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Abstract
Determining the distance between two loci within a genomic region is a recurrent operation in various
tasks in computational genomics. A notable example of this task arises in paired-end read mapping
as a form of validation of distances between multiple alignments. While straightforward for a single
genome, graph-based reference structures render the operation considerably more involved. Given
the sheer number of such queries in a typical read mapping experiment, an efficient algorithm for
answering distance queries is crucial. In this paper, we introduce DiVerG, a compact data structure
as well as a fast and scalable algorithm, for constructing distance indexes for general sequence graphs
on multi-core CPU and many-core GPU architectures. DiVerG is based on PairG [27], but overcomes
the limitations of PairG by exploiting the extensive potential for improvements in terms of scalability
and space efficiency. As a consequence, DiVerG can process substantially larger datasets, such as
whole human genomes, which are unmanageable by PairG. DiVerG offers faster index construction
time and consistently faster query time with gains proportional to the size of the underlying compact
data structure. We demonstrate that our method performs favorably on multiple real datasets at
various scales. DiVerG achieves superior performance over PairG; e.g. resulting to 2.5–4x speed-up
in query time, 44–340x smaller index size, and 3–50x faster construction time for the genome graph
of the MHC region, as a particularly variable region of the human genome.
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1 Introduction

Many genomic studies use read mapping as a central step in order to place the donor sequence
reads into context relative to a reference. Several studies have repeatedly shown that the
conventional reference assemblies, i.e. consensus genomes or genomes of individuals, do
not capture the genomic diversity of the population and introduce biases [37, 22, 6, 2, 12].
Furthermore, the absence of alternative alleles in a linear reference can penalize correct
alignments and lead to decreased accuracy in downstream analysis. To address this issue,
augmented references, often in the form of pangenome graphs, have been developed by
incorporating genomic variants observed in a population [16].

On the other hand, shifting from a linear structure to a graph introduces a variety
of theoretical challenges. Recent progress in computational pangenomics has paved the
way for using such references in practice as established algorithms and data structures for
linear references cannot be seamlessly applied to their graphical counterparts [9, 16, 36].
One significant measure affected by this transition is the concept of distance between two
genomic loci. Defining and computing distance relative to a single genome is inherently
straightforward. However, in genome graphs, distance cannot be uniquely defined due to the
existence of multiple paths between two loci, with the number of paths being theoretically
exponential relative to the number of variants between them.

Determining genomic distances between two loci emerges in several genomic workflows
notably paired-end short-read mappings to sequence graphs. In paired-end sequencing, DNA
fragments are sequenced from both their ends, where the unsequenced part in between
introduces a gap between the sequenced ends. Read mapping is the process of determining
the origin of each read relative to a reference genome through sequence alignment. There
are several sources of ambiguity in finding the correct alignments. The distance between
two pairs plays a crucial role in resolving alignment ambiguities, for example in repetitive
regions [5]. An accurate alignment of one end can rescue the other end’s alignment in case
of ambiguities. Therefore, it is important to determine whether the distance between two
reference loci, where two ends of a read could be placed, falls in a particular, statistically
well motivated range [d1, d2]. This problem, referred to as the Distance Validation Problem
(DVP), is first formally defined in [27].

The distance between all pairs of candidate alignments corresponding to a paired-end
reads should be validated in order to find the correct pairs. Additionally, the candidate
alignments in pangenome graphs are often more abundant compared to a linear sequence due
to the increased ambiguity in a pangnome reference caused by added variations. This fact,
combined with the large number of reads in a typical read mapping workflow, necessitates
efficient methods to answer the DVP, often by preprocessing the graph and constructing
an index data structure. Therefore, the efficiency of the involved operation is crucial for
rendering short-read-to-graph mapping practically feasible.

Long, third-generation sequencing reads (TGS) have spurred enormous enthusiasm in
various domains of application, which may explain that the majority of read-to-graph mapping
approaches focuses on such long reads. However, still, long TGS reads are considerably more
expensive to produce than short reads.

Short next-generation sequencing reads are highly accurate, cheap, and available to
nearly every sequencing laboratory today. This provides substantial motivation for delivering
approaches that render short-read-to-graph mapping a viable option; in fact, this would free
the way for using graph-based reference systems in many laboratories worldwide and enable
their use for existing biobank-scale cohorts where short reads have already been produced.
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Related Work

The distance between two nodes in a graph is determined by the paths that connect them
and is typically associated with their shortest path. Identifying the shortest paths between
two points in a graph is a prevalent problem across various application domains and is an
extensively studied topic in computer science [14, 18, 19, 24, 26, 38, 15]. However, simply
knowing the shortest path length is not always sufficient for addressing the DVP: when the
shortest path length is less than d1, it cannot determine whether a longer path of length d

exists satisfying d1 ≤ d ≤ d2. On the other hand, the decision version of longest path problem
and exact-path length problem, which respectively answer whether there is a path of at least
length d or exactly length d in a graph, are shown to be NP-complete [35, 30].

In the context of sequence graphs, most sequence-to-graph aligners use heuristic approaches
to estimate distances [20, 33]. Chang et al. [7] propose an exact method and indexing scheme
to determine the minimum distance between any two positions in a sequence graph with a
focus on seed clustering. Although their method is shown to be efficient in seed clustering, it
cannot address the DVP as it only provides the minimum distance between two positions.

Jain et al. [27] propose PairG, a distance indexing method which, to the best of our
knowledge, is the first method directly addressing the DVP. This method, similar to existing
approaches, involves preprocessing the graph to create an index that answers distance queries
efficiently. In PairG, the index data structure is a sparse Boolean matrix constructed from
powers of the adjacency matrix of the graph. Once constructed, it can indicate in near-
constant time whether a path exists between two nodes that meet the distance criteria. It
benefits from general sparse storage format and employs standard sparse matrix algorithms
to reduce space requirement and accelerate the index construction. However, the method
cannot scale to handle whole genome graphs for large sequences. PairG, although applicable
for small graphs, also does not run on many-core architectures such as GPU for sparse matrix
computations due to its intense memory requirements.

Contributions

In this work, we propose DiVerG, an indexing scheme that offers fast exact solutions for the
DVP in sequence graphs with significantly lower memory footprint and faster query and
construction time than existing methods.

DiVerG enhances PairG to overcome the limitations of existing approaches. Our first
contribution is new dynamic compressed formats, namely rCRS formats, for storing sparse
Boolean matrices. They are dynamic in the sense that sparse matrix operations can be
conducted directly on matrices in this format without decompression. These formats, although
simple by design, provide considerably greater compression potential for sparse matrices
representing the adjacency matrix of sequence graphs, or the powers thereof. The specific
incorporation of the logic that supports the shape of adjacency matrices of sequence graphs
facilitates significantly more compact representations than what can be achieved by merely
utilizing the sparsity of the matrix in standard sparse formats.

Secondly, we propose algorithms for Boolean sparse matrix-matrix multiplication and
matrix addition for matrices in rCRS formats. Our multiplication algorithm achieves enhanced
performance through the bit-level parallelism that the encoded format immediately provides,
while the addition algorithm runs in time proportional to the compressed size.

We tailored both algorithms and their implementations to be particularly powerful on
massively parallel architectures, such as GPUs. The faster algorithms and more compacted
encodings enable indexing of drastically larger graphs, previously infeasible with the prior
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state of the art. Our experiments show that DiVerG scales favorably with large sequence
graphs at low memory footprint and significant compression ratio. Most importantly, DiVerG
responds to distance queries in constant time in practice. Despite the prior work, DiVerG’s
query performance does not grow by the distance constraints parameters.

2 Problem Definition

2.1 Sequence Graphs
Sequence graphs provide compressed representations of sets of similar – evolutionary or
environmentally related – genomic sequences [25]. They are typically defined as node-labelled
bidirected graphs where each node contains a string label. Bidirectionality allows traversal
in both forward and reverse directions, which accounts for the complementary structure of
genomes. For theoretical analysis, we use an equivalent representation called a character
graph, defined as G(V, E, λ) where V and E are the node and edge sets, respectively, and
λ : V → Σ assigns a single character from alphabet Σ to each node. Character graphs and
general sequence graphs can be converted to each other in time linear in the size of the
character graph [27]. By definition, in a character graph, the length of a sequence spelt out
by a walk of length k is exactly k.

Lastly, a chain graph is a character graph that represents a single sequence which is
equivalent to the sequential chaining of all (single-letter) nodes. A sequence graph G is called
sparse if the average node degree in G is close to 1.

2.2 Distance Validation Problem
Fragments in sequencing libraries typically vary in size depending both on the sequencing
technology in use and library preparation procedures. In our study, the distance between
paired reads in a library is modelled by an interval indicating the expected lower (d1) and
upper bounds (d2). This interval, which is referred to as distance constraints and denoted as
(d1, d2), are assumed to be provided as input parameters. In Section A, we discussed how
the distance constraints can be determined for a library.

As stated before, aligning short reads to a reference genome, whether linear or graph,
can be ambiguous due to several factors such as repetitive regions in the genome, sequencing
errors, and the genetic differences between the donor genome and the reference. In such
cases, reads might have multiple candidate alignments. Utilizing the distance information in
paired-end sequencing data can help identify the correct alignments (Figure 6b in Section A).

Two alignments are considered as paired if the the distance between them is consistent
with the inferred fragment model. In addition to the distance, the orientation of two paired
reads should also be as expected depending on the sequencing technology in use; e.g. one of
the pair should be aligned on the forward strand while the other is on the reverse strand.
▶ Problem 1 (Distance Validation). Let r1 and r2 be two paired reads, and a1, and a2 their
alignments against a sequence graph G(V, E, λ). Having a1 mapped to the forward strand
implies a2 to be on the reverse strand. Let v1 and v2 be the first nodes in the paths to which
a1 and a2 are aligned, respectively (Figure 1). Assuming the fragment model is described by
distance constraints (d1, d2), the Distance Validation problem is determining whether there
exists a path from v1 to v2 of length d ∈ [d1, d2]. These two alignments are considered as
paired if this condition is met.

Due to the sheer number of queries in a typical read mapping experiment, the algorithm
solving Problem 1 needs to be efficient.
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Figure 1 Alignments a1 and a2 correspond to paired reads r1 = CTGAA and r2 = ATAGT on a
sequence graph (partially represented). Alignment a1 starts from node v1 and extends along the
forward strand, while alignment a2 starts from v2 and extends along the reverse complement strand.

3 k-Walk Matrix as Distance Index

Let A = (aij) denote the Boolean adjacency matrix of graph G(V, E, λ), defined by aij = 1 if
and only if (i, j) ∈ E. The k−th power of A has a special property: Ak = (ak

uv) determines
the number of walks of length k between nodes u and v in G. The Boolean equivalent of Ak,
which can be achieved by replacing each non-zero entry in Ak with 1, can answer existence
queries on walks of length k instead.

For the remainder of the paper, any mentioned adjacency matrices or their k-th powers
implicitly refer to Boolean matrices.

▶ Definition 2 (Boolean Matrix Operations). Given two Boolean square matrices A and B of
order n, standard Boolean matrix operations are defined as follows:

Addition: A ∨B = aij ∨ bij,
Multiplication: A ·B =

∨n
k=1 aik ∧ bkj,

Power: Ak = A ·Ak−1 (k > 0), and A0 = I,
where ∨ and ∧ are Boolean disjunction (or) and conjunction (and) operators.

▶ Definition 3 (Distance Index). Given distance constraints (d1, d2), a Boolean matrix T is
called distance index relative to (d1, d2) if defined as:

T = Ad1 · (A ∨ I)d2−d1 , (1)

where I is the identity matrix, ∨ and · denote Boolean matrix addition and matrix-matrix
multiplication, respectively, defined in Definition 2. Jain et al. [27] show that T = (τij) can
efficiently solve the Distance Validation Problem defined in Problem 1, i.e. if τuv = 1, there
exists at least one walk of length d ∈ [d1, d2] from node u to v in the graph.

Generally, the diameter of sequence graphs is very large in practice, and the number of
edges is on the order of the number of nodes, i.e. |E| ∼ |V |. This implies that most sequence
graphs exhibit sparse adjacency matrices. Therefore, given that distance constraints are
considerably smaller than the graph, i.e. (d2 − d1) ≪ |V |, one can expect T to be sparse.
The common approaches for computing Equation (1) leverage the sparsity of the matrices,
aiming to operate at time and space complexities proportional to the number of non-zero
elements. Sparse matrices are typically stored in sparse formats such as the Compressed Row
Storage (CRS) [4] and the calculation of Equation (1) relies on the sparse matrix-matrix
multiplication (SpGEMM) and sparse matrix addition (SpAdd) algorithms [4].

▶ Definition 4 (Compressed Row Storage). Given Boolean squared matrix A with n rows and
nnz(A) number of non-zero elements, the Compressed Row Storage or Compressed Sparse
Row format of A is a row-based representation consisting of two one-dimensional arrays
(C, R); where
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Figure 2 An example Boolean matrix represented in CRS and rCRS format.

C (column indices), of size nnz(A), stores the column indices of non-zero elements in A
in row-wise order;
R (row map), of length n + 1, is defined such that, for each row index i ∈ [0, n− 1], R(i)
gives the index in C where the column indices for row i begin. The final entry in R is set
to |C|, i.e. R(n) = nnz(A).

▶ Remark 5. Row map array R defines the boundaries of each row in the column index
array C: the column indices of non-zero entries of row i are located in the half-open interval
[R(i), R(i + 1)) of C. This partitions C into consecutive subsequences C = C0C1 · · ·Cn−1,
referred to as the row decomposition of C, where Ci = [C(R(i)) · · ·C(R(i + 1)− 1)].

By definition, array C does not need to be sorted within each partition Ci in CRS format.
When the entries of each row in C are sorted, we refer to this as sorted CRS. Figure 2a
demonstrate a toy example of a Boolean matrix in (sorted) CRS format. The required space
for storing sparse matrix An×m in CRS format is Θ(n + nnz(A)).

Accessing element aij in A using CRS representation can be reduced to searching for
column index j in the part of array C corresponding to row i, as specified by row map
array R. That is, one searches for j in Ci, the i-th partition of the row decomposition of
C. This search can be facilitated in sorted CRS via binary search, instead of inspecting all
column indices in the row. With z being the maximum number of non-zero values in any
row in A, searching for j in sorted CRS takes O(log(z)), due to the binary search performed
on the sorted entries. As mentioned before, given the sparsity of matrix A, which implies
that z is very small, accessing elements in sorted-CRS amounts to requiring constant time in
practice.

To date, many algorithms have been proposed for parallel sparse matrix-matrix multi-
plication in formats such as CRS or other similar variants [32, 3]. Since standard matrix
operations establish fundamental components of numerous applications, most of them are
optimized for various hardware architectures, in particular for architectures that support
massive parallelization, such as GPUs. Although the CRS format is often sufficient for
general sparse matrix storage and relevant operations, it is computationally prohibitive
when it is used for computing the k-th power of adjacency matrices as well as the resulting
matrix from Equation (1) for large sequence graphs. On the other hand, sequence graph
adjacency matrices offer optimization opportunities that are not typically found in general
sparse matrices.

3.1 Observations
The distance index T computed by Equation (1) quickly becomes infeasible for large graphs
due to its space requirements. For example, consider a human pangenome graph constructed
using the autosomes of the GRCh37 reference genome and incorporating variants from the
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Figure 3 Schematic illustration of the structure of matrix T with distance constraints (d1, d2)
for a chain graph with multiple components.

1000 Genome Project. Constructing the distance index T for this graph with distance criteria
d1 = 150 and d2 = 450 results in a matrix of order 2.8B with approximately 870B non-zero
values. Assuming that each non-zero value consumes 4 bytes, the total space required for the
final distance matrix in sorted CRS would be about 3.5 TB.

Even for smaller graphs, storage requirements are impractical for GPU architectures as
they have much smaller memory than the accessible main memory in a CPU. Such many-core
architectures are beneficial for faster computation of SpGEMM, which is the computational
bottleneck for constructing the distance index.

A key observation for identifying the compression potential is the structure of the distance
matrix. Genome graphs usually consist of multiple connected components corresponding to
each genomic region or chromosome. If the nodes are indexed such that their indices are
localized for each region, the distance index T is a block-diagonal matrix, where each block
corresponds to a different genomic region or chromosome.

Further examinations reveal that in each row, non-zero values are also localized within
a certain range – often grouped into a few clusters of consecutive columns – if nodes are
indexed in a “near-topological order”. This is because almost all edges in sequence graphs
are local, and it is reflected in the matrix as long as the ordering that defines node indices
mostly preserves this locality – i.e. adjacent nodes appear together in the ordering. This
observation can be seen clearly in the distance index constructed for a chain graph with
distance constraints (d1, d2) as shown in Figure 3.

4 Method

4.1 Total Order on Node Set
The nodes of a graph are indexed along the rows of its adjacency matrix with the same order
governing the columns as well. This induces a total order on the set of nodes in the graph,
assigning each node a unique index. Different total orders yield different adjacency matrices.
As will be shown in Section 4.2, our method greatly benefits if the total order on the node
set maximizes the locality of the indices for adjacent nodes; i.e. adjacent nodes are assigned
nearby indices by such ordering. It can be shown that this problem is equivalent to finding a
sparse matrix with minimum bandwidth by permuting its rows and columns. The problem
of finding such ordering has been proven to be NP-Complete [31].

Several heuristic algorithms have been proposed to minimize the bandwidth of sparse
matrices by reordering rows and columns [10, 11, 8]. However, applying these methods
to our problem presents some key limitations. First, although our method logically views
sequence graphs as character graphs, in practice it works with string-labelled graphs for
space efficiency. This requires preserving the sequential ordering of bases within nodes of
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a string-labelled graph, a constraint that existing heuristics do not necessarily meet when
applied to the character graph representation. Breaking this intra-node ordering introduces
memory overhead and fragmentation, impacting graph traversal performance in downstream
tasks through reduced memory locality and increased cache misses. Second, when applied
directly to string-labelled graphs while preserving node ordering, these methods are less
effective at reducing bandwidth compared to their performance on character graphs.

To address these limitations, we propose a new heuristic algorithm inspired by the
Cuthill–McKee (CM) algorithm [10, 11]. The new algorithm directly operates on string-
labelled sequence graphs. In essence, the algorithm traverses the graph in a breadth-first
search similar to the CM. However, instead of prioritizing visiting nodes by their degrees, it
prioritizes nodes that have a predecessor with a lower topological sort order (Algorithm 1).
Note that, in practice, sequence graphs, particularly variation graphs, are DAGs in the
majority of relevant cases. If input sequence graphs are not acyclic, e.g. in de Bruijn graphs,
we resort to a “semi-topological ordering” established by “dagifying” the graph, i.e. by
running topological sort algorithm on the graph while the traversal algorithm ignores any
edges forming a cycle.

Our experimental results (in Section 5) demonstrate that the ordering achieved by Al-
gorithm 1 offers a very effective heuristic while assigning sequential indices to bases within
each node. This can be justified by the fact that sequence graphs generally preserve the
linear structure of the sequences from which they are constructed, and the variations in these
sequences are often only local in the genomic coordinates, thereby affecting the graph topology
locally. As a result, prioritizing sibling nodes for index assignment while following topological
ordering tends to localize indices of adjacent nodes, thereby minimizing bandwidth.

Algorithm 1 A heuristic for defining a total order on the node set that minimizes bandwidth.

Require: Sequence graph G = (V, E) (string-labelled)
1: function MinBandwidthTotalOrder(G)
2: P ← [] ▷ Output permutation
3: R← ∅ ▷ Visited nodes
4: T ← SemiTopologicalSortOrder(G)
5: Vsorted ← Sort V according to T

6: Q← priority queue with key(v) = min ({T [v]} ∪ {T [w] : w ∈ G.predecessor(v)})
7: for each source node s ∈ Vsorted with G.indegree(s) = 0 do
8: if s /∈ R then
9: Q.enqueue(s) ▷ Enqueue source node if not already visited

10: R← R ∪ {s} ▷ Mark s as visited
11: while Q is not empty do ▷ Process each connected component starting from s

12: v ← Q.dequeue() ▷ Minimum key value has highest priority
13: Append v to P

14: for u ∈ G.successor(v) and u /∈ R do
15: Q.enqueue(u) ▷ Enqueue unvisited successors of v

16: R← R ∪ {u} ▷ Mark u as visited
17: report P

4.2 Range Compressed Row Storage (rCRS)
DiVerG aims to exploit particular properties of the distance index matrix T mentioned
in Section 3.1, as well as its sparsity, to reduce space and time requirements. Our method
introduces a new sparse storage format, which will be explained subsequently. This format
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relies on transforming the standard CRS by replacing column index ranges with their lower
and upper bounds to achieve high compression rate. Later, we will propose tailored algorithms
to compute sparse matrix operations directly on this compressed data structure without
incurring additional overhead for decompression.

▶ Definition 6 (Minimum Range Sequence). Let A be a sorted sequence of distinct integers.
A “range sequence” of A is another sequence, Ar, constructed from A in which any disjoint
subsequence of consecutive integers is replaced by its first and last values. When such
subsequence contains only one integer i, it will be represented as [i, i] in Ar. The minimum
sized Ar is defined as minimum range sequence of A, denoted as ρ(A).

▶ Definition 7 (Range Compressed Row Storage). For a sparse matrix A and its sorted CRS
representation (C, R), we define Range Compressed Row Storage or rCRS(A) as two 1D
arrays (C ′, R′) which are called column indices and row map arrays respectively:

C ′ = ρ(C0) · · · ρ(Cn−1), where Ci is partition i in the row decomposition of C;
R′ is an array of length n + 1, in which R′(i) specifies the start index of ρ(Ci). The last
value is defined as R′(n) = |C ′|.

It can be easily shown that rCRS can be constructed from sorted CRS in linear time
with respect to the number of non-zero values. Accessing element aij in A represented in
rCRS reduces to determining whether j lies within any range in row i. Since the ranges
are disjoint and sorted, this operation can be performed using binary search which requires
O(log(ẑ)) time in the worst case, where ẑ is the maximum size of C ′i across all rows i. Note
that, unlike the CRS format, the size of C ′ is no longer equal to nnz(A).

The space complexity of the rCRS representation decisively depends on the distribution
of non-zero values in the rows of the matrix. This representation can substantially compress
the column indices array C – as low as O(n) compared to O(nnz(A)) in CRS – if the array
contains long distinct ranges of consecutive integers. The limitation of this representation
is that it can be twice as large when there is no stretch of consecutive indices in C. It
is important to note that the compression rate can directly influence query time, as it is
proportional to the compressed representation of non-zero values.

To mitigate this issue, we define a variant of rCRS, which is referred to as Asymmetrical
Range CRS (aCRS). In the worst case scenario, aCRS format takes as much space as the
standard CRS while keeping the same time complexity O(log(ẑ)) for the query operation.
We elaborate on the aCRS definition and related analysis in Section B.

Although aCRS theoretically provides a more compact representation compared to rCRS,
the experimental results (in Section 5) show that it occupies as much space as rCRS when
storing distance index T for sequence graphs in practice. This is due to the fact that the
ordering defined in Section 4.1, together with the topology of sequence graphs, rarely results
in isolated column indices. Consequently, aCRS holds two integers per range, similar to rCRS.
Considering this fact and the relative ease of implementing efficient sparse matrix algorithms
with rCRS compared to aCRS, particularly on GPU, we base our implementation on the
rCRS format. This can be observed in the index constructed for a chain graph (Figure 3),
which often resembles the general structure of sequence graphs.

4.3 Range Sparse Boolean Matrix Multiplication (rSpGEMM)
Given sparse matrices Am×n and Bn×s where m, n, and s are positive integers, SpGEMM is
an algorithm that computes C = A ·B using sparse representations of two input matrices. In
this section, we introduce a new SpGEMM algorithm, called Range SpGEMM or rSpGEMM

WABI 2025
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for short, computing matrix-matrix multiplication when input and output matrices are in
the rCRS format. The algorithm is designed to scale well on both multi-core architectures
(CPUs) as well as many-core architectures (GPUs).

Similar to most parallel SpGEMM algorithms, our rSpGEMM follows Gustavson’s al-
gorithm [23]. Algorithm 2 illustrates its general structure, in which A(i, :) refers to row i of
matrix A. This notation can be generalized to B(j, :) and C(i, :) in Algorithm 2 specifying
row j and i in B and C, respectively. Note that Algorithm 2 only iterates over non-zero
entries of A and B.

The algorithm computes C one row at a time. To compute C(i, :), it iterates over non-zero
values in row A(i, :) and computes its contribution to C(i, :) by multiplying it to non-zero
values in row Bj ; i.e. the term aij ·B(j, :) in Line 3. This contribution is then accumulated
with the partial results computed from previous iterations. The row accumulation can be
simplified to C(i, :)← C(i, :) + B(j, :) in Boolean matrices as aij is 1.

Since computing each row of the final matrix is independent of the others, C = A ·B
can be seen as multiple independent vector-matrix multiplication C(i, :) = A(i, :) ·B. For
simplicity, we will only focus on the equivalent vector-matrix multiplication.

Algorithm 2 Gustavson’s algorithm.

Require: Sparse matrices Am×n and Bn×s

1: for i := 0→ m− 1 do
2: for aij ∈ A(i, :) do
3: C(i, :)← C(i, :) + aij ·B(j, :)

Given that the output matrix is also in the sparse format, knowing the number of non-zero
values in each row of C is essential before storing the calculated Ci in the final matrix. This
issue is usually tackled using a two-phase approach: firstly, the symbolic phase, delineates the
structure of C, primarily corresponding to the computation of its row map array. Secondly,
the numeric phase, carries out the actual computation of C.

Similar to SpGEMM algorithms based on Gustavson’s, the fundamental aspect of rSp-
GEMM resides in three anchor points: the data structure employed for row accumulation,
memory access pattern to minimize data transfer latency, and distribution of work among
threads in hierarchical parallelism. In the following, we address each of these points.

4.3.1 Bi-Level Banded Bitvector as Accumulator
The row accumulation in Boolean SpGEMM, explained in Section 4.3, can be seen as the
union of all column indices in B(j, :) for all j where aij ̸= 0. Figure 4a schematically depicts
the row accumulation in computing a row of the final matrix. It is important to highlight
that row accumulation in rSpGEMM is carried out on ranges of indices that are, by definition,
disjoint and sorted.

Our method employs a dense bitvector, namely Bi-level Banded Bitvector (BBB), as an
accumulator in rSpGEMM. From a high-level point of view, this bitvector supports two
main operations: scatter and gather. The scatter operation stores a range of column
indices at once, which essentially involves setting a range of sequential bits in the bitvector
to one. Conversely, the gather operation retrieves the union of column indices stored by
the scatter method in the form of the minimum range sequence (Definition 6). Computing
C(i, :) is essentially a combination of scattering partial results and gathering the final
accumulated entries using BBB.
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(a) (b)

Figure 4 (a) Row accumulation in Boolean matrices can be viewed as the union of all non-zero
values in rows of B that are specified by the non-zero values in Ai. (b) BBB hierarchical structure
and indexing.

The scatter operation is a bit-parallel operation that sets bits corresponding to index
range [s, f ] in a series of W -bit operations. Each set bit in the bitvector indicates absence/-
presence of the corresponding column in the final result. The pseudocode of the scatter
operation can be found in Algorithm 3, in Section C.

Each cluster of set bits in the final bitvector represents an interval in the final row C(i, :),
with each interval corresponding to an entry pair in the rCRS format. In the symbolic phase,
the gather operation counts the number of entries in rCRS with regards to non-zeros in row
C(i, :). In the numeric phase, it constructs the resulting row as a minimum range sequence.
Furthermore, in order to avoid scanning all words for set bits, the absolute minimum (jmin)
and maximum (jmax) word indices are tracked and the final scan is limited to [jmin, jmax].
Since each row in B is sorted, jmin and jmax are updated once per row. The key advantage
of the gather operation is that it relies solely on trivial bitwise functions, which – similar to
scatter – exploit bit-level parallelism to convert clusters of set bits into their corresponding
start and end indices. Algorithm 4 in Section C demonstrates the pseudocodes of the gather
operations in the symbolic and numeric phrase. Additional information regarding these
operations can be found in Section C.1.

The bitvector is designed to perform well in scenarios where non-zeros in row C(i, :) are
localized, which reflects a practically common scenario. To this end, two design decisions
have been made. Firstly, the size of the bitvector is bounded by the bandwidth observed in
C(i, :) which is calculated before the symbolic phase. Secondly, the bitvector is partitioned
into two levels L0 and L1 in order to minimize the memory latency by utilizing the locality of
non-zero values in C(i, :). The first level (L0) is allocated on the fast (low-latency) memory
if there is hardware support (e.g. shared memory in GPUs). The rest of the bit fields is
mapped to the second level L1 and allocated on the larger memory but with higher latency
(e.g. global memory on GPU). On hardware where software-managed memory hierarchy is
not available (like CPUs), this model promotes cache-friendly memory accesses.

The rationale behind this design is that the first level L0 spans the range of bits that
are more likely to be accessed during row accumulations. If all non-zero values in a row are
bound to L0 index range, no words in L1 are fetched or modified. Therefore, all scatter
and gather operations mentioned earlier are performed on words in the fastest memory. The
relative position of the first level within a row is specified by the index of its center bit p,
referred as pivot bit. For example, the center of the band in each row of C is a viable option
for p. In this work, we chose p = i to set the L0 region around the diagonal as node i is more
likely to be adjacent to nodes with ranks close to i in adjacency matrices.
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The arrangement of bits in two levels necessitates calculating internal (local) indices
within levels from column (global) indices. Local indices in each level are calculated from
corresponding global indices relative to p and using modular arithmetic (see Figure 4b).

4.4 Range Sparse Boolean Matrix Addition (rSpAdd)
In this section, we shift our focus to calculating matrix-matrix addition in rCRS format
which is required for computing the distance index. We propose the Range Boolean Sparse
Add (or rSpAdd) algorithm which computes matrix C = A ∨B where all matrices are in
rCRS format and ∨ is Boolean matrix addition defined in Definition 2.

Considering that non-zero values in each row of rCRS matrices are represented by ranges,
each with two integers, and these integers are sorted and disjoint, row C(i, :) is equivalent to
the sorted combination of ranges in both rows A(i, :) and B(i, :), where overlapping ranges
are collapsed into one. For each row in C, this is achieved by using two pointers, each initially
pointing to the first element of the respective rows. The algorithm peeks at the pairs in
A(i, :) and B(i, :) indicated by the pointers. If two ranges are disjoint, it inserts the one with
smaller bounds in C(i, :) and increments the pointer indicating the inserted pair by two. If
two ranges overlap, they will be merged by inserting the minimum of lower bounds and the
maximum of upper bounds of the two pointed elements into C(i, :) in that order. Then, both
pointers are incremented to indicate the next pairs. In case either pointer reaches the end of
the row, the remaining elements from the other row are directly appended to C(i, :).

The time complexity of this algorithm is bound by compressed representation of input
matrices in rCRS format. Since the ranges in rCRS are disjoint and sorted, merging two rows
A(i, :) and B(i, :) can be done in Θ(|A(i, :)|+ |B(i, :)|); in which |A(i, :)| and |B(i, :)| are the
sizes of A(i, :) and B(i, :) in rCRS format, respectively. rSpAdd not only requires smaller
working space compared to SpAdd but is arguably faster due to compressed representation
of the matrices.

4.5 Distance Index
As stated in Section 3.1, the distance index constructed by Equation (1) is a block-diagonal
matrix. For this reason, DiVerG builds the distance index incrementally for each block; i.e.
computing the distance matrix for each component of the sequence graph individually. The
adjacency matrix for each component can be constructed in rCRS format one row at a time.
Therefore, it is not required to store the whole matrix in sorted CRS format to be able to
convert it to rCRS. Once matrices A and I are in rCRS format, T can be computed using
rSpAdd and rSpGEMM. The powers of A and A∨ I are computed using “exponentiation by
squaring” [28]. Ultimately, matrix T is further compressed by encoding both the column
indices and row map arrays using Elias-δ encoding [17].

DiVerG provides an exact solution to the DVP through its compressed format for storing
both final and intermediate matrices when computing the distance index T . The compression
ratio directly impacts the efficiency of the matrix multiplication operations, with higher
compression resulting in faster construction. Since compression efficiency depends on the
topology of the sequence graph and the structure of its adjacency matrix, establishing tight
theoretical bounds on space and time complexities is challenging. However, we can derive
meaningful lower bounds to facilitate comparison with previous approaches.

It can be demonstrated that for a sequence graph G = (V, E), indexing cost is lower
bounded by that of the chain graph Gc = (V ′, E′) representing the longest path in G [27].
This analysis applies to our rSpGEMM algorithm as well. For a chain graph, the index T
has a particularly simple structure (Figure 3): in each row i, all columns from d1 to d2 is 1.
This structure offers two advantages in the rCRS format:
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Space complexity: Each row requires only two integers regardless of the distance range,
resulting in Ω(|V |) space complexity – independent of distance parameters d1 and d2,
unlike PairG’s Ω(|V | · d) where d = d2 − d1. Note that Elias encoding of the row map
and column indices arrays compresses the final index even further in practice.
Time complexity: While rSpGEMM performs the same operations as SpGEMM, bit-
parallelism reduces the computation time by a factor of the word size W . Jain et al. [27]
showed that computing T for G using SpGEMM requires Ω

(
|V ′|

(
d2 + log d1

))
; therefore,

DiVerG’s rSpGEMM requires Ω
(
|V ′|

(
d2/W + log d1

))
. Note that, this improvement is

particularly significant when computing (A ∨ I)d2−d1 , where multiple non-zero values per
row enable effective bit-parallelism.

Given that sequence graphs often closely resemble their linear structure, these bounds
provide a reasonable approximation of actual performance while highlighting the fundamental
advantages of our approach.

5 Experimental Results

5.1 Implementation
DiVerG is implemented in C++17. While we develop our theory using character graphs, our
implementation handles general string-labelled sequence graphs without loss of generality. The
matrix T , in the final stage, is converted to encoded rCRS format (described in Section 4.5)
whose size is reported as index size in Section 5.3. Our implementation relies on Kokkos [13]
for performance portability across different architectures, and we specifically focused on two
execution spaces: OpenMP (CPU), and CUDA (GPU).

We compared the performance of our algorithm with PairG which uses the kkSpGEMM
meta-algorithm implemented in Kokkos [13] for computing sparse matrix multiplication.
Kokkos offers several algorithms for computing SpGEMM. The kkSpGEMM algorithm attempts
to choose the best algorithm based on the inputs. As the PairG implementation was in
practice not runnable on GPU, we re-implemented the corresponding part of PairG to support
GPU and used this implementation for comparison.

All CPU experiments were conducted on an instance on de.NBI cloud with a 28-core (one
thread per core) Intel® Xeon® Processor running Ubuntu 22.4. Distance index construction
on GPU were carried out on an instance with an NVIDIA A40 GPU running Ubuntu 22.4.

5.2 Datasets
DiVerG is assessed using seven different graphs. Four of these graphs were previously
employed by PairG in their evaluation, while three additional graphs have been introduced
to address significantly larger and more complex scenarios. Together, these graphs span over
a spectrum of scales, complexities, and construction methods.

Three of these graphs are variation graphs of different regions of the human genome,
constructed from small variants in the 1000 Genomes Project [1] based on GRCh37 reference
assembly: the mitochondrial DNA (mtDNA) graph, the BRCA1 gene graph (BRC), and the
killer cell immunoglobulin-like receptors (LRC_KIR) graph. One graph is a de Bruijn graph
constructed using whole-genome sequences of 20 strains of B. anthracis. We added three new
variation graphs to this ensemble: the MHC region graph constructed from alternate loci
released with GRCh38 reference assembly [34], and the HPRC CHM13 graph [29] constructed
by minigraph. Table 1 presents some statistics of the sequence graphs used in our evaluation.
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Table 1 Statistics of the sequence graphs used for performance evaluation.

Graphs Nodes1) Edges

mtDNA (GRCh37–1KGP) 21,037 26,842
BRCA1 (GRCh37–1KGP) 83,267 85,422
LRC_KIR (GRCh37–1KGP) 1,108,768 1,154,049
MHC-minigraph (GRCh38–alt) 10,987,753 11,078,552
B. anthracis (20 strains) 11,237,088 11,253,454
HPRC CHM13 chr22 63,520,037 63,527,923
HPRC CHM13 chr1 261,344,589 261,360,990

1) Note that all graphs are character graphs.

5.3 Results

We evaluate the index size (size), construction time (ctime), and high water mark memory
footprint during index construction (mem) for different distance constraints using the graphs
explained in Section 5.2. Moreover, the query time (qtime) is measured for the distance index
by averaging the time spend for querying 1M randomly sampled paired positions throughout
each graph. Our method is evaluated using two separate sets of distance constraints.

Performance Evaluation with Increasing Distance Constraints Intervals

In the first experiment, performance metrics are computed for two graphs, BRCA1 (small)
and MHC (medium-sized), with distance constraints: (0, 128), (0, 256), (0, 512), and (0, 1024).
This experiment reveals the behaviour of our algorithm as the distance range increases and
specifically highlights the performance of rSpGEMM in computing the term (A ∨ I)d2−d1

in Equation (1), which is a bottleneck in calculating T . The performance measures are
computed on both CPU (OpenMP) and GPU (CUDA).

Figure 5a illustrates the performance measures and their comparison with PairG for the
BRCA1 graph. As can be seen, DiVerG is about 4–7x faster in query time and 45–172x
smaller in size in comparison to standard sparse matrix format and operations. Furthermore,
the results show that DiVerG is approximately 9–28x faster than PairG in construction time
on GPU and 10–68x on CPU. Moreover, the query time and index size in DiVerG do not
change as the range of the distance constraints increases. This is because the number of
non-zero values, i.e. ranges, in the rCRS format saturates quickly and stays constant.

Our evaluations for the MHC region graph conducted with the same distance intervals
are illustrated in Figure 5b. Although the MHC graph is much larger than the BRCA1
graph, the trends in the results remain consistent. Specifically, DiVerG achieves about 2.5–4x
speed-up in accessing the matrix; the index in the rCRS format is approximately 44–340x
smaller compared to the classical CRS format; and the query time and index size do not
change with an increase in the distance interval. As the standard SpGEMM in PairG fails
to construct the index on GPU due to the graph size and limited memory available on the
device, we only report the runtime on CPU for this graph.

As shown in Figure 5b, DiVerG is faster that PairG in indexing the graph on CPU, except
for the distance interval [0, 128]. However, as the distance intervals grow larger, DiVerG
becomes up to 3x faster in index construction. This speedup increases to 7–49.5x when
DiVerG is executed on GPU: 7x for the distance constraint (0, 128) and 49.5x for ([0, 1024).
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Figure 5 Log-scale performance of DiVerG for BRCA1 (a) and MHC graphs (b).

Performance Evaluation with Offset Distance Constraints Intervals

In the second experiment, DiVerG is assessed for more realistic distance constraints (0, 250),
(150, 450), and (350, 650), resembling the inner distance model for paired-end reads with
fragment sizes 300 bp, 500 bp, and 700 bp, respectively. The evaluation is conducted on
all graphs described in Section 5.2, including chr1 and chr22 of the HPRC CHM13 graph
to demonstrate the scalability of DiVerG to large genomes. All benchmarks are executed
on an NVIDIA A40 GPU which has 48 GB of global memory. For certain datasets and
parameter configurations, PairG failed to construct the index, either due to excessive memory
requirements or because it did not complete within a 6-hour time frame. In those cases, we
only report the performance of DiVerG, and the size of the PairG index which is computed
via direct conversion from rCRS to CRS.

Table 2 shows the superior performance of DiVerG in all metrics, being about 170–420x
smaller, and, in instances where PairG successfully completes, the indices are created 3–6x
faster with considerably lower memory requirements than PairG for all datasets. The average
number of column indices in each row in the rCRS format is about 2.1 for all variation
graphs and all distance intervals. This number is approximately 4.8, 5.8, and 8.2 for the de
Bruijn graph with distance intervals (0, 250), (150, 450), and (350, 650), respectively, while
the average number of non-zero values per row in the equivalent CRS format is close to
300, i.e. d2 − d1. This explains the high compression ratio of the DiVerG distance index.
Additionally, query time shows a 3–5x speedup across all pangenome graphs. Our method
can handle significantly larger graphs that are beyond the capabilities of PairG as it only
requires a few tens of megabytes auxiliary space in memory per active thread.

6 Conclusion

In this work, we have proposed DiVerG, a compressed representation combined with fast
algorithms for computing a distance index that exploits the structure of adjacency matrices
of sequence graphs to significantly improve space and runtime efficiency. In this way, DiVerG

WABI 2025



10:16 Scalable Distance Index for Validation of Alignments in Sequence Graphs

Table 2 Performance of DiVerG compared to PairG on an NVIDIA A40 GPU in terms of index
size (size), construction time (ctime), high water mark memory footprint (mem), and query time
(qtime), along with the number of non-zero values in the final index (nnz).

DiVerG PairG

d1–d2 nnz size ctime mem qtime size ctime mem qtime

m
tD

N
A 0–250 7M 287KB 37ms 1MB 12ns 52MB 215ms 2.17GB 36ns

150–450 8M 245KB 39ms 1MB 11ns 60MB 240ms 2.18GB 37ns

350–650 8M 243KB 39ms 1MB 11ns 58MB 239ms 2.18GB 36ns

B
R

C
A

1 0–250 21M 1MB 35ms 4MB 13ns 164MB 113ms 542MB 69ns

150–450 26M 1MB 41ms 5MB 13ns 197MB 173ms 500MB 75ns

350–650 26M 1MB 44ms 5MB 13ns 197MB 176ms 500MB 75ns

LR
C

0–250 290M 13MB 320ms 52MB 25ns 2.2GB 1.1s 4.5GB 113ns

150–450 349M 13MB 374ms 70MB 25ns 2.7GB 1.9s 5.4GB 120ns

350–650 350M 13MB 394ms 73MB 22ns 2.7GB 1.9s 5.5GB 117ns

M
H

C 0–250 3B 125MB 8s 41GB 53ns 21GB 11s 44GB 164ns

150–450 3B 126MB 11s 41GB 57ns 26GB – – –
350–650 3B 127MB 13s 41GB 55ns 26GB – – –

B
.A

nt
h. 0–250 5B 178MB 4m22s 43GB 59ns 34GB – – –

150–450 9B 221MB 11m18s 43GB 59ns 66GB – – –
350–650 14B 254MB 23m49s 43GB 60ns 104GB – – –

ch
r2

2 0–250 16B 723MB 37s 34GB 60ns 121GB – – –
150–450 20B 737MB 52s 33GB 57ns 149GB – – –
350–650 21B 743MB 58s 34GB 57ns 154GB – – –

ch
r1

0–250 66B 2.96GB 14m18s 43GB 63ns 495GB – – –
150–450 80B 3GB 45m35s 43GB 62ns 601GB – – –
350–650 82B 3GB 1h04m 43GB 62ns 612GB – – –

provides a fast solution for the prominent DVP in paired-end read mapping to pangenome
graphs. Our extensive experiments showed that DiVerG facilitates the computation of
distance indexes, making it possible to solve the DVP when working with large graphs.
We have demonstrated how to optimize algorithms with respect to hardware architecture
considerations, which has been crucial for processing graphs that capture genomes at the
scale of various eukaryotic genomes. We developed DiVerG with a particular focus on
aligning paired-end short-reads to graphs, recognizing that the DVP can be a computational
bottleneck. In the future, we plan to employ DiVerG in the context of sequence-to-graph
alignments.
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A Fragment Model in Paired-End Sequencing

The fragment model of a read library describes the probability distribution of the insert sizes.
This model is typically denoted by a normal distribution, characterized by the empirical
mean and variance of the insert sizes.

Inner distance

Insert size

Adapter size

Fragment size

Forward Read

Reverse Read

Adapters

DNA Insert

(a)

Reference

In range

Out of range

(b)

Figure 6 (a) A fragment in paired-end sequencing: a DNA insert with two adapters attached
at each end enabling sequencing from both ends. (b) A schematic example of resolving alignment
ambiguities using distance validation. The forward read has an unique alignment (in red) which can
determine the correct alignment of the other end (blue).

In our study, the fragment model is represented by the lower and upper bounds of the
expected insert size instead of a probability distribution. These bounds are still probabilistic,
as they refer to reasonably chosen cut-offs on the tails of the insert size distribution, e.g. cap-
turing 99.7% of the observed lengths or defined as µ± 3σ in which µ and σ are mean and
variance in the fragment model.

There are two ways to define the distance between two paired reads. The inner distance
between the ends of two paired reads which is determined by the size of unsequenced part of
the DNA fragment. It can be calculated by subtracting the sum of the read lengths from the
insert size (as shown in Figure 6a). The outer distance is defined by the distance between
the starts of two paired reads which is equivalent to the insert size. Given the variability in
both insert sizes and read lengths, and the possibility of overlapping reads in some datasets,
using the outer distance can simplify the process of distance validation. Therefore, validating
outer distance is more practical compared to the inner distance. Nevertheless, the method is
neutral with respect to either definition of distance.
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B Asymmetrical Range CRS

Asymmetrical Range CRS (aCRS) is defined similar to the rCRS format with slight tweaks
to avoid redundancy in the column indices array when there is an isolated column index x,
which is otherwise stored as subsequence [x, x] in rCRS.

▶ Definition 8 (Minimum Asymmetrical Range Sequence). Let A be a sorted sequence of
distinct positive integers, and As a sequence constructed by replacing any disjoint subsequence
of consecutive integers S = sf · · · sl in A by sf and −sl if |S| > 1; otherwise S is replaced by
the single element sf . The sequence of minimum size constructed this way is defined as the
minimum asymmetrical range sequence of A and is denoted by ρ̂(A).

▶ Example 9. Let A = [10, 11, 12, 13, 23, 29, 30] from previous example. The minimum
asymmetrical range sequence of A is defined as ρ̂(A) = [10,−13, 23, 29,−30].

▶ Lemma 10. The minimum asymmetrical range sequence of a non-empty set of integers A

can be constructed from the sorted array representing A in linear time.

Proof. It can be trivially constructed by starting from ρ̂(A) = ∅ and iterating over elements
in A in ascending order. ◀

▶ Lemma 11. Given A as a non-empty set of positive integers, the size of the minimum
asymmetrical range sequence of A is at most equal to the cardinality of A; i.e. |ρ̂(A)| ≤ |A|.

Proof. This follows directly from the fact that any asymmetrical range sequence of A defines
a partition of A, denoted as P , where each block in P represents a contiguous range of
integers in A and contributes either one element to ρ̂(A) (if |P | = 1) or two elements (the
endpoints if larger). In either case, each block contributes at most as many elements to ρ̂(A)
as it contains from A. Summing over all blocks shows that |ρ̂(A)| ≤ |A|. ◀

▶ Definition 12 (Asymmetrical Range Compressed Row Storage). For a sparse matrix A
and its sorted CRS representation (C, R), Asymmetrical Range Compressed Row Storage or
aCRS(A) is defined as two arrays (C ′′, R′′); where

C ′′ = ρ̂(C0)ρ̂(C1) · · · ρ̂(Cn−1), in which Ci is the ith partition in row decomposition of C;
R′′ is an array of length n+1 in which R′(i) specifies the start index in C ′′ that corresponds
to row i; i.e. the start index of ρ̂(Ci). The last value is defined as R′′(n) = |C ′|.

▶ Remark 13. Since column indices are non-negative, negative values in aCRS distinctly
indicate the upper bound of a range.

▶ Theorem 14. aCRS can be constructed from sorted CRS in linear time with respect to the
number of non-zero values.

Proof. Directly followed by Lemma 10 and Definition 12. ◀

▶ Theorem 15. For a sparse matrix A, aCRS(A) always requires space that is equal to or
smaller than that of CRS(A) as well as rCRS(A).

Proof. This can be readily demonstrated using Lemma 11 and Definition 12. ◀

▶ Remark 16. The elements of the column indices array in aCRS, C ′′, are sorted in each
partition of its row decomposition and the ranges indicated by pairs or isolated elements in
C ′′i are disjoint.
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▶ Theorem 17. Let ẑ be the maximum size of the minimum asymmetrical range sequence
representation over all rows of sparse matrix A. Accessing an element in A represented by
aCRS format takes O(log(ẑ)) time in the worst case.

Proof. Similar to rCRS, each row i in aCRS format is represented by a subsequence C ′′i
of signed (paired or singleton) integers denoting a series of ranges. These elements encode
intervals of column indices where non-zero entries occur, and their signs indicate range
boundaries (see Remark 13). To query aij , we perform a binary search on the absolute
values of C ′′i to find the largest index p such that abs(C ′′i [p]) ≤ j. The value at position p

identifies either the lower or upper bound of a range containing j, depending on its sign. By
construction, every such range is disjoint and the sequence is sorted in terms of absolute
values (Remark 16), ensuring that at most one range can contain j.

The identification step is constant-time, and since binary search is used over C ′′i of size
at most ẑ, the total time per lookup is O(log ẑ). ◀

C Bi-Level Banded Bitvector

C.1 scatter and gather Operations
In this section, we cover some details regarding the scatter and gather operations (Al-
gorithm 3 and Algorithm 4).

The gather operation functions using four trivial bitwise functions: cnt, map01, map10,
and sel. The cnt function simply counts the number of set bits in a word and is performed
by a single machine instruction (POPCNT).

The map01 and map10 functions identify boundaries of consecutive set bits (runs of 1s) in
a word through specific bit pattern transformations. The map01 function detects 01 patterns,
mapping them to 01 (i.e. itself) while mapping all other two-bit patterns (00, 10, and 11) to
00. Since a 01 pattern occurs when a 0 is followed by a 1, this function effectively marks the
starting position of each run of consecutive 1s.

Conversely, the map10 function detects 10 patterns, mapping them to 01 and all other
patterns to 00. Since a 10 pattern occurs when a 1 is followed by a 0, this function marks the
position immediately after the end of each run of consecutive 1s. Both map01 and map10 can
be calculated using basic bitwise operations1 in constant time independent of the word size.
The border cases, when 01 or 10 occur at the boundaries between two words, are handled by
peeking at the immediate bit on the left of the bit that is being processed. In other words,
the most significant bit (MSB) of the previous word is appended to the current word before
applying map* functions. This bit, which is called carried bit, is zero for the first word.

Finally, the sel(x, i) function gives the position of i-th set bit in word x relying on
native machine instructions (e.g. fns intrinsic in CUDA and PDEP and TZCNT instruc-
tions on CPUs). The shiftLeft(w, l) and shiftRight(w, l) function calls in Algorithm 3
and Algorithm 4 denote bitwise left-shift and right-shift operations of word w by l bits,
respectively.

In the symbolic phase, gather counts the number of entries in rCRS with regards to
non-zeros in row C(i, :). This count is equivalent to twice the number of 01 occurrences
in the bitvector and can be formulated as cnt(map01(w)) for all modified words w in the
bitvector. In order to convert the set bit stretches to integer intervals in numeric phase, the
first and the last bit of each stretch are marked by applying map01 and map10 functions on
all words. Finally, calling sel on each set bits in (map01(w) or map10(w)) gets the final
minimum range sequence of the accumulated indices.

1 http://www-graphics.stanford.edu/~seander/bithacks.html
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Algorithm 3 Bi-level Banded Bitvector scatter operation.

Require: Bi-level bitvector B, start and finish column indices s and f , and word size W

1: function Scatter(B, s, f)
2: i← ⌊s/W ⌋ ▷ Word index of the bit at s in B
3: j ← ⌊f/W ⌋ ▷ Word index of the bit at f in B
4: o← s mod W ▷ Offset of s within word i

5: p← f mod W ▷ Offset of f within word j

6: if i = j then
7: mask← shiftLeft(shiftLeft(1, p− o + 1)− 1, o) ▷ mask = 0 . . . 0

p ← o

1 . . . 10 . . . 0
8: B[i]← B[i] or mask
9: else

10: mask← shiftLeft(2W − 1, o) ▷ mask =
W−1← o

1 . . . 110 . . . 0
11: B[i]← B[i] or mask
12: for k := i + 1→ j − 1 do ▷ Set all bits of word k ∈ [i + 1, j − 1]
13: B[k] = 2W − 1
14: mask← shiftRight(2W − 1, W − p− 1) ▷ mask = 0 . . . 0

p ← 0
1 . . . 1

15: B[j]← B[j] or mask

Algorithm 4 Bi-level Banded Bitvector gather operation.

Require: Word w and carried bit c

1: function map10(w, c)
2: x← shiftLeft(w, 1) or c ▷ appending bit c to w and left-shift by 1
3: report x and not(w)
4: function map01(w, c)
5: x← shiftLeft(w, 1) or c ▷ appending bit c to w and left-shift by 1
6: report (w xor x) and w

Require: Column indices subarray C ′r, bi-level bitvector B, minimum and maximum column
indices jmin and jmax in the row, and word size W

7: function GatherSymbolic(B, jmin, jmax)
8: b← ⌊jmin/W ⌋ ▷ Word index of the bit at jmin in B
9: e← ⌊jmax/W ⌋ ▷ Word index of the bit at jmax in B

10: z ← 0, c← 0
11: for i := b→ e do
12: z ← z + 2 ∗ cnt(map01(B[i], c)) ▷ Count each runs of 1s twice
13: c← rightShift(B[i], W − 1) ▷ c is assigned to the most significant bit of B[i]
14: report z

15: function GatherNumeric(C ′r, B, jmin, jmax)
16: b← ⌊jmin/W ⌋ ▷ Word index of the bit at jmin in B
17: e← ⌊jmax/W ⌋ ▷ Word index of the bit at jmax in B
18: k ← 0
19: for i := b→ e do
20: w ← map01(B[i]) or map10(B[i]) ▷ Identify boundaries of consecutive set bits
21: for j := 0→ cnt(w) do
22: C ′r[k] = i ·W + sel(w, j + 1)
23: k ← k + 1
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