaharia. Oblidb: Oblivious query processing for secure databases.
Proc. VLDB Endow., 13(2):169–183, October 2019. doi:10.14778/3364324.3364331.

10 Brett Hemenway Falk, Rohit Nema, and Rafail Ostrovsky. A linear-time 2-party secure
merge protocol. In Cyber Security, Cryptology, and Machine Learning - 6th International
Symposium, CSCML 2022, Be’er Sheva, Israel, June 30 - July 1, 2022, Proceedings, volume
13301 of Lecture Notes in Computer Science, pages 408–427. Springer, 2022. doi:10.1007/
978-3-031-07689-3_30.

11 Brett Hemenway Falk and Rafail Ostrovsky. Secure merge with o(n log log n) secure operations.
In 2nd Conference on Information-Theoretic Cryptography (ITC 2021), volume 199 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 7:1–7:29, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITC.2021.7.

12 O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages 218–229, New
York, NY, USA, 1987. Association for Computing Machinery. doi:10.1145/28395.28420.

13 Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
J. ACM, 43(3):431–473, 1996. doi:10.1145/233551.233553.

14 Koki Hamada, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Oblivious radix sort: An
efficient sorting algorithm for practical secure multi-party computation. IACR Cryptol. ePrint
Arch., page 121, 2014. URL: http://eprint.iacr.org/2014/121.

15 Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Practically
efficient multi-party sorting protocols from comparison sort algorithms. In International

https://doi.org/10.1145/800061.808726
https://doi.org/10.5441/002/icdt.2014.07
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1016/0022-0000(85)90008-X
https://doi.org/10.1016/0022-0000(85)90008-X
https://doi.org/10.1007/s001459910006
https://eprint.iacr.org/2024/159
https://doi.org/10.1007/978-3-030-03332-3_7
https://eprint.iacr.org/2019/695
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.1007/978-3-031-07689-3_30
https://doi.org/10.1007/978-3-031-07689-3_30
https://doi.org/10.4230/LIPIcs.ITC.2021.7
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/233551.233553
http://eprint.iacr.org/2014/121

M. Blunk, P. Bunn, S. Dittmer, S. Lu, and R. Ostrovsky 7:23

Conference on Information Security and Cryptology, pages 202–216. Springer, 2013. doi:
10.1007/978-3-642-37682-5_15.

16 Zhu Hong and Robert Sedgewick. Notes on merging networks (prelimiary version). In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, pages 296–302, New York, NY, USA, 1982. Association for Computing Machinery. doi:
10.1145/800070.802204.

17 Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In 19th Annual Network and Distributed
System Security Symposium, NDSS 2012, San Diego, California, USA, February 5-8,
2012. The Internet Society, 2012. URL: https://www.ndss-symposium.org/ndss2012/
private-set-intersection-are-garbled-circuits-better-custom-protocols.

18 Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. Private large-scale databases with
distributed searchable symmetric encryption. In Topics in Cryptology - CT-RSA 2016, pages
90–107, Cham, 2016. Springer International Publishing. doi:10.1007/978-3-319-29485-8_6.

19 Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious ram lower bound! In
Advances in Cryptology – CRYPTO 2018, pages 523–542, Cham, 2018. Springer International
Publishing. doi:10.1007/978-3-319-96881-0_18.

20 Steve Lu and Rafail Ostrovsky. Distributed oblivious ram for secure two-party computation. In
Theory of Cryptography, pages 377–396, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-36594-2_22.

21 Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Tool-
box. Springer Publishing Company, Incorporated, 1 edition, 2008. doi:10.1007/
978-3-540-77978-0.

22 Takashi Nishide and Kazuo Ohta. Constant-round multiparty computation for interval test,
equality test, and comparison. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
90-A(5):960–968, 2007. doi:10.1093/ietfec/e90-a.5.960.

23 Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In Advances in Cryptology –
CRYPTO 2010, pages 502–519, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-14623-7_27.

24 Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based
on ot extension. ACM Trans. Priv. Secur., 21(2), January 2018. doi:10.1145/3154794.

25 Leslie G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing, 4(3):348–
355, 1975. doi:10.1137/0204030.

26 Andrew Chi-Chih Yao and Foong Frances Yao. Lower bounds on merging networks. J. ACM,
23(3):566–571, 1976. doi:10.1145/321958.321976.

27 Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez,
and Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform. In
14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017,
Boston, MA, USA, March 27-29, 2017, pages 283–298. USENIX Association, 2017. URL:
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng.

ITC 2025

https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.1145/800070.802204
https://doi.org/10.1145/800070.802204
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.1093/ietfec/e90-a.5.960
https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1145/3154794
https://doi.org/10.1137/0204030
https://doi.org/10.1145/321958.321976
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng

	1 Introduction
	1.1 Paper Structure

	2 Previous Work
	2.1 Insecure Merge Algorithms
	2.2 Secure Merge Algorithms
	2.3 Comparison of Results

	3 Overview of Techniques
	3.1 Identifying Poorly-Aligned Blocks
	3.2 The Tag-Shuffle-Reveal Paradigm
	3.3 Extraction Protocols
	3.4 Primitive Functionalities
	3.5 Security Model
	3.6 Notation

	4 Description of Secure Merge Protocols
	4.1 Secure Symmetric Merge
	4.2 Secure Asymmetric Merge

	5 Analyses of Protocols in Section 4
	5.1 Analysis of Abstract Secure Symmetric Merge Protocol of §4.1
	5.2 Analysis of Abstract Secure Asymmetric Merge Protocol of §4.2

	6 Description of Base Protocols: SSM-loglog and SAM-n^1/3
	6.1 Secure Symmetric Merge with O(n log log n) Communication
	6.2 Analysis of the Pi-SSM-loglog(n) Protocol of §6.1
	6.3 Secure Asymmetric Merge on (n^1/3, n)

