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Abstract
Fundamental principles of quantum mechanics have inspired many new research directions, partic-
ularly in quantum cryptography. One such principle is quantum no-cloning which has led to the
emerging field of revocable cryptography. Roughly speaking, in a revocable cryptographic primitive,
a cryptographic object (such as a ciphertext or program) is represented as a quantum state in such
a way that surrendering it effectively translates into losing the capability to use this cryptographic
object. All of the revocable cryptographic systems studied so far have a major drawback: the
recipient only receives one copy of the quantum state. Worse yet, the schemes become completely
insecure if the recipient receives many identical copies of the same quantum state – a property that
is clearly much more desirable in practice. While multi-copy security has been extensively studied
for a number of other quantum cryptographic primitives, it has so far received only little treatment
in context of unclonable primitives. Our work, for the first time, shows the feasibility of revocable
primitives, such as revocable encryption and revocable programs, which satisfy multi-copy security
in oracle models. This suggest that the stronger notion of multi-copy security is within reach in
unclonable cryptography more generally, and therefore could lead to a new research direction in the
field.
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1 Introduction

Designing mechanisms to provably revoke cryptographic capabilities is an age-old problem [46,
45]. In the public-key infrastructure, certificate authorities have the ability to invalidate
public-key certificates [49], especially when the certificates have been compromised. Key
rotation policies [29] guarantee that outdated decryption keys become ineffective for future
use. The existing approaches to tackle with this problem have their limitations owing to the
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fact that cryptographic secrets are represented as binary strings and hence, it is infeasible to
provably ensure that the malicious attackers have erased information from their devices. In
the context of key rotation, a compromised key can still be used to decrypt old ciphertexts.
Another issue with using classical information to represent cryptographic keys is that it is
difficult to detect compromise: a hacker could steal the classical key from a device without
leaving a trace.

Recently, a line of works [47, 11, 5, 13, 28, 41, 8] have leveraged quantum information and
proposed new approaches for provable revocation of cryptographic objects, such as ciphertexts,
programs and keys. These works studied revocation in the context of many Crypto 101
primitives, including pseudorandom functions, private-key and public-key encryption and
digital signatures. In a revocable cryptographic primitive, an object (such as a program or
a decryption key, etc.) is associated with a quantum state in such a way that only with
access to the state the functionality of the original cryptographic object is retained. The
common template for defining revocable security is in the form of a cryptographic game:
The adversary receives one copy of the quantum state that it can use for a limited period of
time after which it is supposed to return back the state to the owner. The security guarantee
stipulates that after the state is returned, the adversary effectively loses the capability to
use the cryptographic object. At this point, it should be clear to the reader the necessity
that such cryptographic objects are represented as quantum states: indeed, if they were
classical, the adversary could always maintain a secret copy, while pretending to have erased
everything from its device. On the other hand, the no-cloning theorem [50, 32] of quantum
mechanics suggests that the above security experiment could very well be achieved.

Multi-Copy Security

Let us now zoom in on the part of the security experiment, where the adversary receives only
one copy of the quantum state. In all of the prior works in the literature so far [5, 13, 28, 41, 8],
this limitation persists. One could consider a more general definition, where the adversary
receives k identical copies of the quantum state and is later asked to return back all of the
copies of the state. The security guarantee is similar to before: after returning all of the
k copies, the adversary should effectively lose all access to the underlying crytptographic
object. We term this general security experiment to be multi-copy security.

There are a couple of reasons to study multi-copy security for revocable primitives.
Historical Context: Multi-copy security is not new and has been extensively studied
in quantum cryptography, especially in the context of foundational primitives such as
pseudorandom states [35, 23, 14, 7, 21, 22] and one-way state generators [43, 42]. Indeed,
multi-copy security has been crucial in the design of many cryptographic constructions.
The works of [7, 12, 37] used tomography, which inherently requires multiple copies in
order to dequantize the communication in some of the quantum cryptographic primitives.
Specifically for revocable primitives, a conceptual reason to study multi-copy security is
to understand whether having more copies necessarily makes it easier for the adversary
to clone quantum states. Investigating multi-copy security for revocable primitives is a
starting step towards understanding multi-copy security for more advanced primitives
such as public-key quantum money [3, 52]. The question of whether multi-copy security
is possible in unclonable cryptography was also recently raised in [40].
Nested Leasing: Having access to many more copies of the quantum state would also
give more power to the user; for example, using a permutation test [36] (a generalized
version of SWAP test) where one is given |ϕ⟩ and polynomially many copies of |ψ⟩, one
can approximately test the overlap between |ϕ⟩ and |ψ⟩. This ability allows for nested
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leasing of cryptographic objects, such as programs or keys. Suppose a user A is leased a
large number of, say k, copies of a quantum program |ψ⟩. User A could further lease a
number, say k′ ≪ k, of copies of |ψ⟩ to user B. At a later point in time, when user B
is asked to return back its copies to user A. User A can then use its k − k′ copies to
approximately test whether the returned copies are correct. If the test succeeds, user A
then is in a position to return back all of its k copies to the true owner1. Such a nested
leasing approach could be especially useful in organizations with hierarchical structure.

The notion of multi-copy security we consider in this work is closely related to collusion-
resistant security, considered in the works of [39, 27]. The crucial difference is that in the
prior works, the adversary receives i.i.d copies of the quantum key whereas in our case, the
adversary receives identical copies of the quantum key. In the nested leasing application
discussed above, it was crucial that the user received many identical copies of the same state.

Multi-copy security using commonly studied unclonable states: Challenges

The first step towards addressing multi-copy security is to identify quantum states that are
unclonable. We discuss the commonly studied unclonable quantum states below:

BB84 states: these states are of the form Hθ |x⟩, where θ ∈ {0, 1}n and x ∈ {0, 1}n.
These states have been influential in the design of private-key quantum money [48] and in
the design of encryption schemes with unclonable ciphertexts [26, 24]. Given many copies
of Hθ |x⟩, one can learn x and θ and hence, recover a complete description of Hθ |x⟩.
Subspace and Coset states: these states are of the form (

√
|A|)−1 ·

∑
x∈A |x⟩, where

A ⊆ Fn2 is a sparse subspace of Fn2 , for some n ∈ N. These states have been crucial in
the design of public-key quantum money [3, 52], among other primitives. Again given
many copies, one can learn the basis of the subspace and hence a complete description
of the subspace state. Another related class of unclonable states are coset states which
are superpositions over a coset (rather than a subspace) and moreover, each term in the
superposition has a phase that depends on a dual coset. Coset states have been influential
in constructions of quantum copy-protection [30]. Similar to subspace states, coset states
are also learnable.
SIS-based states: these states are of the form

∑
x∈Zm

q ,Ax=y αx |x⟩, where q,m ∈ N,
|αx|2 is a discrete Gaussian distribution such that most of the weight is on low norm
vectors x and finally, A ∈ Zn×mq ,y ∈ Znq . They were useful in designing traditional and
advanced encryption systems with unclonable quantum keys [44, 13, 41, 8]. Given many
copies of this state, one can recover a short basis of the kernel of A which can then be
used to recover the above state.

In other words, all the above types of states are learnable and hence, they cannot be the
basis of any unclonable cryptographic scheme satisfying multi-copy security. This suggests
that we need to look for new unclonable quantum states that are unlearnable even given
many copies. In the past, discovering new unclonable quantum states has led to pushing the
frontier of unclonable quantum cryptographic primitives and we believe our endeavour could
reap similar results.

1 A drawback of this approach is that there is some room for user B to cheat with noticeable probability
in this approach without user A noticing, which means that the owner would not always be to pinpoint
whether user A or user B cheated. Still, this approach offers a non-trivial solution to this challenging
problem.

ITC 2025
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2 Our Results

We now give an overview of our results.

Our Approach: Quantum Pseudorandomness Meets Unclonable Cryptography

We use subset states to tackle multi-copy security. Subset states have been recently studied
in the context of quantum pseudorandomness [33, 34, 2]. A subset state is associated with an
unstructured and random subset S ⊂ {0, 1}n of the form |S⟩ = (

√
|S|)−1∑

x∈S |x⟩. Several
recent works [33, 34] showed that random subset states (of non-trivial size) are approximate
state k-designs for any polynomial k as a function of n ∈ N, which make random subset
states2 a natural candidate for multi-copy security – particularly since Haar states are
unlearnable given polynomially many identical copies. At first sight, it would seem as though
that the fact that random subset states are close to Haar states should be discourage us
from using them for unclonable cryptography, especially since Haar states have virtually no
structure. Indeed, the structure of BB84 states, subspace states and others has been crucially
exploited in various applications. Our work shows that subset states, in some sense, have
the minimal amount of structure to enable a number of interesting cryptographic primitives
in the context of multi-copy revocable cryptography. To the best of our knowledge, these
applications also mark the first use case of subset states in the context of cryptography. Our
main technical contribution is of information-theoretic nature: we prove a query lower bound
for forging subset elements; concretely, we show that any quantum algorithm that receives k
copies of a random subset state |S⟩ cannot produce k + 1 many subset elements in S unless
it makes a large amount of queries to a membership oracle for S. We believe that this result
could be of independent interest.

Multi-Copy Revocable Encryption. We first study revocable encryption [47, 5, 13] with
multi-copy security. A revocable encryption scheme is a regular encryption scheme but where
the ciphertexts are associated with quantum states. Additionally, a revocable encryption
scheme comes with the following security notion called multi-copy revocable security: in-
formally, it states that any adversary that successfully returns k valid copies of a quantum
ciphertext which it was given by a challenger, where k is an arbitrary polynomial, necessarily
loses the ability to decrypt the ciphertexts in the future – even if the secret key is revealed.
In more detail, the security game is formulated as follows:

The adversary selects a pair of messages (m0,m1) and sends them to the challenger.
The challenger randomly selects one of the two messages, say mb, and encrypts it k times
using a secret ket sk, and sends the ciphertext copies |ψb⟩⊗k to the adversary A.
At a later point in time, A returns back all the copies of |ψb⟩, which are then verified by
the challenger.
After successfully returning back the states, A receives the secret key sk in the clear.
Finally, A outputs a guess b′.

The scheme is said to be secure if the probability that b′ = b is close to 1/2.
Prior works [47, 5, 13, 28, 8] only studied variants of the above security game in the

setting where the adversary receives only one copy of the quantum ciphertext. In fact, their
schemes are easily seen to not satisfy multi-copy security. We show the following.

2 Strictly speaking, we use pseudorandom subset states which can be generated efficiently via pseudorandom
permutations.
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▶ Theorem 1. If post-quantum one-way functions exist, then there exists an encryption
scheme with (an oracular notion of) multi-copy revocable security.

Some remarks are in order. Firstly, our security proof does not fully achieve the standard
notion of revocable security guarantee we stated above; rather, we consider a slightly different
variant of the experiment, where in the second part of the game (instead of revealing the
secret key in the clear) we allow the adversary to query an oracle that is powerful enough to
enable decryption during the first phase of the game. While this constitutes a weaker notion
of security, it nevertheless results in a meaningful notion of revocable security: once the
adversary has successfully returned all of the copies of the ciphertext, it can no longer decrypt
the ciphertext in the future – even if it gets access to an oracle that would have previously
allowed it to do so. Second, our construction of multi-copy revocable encryption makes
use of quantum-secure pseudorandom permutations (QPRPs), which can be constructed
from post-quantum one-way functions [51]. In the security experiment which underlies our
construction, the aforementioned oracle for decryption (i.e., that which is handed to the
adversary after revocation has taken place) is in the form of an ideal oracle for the permutation
itself. Once again, the rationale behind our notion of oracular security is that an attacker
who receives a QPRP key in the clear would most certainly use it to evaluate the QPRP, and
hence it is reasonable to consider a model in which the attacker receives an oracle for the
permutation instead.3 A key advantage of oracular security is that we can directly invoke
the security of the QPRP and use a perfectly random permutation instead. 4 We remark
that this model loosely resembles the random permutation model behind the international
hash function standard SHA-3 [19, 20], except that the adversary only receives oracle access
to the permutation during the second part of the revocable security experiment. While our
construction only achieves an oracular notion of revocable security, it is nevertheless the very
first construction of revocable encryption which satisfies multi-copy security in any model.

Multi-Copy Revocable Programs

Our previous discussion on revocable encryption illustrates that encryption and decryption
functionalities can be protected even if many copies of the quantum ciphertext are made
available to the recipient. We generalize this result further and study whether arbitrary
functionalities can be protected. We define and study revocable programs with multi-copy
security. In this notion, there is a functionality preserving compiler that takes a program
and converts it into a quantum state. The security guarantee is defined similar to revocable
encryption:

The challenger compiles a program P , sampled from a distribution D on a set of programs
P, into a state |ψP ⟩. It then sends k copies of the state |ψP ⟩ to the adversary A.
At a later point in time, A returns back all of the copies of |ψP ⟩.
After returning back the state, A is given x, where x is sampled from the input distribution
of P . It then outputs a guess y.

The scheme is said to be secure if the probability that y = P (x) is roughly close to the
trivial success probability. Here, the trivial success probability is defined as the optimal
probability of guessing P (x) given just x (and the knowledge of D and the input distribution).

3 Note, however, that this does not capture all possible attacks; for example, the adversary could use its
knowledge of the QPRP key to break the scheme in other meaningful ways.

4 This switch is generally not possible in the standard notion of revocable security in which the QPRP
key is required to revealed in the clear. Here, QPRP security does not apply.

ITC 2025
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Prior works propose revocable programs for specific functionalities in the plain model [30]
or for general functionalities in oracle models [4]. However, these works guarantee security
only if the adversary receives one copy of the state. And as before, these constructions
provably do not satisfy multi-copy security. We show the following.

▶ Theorem 2. There exist revocable programs which satisfy (an oracular notion of) multi-copy
security in a classical oracle model.

Unlike Theorem 1, the above theorem relies upon structured and ideal classical oracles.
Finally, for the special case of point functions, we show that we can again only rely upon

pseudorandom permutations together with the (standard) quantum random oracle model.
We show the following.

▶ Theorem 3. There exist revocable multi-bit point functions which satisfy (an oracular
notion of) multi-copy security in quantum random oracle model.

Our results and techniques opens the door for building more advanced unclonable primitives
that preserve their security even if the adversary receives many copies of the unclonable
quantum state.

Are Results in Oracle Models Interesting?

It is natural for a reader to be skeptical of our results given that they are based in the oracle
models. However, we would like to emphasize that achieving results in the oracle models still
requires non-trivial amount of effort. As history suggests, constructions in the oracle models
have eventually been adopted to constructions in the plain model. A classic example is the
construction of public-key quantum money, which was first proposed in the oracle models by
Aaronson and Christiano [3] and later, being instantiated in the plain model by Zhandry [52].
In a similar vein, our techniques could be useful for future works on achieving multi-copy
security in the plain model.

Applications to Sponge Hashing

As a complementary contribution, we show that the techniques we developed in this paper
are more broadly applicable and extend to other cryptographic settings as well. Here, we
single out the so-called sponge construction used in SHA-3 [19, 20].

We study a simple query problem: Suppose that an adversary receives as input a hash
table for a set of random input keys, where each hash is computed using a salted (one-round)
sponge hash function. How many quantum queries are necessary to find a new valid element
in the range of the hash function? Our contribution is a space-time trade-off which precisely
characterizes the hardness of finding hash table elements in the presence of oracles that
depend non-trivially on the sponge hash function.

2.1 Related work
We now discuss related notions which are relevant to this work.

Copy-Protection

This notion was first introduced by Aaronson [1]. Informally speaking, a copy-protection
scheme is a compiler that transforms programs into quantum states in such a way that
using the resulting states, one can run the original program. Yet, the security guarantee
stipulates that any adversary given one copy of the state cannot produce a bipartite state
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wherein both parts compute the original program. Copy-protection schemes have since been
constructed for various classes of programs and under various different models, for example
as in [1, 4, 31, 9, 10, 39, 27]. We remark, however, that all of the aforementioned works
are completely insecure if multiple identical copies of the program are made available. The
notion of multi-copy security we consider in this work is closely related to collusion-resistant
security, considered in the works of [39, 27]. The crucial difference is that in the prior works,
the adversary receives i.i.d copies of the quantum key whereas in our case, the adversary
receives identical copies of the quantum key.

Secure Software Leasing

Another primitive relevant to revocable cryptography is secure software leasing [11]. The
notion of secure software leasing states that any program can be compiled into a functionally
equivalent program, represented as a quantum state, in such a way that once the compiled
program is returned, the (honest) evaluation algorithm on the residual state cannot compute
the original functionality. Secure leasing has been constructed for various functionalities [11,
31, 25, 38]. Similar to copy-protection, none of the aforementioned works consider multi-copy
security.

Encryption Schemes with Revocable Ciphertexts

Unruh [47] proposed a (private-key) quantum timed-release encryption scheme that is
revocable, i.e. it allows a user to return the ciphertext of a quantum timed-release encryption
scheme, thereby losing all access to the data. Broadbent and Islam [24] introduced the
notion of certified deletion, which is incomparable with the related notion of unclonable
encryption. This has led to the development of other certified deletion protocols, for example
as in Ref. [44, 15, 17, 16, 18]. However, the notion of multi-copy security, such as in our
work, has not been studied.

3 Preliminaries

Let λ ∈ N denote the security parameter throughout this work. We assume that the reader
is familiar with the fundamental cryptographic concepts.

For N ∈ N, we use [N ] = {1, 2, . . . , N} to denote the set of integers up to N . The
symmetric group on [N ] is denoted by SN . In slight abuse of notation, we oftentimes
identify elements x ∈ [N ] with bit strings x ∈ {0, 1}n via their binary representation
whenever N = 2n and n ∈ N. Similarly, we identify permutations π ∈ SN with permutations
π : {0, 1}n → {0, 1}n over bit strings of length n. For a bit string x ∈ {0, 1}n, we frequently
use the notation (x||∗), where ∗ serves as a placeholder to denote the set {(x||y) : y ∈ {0, 1}m},
where m ∈ N is another integer which is typically clear in context.

We write negl(·) to denote any negligible function, which is a function f such that, for
every constant c ∈ N, there exists an integer N such that for all n > N , f(n) < n−c.
▶ Lemma 4 (One-Way-to-Hiding Lemma, [6]). Let X ,Y be arbitrary sets and let S ⊆ X be a
(possibly random) subset. Let G,H : X → Y be arbitrary (possibly random) functions such
that H(x) = G(x), for all x /∈ S. Let z be a classical bit string or a (possibly mixed) quantum
state (Note that G,H, S, z may have arbitrary joint distribution). Let A be an oracle-aided
quantum algorithm that makes at most q quantum queries. Let B be an algorithm that on
input z chooses a random query index i ← [q], runs AH(z), measures A’s i-th query and
outputs the measurement outcome. Then, we have∣∣Pr

[
AG(z) = 1

]
− Pr

[
AH(z) = 1

]∣∣ ≤ 2q
√

Pr[BH(z) ∈ S].

ITC 2025
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Moreover, for any fixed choice of G,H, S and z (when z is a classical string or a pure state),
we get

∥∥ ∣∣ψHq 〉− ∣∣ψGq 〉 ∥∥ ≤ 2q

√√√√1
q

q−1∑
i=0

∥∥ΠS
∣∣ψHi 〉 ∥∥2

,

where
∣∣ψHi 〉 denotes the intermediate state of A just before the (i+ 1)-st query, where the

initial state at i = 0 corresponds to z, and ΠS is a projector onto S.

Pseudorandom Permutations

A quantum-secure pseudorandom permutation is a a bijective function family which can be
constructed from quantum-secure one-way functions [51].

▶ Definition 5 (QPRP). Let λ ∈ N denote the security parameter. Let P : {0, 1}λ ×
{0, 1}n → {0, 1}n be a function, where n(λ) = poly(λ) is an integer, such that each function
Pk(x) = P (k, x) in the corresponding family {Pk}k∈{0,1}λ is bijective. We say P is a (strong)
quantum-secure pseudorandom permutation (or QPRP) if, for every QPT A with access to
both the function and its inverse, it holds that∣∣∣∣ Pr

k∼{0,1}λ

[
APk,P

−1
k (1λ) = 1

]
− Pr
φ∼Pn

[
Aφ,φ

−1
(1λ) = 1

]∣∣∣∣ ≤ negl(λ) ,

where Pn denotes the set of permutations over n-bit strings.

Subset States

We consider the following notations.
We denote the set of distinct k-tuples over a set S by dist(S, k).
Suppose S is a set. We denote |S⟩ = 1√

|S|

∑
x∈S |x⟩.

Suppose X = {x1, . . . , xt} ⊆ {0, 1}n. We denote |σX⟩ = 1
t!
∑
σ∈St

∣∣xσ(1), . . . , xσ(t)
〉
,

where St denotes the symmetric group on [t].

We use the following lemma which follows from Propositions 3.3 and 3.4 in [34].

▶ Lemma 6 ([34]). Let n, k ∈ N. Let T ⊆ {0, 1}n be a subset of size |T | = t. Then, it holds
that

TD

 E
S⊆T
|S|=s

[
|S⟩⟨S|⊗k

]
, E
X⊆T
|X|=k

[
|σX⟩⟨σX |

] ≤ O

(
k√
s

+ sk

t

)
.

4 k 7→ k + 1 Unforgeability of Subset States

We now prove the following theorem. Roughly speaking, our theorem says that any quantum
algorithm which receives k copies of a random subset state |S⟩ (and a membership oracle
for S) cannot find k + 1 distinct elements in S with high probability unless it makes a large
number of queries.
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▶ Theorem 7 (k 7→ k + 1 Unforgeability of Subset States). Let n ∈ N and k ∈ N. Then, for
any q-query quantum oracle algorithm A, and any 1 ≤ k < s < t ≤ 2n, it holds that

Pr
S⊆{0,1}n

|S|=s

[
(x1, . . . , xk+1) ∈ dist(S, k + 1) : (x1, . . . , xk+1)← AOS (|S⟩⊗k)

]

≤ O

(
q ·
√
t− s
2n + q ·

√
t− k
2n + k√

s
+ sk

t

)
+ negl(n).

In particular, we can let k = poly(n), q = poly(n) and s(n) = nω(1) be superpolynomial.
Then, for any t(n) = nω(1) with s(n)/t(n) = 1/nω(1) and t(n)/2n = 1/nω(1), the probability
is at most negl(n).
Proof. Using Lemma 8, we can prove Theorem 7 as follows: Let’s assume for contradiction
that there exists a q query quantum oracle algorithm A, and a 1 ≤ k < s < t ≤ 2n, such that

Pr
S⊆{0,1}n

|S|=s

[
(x1, . . . , xk+1) ∈ dist(S, k + 1) : (x1, . . . , xk+1)← AOS (|S⟩⊗k)

]

= O

(
q ·
√
t− s
2n + q ·

√
t− k
2n + k√

s
+ sk

t

)
+ δ(n).

where δ(.) is some non negligible function. Then, from Lemma 8, this implies that,

Pr
X⊆{0,1}n,|X|=k

[
(x1, . . . , xk+1) ∈ dist(X, k + 1) : (x1, . . . , xk+1)← AOX (|σX⟩)

]
≥ δ(n)

However, the probability that A can succeed in this experiment is 0. This is because, X only
contains k elements, and therefore, A can never produce k + 1 distinct elements from X.
This must imply that δ(n) is negligible. ◀

Technical Lemma

We need to show the following lemma which made use of in Theorem 7.
▶ Lemma 8. Let n, k, t ∈ N be integers such that 1 ≤ k < s < t ≤ 2n. Then, for any q-query
quantum oracle algorithm D which outputs a single bit, it holds that∣∣∣∣∣ Pr

S⊆{0,1}n

|S|=s

[
DOS

(
|S⟩⊗k

)
= 1
]
− Pr
X⊆{0,1}n

|X|=k

[
DOX (|σX⟩) = 1

] ∣∣∣∣∣
≤ O

(
q ·
√
t− s
2n + q ·

√
t− k
2n + k√

s
+ sk

t

)
.

Proof. Consider the following hybrid distributions.

H1. Output DOS (|S⟩⊗k), where S ⊆ {0, 1}n is a random subset of size |S| = s.

H2. Output DOS (|S⟩⊗k), where the subset S is sampled as follows: first, sample a random
subset T ⊆ {0, 1}n of size |T | = t, and then let S ⊆ T be a random subset of size |S| = s.

Let p(Hi) be the probability that Hi outputs 1, for some i. We now show the following.
▷ Claim 9. p(H2) = p(H1).
Proof. The distribution of sampling S ⊆ {0, 1}n of size |S| = s is identical to the distribution
of first sampling a superset T ⊆ {0, 1}n of size |T | = t, and letting S ⊆ T be a random subset
of size |S| = s. ◁

ITC 2025



9:10 Revocable Encryption, Programs, and More: The Case of Multi-Copy Security

H3. Output DOT (|S⟩⊗k), where the subset S is sampled as follows: first, sample a random
subset T ⊆ {0, 1}n of size |T | = t, and then let S ⊆ T be a random subset of size |S| = s.

▷ Claim 10.

|p(H3)− p(H2)| ≤ O
(
q ·
√
t− s
2n

)
.

Proof. We can model the quantum oracle algorithm DOS on input |S⟩⊗t as a sequence of
oracle queries and unitary computations followed by a measurement. Thus, the final output
state just before the measurement can be written as∣∣ΨS

q

〉
= UqOSUq−1 . . . U1OSU0 |ψ0⟩ |S⟩⊗k ,

where U0, U1, . . . , Uq are unitaries (possibly acting on additional workspace registers, which
we omit above), and where |ψ0⟩ is some fixed initial state which is independent of S.

In the next step of the proof, we will use the “subset flooding” technique to drown S in a
random superset. Let T ⊆ {0, 1}n be a random superset of S of size t > s. We now consider
the state∣∣ΨT

q

〉
= UqOTUq−1 . . . U1OTU0 |ψ0⟩ |S⟩⊗k .

We now claim that the states
∣∣ΨS

q

〉
and

∣∣ΨT
q

〉
are sufficiently close. From the definition of

OT and OS , we have that OT (x) ̸= OS(x) iff x ∈ T\S ⊂ {0, 1}n. By the O2H Lemma
(Lemma 4),

E
T ⊆{0,1}n,|T |=t

S⊆T,|S|=s

∥∥∣∣ΨS
q

〉
−
∣∣ΨT

q

〉∥∥ ≤ 2q E
T ⊆{0,1}n,|T |=t

S⊆T,|S|=s

√√√√1
q

q−1∑
i=0

∥∥ΠT \S |ΨS
i ⟩
∥∥2

≤ 2q

√√√√√1
q

q−1∑
i=0

E
T ⊆{0,1}n,|T |=t

S⊆T,|S|=s

∥∥ΠT \S |ΨS
i ⟩
∥∥2 (Jensen’s inequality)

= O

(
q ·
√

t − s

2n

)
.

Therefore, the probability (over the choice of S and T ) that DOS (|S⟩⊗k) succeeds is at most
the probability that DOT (|S⟩⊗k) succeeds – up to an additive loss of O(q ·

√
t−s
2n ). ◁

H4. Output DOT (|σX⟩), where the subset X is sampled as follows: first, sample a random
subset T ⊆ {0, 1}n of size |T | = t, and then let X ⊆ T be a random subset of size |X| = k.

▷ Claim 11.

|p(H4)− p(H3)| ≤ O
(
k√
s

+ sk

t

)
.

Proof. Here, we make use of Lemma 6 which says that, for any superset T ⊆ {0, 1}n of size
|T | = t,

TD

 E
S⊆T
|S|=s

[
|S⟩⟨S|⊗k

]
, E
X⊆T
|X|=k

[
|σX⟩⟨σX |

] ≤ O

(
k√
s

+ sk

t

)
. ◁
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H5. Output DOX (|σX⟩), where the subset X is sampled as follows: first, sample a random
subset T ⊆ {0, 1}n of size |T | = t, and then let X ⊆ T be a random subset of size |X| = k.

▷ Claim 12.

|p(H5)− p(H4)| ≤ O
(
q ·
√
t− k
2n

)
.

Proof. Suppose that X ⊆ T is a random subset of size |X| = k, and let |σX⟩ =
1
k!
∑
σ∈Sk

∣∣xσ(1), . . . , xσ(k)
〉
, where Sk denotes the symmetric group on [k]. Consider the state∣∣ΦTq 〉 = UqOTUq−1 . . . U1OTU0 |ψ0⟩ |σX⟩ .

prepared by DOT (|σX⟩) just before the measurement. Similarly, we let∣∣ΦXq 〉 = UqOXUq−1 . . . U1OXU0 |ψ0⟩ |σX⟩ .

be the state prepared by AOX (|σX⟩). Using Lemma 4 as before, we get that

E
T ⊆{0,1}n,|T |=t

X⊆T,|X|=k

∥∥∣∣ΦT
q

〉
−
∣∣ΦX

q

〉∥∥ ≤ 2q E
T ⊆{0,1}n,|T |=t

X⊆T,|X|=k

√√√√1
q

q−1∑
i=0

∥∥ΠT \X |ΦX
i ⟩
∥∥2

≤ 2q

√√√√√1
q

q−1∑
i=0

E
T ⊆{0,1}n,|T |=t

X⊆T,|X|=k

∥∥ΠT \X |ΦX
i ⟩
∥∥2 (Jensen’s inequality)

≤ O

(
q ·

√
t − k

2n

)
.

Therefore, the probability (over the choice of X and T ) that DOT (|σX⟩) succeeds is at most
the probability that DOX (|σX⟩) succeeds (up to an additive error of q√

t−k ). ◁

Therefore, by applying the triangle inequality, we get that

|p(H1)− p(H5)| ≤ O
(
q ·
√
t− s
2n + q ·

√
t− k
2n + k√

s
+ sk

t

)
.

This proves the claim. ◀

5 Multi-Copy Revocable Encryption: Definition

In this section we formally define and construct multi-copy secure revocable encryption
schemes. These are regular encryption scheme but where the ciphertexts are associated
with quantum states. Moreover, the security property guarantees that any adversary that
successfully returns k valid copies of a quantum ciphertext (which it received from a trusted
party), where k is an arbitrary polynomial, necessarily loses the ability to decrypt the
ciphertexts in the future – even if the secret key is revealed.
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Our definition of revocable encryption is as follows:

▶ Definition 13 (Revocable Encryption). Let λ ∈ N denote the security parameter. A revocable
encryption scheme Σ = (KeyGen,Enc,Dec,Revoke) with plaintext space M consists of the
following QPT algorithms:

KeyGen(1λ): on input the security parameter 1λ, output a secret key sk.
Enc(sk,m): on input the secret key sk and a message m ∈M, output a (pure) ciphertext
state |ψ⟩ and a (private) verification key vk.
Dec(sk, ρ): on input the secret key sk and a quantum state ρ, output a message m′.
Revoke(sk, vk, σ): on input the secret key sk, a verification key vk and a state σ, output
⊤ or ⊥.

In addition, we require that Σ satisfies the following two properties:
Correctness of decryption: for all plaintexts m ∈M, it holds that

Pr
[
m← Dec(sk, |ψ⟩) : sk←KeyGen(1λ)

(|ψ⟩,vk)←Enc(sk,m)

]
≥ 1− negl(λ).

Correctness of revocation: for all plaintexts m ∈M, it holds that

Pr
[
⊤ ← Revoke(sk, vk, |ψ⟩) : sk←KeyGen(1λ)

(|ψ⟩,vk)←Enc(sk,m)

]
≥ 1− negl(λ).

There are two properties we require the above scheme to satisfy.
Firstly, we require the above scheme to be correct. That is, we require the following to hold
for all m ∈ {0, 1}ℓ,

Pr
[
m← Dec(sk, |ψ⟩) : sk←KeyGen(1λ)

|ψ⟩←Enc(sk,m)

]
≥ 1− ϵ(λ),

for some negligible function ϵ(·).

Multi-Copy Revocable Security

We use the following notion of security.

▶ Definition 14 (Multi-Copy Revocable Security). Let λ ∈ N denote the security parameter and
let Σ = (KeyGen,Enc,Dec,Revoke) be a revocable encryption scheme with plaintext space M.
Consider the following experiment between a QPT adversary A and a challenger.

RevokeExptλ,Σ,A(b):
1. A submits two messages m0,m1 ∈M and a polynomial k = k(λ) to the challenger.
2. The challenger samples a key sk← KeyGen(1λ) and produces |ψb⟩ ← Enc(sk,mb). After-

wards, the challenger sends the quantum state |ψb⟩⊗k to A.
3. A returns a quantum state ρ.
4. The challenger performs the measurement

{
|ψb⟩⟨ψb|⊗k , I− |ψb⟩⟨ψb|⊗k

}
on the returned

state ρ. If the measurement succeeds, the game continues; otherwise, the challenger aborts.
5. The challenger sends the secret key sk to A.
6. A outputs a bit b′.

We say that the revocable encryption scheme Σ = (KeyGen,Enc,Dec,Revoke) has multi-copy
revocable security, if the following holds for all µ ∈ {0, 1,⊥}:∣∣Pr

[
µ← RevokeExptλ,Σ,A(0)

]
− Pr

[
µ← RevokeExptλ,Σ,A(1)

] ∣∣ ≤ negl(λ) ,
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▶ Remark 15. In this work, we will work with a weaker variant of this security game, one
where the post revocation adversary is given access to an oracle that depends on the key sk
instead. The reason for this will become clear from context.

▶ Remark 16 (Search variant). Occasionally, we also consider the search variant of multi-copy
revocable encryption. Here, the experiment is similar, except that in Step 1, the adversary
only submits k to the challenger. Then, in Step 2, the challenger chooses a message m
uniformly at random from the plaintext space, encrypts it k times and sends all of the copies
to the adversary. Finally, the adversary is said to win the game if it guesses m correctly.

6 Construction of Multi-Copy Secure Revocable Encryption

In this section, we instantiate our revocable encryption scheme using quantum-secure pseudor-
andom permutations (QPRPs), and we prove security in an oracular model: this means that,
rather than revealing the QPRP key in the final part of the revocable security experiment,
we instead allow the adversary to query an oracle for a the permutation instead.

▶ Construction 17. Let λ ∈ N be the security parameter. Let n,m ∈ N be polymomial in λ.
Let Φ = {Φλ}λ∈N be an ensemble of permutations Φλ = {φκ : {0, 1}n+m → {0, 1}n+m}κ∈Kλ

,
for some set Kλ. Consider the scheme ΣΦ = (KeyGen,Enc,Dec,Revoke) which consists of
the following QPT algorithms:

KeyGen(1λ): sample a uniformly random key κ ∈ Kλ and let sk = κ.
Enc(sk, µ): on input the secret key sk = κ and message µ ∈ {0, 1}m, sample y ∼ {0, 1}m
and prepare the subset state given by

|Sy⟩ = 1√
2n

∑
x∈{0,1}n

|φκ(x||y)⟩ .

Output the ciphertext state (|Sy⟩⊗k , y ⊕ µ) and (private) verification key vk = y.
Dec(sk, ct): on input the decryption key κ and ciphertext state (|Sy⟩ , z) ← ct, do the
following:

Coherently compute φ−1
κ on |Sy⟩ and store the answer in a separate output register.

Measure the output register to get x′||y′ ∈ {0, 1}n+m.
Output y′ ⊕ z.

Revoke(sk, vk, ρ): on input sk, a state ρ and verification key vk, it parses κ← sk, y ← vk
and applies the measurement {|Sy⟩⟨Sy| , I− |Sy⟩⟨Sy|} to ρ; it outputs ⊤ if it succeeds,
and ⊥ otherwise.

Proof of Multi-Copy Revocable Security

▶ Theorem 18. Construction 17, when instantiated with a QPRP Φ = {Φλ}λ∈N, satisfies
(an oracular notion of) multi-copy revocable security.

Proof. Because we are working in the oracular model of revocable security, we can invoke
QPRP security and assume that Σ in Construction 17 is instantiated with a perfectly random
permutation φ rather than a QPRP permutation φκ.

Suppose that our construction does not achieve multi-copy revocable security. Then,
there exists an adversary A such that∣∣Pr

[
µ← RevokeExptλ,Σ,A(0)

]
− Pr

[
µ← RevokeExptλ,Σ,A(1)

]∣∣ = ϵ(λ),
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for some non-negligible function ϵ(·). For convenience, we model A as a pair of quantum
algorithms (A0,A1), where A0 corresponds to the pre-revocation adversary, and A1 cor-
responds to the post-revocation adversary. We consider the following sequence of hybrid
distributions.

Hb
1. This corresponds to RevokeExptA(1λ, b).

1. A0 submits two m-bit messages (µ0, µ1) and a polynomial k = k(λ) to the challenger.
2. The challenger samples y ∼ {0, 1}m and produces a quantum state

|Sy⟩ = 1√
2n

∑
x∈{0,1}n

|φ(x||y)⟩ .

The challenger then sends |Sy⟩⊗k and y ⊕ µb to A0.
3. A0 prepares a bipartite state on registers R and AUX, and sends R to the challenger and

AUX to A1.
4. The challenger performs the projective measurement

{
|Sy⟩⟨Sy|⊗k , I− |Sy⟩⟨Sy|⊗k

}
on

R. If the measurement succeeds, the challenger outputs ⊥. Otherwise, the challenger
continues.

5. The challenger grants A1 quantum oracle access to φ−1.
6. A1 outputs a bit b′.

Hb
2. This is the same experiment as in Hb

1, except that we change how |Sy⟩⊗k is generated
before revocation:

The challenger samples a random subset S ⊆ {0, 1}n+m of size |S| = 2n.
The challenger samples a random y ∼ {0, 1}m.
The challenger sends |S⟩⊗k and y ⊕ µb to A0.

Later, the challenger samples a random permutation π : {0, 1}n+m → {0, 1}n+m subject to
the constraint that π(s) = ∗||y, for all s ∈ S. In other words, π(S) = Ty, where

Ty :=
{
x ∈ {0, 1}n+m : x = (∗||y)

}
and |S| = |Ty| = 2n. After revocation, A1 receives oracle access to π.

▷ Claim 19. Hb
1 and Hb

2 are identically distributed.

Proof. This follows immediately. We just changed the order in which we sample things. ◁

Hb
3. This is the same experiment as in Hb

2, except that we change the second part of the
experiment: after the challenger sends |S⟩⊗k and y ⊕ µb to A0, he does the following:

The challenger samples a random function g : S → Ty. 5

The challenger samples a random permutation ω : ({0, 1}n+m \ S)→ ({0, 1}n+m \ Ty).
After revocation, A1 receives oracle access to f : {0, 1}n+m → {0, 1}n+m, where

f(x) =
{
g(x), if x ∈ S
ω(x), if x /∈ S.

5 Note that we have g(S) ⊆ Ty in general.
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▷ Claim 20. Hb
2 and Hb

3 are O(q3/2n)-close whenever A makes q queries.

Proof. Here, we apply Zhandry’s result which says that random functions are indistinguishable
from random permutations. Consider the following algorithm B which receives oracle access
to O, which is either a random function F : {0, 1}n → {0, 1}n or a random permutation
P : {0, 1}n → {0, 1}n:
1. B samples a random subset S ⊆ {0, 1}n+m of size |S| = 2n and a random y ∼ {0, 1}m.
2. B sends |Sy⟩⊗k and y ⊕ µb to A0.
3. When A0 replies with a bipartite state on registers R and AUX, B performs the projective

measurement
{
|S⟩⟨S|⊗k , I− |S⟩⟨S|⊗k

}
on R. If it succeeds, B outputs ⊥. Otherwise, B

continues.
4. B runs the post-revocation adversary A1 on input AUX. Whenever A1 makes a query, B

answers using the function

f(x) =
{

(τ ◦O ◦ σ)(x), if x ∈ S
ω(x), if x /∈ S

where we let
σ be some canonical mapping from S (with |S| = 2n) onto {0, 1}n, i.e., σ is a a function
which assigns each element of S ⊆ {0, 1}n+m a unique bit string in {0, 1}n.
τ be the function which maps each x ∈ {0, 1}n to (x||y) ∈ {0, 1}n+m.

Note that whenever O is a random permutation, the view of A is precisely Hb
3; whereas, if

O is a random function, the view of A is precisely Hb
4. Therefore, the claim follows from

Zhandry’s result on indistinguishability of random pemrutations from random functions (see
full version for formal statement). ◁

Hb
4. This is the same experiment as in Hb

3, except that we change the second part of the
experiment once again: after the challenger sends |Sy⟩⊗k and y ⊕ µb to A0, he does the
following:

the challenger samples a random function f : {0, 1}n+m → {0, 1}n+m subject to the
constraint that f(s) = ∗||y, for all s ∈ S.

After revocation, A1 receives oracle access to f .

▷ Claim 21. Hb
3 and Hb

4 are O
(
q3/(2n+m − 2n)

)
-close whenever A makes q queries.

Proof. The proof again follows since distinguishing Hb
3 and Hb

4 amounts to distinguishing a
random function from a random permutation mapping a random permutation ω : ({0, 1}n+m\
S) → ({0, 1}n+m \ Ty). Since the domain and co-domain are of equal size 2n+m − 2n, the
advantage is at most O

(
q3/(2n+m − 2n)

)
. ◁

Hb
5. This is the same experiment as in Hb

4, but now we change what A0 receives in the
pre-revocation phase:

The challenger samples a random subset S ⊆ {0, 1}n+m of size |S| = 2n.
The challenger samples a random y ∼ {0, 1}m.
The challenger sends (|Sy⟩⊗k , y) to A0.

After revocation, the challenger samples a random function f : {0, 1}n+m → {0, 1}n+m

subject to the constraint that f(s) = ∗||y ⊕ µb, for all s ∈ S. A receives oracle access to f .

▷ Claim 22. Hb
4 and Hb

5 are indentical.

Proof. This follows from the fact that we have just re-labeled the variables. ◁
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Hb
6. This is the same experiment as in Hb

5, except that we once again change what A0
receives in the pre-revocation phase:

The challenger samples a random subset S ⊆ {0, 1}n+m of size |S| = 2n.
The challenger samples a random y ∼ {0, 1}m.
The challenger samples a random u ∼ {0, 1}m.
The challenger sends (|Sy⟩⊗k , y) to A0.

After revocation, the challenger samples a random function f : {0, 1}n+m → {0, 1}n+m

subject to the constraint that f(s) = ∗||u, for all s ∈ S. A receives oracle access to f .

Note that hybrids H0
6 and H1

6 are identically distributed. By assumption, we also know that
A distinguishes H0

1 and H1
1 with non-negligible advantage. Therefore, our previous hybrid

argument has shown that A must also distinguish H0
5 and H0

6 (respectively, hybrids H1
5 and

H1
6) with advantage at least ϵ′(λ), for some non negligible function ϵ′(λ). To complete the

proof, we show the following claim which yields the desired contradiction to the k 7→ k + 1
unforgeability property of subset states from Theorem 7.

▷ Claim 23. Forge in Algorithm 1 is a poly(λ)-query algorithm (which internally runs A)
such that

Pr
S⊆{0,1}n+m

|S|=2n

[
(x1, . . . , xk+1) ∈ dist(S, k+1) : (x1, . . . , xk+1)← ForgeOS (|S⟩⊗k)

]
≥ 1/poly(λ).

Proof. Since Hb
5 and Hb

6 can be distinguished by the adversary A = (A0,A1) with advantage
ϵ′(λ), for some non-negligible function ϵ′(λ), this implies that the post-revocation adversary
A1 is an algorithm for which the following property holds: given as input uniformly random
string y and an auxiliary register (conditioned on revocation succeeding), A1 can distinguish
whether it is given an oracle for a function H : {0, 1}n+m → {0, 1}n+m which is random
subject to the constraint that H(s) = ∗||y ⊕ µb for all s ∈ S, or whether it is given an
oracle for a function G : {0, 1}n+m → {0, 1}n+m which is a random function subject to the
constraint that G(s) = ∗||u for all s ∈ S. Crucially, the two functions differ precisely on
inputs belonging to S, and are otherwise identical.

Consider the quantum extractor ExtG(y,AUX) which is defined as follows:
1. Sample i← [q], where q denotes the total number of queries made by A.
2. Run AG1 (y,AUX) just before the (i− 1)-st query to G.
3. Measure A1’s i-th query in the computational basis, and output the measurement outcome.

From the O2H Lemma (see full version for the formal statement), we get that∣∣∣∣∣∣Pr

AH1 (y,AUX|⊤) = 1 :
S⊂{0,1}n+m,|S|=2n

y∼{0,1}m

(R,AUX)←A0(|S⟩⊗k,y)
H s.t. H(s)=∗||y⊕µb,∀s∈S

− Pr

AG1 (y,AUX|⊤) = 1 :
S⊂{0,1}n+m,|S|=2n

y∼{0,1}m,u∼{0,1}m

(R,AUX)←A0(|S⟩⊗k,y)
G s.t. G(s)=∗||u,∀s∈S

∣∣∣∣∣∣
≤ 2q

√√√√√Pr

ExtG(y,AUX|⊤) ∈ S :
S⊂{0,1}n+m,|S|=2n

y∼{0,1}m,u∼{0,1}m

(R,AUX)←A0(|S⟩⊗k,y)
G s.t. G(s)=∗||u,∀s∈S

,
where AUX|⊤ corresponds to the register AUX conditioned on the event that the projective
measurement{

|S⟩⟨S|⊗k , I− |S⟩⟨S|⊗k
}

succeeds on register R. Because the distinguishing advantage of the adversary A1 is non-
negligible (conditioned on the event that revocation succeeds on register R) and q = poly(λ),
we get
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Pr

ExtG(y,AUX|⊤) ∈ S :
S⊂{0,1}n+m,|S|=2n

y∼{0,1}m,u∼{0,1}m

(R,AUX)←A0(|S⟩⊗k,y)
G s.t. G(s)=∗||u,∀s∈S

 ≥ 1/poly(λ).

To complete the proof, we now show that ForgeOS (|S⟩⊗k) in Algorithm 1 is a successful
algorithm against the k → k + 1 unforgeability of subset states.

Algorithm 1 ForgeOS (|S⟩⊗k).

Input: |S⟩⊗k and a membership oracle OS , where S ⊂ {0, 1}n+m is a subset.
Output: x1, . . . xk+1 ∈ {0, 1}n+m.

1 Sample uniformly random strings y, u ∼ {0, 1}m;
2 Run (R,AUX)← A0(|S⟩⊗k , y);
3 Measure R in the computational basis to obtain x1, . . . , xk;
4 Run the quantum extractor ExtG(y,AUX) to obtain an element xk+1, where the

oracle G can be simulated via OS as follows: on input x ∈ {0, 1}n+m, we let

G(x) =
{
g1(x)||u, if OS(x) = 1
g2(x), otherwise

where g1 : {0, 1}n+m → {0, 1}n and g2 : {0, 1}n+m → {0, 1}n+m are uniformly
random functions.

5 Output (x1, . . . , xk+1).

Let Revoke(S, k,R) denote the projective measurement {|S⟩⟨S|⊗k , I − |S⟩⟨S|⊗k} of re-
gister R. Using the Simultaneous Distinct Extraction Lemma (Lemma 24), we get that

Pr
S⊆{0,1}n+m

|S|=2n

[
(x1, . . . , xt+1) ∈ dist(S, k + 1) : (x1, . . . , xk+1)← ForgeOS (|S⟩⊗k)

]

≥
(

1−O
(
k2

2n

))
· Pr

[
Revoke(S, k,R) = ⊤ :

S⊂{0,1}n+m,|S|=2n

y∼{0,1}m

(R,AUX)←A0(|S⟩⊗k,y)

]

· Pr

ExtG(y,AUX|⊤) ∈ S :
S⊂{0,1}n+m,|S|=2n

y∼{0,1}m,u∼{0,1}m

(R,AUX)←A0(|S⟩⊗k,y)
G s.t. G(s)=∗||u,∀s∈S


which is at least inverse polynomial in λ. This proves the claim. ◁

Thus, we obtain the desired contradiction to the k 7→ k + 1 unforgeability property of
subset states from Theorem 7. This completes the proof of multi-copy revocable encryption
security. ◀

6.1 Simultaneous Distinct Extraction Lemma
The following lemma allows us to analyze the probability of simultaneously extracting k + 1
distinct subset elements in some subset S ⊆ {0, 1}n in terms of the success probability
of revocation (i.e., the projection onto |S⟩⟨S|⊗k) and the success probability of extracting
another subset element from the adversary’s state.
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▶ Lemma 24 (Simultaneous Distinct Extraction). Let n, k ∈ N and let ρ ∈ D(HX ⊗ HY )
be an any density matrix, where HX is an n · k-qubit Hilbert space and where HY is an
arbitrary Hilbert space. Let |S⟩ denote a subset state, for some subset S ⊆ {0, 1}n, and let
E : L(HY )→ L(HX′) be any CPTP map of the form

EY→X′(σ) = TrE
[
VY→X′E σV

†
Y→X′E

]
, ∀σ ∈ D(HY ),

for some isometry VY→X′E and n-qubit Hilbert space HX′ . Consider the POVM element

Λ =
∑

s1,...,sk+1∈S
(s1,...,sk+1)∈dist(S,k+1)

|s1, . . . , sk⟩⟨s1, . . . , sk|X ⊗V
†
Y→X′E(|sk+1⟩⟨sk+1|X′⊗IE)VY→X′E .

Let ρX = TrY [ρXY ] denote the reduced state. Then, it holds that

Tr[Λρ] ≥
(

1−O
(
k2

|S|

))
· Tr
[
|S⟩⟨S|⊗k ρX

]
· Tr

[
|S⟩⟨S| EY→X′(σ)

]
,

where σ = Tr
[
(|S⟩⟨S|⊗k ⊗ I)ρ

]−1
· TrX [(|S⟩⟨S|⊗k ⊗ I)ρ] is a reduced state in system Y .

7 Multi-Copy Revocable Programs: Definition

In this section, we study whether arbitrary functionalities can be revoked. We define and
study revocable programs with multi-copy security. In this notion, there is a functionality
preserving compiler that takes a program and converts it into a quantum state, which can
later be certifiably revoked.

We now give a formal definition of revocable programs.

▶ Definition 25 (Revocable Program). Let P =
⋃
λ∈N Pλ be a class of efficiently computable

program families Pλ = {P : Xλ → Yλ} with domain Xλ and range Yλ. A revocable program
compiler for the class P is a tuple Σ = (Compile,Eval,Revoke) consisting of the following
QPT algorithms:

Compile(1λ, P ): on input the security parameter 1λ and a program P ∈ Pλ with P : Xλ →
Yλ, output a quantum state |ΨP ⟩ and a (private) verification key vk.
Eval(|ΨP ⟩ , x): on input a quantum state |ΨP ⟩ and input x ∈ Xλ, output P (x).
Revoke(vk, σ): on input the verification key vk and a state σ, output ⊤ or ⊥.

In addition, we require that Σ satisfies the following two properties for all λ ∈ N:
Correctness of evaluation: for all programs P ∈ Pλ and inputs x ∈ Xλ, it holds that

Pr
[
P (x)← Eval(|ΨP ⟩ , x) : (|ΨP ⟩ , vk)← Compile(1λ, P )

]
≥ 1− negl(λ).

Correctness of revocation: for all programs P ∈ Pλ, it holds that

Pr
[
⊤ ← Revoke(vk, (|ΨP ⟩) : (|ΨP ⟩ , vk)← Compile(1λ, P )

]
≥ 1− negl(λ).

Multi-Copy Revocable Security

We use the following notion of security.
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▶ Definition 26 (Multi-Copy Revocable Security for Programs). Let P =
⋃
λ∈N Pλ be a class

of efficiently computable program families Pλ = {P : Xλ → Yλ} and let DP =
⋃
λ∈NDPλ

be an ensemble of program distributions. Let DX =
⋃
λ∈NDXλ

be an ensemble of challenge
distribution families with DXλ

= {DXλ
(P )}P∈Pλ

. Consider the following experiment between
a QPT adversary A and a challenger.

RevokeExptDP,DX
λ,Σ,A :

1. A submits a polynomial k = k(λ) to the challenger.
2. The challenger samples a program P ∼ DPλ

with domain Xλ and range Yλ, and runs
Compile(1λ, P ) to generate a pair (|ΨP ⟩ , vk). Afterwards, the challenger sends the
quantum state |ΨP ⟩⊗ to A.

3. A returns a quantum state ρ.
4. The challenger performs the measurement

{
|ΨP ⟩⟨ΨP |⊗k , I− |ΨP ⟩⟨ΨP |⊗k

}
on the re-

turned state ρ. If the measurement succeeds, the game continues; otherwise, the challenger
aborts.

5. The challenger samples a challenge input x ∼ DXλ
(P ) sends x to A.

6. The adversary outputs y ∈ Yλ.
7. The challenger outputs 1 if and only if P (x) = y.

We say that a revocable program compiler Σ = (Compile,Eval,Revoke) has multi-copy revocable
security for the ensembles DP and DX , if the following holds for any QPT adversary A:

Pr
[
1← RevokeExptDP,DX

λ,Σ,A

]
≤ pDP,DX

triv (λ) + negl(λ) ,

where pDP,DX
triv (λ) = supA{Pr [P (x)← A(x) : x← DXλ

(P )]} is the trivial guessing probabil-
ity.

8 Construction of Multi-Copy Secure Revocable Programs in a
Classical Oracle Model

In this section, we give a construction of multi-copy secure revocable programs; specifically,
we work with a classical oracle model. Our construction is as follows:

▶ Construction 27. Let λ ∈ N be the security parameter. Let n,m ∈ N be polymomial in λ.
Let Φ = {Φλ}λ∈N be an ensemble of permutations Φλ = {φκ : {0, 1}n+m → {0, 1}n+m}κ∈Kλ

,
for some set Kλ.

Setup(1λ): sample a uniformly random key κ ∈ Kλ and let vk = κ.
Compile(1λ, P ): on input 1λ and a program P ∈ Pλ with P : Xλ → Yλ, do the following:

Sample y ∼ {0, 1}m and prepare the subset state given by

|Sy⟩ = 1√
2n

∑
x∈{0,1}n

|φκ(x||y)⟩ .

Let |ΨP ⟩ = |Sy⟩ and, for brevity, let S = {φκ(x||y) : x ∈ {0, 1}n} be the corresponding
subset.
Let O = OP,S denote an a (public) classical oracle, which is defined as follows:

OP,S(x, s) =
{
P (x), if s ∈ S
0, otherwise

ITC 2025
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EvalO(|ΨP ⟩ , x): on input |ΨP ⟩, x ∈ Xλ, do the following:
Coherently evaluate OP,S on input |x⟩⊗|ΨP ⟩, and compute its output into an ancillary
register.
Measure the ancillary register and then output the measurement outcome.

Revoke(vk, ρ): on input vk, a state ρ and verification key vk, it parses y ← vk and
applies the measurement {|Sy⟩⟨Sy| , I− |Sy⟩⟨Sy|} to ρ; it outputs ⊤ if it succeeds, and ⊥
otherwise.

The above scheme is easily seen to satisfy correctness.

Proof of Multi-Copy Revocable Security

Before we analyze the security of Construction 27, let us first remark that we can instantiate
the scheme using a QPRP family Φλ = {φκ : {0, 1}n+m → {0, 1}n+m}κ∈Kλ

, for some key
space Kλ. In the security proof, however, we will work with the random permutation model
instead. This means that we will consider random permutations throughout the security
game.

▶ Theorem 28. Construction 27 satisfies multi-copy revocable security for any pair of
distributions DP,DX in a classical oracle model, where the recipient receives an (ideal
classical) oracle for the purpose of evaluation.

Proof. Please see full version. ◀

9 Construction of Multi-Copy Secure Revocable Point Functions in
the QROM

Please see the full version for this section.

10 Applications to Sponge Hashing

Please see the full version for this section.
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