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Abstract
A multi-server private information retrieval (PIR) protocol allows a client to obtain an entry of its
choice from a database, held by one or more servers, while hiding the identity of the entry from small
enough coalitions of servers. In this paper, we study PIR protocols in which some of the servers are
malicious and may not send messages according to the pre-described protocol. In previous papers,
such protocols were defined by requiring that they are correct, private, and robust to malicious
servers, i.e., by listing 3 properties that they should satisfy. However, 40 years of experience in
studying secure multiparty protocols taught us that defining the security of protocols by a list of
required properties is problematic.

In this paper, we rectify this situation and define the security of PIR protocols with malicious
servers using the real vs. ideal paradigm. We study the relationship between the property-based
definition of PIR protocols and the real vs. ideal definition, showing the following results:

We prove that if we require full security from PIR protocols, e.g., the client outputs the correct
value of the database entry with high probability even if a minority of the servers are malicious,
then the two definitions are equivalent. This implies that constructions of such protocols that
were proven secure using the property-based definition are actually secure under the “correct”
definition of security.
We show that if we require security-with-abort from PIR protocols (called PIR protocols with
error-detection in previous papers), i.e., protocols in which the user either outputs the correct
value or an abort symbol, then there are protocols that are secure under the property-based
definition; however, they do not satisfy the real vs. ideal definition, that is, they can be attacked
allowing selective abort. This shows that the property-based definition of PIR protocols with
security-with-abort is problematic.
We consider the compiler of Eriguchi et al. (TCC 22) that starts with a PIR protocol that is
secure against semi-honest servers and constructs a PIR protocol with security-with-abort; this
compiler implies the best-known PIR protocols with security-with-abort. We show that applying
this compiler does not result in PIR protocols that are secure according to the real vs. ideal
definition. However, we prove that a simple modification of this compiler results in PIR protocols
that are secure according to the real vs. ideal definition.
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1 Introduction

A private information retrieval (PIR) protocol [16] allows a client to obtain an entry of its
choice from a database held by one or more servers, such that nothing is revealed to any small
enough coalition of servers about the item being revealed. For example, an investor might
want to know the value of a specific stock without revealing which stock they are interested in.
This is modeled by considering an N -bit string D held by each server, and the client holding
a retrieval index i wishing to learn the ith entry of D, i.e., Di, without revealing i. The
trivial solution is to let a single server send the entire database to the client: Chor et al. [16]
showed that this is optimal in the information-theoretic setting when there is a single server;
however, better protocols are known if the database is held by ℓ ≥ 2 servers. PIR protocols
were used to construct secure multiparty protocols [30, 7], locally decodable codes [34], and
inspired constructions of conditional disclosure of secrets [39, 40]. Most constructions of
PIR protocols guarantee that any single server will not learn any information on the client’s
retrieval index [16, 2, 30, 31, 6, 8, 35, 46, 48, 22, 33, 14, 20, 27, 1], e.g., there is a 3-server
PIR protocol secure against a single server with communication complexity 2Õ( 3

√
log N) [27].

When there are many servers, it is natural to require that the protocol guarantees the privacy
of the client against colluding subsets of the servers. Constructions of such PIR protocols
are given in [30, 6, 8, 46, 5]. It is also natural to consider malicious servers that may deviate
from the protocol. In the stock market example above, one may consider the case where
some of the servers try to give the wrong information on the stock. Such PIR protocols were
first discussed in [9] and further studied in [47, 46, 28, 18, 49, 43, 44, 37, 4, 23, 24, 25].

The security of PIR protocols in the literature is defined by listing the desired properties
from the protocol. However, PIR is a special case of secure multiparty computation (MPC),
where it is well-known that separating the security properties is problematic. Indeed, there are
MPC protocols that satisfy the natural security properties (such as privacy and correctness)
yet should clearly be considered insecure [42, 13, 29]. Instead, the security of MPC protocols
is defined using the real vs. ideal world paradigm. Intuitively, we consider an ideal process
for computing a function via a trusted party that the adversary cannot corrupt. It is then
required that any attack performed in the real world can be simulated in the ideal world,
where the adversary is more limited. Different ideal processes capture different security
properties, e.g., full security and security-with-abort.

Defining malicious security of PIR protocol via properties is problematic and it is unclear
if there are other security properties that can be attacked in such protocols. In this work,
we rectify this situation and define the security of PIR protocols using the real vs. ideal
world paradigm. Specifically, we are interested in the notions of full security (also known as
guaranteed output delivery) and security-with-abort. The former captures the requirement
that the client always obtain the “correct” output, and the latter allows the client to abort
but never output an “incorrect” value. We ask how such definitions relate to the property-
based definitions used so far, and if there are efficient PIR protocols satisfying the real vs.
ideal security definition. We consider the perfect setting, the statistical setting, and the
computational setting.

1.1 Our Contributions
Our conceptual contribution is defining the ideal processes of the PIR functionality for full
security and security-with-abort against malicious adversaries (see Section 3 for the formal
definitions). We then compare the simulation-based security definition to the property-based
security definition.
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1.1.1 The Ideal World Processes
In this section, we describe the ideal world process for each of the desired security notions. A
PIR protocol is then considered secure according to an ideal world if any adversary corrupting
a subset of the servers can be simulated in the ideal world. We stress that definitions for PIR
protocols do not have any privacy requirements from the client; in particular, the client may
learn the whole database. Thus, we only consider adversaries that do not corrupt the client.

1.1.1.1 Full Security of PIR Protocols

We first describe the definition of fully secure PIR protocols. Roughly, the definition captures
the requirement that the client outputs the correct value Di, regardless of the messages sent
by the malicious servers. Observe that this only makes sense when the majority of the servers
are honest.1 The ideal world for full security proceeds as follows. The client sends i to the
trusted party and each honest server sends D to the trusted party. The corrupted servers
may change their databases (based on the instruction of the ideal-world adversary) and send
them to the trusted party. Let D′ denote the database that was sent by more than 1/2 of
the servers (note that D′ = D if there is an honest majority). The trusted party then sends
D′i to the client. The ideal functionality is only defined when there is an honest majority.

1.1.1.2 Secure-With-Abort PIR Protocols

We next describe the definition of secure-with-abort PIR protocols. Here, we allow the client
to output ⊥ (indicating abort). The security definition captures the requirement that the
client never outputs 1 − Di. Note that, unlike the ideal world for full security, here the
definition allows a majority of corrupted servers.

The ideal-world computation proceeds as follows. The client sends i to the trusted party
and each honest server sends D to the trusted party. The corrupted servers may change
their databases (based on the instruction of the ideal-world adversary) and send them to the
trusted party. If the trusted party receives the same database D from all servers, then it
sends Di to the client; otherwise, it sends ⊥ to the client.

1.1.2 Comparing Simulation-Based Security to Property-Based Security
We compare the simulation-based security definitions to the property-based security defini-
tions. In the following, we fix the total number of servers to be ℓ, and let t bound the number
of corrupted servers. We refer the reader to Section 4 for the formal statements and proofs
of the theorems.

1.1.2.1 Full Security

We first compare full security with the property-based definition. In addition to correctness
and t-privacy, here we also consider the notion of t-Byzantine robust2 PIR protocols defined
by Beimel and Stahl [9]. Roughly, it requires that the client outputs Di even if t malicious
servers arbitrarily deviate from the protocol. Note that similarly to full security, this definition
only makes sense when the majority of the servers are honest. As would be expected, full
security implies all 3 security properties. We show that the converse also holds.

1 If the number of servers is ℓ and t of them might be corrupted, where 2t ≥ ℓ, then the client cannot
distinguish an execution with the first t servers being corrupted and behaving honestly on input 0N and
the ℓ − t remaining honest servers holding 1N , from an execution with the last ℓ − t ≤ t servers being
corrupted and behaving honestly on input 1N and the first t servers being honest and holding 0N .

2 Also known as t-error-correcting [24].

ITC 2025
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▶ Theorem 1 (Informal, equivalence of full security and the property-based definition). Any
ℓ-server PIR protocol is t-fully secure if and only if it is correct, t-private, and t-Byzantine
robust.

Thus, to prove full security it suffices to show that each property holds individually. In
particular, this shows that previous Byzantine robust constructions, e.g., [9, 47, 46, 43, 44,
37, 4, 23, 24], are also fully secure.

1.1.2.2 Secure-With-Abort

Finally, we consider security-with-abort. Here, instead of t-Byzantine robustness, we consider
the notion of t-error-detecting PIR protocols defined by Eriguchi et al. [23, 24]. In a t-error-
detecting PIR protocol, the client can abort (i.e., by outputting ⊥) but security requires that
no set of t malicious servers can force the client to output 1−Di. Clearly, error-detecting
is weaker than Byzantine robust; however, it is possible to construct t-error-detecting PIR
protocols when t ≥ ℓ/2 [23, 24].

Similarly to the previous definitions, the simulation-based definition implies the property-
based definition. However, we show that here the converse is not true.

▶ Theorem 2 (Informal, security-with-abort and the property-based definition). Any ℓ-server
PIR protocol that is t-secure-with-abort is correct, t-private, and t-error-detecting. However,
the converse does not hold.

To see why the properties do not imply simulation-based security, consider the following
protocol, in which a single malicious server can cause a “selective abort”, i.e., the user will
abort if and only if i = 1. In the protocol, each server sends D to the client and additionally,
the first server sends an additional bit b ∈ {0, 1}. An honest server sends b = 0. If the client
received different databases, or if it has input i = 1 and it received b = 1, then it outputs ⊥.
Otherwise, the client only receives the database D, and it outputs Di. Clearly, Π is correct,
1-private, and 1-error-detecting. However, it is not 1-secure-with-abort. This is because
the first server can force a different probability for the client to abort on different indices i.
Specifically, if the server sends b = 1, then the client always aborts on index i = 1, and it
never aborts on index i ̸= 1. Note that this holds even though the server does not know
anything about i. See Example 18 for the formal argument. In Example 19, we show that
even if we require the same probability for abort on all indexes i, then it is still insufficient
to claim security-with-abort.

Colombo et al. [17] noticed that standard definitions for the security of PIR might allow
for selective abort (however, they did not provide any concrete example). This motivated
them to define authenticated PIR to capture security against such attacks. However, their
definition is property-based, and it is unclear whether their definition is equivalent to our
simulation-based security, or whether it captures security against attacks not mentioned in
their paper.

1.1.2.3 A Compiler From a Private PIR Protocol to a Secure-With-Abort Protocol

Eriguchi et al. [24] showed a compiler that takes any ℓ-server correct and t-private PIR
protocol, and transforms it into a correct, t-private, and t-error-detecting ℓ-server PIR
protocol. In light of Theorem 2, it is natural to ask whether their compiler satisfies the
stronger requirement of t-security-with-abort. We show that this is not the case; however, we
prove that a simple modification to their construction results in a secure-with-abort protocol.
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Table 1 A summary of the best PIR protocols tolerating t corrupted servers for various parameters.
The results in the second row are obtained by applying our compiler on the protocols from the first
row. These results are also obtained by [24] for the weaker property-based security. The last row
follows from [24] and Theorem 1.

2t server PIR
from [5] + [20]

3t server PIR
from [5] + [22]

The ℓ server PIR,
ℓ = O(1) [46]

t-private 2Õ(t
√

log N) max
{

t · 2Õ(
√

log N), 2O(t)
}

N1/⌊(2ℓ−1)/t⌋

t-security
with-abort

2max
{

Õ(t
√

log N),t log t
}

32t · max
{

t2Õ(
√

log N), t3t
}

N
1

⌊(2ℓ−1)/t⌋ +o(1)

t-full
security

2t2+max
{

Õ(t
√

log N),t log t
}

3t2+2t ·max
{

t2Õ(
√

log N), 2O(t)
}

N
1

⌊(2ℓ−1)/t⌋−2 +o(1)

▶ Theorem 3 (Informal, compiler to secure-with-abort). There exists a compiler that transforms
any ℓ-server correct and t-private PIR protocol Π into an ℓ-server t-secure-with-abort PIR
protocol. The total communication complexity (i.e., the total number of bits sent) of the new
protocol is ℓ2 · ω(log N) · (c + ℓ log ℓ), where c is the communication complexity of Π.

This result implies that for a constant number of servers, the communication complexity of
t-secure-with-abort PIR protocols is equivalent to PIR protocols secure against t-semi-honest
servers (up to a factor of ω(log N)). We refer to Section 5 for the formal statement and proof.
In Table 1 we summarize the PIR protocols obtained from our results.

1.2 Our Techniques

To illustrate our techniques, we next show that t-semi-honest security is equivalent to
correctness and t-privacy. Since simulation-based security is clearly stronger than property-
based security, we only show that correctness and t-privacy imply t-semi-honest security.
We do it for statistical security (other cases are handled similarly). This is a special case
of a known result that the property-based definition is equivalent to the simulation-based
definition for deterministic functionalities with semi-honest security against unbounded
adversaries.

Fix a real-world adversary B corrupting a set I of at most t servers. We define its
simulator Sim running the client on index i = 1, and outputting the queries that correspond
to the corrupted servers. We now show that the statistical distance between the real and
ideal worlds is negligible. For a retrieval index i ∈ [N ] and a database D ∈ {0, 1}N let yD,i

denote the output of the client in the real world, and let qi
I denote the queries the corrupted

server receives. By construction of the simulator and the fact that the client always outputs
Di in the ideal world, we need to show that

(
qi
I , yD,i

)
and

(
q1
I , Di

)
are statistically close.

First, by the t-privacy of the protocol,
(
q1
I , Di

)
and

(
qi
I , Di

)
are statistically close. Second,

observe that correctness implies that
(
qi
I , Di

)
and

(
qi
I , yD,i

)
are statistically close. Thus,(

qi
I , yD,i

)
and

(
q1
I , Di

)
are statistically close.

ITC 2025
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1.3 Related Works
1.3.1 1-Private PIR
We next state the best known PIR protocols. Efremenko [22] constructed a 3-server 1-
private PIR protocol with query length 2Õ

(√
log N

)
and 2r-server 1-private PIR protocols

with query length 2Õ
(

r
√

log N
)
; the answer length in these protocols is O(1). Dvir and

Gopi [20] constructed a PIR protocol with query and answer length 2Õ
(√

log N
)
. Very

recently, Ghasemi, Kopparty, and Sudan [27] constructed a 3-server PIR protocol with
query and answer length 2Õ

(
3
√

log N
)
. These constructions were simplified by Alon, Beimel,

and Lasri [1]. The communication complexity of ℓ-server PIR protocols for ℓ ≥ 6 was
improved by Itoh and Suzuki [32, 33], Chee, Feng, Ling, Wang, and Zhang [14], Dvir and
Gopi [20], and Ghasemi et al. [27]. For example, there is a 6-server PIR protocol with
communication complexity 2Õ

(
4
√

log N
)

[32, 3, 27, 1]. The best known lower bound on the
total communication complexity of 2-server PIR protocols is 5 log n, proved by Wehner and
de Wolf [45] (improving on [41, 34, 36]).

1.3.2 t-Private PIR
t-private PIR protocols were constructed in [16, 2, 30, 6, 8, 46]. In particular, Woodruff
and Yekhanin [46] presented a t-private ℓ-server PIR construction for general ℓ and t with
communication complexity ℓ2

t · log ℓ ·N1/⌊(2ℓ−1)/t⌋. Barkol, Ishai, and Weinreb [5] presented
a general transformation from 1-private PIR protocols to t-private PIR protocol; given a
1-private ℓ-server PIR protocol with query length mq and answer length ma, they constructed
a t-private ℓt-server PIR protocol with query length O(tmq) and answer length O(mt

a). When
t is small compared to ℓ, this gives better protocols than [46], e.g., a t-private 2t-server PIR
protocol with communication complexity 2Õ(t

√
log(N)) (using [20]) and a t-private 3t-server

PIR protocol with query length t · 2Õ(
√

log(N)) and answer length 2O(t) (using [22]).

1.3.3 Robust and Byzantine-Robust PIR
Beimel and Stahl [9] introduced robust and Byzantine robust PIR protocols. A PIR protocol
is t-robust if the client can recover the correct value even if t of the servers go offline. The
generalized notion of t-Byzantine robust requires robustness to hold even if t of the servers
are malicious. This was further studied in subsequent works [46, 37, 23, 24]. In particular,
Eriguchi et al. [24] showed that for a constant number of servers:

The communication complexity of perfect t-Byzantine robust and t-private ℓ-server PIR
is equivalent to the communication complexity of t-private (ℓ− 2t)-server PIR protocol;
The communication complexity of statistical t-Byzantine robust and t-private ℓ-server
PIR is equivalent to t-private (ℓ− t)-server PIR protocol.

Combining the above results and [46] yields a t-private and t-Byzantine robust ℓ-server statist-
ical PIR protocol with total communication ω(log N)·N

1
⌊(2ℓ−1)/t⌋−2 . When t is relatively small

compared to ℓ, the results of [5, 20, 22] yield a t-private and a t-Byzantine robust 2t-server
statistical PIR protocol with total communication complexity 2t2+max

{
Õ(t
√

log N),t log t
}

and
a t-Byzantine robust 3t-server statistical PIR protocol with total communication complexity
3t2+2t ·max

{
t2Õ(
√

log N), t3t
}

. Byzantine robust PIR protocols where the database entries
are large were considered in [47, 43, 44, 4]. They measure efficiency compared to the size of
the entries rather than the size of the database (as we do in our work).
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Eriguchi et al. [23, 24] introduced error-detecting PIR, where the client may abort
and it is required that it never outputs the wrong value. In [23], they showed that error-
detecting with perfect security and communication that is sublinear in the database size is
impossible. In particular, this shows that there is no non-trivial perfect security-with-abort
PIR protocol. In [24], they constructed a compiler transforming any t-private ℓ-server
PIR protocol with communication c0 to a t-error-detecting one with total communication
ℓ2 · ω(log N) · (c0 + ℓ log ℓ). When t is very small compared to ℓ, this has significantly better
communication complexity compared to the Byzantine robust protocols discussed above.
For example, there is a t-error-detecting 2t-server PIR protocol with total communication
complexity 2max

{
Õ(t
√

log N),t log t
}

and a t-error-detecting 3t-server PIR protocol with total
communication complexity 32t ·max

{
t2Õ(
√

log N), t3t
}

. Additional constructions of error-
detecting PIR protocols appear in Eriguchi et al. [25].

Colombo et al. [17] also observed that standard PIR security definitions allow for selective
abort attacks. This motivated them to define authenticated PIR protocols, where, similarly to
error-detection, it is required that either the client aborts or its output is consistent with the
honest server’s database. Additionally, the privacy of the client’s retrieval index is required
to hold even if the adversary knows whether the client aborts or not, which prevents selective
abort attacks. Unlike our definitions, Colombo et al. [17] defined security by listing the
desired security properties.

1.3.4 Computational PIR

Computational PIR protocols consider computationally-bounded servers. This model was
first considered by Chor and Gilboa [15]. Computational single-server PIR protocols can
be constructed with non-trivial communication complexity [38, 12, 26]. Computational
PIR can be seen as a special case of fully homomorphic encryption; the result of Brakerski
and Vaikuntanathan [11] used this to construct a single-server PIR protocol with total
communication poly(κ) + log N , where κ is the security parameter.

1.3.5 Spooky PIR

Dwork et al. [21] studied two-round succinct arguments for NP by composing PCP proofs
with computational single-server PIR protocols. They showed that such heuristics may be
insecure. More generally, they argued that executing PIR protocols in parallel may introduce
“spooky interactions”: even though the queries made by the client are independent and the
server knows nothing about the indexes of the client, the server may introduce correlations
between the queries and outputs of the client. Dodis et al. [19] later showed that this holds
even when using multi-prover interactive proofs instead of PCPs. These results show the
necessity of defining the security of PIR protocols via the real vs. ideal world paradigm.

1.3.6 Verifiable PIR

Ben-David et al. [10] introduced verifiable PIR, where a (single) server should be able to
prove that the database satisfies various properties. Although one of their definition follows
the real vs. ideal world paradigm, it does not require privacy or security against selective
abort attacks.

ITC 2025
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2 Preliminaries

2.1 Notations
We use bold characters to denote vectors. For n ∈ N, let [n] = {1, 2 . . . , n}. For a set S, we
write s ← S to indicate that s is selected uniformly at random from S. Given a random
variable (or a distribution) X, we write x← X to indicate that x is selected according to
X. ppt stands for probabilistic polynomial time. A function ε(·) is called negligible if for
every positive polynomial p(·) and all sufficiently large n, ε(n) < 1/p(n). For a vector v of
dimension n, we write vi for its ith coordinate, and for S ⊆ [n] we write vS = (vi)i∈S .

A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of random variables
indexed by a ∈ Dn and n ∈ N, where Dn is a domain that might depend on n. Computational
indistinguishability is defined as follows.

▶ Definition 4. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. We
say that X and Y are computationally indistinguishable, denoted X

C≡ Y , if for every ppt
distinguisher D, there exists a negligible function ε(·), such that for all n ∈ N and a ∈ Dn,∣∣∣Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]

∣∣∣ ≤ ε(n).

▶ Definition 5. The statistical distance between two finite random variables X and Y is
defined as

SD (X, Y ) = max
T

(Pr [X ∈ T ]− Pr [Y ∈ T ]) .

Two ensembles X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N are said to be statistically
close, denoted X

S≡ Y , if there exists a negligible function ε(·), such that for all n and a ∈ Dn,

SD (Xa,n, Ya,n) ≤ ε(n).

We say that X and Y are identically distributed, denoted X
P≡ Y , if ε(n) = 0 for all a ∈ Dn

and n ∈ N.

▶ Theorem 6 (Hoeffding’s inequality for the hypergeometric distribution). Let n ∈ N, m, k ∈ [n],
and A ∈

([n]
m

)
. Then for every t > 0,

Pr
X←([n]

k )

[
|X ∩A| − km

n
≥ t

]
≤ e−2t2/k

and

Pr
X←([n]

k )

[
|X ∩A| − km

n
≤ −t

]
≤ e−2t2/k.

2.2 Private Information Retrieval
In this section, we start with the definition of single-round private information retrieval (PIR)
protocols [16]. We then define property-based security taken from previous papers [9, 23, 24].
To simplify the presentation, we present the definition for a constant number of servers (i.e.,
independent of the database size). The definition readily extends to a non-constant number
of servers. Intuitively, the PIR protocol starts with the client running a query algorithm Q
and sending the jth output qj to the jth server Sj . The jth server, holding the database D

and the query qj , responds with the answer A(j, qj , D). Finally, the client computes the
output by applying the reconstruction algorithm C. We next formalize this.
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▶ Definition 7 (PIR protocols). Let ℓ ∈ N. An ℓ-server PIR protocol is given by a 3-tuple
Π = (Q,A, C) of algorithms with the following syntax.
1. The query algorithm (q1, q2, . . . , qℓ, st)← Q(1N , i) is a randomized algorithm that is given

the size of the database N and a retrieval index i ∈ [N ]. It outputs a query qj for every
server j ∈ [ℓ] and a state st ∈ {0, 1}∗. We denote q = (q1, . . . , qℓ).

2. The answer algorithm aj = A(j, q, D) is a deterministic algorithm that is given an index
j ∈ [ℓ], a query q, and a database D ∈ {0, 1}N for some N ∈ N. It outputs a response aj .
We denote a = (a1, . . . , aℓ).

3. The reconstruction algorithm y = C(1N , a, st) is a deterministic algorithm that is given
the size of the database N , the ℓ answers a = (aj)j∈[ℓ], and the state st. It outputs
y ∈ {0, 1,⊥}.

The protocol is efficient if all three algorithms run in polynomial time in N . The total
communication complexity is the maximum (taken over the randomness of the client and the
databases D) of the total number of bits sent in the protocol, i.e., maxr,D{

∑ℓ
i=1 |qi|+ |ai|},

where r is the randomness of Q.

2.3 Defining Security for PIR via Security Properties
We next define the security properties of PIR protocols as they appear in the literature.
We first define correctness, which states that in an honest execution, the client outputs the
correct value.

▶ Definition 8 (Correctness). Let ℓ ∈ N and let Π = (Q,A, C) be an ℓ-server PIR protocol.
We say that Π is statistically correct if for any N ∈ N, any database D ∈ {0, 1}N , and any
retrieval index i ∈ [N ],

Pr(q,st)←Q(1N ,i)

[
C

(
1N , (A (j, qj , D))j∈[ℓ] , st

)
= Di

]
≥ 1− ε(N),

for some negligible function ε(·), where the probability is over the randomness of Q. If ε = 0
then we say that Π is perfectly correct.

We now define t-privacy, stating that no set of t servers learns anything about the retrieval
index of the client.

▶ Definition 9 (Privacy). Let ℓ ∈ N, let t ∈ [ℓ], and let Π = (Q,A, C) be an ℓ-server PIR
protocol. We say that Π is statistically t-private if for any set of t servers I ∈

([ℓ]
t

)
, and any

two sequences of indices {iN}N∈N and {i′N}N∈N,

{qI}N∈N,D∈{0,1}N

S≡ {q′I}N∈N,D∈{0,1}N ,

where (q, st)← Q(1N , iN ) and (q′, st′)← Q(1N , i′M ). We define computationally/perfectly
t-privacy by replacing S≡ with C≡ and P≡, respectively, in the above equation.

We next define security properties that should hold against malicious behavior by a subset
of the servers. Following [23, 24], we first define tampering algorithms;3 this is an adversary
that can modify some of the answers.

3 Eriguchi et al. [23, 24] defined tampering functions rather than algorithms.
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▶ Definition 10 (A tampering algorithm [23, 24]). Let ℓ ∈ N, I ⊆ [ℓ], and let Π = (Q,A, C)
be an ℓ-server PIR protocol. A tampering algorithm B for Π is a randomized algorithm
a′ = (a′j)j∈[ℓ] ← B(I, q, D) that is given a set I ⊆ [ℓ], a set of ℓ queries, and a database
D ∈ {0, 1}N for some N ∈ N. It outputs answers (a′j)j∈[ℓ] such that a′j = A (j, qj , D) for all
j ∈ [ℓ] \ I, and a′j depends on I, qI , and D for all j ∈ I.

We now define t-error-detecting. Roughly, it means that no set of t cheating servers can
force the client to output the wrong value. Note, however, that the client is allowed to output
⊥ (even with probability 1).

▶ Definition 11 (Error-detecting PIR [23, 24]). Let ℓ ∈ N, t ∈ [ℓ], and let Π = (Q,A, C) be
an ℓ-server PIR protocol. We say that Π is statistical t-error-detecting if for any N ∈ N, for
any database D ∈ {0, 1}N , for any retrieval index i ∈ [N ], any subset I ∈

([ℓ]
t

)
of t servers,

and any tampering algorithm B for Π,

Pr(q,st)←Q(1N ,i)
[
C

(
1N ,B(I, q, D), st

)
∈ {Di,⊥}

]
≥ 1− ε(N),

for some negligible function ε(·), where the probability is over the randomness of Q and B.
We define perfect t-error-detecting by requiring the above to hold for ε(N) = 0 for all
N ∈ N. We define computational t-error-detecting by requiring the above to hold only for
ppt algorithms B.

Finally, we define t-Byzantine robustness, which roughly means that the client outputs
the correct value (i.e., Di) even if at most t servers cheat. Note that any Byzantine robust
PIR protocol is also correct, by taking I = ∅.

▶ Definition 12 (Byzantine robust PIR [9]). Let ℓ ∈ N, let t ∈ [ℓ], and let Π = (Q,A, C) be
an ℓ-server PIR protocol. We say that Π is statistical t-Byzantine robust if for any N ∈ N,
any database D ∈ {0, 1}N , any retrieval index i ∈ [N ], any subset I ∈

([ℓ]
t

)
of t servers, and

any tampering algorithm B for Π,

Pr(q,st)←Q(1N ,i)
[
C

(
1N ,B(I, q, D), st

)
= Di

]
≥ 1− ε(N),

for some negligible function ε(·), where the probability is over the randomness of Q and B.
We define perfect t-Byzantine robust by requiring the above to hold for ε(N) = 0 for all
N ∈ N. We define computational t-Byzantine robust by requiring the above to hold only for
ppt algorithms B.

3 Defining Security via The Real vs. Ideal World Paradigm

In this section, we present the security definition for PIR via the real vs. ideal world paradigm.
We present the definition for both full security (i.e., with guaranteed output delivery) and for
security-with-abort. We first define the real world execution, followed by the ideal worlds for
full security and security-with-abort. Then, we present the security definitions. Our main
contribution in the definition is defining the appropriate functionalities that are computed in
the ideal world.

The Real World
Let ℓ ∈ N and let Π = (Q,A, C) be an ℓ-server PIR protocol. Toward defining security, we
first describe an execution of Π in the presence of an adversary B. The adversary controls
a subset I ⊆ [ℓ] of the servers. It receives the database D ∈ {0, 1}N and the queries the
corrupted servers receive from the client, and instructs each server how to respond. We
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consider malicious adversaries that can instruct the corrupted servers to respond to the
client in an arbitrary way. At the end of the execution, the adversary outputs some function
of its view (i.e., its randomness, the database, and the queries it received from the client).
For a database size N ∈ N, a database D ∈ {0, 1}N , and a retrieval index i ∈ [N ], we let
VIEWreal

Π,B(N, D, i) and OUTreal
Π,B(N, D, i) denote the outputs of B and the client respectively in

an execution of Π. Finally, let

REALΠ,B(N, D, i) =
(

VIEWreal
Π,B(N, D, i), OUTreal

Π,B(N, D, i)
)

.

The Ideal World – Full Security
We next describe an ideal computation with guaranteed output delivery (also referred to as
full security) for PIR, where a trusted party T performs the computation on behalf of the
parties, and the ideal model adversary cannot abort the computation. Note that we only
consider adversaries that do not corrupt the client and corrupt a minority of the servers. The
input of the adversary is the input of the servers it corrupts, i.e., the database D. An ideal
computation with database size N ∈ N, on input a database D ∈ {0, 1}N for the servers
and retrieval index i ∈ [N ] for the client, in the presence of an adversary (a simulator) Sim
controlling a set I ⊆ [ℓ], proceeds as follows.
Parties send inputs to the trusted party: Each honest server Sj , i.e., j /∈ I, sends Dj := D

to the trusted party T. For each corrupted server Sj , i.e., j ∈ I, the adversary Sim sends
to T a database Dj ∈ {0, 1}N of its choice. If the server does not send any database,
then T sets Dj = 0N . The client sends i to T.

The trusted party performs the computation: If more than 1/2 of the databases equal
some D′, then the trusted party sends D′i to the client. Otherwise, send D1

i to the client.
Output: The client outputs whatever it received from T and the adversary outputs some

function of its view (i.e., its random string and the database D).
For a database size N ∈ N, a database D ∈ {0, 1}N , and a retrieval index i ∈ [N ], let
VIEWgod

Sim(N, D, i) and OUTgod
Sim(N, D, i) denote the outputs of Sim and the client respectively

in an execution of the above ideal world. Finally, let

IDEALgod
Sim(N, D, i) =

(
VIEWgod

Sim(N, D, i), OUTgod
Sim(N, D, i)

)
.

Note that the client always outputs Di if there is an honest majority.

The Ideal World – Security-With-Abort
We next describe an ideal computation with security-with-abort for PIR. Unlike the ideal
model for full security, here the adversary can abort the computation. An ideal computation
with database size N ∈ N, on input a database D ∈ {0, 1}N and index i ∈ [N ] for the client,
in the presence of an adversary (a simulator) Sim controlling a set I ⊆ [ℓ], proceeds as
follows.
Parties send inputs to the trusted party: Each honest server Sj sends Dj := D to the

trusted party T. For each corrupted server Sj , the adversary Sim sends to T a database
Dj ∈ {0, 1}N of its choice. If the server does not send any database, then T sets Dj = 0N .
The client sends i to T.

The trusted party performs the computation: If the databases that T received are not
identical, then T sends ⊥ to the client. Otherwise, it sends it D1

i .
Output: The client outputs whatever it received from T and the adversary outputs some

function of its view (i.e., its random string and the database D).
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For a database size N ∈ N, a database D ∈ {0, 1}N , and a retrieval index i ∈ [N ], let
VIEWswa

Sim(N, D, i) and OUTswa
Sim(N, D, i) denote the outputs of Sim and the client respectively

in an execution of the above ideal world. Finally, let

IDEALswa
Sim(N, D, i) = (VIEWswa

Sim(N, D, i), OUTswa
Sim(N, D, i)) .

Defining Security
Next, we define the security of a PIR protocol via the real vs. ideal world paradigm. We
define full security and security-with-abort.

▶ Definition 13 (Security via real vs. ideal paradigm). Let ℓ ∈ N, t ∈ [ℓ], and let Π = (Q,A, C)
be an ℓ-server PIR protocol. We say that Π is statistically t-fully secure if for every
adversary B controlling a set I ⊆ [ℓ] of at most t servers, there exists a simulator Sim
controlling the same subset I in the ideal world, such that{

IDEALgod
Sim(N, D, i)

}
N∈N,D∈{0,1}N ,i∈[N ]

S≡ {REALΠ,B(N, D, i)}N∈N,D∈{0,1}N ,i∈[N ] .

We say that Π is statistically t-secure-with-abort if the above holds with IDEALswa
Sim(N, D, i)

replacing IDEALgod
Sim(N, D, i).

Perfect t-security is defined by replacing S≡ with P≡ in the above equations. Computational
t-security is defined by replacing S≡ with C≡ and limiting both the real-world adversary B and
the ideal-world simulator Sim to be ppt algorithms.

▶ Remark 14. Standard security definitions following the real vs. ideal world paradigm
consider adversaries that receive auxiliary information. The same auxiliary information
is given to the real-world adversary and its simulator. This is necessary to argue that
composition of secure protocols remains secure. If we were to add this to the security
definition, then in order to argue that full security is equivalent to the privacy and Byzantine
robustness properties (see Theorem 15 below), we would have had to add the auxiliary
information to the privacy requirement (the statement and proof of equivalence remain the
same). We decided not to include the auxiliary information in the privacy definition since
this is not a common definition in the literature.

4 Comparing the Definitions

In this section, we compare the definitions given in the previous section. We start by showing
the equivalence between full security and the property-based security definition. Specifically,
we show that a PIR protocol is fully secure if and only if it is both private and Byzantine
robust (recall that Byzantine robustness implies correctness). The interesting direction is
showing the property-based security definition implies the real vs. ideal definition.

▶ Theorem 15. Let ℓ, t ∈ N be such that t < ℓ/2, let Π = (Q,A, C) be an ℓ-server PIR
protocol, and let type ∈ {computationally, statistically, perfectly}. Then, Π is type t-fully
secure if and only if it is type t-private and type t-Byzantine robust.

Proof. We prove the results for type = statistically. The other cases are similar. We first
prove that if Π is both statistically t-private and statistically t-Byzantine robust, then it
is statistically t-fully secure. Fix a real-world adversary B corrupting a set I of at most
t servers. We define its simulator Sim as follows. First, it sends to the trusted party the
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database D for every corrupted party. It then computes (q1, st1)← Q(1N , 1) (i.e., queries
for the index 1), sends q1

I to the adversary, and outputs whatever it outputs. Note that if B
and Q are ppt algorithms, then Sim is a ppt algorithm.

We now show that the statistical difference between the real and ideal worlds is negligible.
For a retrieval index i ∈ [N ] and a database D ∈ {0, 1}N , let yD,i denote the output of the
client in the real world. Note that it suffices to show that{(

qi
I , yD,i

)}
N∈N,D∈{0,1}N ,i∈[N ]

S≡
{(

q1
I , Di

)}
N∈N,D∈{0,1}N ,i∈[N ] , (1)

where (qi, sti)← Q(1N , i).
Fix an event T and let

∆ = Pr
[(

qi
I , yD,i

)
∈ T

]
− Pr

[(
q1
I , Di

)
∈ T

]
,

where the probabilities are over the execution of the real/ideal world. Then

∆ = Pr
[(

qi
I , yD,i

)
∈ T

]
− Pr

[(
q1
I , Di

)
∈ T

]
= Pr

[(
qi
I , yD,i

)
∈ T

]
− Pr

[(
qi
I , Di

)
∈ T

]
+ Pr

[(
qi
I , Di

)
∈ T

]
− Pr

[(
q1
I , Di

)
∈ T

]
.

Observe that by the t-privacy of Π,

Pr
[(

qi
I , Di

)
∈ T

]
− Pr

[(
q1
I , Di

)
∈ T

]
= neg(N).

Indeed, if this was not the case, then

Pr
[
qi
I ∈ TDi

]
− Pr

[
q1
I ∈ TDi

]
is non-negligible, where TDi

= {q : (q, Di) ∈ T }. Therefore,

∆ ≤ Pr
[(

qi
I , yD,i

)
∈ T

]
− Pr

[(
qi
I , Di

)
∈ T

]
+ neg(N)

= Pr
[(

qi
I , Di

)
∈ T

]
· Pr [yD,i = Di] + Pr

[(
qi
I , 1−Di

)
∈ T

]
· Pr [yD,i = 1−Di]

− Pr
[(

qi
I , Di

)
∈ T

]
+ neg(N).

By the t-Byzantine robustness of Π,

Pr [yD,i = 1−Di] = neg(N).

Thus,

∆ ≤ Pr
[(

qi
I , Di

)
∈ T

]
· Pr [yD,i = Di] + Pr

[(
qi
I , 1−Di

)
∈ T

]
· Pr [yD,i = 1−Di]

− Pr
[(

qi
I , Di

)
∈ T

]
+ neg(N)

= Pr
[(

qi
I , Di

)
∈ T

]
· (1− neg(N)) + Pr

[(
qi
I , 1−Di

)
∈ T

]
· neg(N)

− Pr
[(

qi
I , Di

)
∈ T

]
+ neg(N)

= Pr
[(

qi
I , Di

)
∈ T

]
− Pr

[(
qi
I , Di

)
∈ T

]
+ neg(N)

= neg(N).

We now prove the second direction. Assume that Π is statistically t-fully secure. We
first prove that Π is statistically t-private. Fix a set I of size t and consider the real-world
adversary B controlling the servers in I that outputs the queries it received from the client.
Then by assumption, there exists an ideal-world simulator Sim such that{

IDEALgod
Sim(N, D, i)

}
N∈N,D∈{0,1}N ,i∈[N ]

S≡ {REALΠ,B(N, D, i)}N∈N,D∈{0,1}N ,i∈[N ] . (2)
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In particular,{
VIEWgod

Sim(N, D, i)
}

N∈N,D∈{0,1}N ,i∈[N ]

S≡
{

VIEWreal
Π,B(N, D, i)

}
N∈N,D∈{0,1}N ,i∈[N ] .

Now, as Sim does not receive any message from the trusted party, it follows that its output
is independent of i. Thus,

VIEWgod
Sim(D, i) ≡ VIEWgod

Sim(D, i′)

for all D ∈ {0, 1}N and i, i′ ∈ [N ]. Therefore,{
VIEWreal

Π,B(N, D, i)
}

N∈N,D∈{0,1}N ,i,i′∈[N ]
C≡

{
VIEWreal

Π,B(N, D, i′)
}

N∈N,D∈{0,1}N ,i,i′∈[N ] .

Privacy follows from the fact that VIEWreal
Π,B(N, D, i) = qI , where (q, st)← Q(1N , i).

We now show that Π is statistically t-Byzantine robust. Fix a tampering algorithm B′
and consider the adversary B that instructs the corrupted server to respond by computing
B′. Then by Equation (2),∣∣∣Pr

[
OUTgod

Sim(N, D, i) = Di

]
− Pr

[
OUTreal

Π,B(N, D, i) = Di

]∣∣∣ ≤ ε(N),

for some negligible function ε(·). Since t < ℓ/2, in the ideal world, the client always outputs
Di. Thus, Pr

[
OUTreal

Π,B(N, D, i) = Di

]
≥ 1− ε(N). ◀

▶ Remark 16. Note that the above result holds for PIR protocols with more than a single
round. To see this, let the simulator run the client on input 1 and simulate the entire
execution of the protocol to generate the adversary’s view. The same analysis shows that
privacy and Byzantine robustness suffice to argue that the simulator succeeds.

For security-with-abort, we show that the real vs. ideal definition is strictly stronger than
the property-based security. The next theorem states that security-with-abort implies the
corresponding property-based security.

▶ Theorem 17. Let ℓ, t ∈ N, let Π = (Q,A, C) be an ℓ-server PIR protocol, and let
type ∈ {computationally, statistically, perfectly}. If Π is type t-secure-with-abort, then it is
type correct, type t-private, and type t-error-detecting.

Proof. We assume that type = statistically since the other cases are handled similarly. For
correctness, consider an adversary that does not corrupt any server. Then the output of the
client in the ideal world is Di. Therefore, in the real world, the client outputs Di except with
negligible probability. The proof that Π is statistically t-private is identical to the proof done
in Theorem 15 and is therefore omitted. We now show that Π is statistically t-error-detecting.
Fix a tampering algorithm B′ and consider the adversary B that instructs the corrupted
server to respond by computing B′. Then there is a simulator Sim such that∣∣Pr [OUTswa

Sim(N, D, i) = y]− Pr
[

OUTreal
Π,B(N, D, i) = y

]∣∣ ≤ ε(N),

for all y ∈ {0, 1,⊥}, where ε(·) is a negligible function. Since in the ideal world the client
never outputs 1−Di, it follows that Pr

[
OUTreal

Π,B(N, D, i) ∈ {Di,⊥}
]
≥ 1− ε(N). ◀

We next show that the converse does not hold: there exists an ℓ-server PIR protocol Π that
is correct, 1-private, and 1-error-detecting but is not computationally 1-secure-with-abort.
Intuitively, we construct a protocol where a malicious server can force a “selective abort”
of the client, that is, the adversary forces the client to abort if and only if it holds certain
indices i (e.g., i = 1). This is impossible to simulate since the simulation is independent of i.
We next formalize this intuition.
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▶ Example 18. Let Π be a perfectly 1-secure-with-abort PIR protocol (e.g., each server
sends D to the client; if all databases are the same, then the client outputs Di, else it aborts).
Consider the following PIR protocol Π′. The client computes the same queries as in Π, all
servers respond with the same messages, and additionally, the first server sends an additional
bit b ∈ {0, 1}. An honest server sends b = 0. If the client has input i = 1 and it received
b = 1 then it outputs ⊥. Otherwise, it proceeds as in Π. Clearly, Π′ is correct, 1-private, and
1-error-detecting.

We next show that Π′ is not 1-secure-with-abort. Intuitively, this is because the adversary
can force a probability for abort on i = 1 that is different from the probability on i ̸= 1
(although each server does not know i). Fix an adversary B that corrupts S1 and sends
b = 1, and assume towards contradiction that there exists a simulator Sim for it. Consider
an execution of Π′ with i← {1, 2} (i.e., i = 1 with probability 1/2 and i = 2 with probability
1/2) and D = 1N . Then in the real world,

Pri←{1,2}
[
i = 1, OUTreal

Π′,B(N, 1N , i) = ⊥
]

= Pri←{1,2}
[
i = 2, OUTreal

Π′,B(N, 1N , i) = 1
]

= 1
2 .

Let us analyze the ideal world. Let p denote the probability that Sim sends D = 1N to
the trusted party (and thus the client outputs 1). Since in the ideal world the simulator is
independent of i,

Pri←{1,2}
[
i = 1, OUTswa

Sim(N, 1N , i) = ⊥
]

= 1
2 · (1− p)

and

Pri←{1,2}
[
i = 2, OUTswa

Sim(N, 1N , i) = 1
]

= 1
2 · p.

Clearly, it cannot be the case where both values are 1/2 as in the real world, thus the two
worlds can be easily distinguished.

One might expect that the reason the above example worked is because the client aborts
with different probabilities for different inputs. We next show that adding such a requirement
is still insufficient to argue for simulation-based security. Roughly, this is done by letting
the client send to the first server a random index i′ that will inform the server whether the
client will abort on i′ (if the additional bit b from the previous example is 1). Thus, in the
real world, the adversary can choose for which inputs the client will abort, which cannot be
simulated in the ideal world. We next formalize this.

▶ Example 19. Let Π be a perfectly 1-secure-with-abort PIR protocol (e.g., the servers
send D to the client who then proceeds like the trusted party). Consider the following PIR
protocol Π′. The client computes the same queries as in Π and appends the first query a
random i′ ← [N ] sampled uniformly at random. All servers respond with the same messages,
and additionally, the first server sends an additional bit b ∈ {0, 1}. An honest server sends
b = 0. If the client has input i = i′ and it received b = 1, then it outputs ⊥. Otherwise, it
proceeds as in Π. Clearly, Π′ is correct, 1-private, 1-error-detecting, and the probability the
client aborts is 1/N if the first server cheats (and 0 otherwise). The formal argument that
Π′ is not secure-with-abort is similar to the previous example and is therefore omitted.
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5 A Generic Transformation From Private PIR to Secure-With-Abort
PIR

In this section, we show a generic transformation of a private PIR protocol to a secure-with-
abort protocol, based on Eriguchi et al. [24]. The original construction of [24] is insecure
according to Definition 13 (see Remark 26 below). However, we prove that a modification of
the construction is secure. We prove the following.

▶ Theorem 20. Let ℓ ∈ N, t ∈ [ℓ], and type ∈ {statistically, computationally}. There exists
a compiler that transforms any statistically correct and type t-private ℓ-server PIR protocol
Π to a type t-secure-with-abort protocol. Moreover, if the total communication complexity of
Π is c, then the new protocol has total communication complexity ℓ2 · ω(log N) · (c + ℓ log ℓ).

Proof. We prove the result for type = statistically. The case where type = computationally
follows from the fact that the simulator we construct is efficient (if the adversary is) and
from simple hybrid arguments. Let Π = (Q,A, C) be a statistically correct and statistically
t-private PIR protocol. The idea of the transformation is the following. First, the client
generates the queries q as in Π. Then, with probability 1/2, the client samples two indices
m1, m2 ∈ [ℓ] at random such that m1 ̸= m2, and sends qj to the jth server Sj for every
j ̸= m1, and sends (m2, qm2) to server Sm1 (i.e., query qm2 is a duplicate query). With
probability 1/2, the client sends qj to Sj for every j ∈ [ℓ] (without duplicating any of them).
We refer to the first kind of execution, where the client duplicated a query, as a test execution,
and we refer to the second kind of execution as a real execution. The jth server, upon
receiving qj , responds as Sj does in Π, and upon receiving (m2, qm2), Sm1 responds as Sm2

does in Π.
Notice that if in a test execution, Sm1 is honest, then the view of the adversary in this

case is identical to its view in a real execution. Thus, if the adversary cheats in the test
execution, then it cheats in the real execution.

We then let the parties repeat this process in parallel sufficiently many times. The output
of the client is defined as follows. If in one of the test executions, the client receives from
the servers Sm1 and Sm2 different answers, then one of them is malicious and so the client
aborts. Otherwise, the client computes the output of all of the real executions and outputs
the majority. Intuitively, if we repeat this sufficiently many times, then the adversary cannot
distinguish the real executions from most of the test executions. Therefore, if it cheats on too
many real executions, then the client will catch it in one of the test executions. Otherwise, it
will cheat on a minority of the real executions; hence, the correctness of the underlying PIR
protocol implies that the client will compute the correct value most of the time.

For convenience, instead of deciding at random and independently which execution is
a test and which is a real execution, we let the client randomly sample exactly half of the
executions to be real.4 We next formalize this.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

▶ Protocol 21 (Πswa = (Qswa,Aswa, Cswa)).
Inputs: The client holds the database length 1N and a retrieval index i ∈ [N ]. Each server
holds a database D ∈ {0, 1}N .
Let λ ∈ N be an integer such that λ/2 is odd to be determined by the analysis below.

4 Note that if Π is perfectly correct, our protocol achieves only statistical correctness since it could be the
case where the client duplicates a query in every execution of Π.
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The query algorithm: The client samples a set K ←
( [λ]

λ/2
)

uniformly at random and computes
(q1, st1), . . . , (qλ, stλ)← Q(1N , i) independently. It then does the following for all k ∈ [λ].
1. Sample a pair mk

1 , mk
2 ∈ [ℓ] of distinct elements independently and uniformly at random.

2. If k ∈ K then set q̂k
j = qk

j for all j ∈ [ℓ]. Otherwise, for every j ∈ [ℓ] \ {mk
1} set

q̂k
j = qk

j , and set q̂k
mk

1
= (mk

2 , qk
mk

2
).

Let st = K||((mk
1 , mk

2 , stk))k∈[λ]. The client sends (q̂1
j , . . . , q̂λ

j ) to the jth server.
The answer algorithm: For every k ∈ [λ] and j ∈ [ℓ], if server Sj receives q̂k

j = qk
j from

the client, it computes ak
j = A(j, q̂k

j , D). Else, it receives q̂k
j = (mk

2 , qk
mk

2
) and computes

ak
j = A(mk

2 , qk
mk

2
, D). It sends (a1

j , . . . , aλ
j ) to the client.

The reconstruction algorithm: The client computes yk = C(1N , ak
1 , . . . , ak

ℓ , stk) for all k ∈ K.
Output ⊥ if there exists k ∈ [λ] \ K such that and ak

mk
1
̸= ak

mk
2
. Otherwise, the client

outputs majk∈K{yk}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now show the security of Πswa. Fix an adversary B corrupting a set I ⊆ [ℓ] of at most t

servers. We define its simulator Sim whose input is D as follows. Sample (q̂, st)← Qswa(1N , 1)
and send q̂I to B. For every j ∈ I let aj denote the response B made for server Sj , and for
every j ∈ [ℓ] \ I let aj = Aswa(j, q̂j , D). Write st = K||((mk

1 , mk
2 , stk))k∈[λ]. If there exists

k ∈ [λ] \ K such that ak
mk

1
≠ ak

mk
2
, then send to the trusted party a different database for the

corrupted servers. Otherwise, send D as the input of every corrupted server. Finally, output
whatever B outputs and halt. We show that

{IDEALswa
Sim(N, D, i)}N∈N,D∈{0,1}N ,i∈[N ]

S≡ {REALΠswa,B(N, D, i)}N∈N,D∈{0,1}N ,i∈[N ] . (3)

To prove this, we first prove the following lemma, stating that B cannot force the client
to output 1−Di with noticeable probability.

▶ Lemma 22. Let noAbort be the event that ak
mk

1
= ak

mk
2

for every k ∈ [λ] \K (i.e., the client
did not output ⊥), and let Fail denote the event that majk∈K{yk} = 1−Di (i.e., the client
output the wrong value). Then

Pr [noAbort ∧ Fail] ≤ 2e−λ/64 + e−
λ

8ℓ(ℓ−1) + neg(N), (4)

where the probability is over the random coins of the client and the adversary.

Proof. We prove that the bound holds for any fixed randomness of the adversary. In the
following, we assume the randomness of B and the queries of the client before duplication
(i.e., q1, . . . , qλ) are fixed. Observe that for every k ∈ [λ], the adversary cannot distinguish
the case where k ∈ K and the case where k /∈ K and mk

1 /∈ I. Therefore, if it instructs a
server to cheat in one case, then it will instruct it to cheat in the other case.

To this end, we say that a server Sj cheated in execution k if its answer is different from
A(j, qk

j , D). That is, if it were to receive its original query before duplicating, then it would
send a different answer. Let

A = {k ∈ [λ] : ∃j ∈ I s.t. Sj cheated in execution k} ,

i.e., A denotes the set of all executions where the adversary cheated. As we fixed the
randomness of the adversary and q1, . . . , qλ, the set A is properly defined. We show that if
|A| is too large, then the client will catch the adversary with overwhelming probability in
one of the test executions, and if it is too small, then it is unlikely that the majority of the
outputs computed for the real execution will be incorrect. We separate the proof into two
cases.
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We first analyze the probability in (4) assuming |A| < 3λ/8. We show that it is unlikely
that the client outputs the wrong value. That is, we show Fail occurs with low probability.
Observe that the expectation of |A ∩ K| is at most |A|/2 < 3λ/16. By Hoeffding’s inequality
(Theorem 6), it follows that

PrK←( [λ]
λ/2)

[
|A ∩ K| ≥ λ

4

]
≤ PrK←( [λ]

λ/2)

[
|A ∩ K| − 3λ

16 ≥
λ

16

]
≤ e−λ/64.

Let k ∈ K\A, i.e., the kth execution is an honest real execution. By the statistical correctness
of the original PIR protocol, the probability that the client outputs 1−Di in the kth execution
of the protocol is negligible. Therefore,

Pr [Fail] = Pr
[
majk∈K

{
yk

}
= 1−Di

]
= Pr

[
|A ∩ K| ≥ λ

4

]
· Pr

[
majk∈K

{
yk

}
= 1−Di

∣∣∣|A ∩ K| ≥ λ

4

]
+ Pr

[
|A ∩ K| < λ

4

]
· Pr

[
majk∈K

{
yk

}
= 1−Di

∣∣∣|A ∩ K| < λ

4

]
≤ Pr

[
|A ∩ K| ≥ λ

4

]
+ Pr

[
majk∈K

{
yk

}
= 1−Di

∣∣∣|A ∩ K| < λ

4

]
≤ e−λ/64 + Pr

[
∃k∈K\A yk = 1−Di

∣∣∣|A ∩ K| < λ

4

]
≤ e−λ64 + neg(N).

We now analyze the probability in (4) assuming |A| ≥ 3λ/8. We show that in this case,
the client will catch the adversary cheating with high probability. Since the expectation of
|A ∩ K| is at least |A|/2 ≥ 3λ/16, by Hoeffding’s inequality, it follows that

PrK←( [λ]
λ/2)

[
|A ∩ K| ≤ λ

8

]
≤ PrK←( [λ]

λ/2)

[
|A ∩ K| − 3λ

16 ≤ −
λ

16

]
≤ e−λ/64.

Next, for every k ∈ A∩K let Caughtk be the event that mk
1 /∈ I and mk

2 cheated in execution
k (that is, it is the event the adversary got caught cheating in the kth execution). Fix an
honest server h ∈ [ℓ] \ I, and for every k ∈ A∩K fix a server ck ∈ I that cheated execution k.
Observe that for every k ∈ A∩K the client will catch the adversary with probability at least

Pr
[
Caughtk

∣∣k ∈ A
]
≥ Pr

[
mk

1 = h, mk
2 = ck

∣∣k ∈ A
]
≥ 1

ℓ(ℓ− 1) .

Now, observe that for every k ∈ [λ] \ K, if ak
mk

1
= ak

mk
2

then either the adversary did not
cheat on the kth execution or Caughtk did not occur. Therefore,

Pr [noAbort] = Pr
[
∀k∈[λ]\K ak

mk
1

= ak
mk

2

]
≤ Pr

[
∀k∈([λ]\K)∩A ¬Caughtk

]
= Pr

[
|A ∩ K| ≤ λ

8

]
· Pr

[
∀k∈([λ]\K)∩A ¬Caughtk

∣∣∣|A ∩ K| ≤ λ

8

]
+ Pr

[
|A ∩ K| > λ

8

]
· Pr

[
∀k∈([λ]\K)∩A ¬Caughtk

∣∣∣|A ∩ K| > λ

8

]
≤ e−λ/64 + Pr

[
∀k∈A∩K ¬Caughtk

∣∣∣|A ∩ K| > λ

8

]
≤ e−λ/64 +

(
1− 1

ℓ(ℓ− 1)

)λ/8

≤ e−λ/64 + e−
λ

8ℓ(ℓ−1) .
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We conclude that

Pr [noAbort ∧ Fail] ≤ 2e−λ/64 + e−
λ

8ℓ(ℓ−1) + neg(N). ◀

We now use Lemma 22 to show that Equation (3) holds. Specifically, we show that
conditioned that the event noAbort ∧ Fail does not occur, the two ensembles are statistically
close. First, note that by the t-privacy of Π, the queries that B receives in the real world
are statistically close to the queries it receives from Sim in the ideal world. Therefore, its
responses are statistically close. Now, if the client aborts in the real world, then there exists
a test execution where it gets different responses. Thus, the same holds in the ideal world
(except with negligible probability), hence the simulator changes its database. This means
that in both worlds, the client outputs ⊥. Otherwise, since we condition on noAbort ∧ Fail
not occurring, the client outputs Di in both worlds. Finally, setting λ = ω(ℓ2 · log N) implies
that noAbort ∧ Fail occurs with negligible probability, which completes the proof. ◀

Using the t-private ℓ-server PIR protocol of Woodruff and Yekhanin [46] we obtain the
following.

▶ Corollary 23. For every ℓ ∈ N and t ∈ [ℓ− 1] there exists a t-secure-with-abort ℓ-server
PIR protocol with communication complexity

ω(log N) · ℓ4

t
· log ℓ ·N1/⌊(2ℓ−1)/t⌋.

Applying Theorem 20 to the protocol resulting from the compiler of Barkol et al. [5] applied
to the 2-server protocol of Dvir and Gopi [20] yields the following.

▶ Corollary 24. For every t ∈ N, there exists a t-secure-with-abort 2t-server PIR protocol
with communication complexity

2max
{

Õ
(√

log N
)

,t log t
}

.

Finally, for 3t-server PIR protocols, Barkol et al. [5] and Efremenko [22] gives the following.

▶ Corollary 25. For every t ∈ N, there exists a t-secure-with-abort 3t-server PIR protocol
with communication complexity

32t ·max
{

t2Õ
(√

log N
)
, t · 3t

}
.

▶ Remark 26 (On the insecurity of the compiler of [24]). In the original construction of
Eriguchi et al. [24], instead of computing majk∈K{yk}, the client also tests whether all of
these values are equal. If not, it outputs ⊥, and if they are equal, the client outputs this
value. Although their protocol is correct, t-private, and t-error-detecting, it is not t-secure-
with-abort. Intuitively, this is because in the underlying protocol Π the adversary can cause
the client to output an incorrect value for different inputs i (recall that Π is not guaranteed
to satisfy any robustness property). This causes the client to abort only on certain inputs;
thus it has the same selective abort issue presented in Examples 18 and 19. We next give
details.

Consider the protocol Π, where each server sends D to the client, and the client computes
the output as follows. If i = 1 then output the ith entry of the database sent by S1, and
otherwise, output the ith entry of the database sent by S2. Clearly this protocol is correct
and private. However, the compiled protocol of Eriguchi et al. [24] is not 1-secure-with-abort
since an adversary corrupting S1 can force the client to output an incorrect value only on
i = 1. Therefore, the client will abort only when i = 1.
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