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Abstract
Chemical reaction databases typically report the molecular structures of reactant and product com-
pounds, as well as their stoichiometry, but lack information, in particular, on the correspondence of
reactant and product atoms. These atom-to-atom maps (AAM), however, are crucial for applications
including chemical synthesis planning in organic chemistry and the analysis of isotope labeling
experiments in modern metabolomics. AAMs therefore need to be reconstructed computationally.
This situation is aggravated, furthermore, by the fact that chemically correct AAMs are, funda-
mentally, determined by quantum-mechanical phenomena and thus cannot be reliably computed by
solving graph-theoretical optimization problems defined by the reactant and product structures. A
viable solution for this problem is to shift the focus into first identifying a partial AAM containing
the reaction center, i.e., covering the atoms incident with all bonds that change during a reaction.
This then leads to the problem of extending the partial map to the full reaction. The AAM of
a reaction is faithfully represented by the Imaginary Transition State (ITS) graph, providing a
convenient graph-theoretic framework to address the questions of when and how a partial AAM can
be extended. We show that an unique extension exists whenever, and only if, these partial AAMs
cover the reaction center. In this case their extension can be computed by solving a constrained
graph-isomorphism search between specific subgraphs of ITS graphs. We close by benchmarking
different tools for this task.
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1 Introduction and Motivation

A large part of chemical knowledge is encoded in chemical reactions and formalized as
transformations of structural formulae, i.e., of labeled graphs that explicitly represent atoms
as vertices and chemical bonds as edges. Large-scale data bases, such as Reaxys® [16] or the
United States Patent and Trademark Office (USPTO) database [30], collect this knowledge in
the form of some model for a reaction G −−→ H, where G and H are the disjoint unions of
the structural formulae of reactants and products, respectively. The same representation is
used for metabolic reactions in the KEGG and EcoCyc databases.

For a wide variety of practical applications, ranging from chemical synthesis planning to
the analysis of isotope labeling experiments in metabolic networks, the knowledge of G and
H is insufficient, however. In addition, the exact correspondence of reactant and product
atoms is required. This atom-to-atom map (AAM) is usually represented as a bijection
α : V (G) → V (H) between vertex sets of the reactants-graph G and the products-graph H

modeling G −−→ H. The AAM, moreover, preserves atom types and determines the bonds
that are formed, broken and conserved in the course of the reaction [25]. Thus, AAMs can
also be understood as a summary of the mechanism of a reaction, at least at the level of
abstraction defined specified by structure formulas.

The databases introduced above, for example, typically do not provide AAMs together
with the reactions, which therefore need to be constructed by computational means. This
has turned out to be a non-trivial problem that still remains an area of active research.
The main difficulty is that the chemically correct AAM is determined by the ground-truth
mechanism of the reaction (or reactions in the case of multi-step transformations which are
of particular relevance in enzyme-catalyzed biochemical reactions), which is inherently a
quantum-mechanical phenomenon whose outcome is, at best, approximated by heuristic
rules such as the Principle of Minimal Chemical Distance [23], geometric rules such as the
Principle of Least Nuclear Motion [21], or maximum common subgraph approaches [10].
More recently, machine-learning methods have been devised to complement the shortcomings
of the combinatorial methods, see [28] for are recent comparative benchmarking effort.

An alternative for seeking to infer an AAM in a single step, is to divide this task into
three potentially easier subproblems: (a) determine the most likely type of the reaction, (b)
identify the reaction center(s), i.e., the atoms incident with all bonds that change, and (c)
construct the AAMs using the results of (a) and (b) as constraints.
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The rationale for this approach is that, fundamentally, reactions are not arbitrary changes
of bonds. On the contrary, chemical reactions usually follow specific localized patterns of
bond changes and are restricted to particular classes of reactants. In the chemistry literature,
such reaction types are often referred to as “name(d) reactions” such as Grignard reaction,
Claisen condensation or Friedel–Crafts acylation [27].

Reaction types can be specified, moreover, by reaction templates describing the parts of
the involved molecules that are actually affected and/or necessary for the reaction to take
place. A reaction template thus is a pair of pattern graphs, one, L in the reactants-graph G
and the other, R, in the products-graph H, together with a bijection ξ : V (L) → V (R) that
establishes the AAM at the level of the patterns. A reaction template L −−→ R is said to
explain the reaction G −−→ H if (i) L and R appear as (are isomorphic to) subgraphs of G
and H, respectively, (ii) the bijection ξ can be extended to an AAM for G and H, and (iii) all
bonds that change during G −−→ H are covered by L −−→ R. Reaction templates therefore
contain and typically extend beyond the reaction center. Formally, they can be interpreted
as a special case of double pushout graph rewriting rules, see e.g. [8, 2, 3]. Preservation of
mass and atom types, i.e., of the number of vertices and their labels, makes it possible to
express the necessary theory in terms of graph isomorphisms and induced subgraphs. We
therefore forego a description of the category-theoretic formalism of graph transformations
for the purposes of this contribution.

▶ Definition 1. Consider two reactions G −−→ H and L −−→ R, where the latter is endowed
with an AAM ξ : V (L) → V (R). Then (L,R, ξ) is a pattern for G −−→ H, if there are
subgraph isomorphisms µ : V (L) → V (G) and ν : V (R) → V (H) of the patterns into reactants
and products, such that the induced partial atom-to-atom map π : µ(L) → ν(R) given by
π(x) = ν(ξ(µ−1(x))) for all x ∈ µ(L) ⊆ V (G), can be extended to an AAM α : V (G) → V (H)
that coincides with π on µ(L), i.e., α(x) = π(x) for all x ∈ µ(L).

Throughout this contribution we will assume that a reaction G −−→ H and a partial
AAM π : U → W with U ⊆ V (G) and W ⊆ V (H) are given. In practice, such partial AAMs
can be produced, e.g., by learning-based reaction mapping tools [6, 35]. Another source of
partial AAM data are the RCLASS data provided by the KEGG database, although in this
case extensive processing is required to obtain the partial AAMs explicitly [5]. We therefore
do not need to concern ourselves with pattern graphs L and R and their embeddings µ and
ν into the graphs G and H. The mathematical structure of full and partial AAMs has been
studied in some details in [25, 26]. A key observation is that AAMs over balanced reactions
can be represented equivalently by means of Imaginary Transition State (ITS) graph and its
subgraphs. ITS graphs were introduced by Shinsaku Fujita [13] and Wilcox and Levinson [37]
for storage and processing of reactions in chemical databases, and later utilized under the
name Condensed Graph of the Reaction (CGR) in machine learning applications [22]. The
one-to-one correspondence between AAMs and ITS graphs is, therefore, the basis for the
graph-theoretical approach to AAMs that we pursue in this contribution.

Applications to Bioinformatics of our algorithms, therefore, are strongly dependent on
their applications to Organic Chemistry. Figure 1, for example, exhibits the biochemical
exchange mechanism, and the corresponding ITS graph, that allows E. coli to recycle and
route nitrogen in an efficient way [33]. Studying domain-specific mechanisms such as this one
is the focus of separate intended future contributions. In order to elucidate the mechanisms
of such reactions, nonetheless, one requires in the first place to address the problem of
comparing and extending the associated AAMs in a mathematically-correct fashion. Here
we will focus on answering two research questions: (1) when does such extensions of a
partial AAM exist? and (2) how can such an extension be computed efficiently?

WABI 2025
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In the following section we provide the necessary theoretical framework, establishing the
equivalence of AAMs and ITS graphs and introducing the remainder graphs. It is shown,
moreover, that certain isomorphisms of these remainder graphs are a sufficient condition
for the construction of equivalent of AAMs. We then consider reaction centers and their
associated partial AAMs. The main result of this section establishes that good partial AAMs
are characterized by the existence of a unique stable extension, i.e., extensions preserving the
reaction mechanism, that are in turn isomorphisms between remainder graphs, providing,
therefore, the basis for our algorithms for the completion of good partial AAMs.

O

O

O

O

HO

HO

OH

H3N

O

O

O

O

HO

HO

OH

NH3

+ +

x α(y)

α(x)y
O

O

O

O

HO

HO

OH

H3N

Figure 1 The reaction mechanism imposed by the AAM α over G −−→ H is characterized by the
ITS graph Υ(G, H, α), whose labels preserve all the information about the changing and conserved
bonds.

2 Reactions, AAMs and ITS graphs

2.1 Basic Notation
Molecules are modeled as connected, labeled simple graphs with vertices representing atoms
and edges corresponding to bonds. We write V (G) and E(G) for the vertex and edge set of a
graph G. Atom types and bond types are specified by labeling functions aG : V (G) → LV and
bG : E(G) → LE , respectively, for non-empty and disjoint label sets LV and LE . We reserve
a special symbol ⊗ /∈ LV ∪ LE for our construction (Definition 6 below). Charges can be
associated as labels to loops. We will not, however, consider this issue explicitly here, hence
examples will be simple graphs throughout. For standard terminology on Graph Theory, e.g.
adjacency and connectedness, we refer to [19]. Two labeled graphs G = (V (G), E(G), aG, bG)
and H = (V (H), E(H), aH , bH) are isomorphic if there is a bijection φ : V (G) → V (H) that
preserves adjacency as well as vertex and edge labels. A map φ : V (G) → V (H) thus is
an isomorphism if: (i) it is bijective, (ii) φ(x)φ(y) ∈ E(H) if and only if xy ∈ E(G), (iii)
aH(φ(x)) = aG(x) for all x ∈ V (G) and (iv) bH(φ(x)φ(y)) = bG(xy) for all xy ∈ E(G). We
write Iso(G,H) for the set of all isomorphisms from G to H, and G ≃ H whenever G and H
are isomorphic. Isomorphisms of G to itself are called automorphisms and form an algebraic
group denoted Aut(G) when endowed the usual composition of functions. We express the
composition of functions α : X → Y and β : Y → Z as βα(x) = β ◦ α(x) := β(α(x)).

Reactions, denoted as G −−→ H, are pairs of graphs whose connected components
represent the reactant and product molecules, respectively. Note that both G and H may
contain multiple copies of isomorphic connected components depending on the stoichiometry
of the the reaction. A reaction is balanced if there is an AAM for it, that is, there exists a
bijection α : V (G) → V (H) preserving atom-labels, i.e., aH(α(x)) = aG(x) for all x ∈ V (G).
Equivalently, G −−→ H is balanced if for each atom type c ∈ LV we have |a−1

G (c)| = |a−1
H (c)|,

i.e., reactants and products contain the same number of atoms of each type. Consider an
AAM α for a balanced reaction G −−→ H and xy ∈ E(G). We say that xy is a reaction
edge of G induced by α, if either α(x)α(y) /∈ E(H), or if bH(α(x)α(y)) ̸= bG(xy) whenever
α(x)α(y) ∈ E(H). Equally we say that uv ∈ E(H) is a reaction edge of H induced by α if
α−1(u)α−1(v) /∈ E(G), or bG(α−1(u)α−1(v)) ̸= bH(uv) provided α−1(u)α−1(v) ∈ E(G). A
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vertex x ∈ V (G) is a reacting vertex (for α) if x is incident with a reaction edge in G or α(x)
is incident with a reaction edge in H. Analogously, x ∈ V (H) is a reacting vertex (for α) if
x is incident with a reaction edge in H or α−1(x) is incident with a reaction edge in G. In
particular, therefore, both ends of a reaction edge are reacting vertices.

▶ Definition 2. Let α be an AAM for the balanced reaction G −−→ H. The remainder graph
of G under α, denoted Ĝα, is the subgraph of G obtained by removing all reaction edges of
G, and preserving all vertex labels and all remaining edge labels. The remainder graph Ĥα

of H under α is defined analogously.

All non-reaction edges are by construction preserved between G and H. That is, if
xy ∈ E(G) is not a reaction edge then α(x)α(y) ∈ E(H) and, vice versa, if uv ∈ E(H) is
not a reaction edge in H, then α(x)α(y) ∈ E(H). As an immediate consequence we obtain,

▶ Lemma 3 ([26], Lemma 1). Every AAM α for a balanced reaction G −−→ H is an
isomorphism from the remainder graph Ĝα to the remainder graph Ĥα.

2.2 Equivalent AAMs and Isomorphic ITS graphs
The problem of determining whether two AAMs α and β for the same reaction are actually
“the same” arises, for example, when comparing the results of different reaction mapping tools,
because each tools uses its own graph representation. As a consequence, for a formal treatment
of this problem it becomes necessary to compare α : V (G) → V (H) and β : V (G′) → V (H ′)
given that G and G′, as well as H and H ′, respectively, are isomorphic,

▶ Definition 4 ([25]). Let α and β be AAMs for, respectively, the balanced reactions G −−→ H

and G′ −−→ H ′ with G′ ≃ G and H ′ ≃ H. We say that α and β are equivalent, denoted as
α ≡ β, if there exist isomorphisms φ ∈ Iso(G,G′) and ψ ∈ Iso(H,H ′) such that ψα = βφ.

There is a close connection between the AAM α and isomorphisms on the remainder
graphs that plays a central role, in particular, for Theorem 20, which is the main result
supporting the methods of our contribution,

▶ Proposition 5. Let α be an AAM for the balanced reaction G −−→ H and let β be an
isomorphism from the remainder graph Ĝα to the remainder graph Ĥα. If α(x) = β(x) holds
for all reacting vertices x of α, then α and β are equivalent AAMs for G −−→ H.

Proof. Included in Appendix A. ◀

The information contained in a balanced reaction G −−→ H and its AAM α can be
compiled into the Imaginary Transition State (ITS) graph of the reaction by identifying
atoms that correspond to each other via α. The ITS graphs thus contains the edges of both
the product and the educt graph. Both vertices and edges are associated with label pairs
that derive from the labels in G and H. Formally this is,

▶ Definition 6. Let G −−→ H be a balanced reaction with AAM α : V (G) → V (H). An ITS
graph T of (G,H,α) is a graph with vertex set V (T ), edge set E(T ), vertex-labeling function
aT : V (T ) → LV × LV and edge-labeling function bT : E(T ) → (LE ∪ {⊗}) × (LE ∪ {⊗}),
obtained from G by means of a bijection τ : V (T ) → V (G) such that

(i) x, y ∈ V (T ) we have xy ∈ E(T ) if and only if τ(x)τ(y) ∈ E(G) or α(τ(x))α(τ(y)) ∈
E(H);

(ii) each vertex x ∈ V (T ) is labeled by the ordered pair aT (x) = (aG(τ(x)), aH(α(τ(x)))),
(iii) each edge xy ∈ E(T ) is labeled by the ordered pair bT (xy) determined as follows:

WABI 2025



12:6 Extension of Partial Atom-To-Atom Maps

bT (xy) =


(bG(τ(x)τ(y)), bH(α(τ(x))α(τ(y)))) if τ(x)τ(y) ∈ E(G) and α(τ(x))α(τ(y)) ∈ E(H)
(bG(τ(x)τ(y)), ⊗) if τ(x)τ(y) ∈ E(G) and α(τ(x))α(τ(y)) /∈ E(H)
(⊗, bH(α(τ(x))α(τ(y)))) if τ(x)τ(y) /∈ E(G) and α(τ(x))α(τ(y)) ∈ E(H)

Figure 2 below showcases the construction of an ITS graph. We will use, moreover,
the notation aT (x) = (a1

T (x), a2
T (y)) and bT (xy) = (b1

T (xy), b2
T (xy)) to address the two

components of the vertex and edge labels of an arbitrary ITS graphs.
For every balanced reaction with AAM α there exists an ITS graph. The construction is

not unique, however, because of the arbitrary bijection τ between the vertices of G and the
vertices of T . We note that the vertices of the ITS graph also bijectively map to H since for
every y ∈ V (H) there is a unique v = α−1(y) ∈ V (G) and x = τ−1(v) ∈ V (T ), from where
y = α(v) = α(τ(x)) = τ ′(x) ∈ V (H). Now we confirm, nonetheless, our intuition that ITS
graphs are unique up to isomorphism,

▶ Lemma 7. Let Υ⊛(G,H,α) be the (non-empty) collection of all ITS graphs built for a
balanced reaction G −−→ H with AAM α and consider a graph T ∈ Υ⊛(G,H,α). Then
T ′ ∈ Υ⊛(G,H,α) if and only if T ′ ≃ T .

Proof. Included in Appendix A. ◀

Thus it suffices to consider an arbitrary representative ITS from Υ⊛(G,H,α), which we
will denote by Υ(G,H,α). In earlier work, moreover, the ITS graph is defined by setting
V (T ) = V (G) and using the identity map on G for τ , see e.g. [25]. We will denote this
(unique) particular representative, that we call canonical ITS graph, by Υ⊥ := Υ⊥(G,H,α),
see Figure 2. The uniqueness of Υ⊥ follows immediately from Definition 6. To see this
suppose that there exist two such ITS graphs T and T ′. Substituting τ with the identity map
on G we get from (i) that xy ∈ E(T ) if and only if xy ∈ E(T ′) for all x, y ∈ V (T ) = V (G),
and from (ii) and (iii) it follows, respectively, aT = aT ′ and bT = bT ′ .
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Figure 2 In (A) the reaction G −−→ H from Figure 1 is shown with usual chemical notation. In
(B) the same reaction is given another representation resembling our formalism. Here, vertices are
labeled by element types: “O” •, “N” • and “C” • (hydrogen is omitted), while edges are labeled
with “=” and “-” for double and single bonds, respectively. The canonical ITS graph Υ⊥(G, H, α) is
shown on the right.

In [25], we proved the statement of the following Corollary for Υ⊥. With Lemma 7, on
the other hand, we can now restate this result for arbitrary representatives,

▶ Corollary 8 ([25], Cor. 1). Let G −−→ H and G′ −−→ H ′ be balanced reactions with AAMs
α : V (G) → V (H) and β : V (G′) → V (H ′) and assume G′ ≃ G and H ′ ≃ H. Then α ≡ β if
and only if Υ(G,H,α) ≃ Υ(G′, H ′, β) holds for any pair of ITS graphs for the two reactions.

Corollary 8 shows that each equivalence class of AAMs for a reaction G −−→ H produces
a unique equivalence class of isomorphic ITS graph representations, provided that the AAMs
being compared are defined over reactions G′ −−→ H ′ with isomorphic reactants G′ ≃ G and
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products H ′ ≃ H. It is natural to ask whether there exist isomorphic ITS graphs Υ(G,H,α)
and Υ(G′, H ′, β) for reactions with non-isomorphic graphs G′ ̸≃ G or H ′ ̸≃ H. The following
result shows that this is indeed not possible,

▶ Proposition 9. Let α and β be AAMs for, respectively, two balanced reactions G −−→ H and
G′ −−→ H ′, and let Υ(G,H,α) and Υ(G′, H ′, β) be their corresponding ITS representations.
Then Υ(G,H,α) ≃ Υ(G′, H ′, β) if and only if G′ ≃ G, H ′ ≃ H, and α ≡ β.

Proof. Included in Appendix A. ◀

2.3 Reaction Centers
In Section 2.1 we defined reaction edges and reacting vertices for a reaction G −−→ H with
a given AAM α. Since G, H, and α are uniquely defined up to graph isomorphisms and
equivalence of AAMs by any representative ITS graph Υ(G,H,α), these definitions carry
over ITS graphs, i.e., they also have (a version of) reaction edges and reacting vertices. ITS
graphs contain, moreover, an isomorphic copy of the remainder graphs Ĝα and Ĥα,

▶ Lemma 10. Let Υ := Υ(G,H,α) be an ITS representation of the balanced reaction
G −−→ H with AAM α and let η : V (G) → V (Υ) and η′ := η ◦ α−1 : V (H) → V (Υ)
be the corresponding bijections that embed G and H into Υ, i.e., where η := τ−1 for
τ : V (Υ) → V (G) as required by Definition 6. Then the following hold,

(i) xy ∈ E(G) is a reaction edge in G if and only if b1
Υ(η(x)η(y)) ̸= b2

Υ(η(x)η(y)), and
x′y′ ∈ E(H) is a reaction edge in H if and only if b1

Υ(η′(x′)η′(y′)) ̸= b2
Υ(η′(x′)η′(y′)).

(ii) xy ∈ E(Ĝα), and thus also α(x)α(y) ∈ E(Ĥα), if and only if, η(x)η(y) ∈ E(Υ) and
b1

Υ(η(x)η(y)) = b2
Υ(η′(α(x))η′(α(y))).

Proof. Included in Appendix A. ◀

We then refer to the edges uv ∈ E(Υ(G,H,α)) with unequal labels, i.e., with b1
Υ(uv) ̸=

b2
Υ(uv), simply as reaction edges. Reacting vertices of (G,H,α) are thus represented in the

ITS graph as the vertices incident with edges that have unequal labels. The reaction center
of a reaction G −−→ H comprises all the bonds modified by the electron exchange occurring
during the reaction. This notion appeared already in [14, 15, 32] and was used in [20] to
classify reaction types. Its formal properties were studied in more detail in [26] and [11].

▶ Definition 11. Let Υ(G,H,α) be an ITS representation of the balanced reaction G −−→ H

with AAM α. The reaction center is the subgraph Γ(G,H,α) of Υ(G,H,α) comprising all
the reaction edges and reacting vertices.

It follows immediately from Prop. 9 that Γ(G,H,α) ≃ Γ(G′, H ′, β) whenever G ≃ G′,
H ≃ H ′, and α ≡ β. The converse statement, however, is not true in general. We show
examples about this in [26], of graphs with isomorphic reaction centers, and (i) with G ≃ G′

but H ̸≃ H ′ (Fig. 8 in [26]), and (ii) with G ≃ G′ and H ≃ H ′ but α ̸≡ β (Fig. 10
in [26]). We will write, moreover, Γ⊥ := Γ⊥(G,H,α) for the reaction center of the canonical
representation Υ⊥(G,H,α) of the triple (G,H,α). It is worth mentioning that in [26] we
considered the connectedness of these graphs. Though in general the connectedness of an ITS
graph does not guarantee the connectedness of its reaction center or vice versa (see Figure 2
of [26]), we will, in practice, restrict ourselves to single-step reactions, which have connected
reaction centers, i.e., a disconnected reaction center models two independent reactions. The
following result, therefore, will also be of relevance for our algorithmic approach:
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▶ Lemma 12 ([26], Lemma 2). Let α be an AAM for a balanced reaction G −−→ H. If
Υ(G,H,α) is a connected graph, then every connected component of G and H contains at
least one reacting vertex.

2.4 Partial AAMs and their Partial ITS graphs
Theoretically speaking, both matches µ and ν of a reaction template, as in Definition 1,
generally provide only a partial AAM. This is also the case, in practice, of computational
mapping tools such as LocalMapper [6], which can focus on only determining a most plausible
reaction center and necessary adjacent context.

▶ Definition 13. Let G −−→ H be a reaction. A partial AAM is a bijection π : U → W ,
for two subsets U ⊆ V (G) and W ⊆ V (H), which preserves vertex labels, i.e., such that
aH(π(x)) = aG(x) for all x ∈ U .

Given a reaction G −−→ H and a partial AAM π : U → W , it is immediate
that the ITS graph Υ(G[U ], H[W ], π), together, in particular, with the canonical graphs
Υ⊥(G[U ], H[W ], π) and Γ⊥(G[U ], H[W ], π), are all well-defined, see Figure 3 for an example.

▶ Definition 14. Let G −−→ H be a balanced reaction and let π : U → W with U ⊆ V (G)
and W ⊆ V (H) be a partial AAM. Then an AAM α : V (G) → V (H) is said to be an
extension of π, or to extend π, if α(x) = π(x) for all x ∈ U .

As noted in [26, Obs. 3], every partial AAM π for G −−→ H has an extension α.
Moreover, it follows directly from the definition that the partial ITS graph Υ(G[U ], H[W ], π)
representing π is isomorphic to the subgraph of the canonical ITS graph of (G,H,α) induced
by U , i.e., Υ(G[U ], H[W ], π) ≃ Υ⊥(G,H,α)[U ]. This isomorphism, furthermore, becomes
the identity Υ⊥(G[U ], H[W ], π) = Υ⊥(G,H,α)[U ] for the respective canonical ITS graphs,
while for the canonical reaction centers we get Γ⊥(G[U ], H[W ], π) ⊆ Γ⊥(G,H,α). In general,
therefore, Υ⊥(G[U ], H[W ], π) will not contain all reaction edges. For many application
scenarios, in particular the ones mentioned in the introduction, we do expect this to be
the case. It is of interest, therefore, to determine whether a partial AAM, and thus its
corresponding partial ITS graphs, already contains all reaction edges.

▶ Definition 15. A partial AAM π : U → W with U ⊆ V (G) and W ⊆ V (H) for a
balanced reaction G −−→ H is said to be a good partial AAM, if there is an extension
α : V (G) → V (H) of π such that Γ⊥(G,H,α) = Γ⊥(G[U ], H[W ], π).

In other words, π is a good partial reaction map for a balanced reaction if and only if there
is an extension α of π, such that the induced subgraph Υ⊥(G,H,α)[U ] of the canonical ITS
graph, contains all reaction edges of Υ⊥(G,H,α). In this case we call α a stable extension
of π. Recall that Ĝα and Ĥα denote the remainder graphs obtained from G and H with
respect to a full AAM α (see Definition 2). In order to better understand stable extensions
we need to consider, additionally, the remainder graphs Ĝπ and Ĥπ induced by π, preserving
vertex and edge labels of G and H, but obtained by removing from them, respectively, those
reaction edges induced by π : U → W for G[U ] and H[W ], i.e., edges xy ∈ E(G[U ]) such
that π(x)π(y) /∈ E(H[W ]), or π(x)π(y) ∈ E(H[W ]) but with bG(xy) ̸= bH(π(x)π(y)), and
edges uv ∈ E(H[W ]) with π−1(u)π−1(v) /∈ E(G[U ]), or such that π−1(u)π−1(v) ∈ E(G[U ])
but with bG(π−1(u)π−1(v)) ̸= bH(uv). Consider an arbitrary extension α of π. Clearly
V (Ĝπ) = V (G) = V (Ĝα) and V (Ĥπ) = V (H) = V (Ĥα). Moreover, we have

▶ Observation 16. Let α be an arbitrary extension of a partial AAM π for a balanced
reaction G −−→ H. Then, E(Ĝα) ⊆ E(Ĝπ) and E(Ĥα) ⊆ E(Ĥπ).
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Based on this simple observation, the following two results strengthen the connection
between the remainder graphs induced by full and partial AAMs:

▶ Lemma 17. Let G −−→ H be a balanced reaction and π : U → W with U ⊆ V (G) and
W ⊆ V (H) be a partial AAM. Consider an extension α of π. Then, π is a good partial AAM
with stable extension α, if and only if, Ĝα = Ĝπ and Ĥα = Ĥπ.

Proof. Included in Appendix A. ◀

▶ Lemma 18. Let G −−→ H be a balanced reaction and π : U → W with U ⊆ V (G) and
W ⊆ V (H) be a partial AAM. Consider an extension α of π. Then, α is an isomorphism
from Ĝπ to Ĥπ, if and only if, π is a good partial AAM with stable extension α.

Proof. Included in Appendix A. ◀

The hypothesis of Lemma 18 requires the isomorphism between the remainder graphs
Ĝπ and Ĥπ to be an extension of π. The existence of an arbitrary isomorphism between Ĝπ

and Ĥπ indeed is not sufficient for the existence of a stable extension for π, see Figure 7 in
Appendix B. With Lemmas 17 and 18, moreover, we recover the following results that we
originally stated in [26, Prop. 1]:

▶ Proposition 19. Let π be a partial AAM for a balanced reaction G −−→ H and α an
extension of π. The following statements are equivalent,

(i) π is a good partial AAM and α is a stable extension of π,
(ii) Ĝα = Ĝπ and Ĥα = Ĥπ,
(iii) α ∈ Iso(Ĝπ, Ĥπ).

2.5 Uniqueness of Stable Extensions
Good partial AAMs can have multiple non-identical stable extensions. Prop. 19, on the other
hand, implies that all of them are isomorphisms between the remainder graphs Ĝπ and Ĥπ.

▶ Theorem 20. Let π be a good partial AAM for a balanced reaction G −−→ H and let α
and β be two stable extensions of π. Then α ≡ β.

Proof. Included in Appendix A. ◀

Since all stable extensions of π are equivalent, their ITS representations are isomorphic,

▶ Corollary 21. Let π be a good partial AAM for a balanced reaction G −−→ H and let α
and β be two stable extensions of π. Then Υ(G,H,α) ≃ Υ(G,H, β).

A good partial atom map for a balanced reaction, therefore, uniquely determines the ITS
graph of the full AAM for the reaction, up to graph isomorphism.

3 Algorithms for Completing Good AAMs over Balanced Reactions

Conceptually, Definition 15 implies that the existence of a stable extension for a partial
map π over a reaction G −−→ H ensures that π already provides all necessary information
about the reaction mechanism of G −−→ H. A bad partial AAM π, in contrast, fails to
faithfully disclose the electron bookkeeping fundamental for understanding G −−→ H. The
characterization of stable extensions as isomorphisms of the reminder graphs Ĝπ and Ĥπ in
Proposition 19, on the other hand, suggests to employ modified versions of algorithms for
isomorphism search in order to test the existence of a stable extension, and thus the goodness
of π, and to retrieve such extensions whenever they exist.
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Figure 3 Two partial AAMs π : U → W and ρ : R → S over the reaction G −−→ H with full
AAM α from Figure 1. The reaction centers induced by these maps are depicted by the edges drawn
in red and green in the respective partial ITS graphs Υ(G[U ], H[W ], π) and Υ(G[R], H[S], ρ). Since
π covers the reaction center induced by α, then π is a good partial AAM with stable extension α,
and equivalently the remainder graphs Ĝπ and Ĥπ are isomorphic. On the other hand, ρ has no
stable extensions, given that the corresponding remainder graphs Ĝρ and Ĥρ cannot be mapped to
each other under an isomorphism.

From a theoretical point of view, this stable extension problem can be solved efficiently
for chemical graphs. To see this, we note that the bounded valency of atoms implies that
graphs that represent molecules must have bounded degree. As an immediate consequence
ITS graphs also have bounded degree. A classical result establishes that isomorphisms of
graphs with bounded degree can be computed in polynomial time [31], although algorithms
following this approach are not competitive in practice. For recent progress we refer to [17].
No implementations of these polynomial-time algorithms seem to have become available,
however. Hence we have to resort to general purpose algorithms for graph isomorphism. This
situation conveys, furthermore, the relevance of the uniqueness of stable extensions of good
partial AAMs in Theorem 20, given that these depend, therefore, on the existence of one
and only one of such constrained isomorphisms and are unambiguously determined by it.

We address the stable extension problem through three algorithmic approaches: (1)
an anchored isomorphism search, (2) a relabeling-and-isomorphism strategy, and (3) an
ILP approach. In [26] we devised said ILP formulation based on Lemma 3, and here we
recapitulate it in order to benchmark it against the other methods. As shown later, the
graph-based isomorphism searches perform better than the ILP in practice. Nonetheless,
Theorem 20 implies that our methodologies are all mathematically equivalent, i.e., they
return the same stable extension (up to equivalence of AAMs), whenever it exists.

Anchored isomorphism tests. Conceptually these constitute a variant within the VF2-family
of algorithms designed for the (sub-)graph isomorphism problem. A detailed formulation of
the VF2 algorithm can be found in [7]. This class of algorithms operates by progressively
extending a candidate map for an isomorphism α : V (G) → V (H) for arbitrary input graphs
G and H. In each step, an ordered pair (x, y) called a match, with x ∈ V (G) and y ∈ V (H),
is added to a collection Mα portraying the vertex y, therefore, as the image of x under a
prototype for α. Later, if (x, y) is added to Mα, further candidate pairs to extend the map
are then selected, either from the sets of unmatched neighbors of x and y, called terminal sets,
or arbitrarily selected from the remaining unmatched vertices. This last case is specifically
designed to process disconnected graphs, since it allows the selection of vertices from distinct
components once the terminal sets are exhausted.
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Though such progressive procedure was originally designed as a recursive traversal, more
recent variations construct the match set Mα in an iterative manner [1].

The extension of Mα depends on evaluating the syntactic feasibility i.e., a one-to-one
correspondence of the edges connecting x and y respectively, to the vertices already included
in Mα, as well as the semantic feasibility. The latter evaluates that x and y have the same
vertex-labels, and that corresponding edges incident with them have compatible edge-labels.
In this way, whenever the VF2 finds that all available candidate pairs (x, y) are unfeasible for
extending a current set of matches Mα, the algorithm backtracks by removing from Mα the
last added match, and then testing other alternative candidate pairs.

This progressive exploration behavior of available matches is ideal for our anchored
isomorphism search, of which we include a high-level description in Algorithm 1. Given
a partial map π, moreover, for a balanced reaction G −−→ H, the collection Mπ of pairs
(x, y) with π(x) = y, actually constitutes an initial state for the set Mα described before. In
other words, since an isomorphism α between the reminder graphs Ĝπ and Ĥπ, necessarily
coincides with π on all reacting vertices if it is a (stable) extension of π, the set Mπ, prepared
in lines 8 to 10 of Algorithm 1, therefore acts as an anchor for seed the VF2 routine. This
seed is then expanded by passing it to a further call to a regular VF2 routine in line 12.

By definition the reaction center of G −−→ H is composed of unmatchable edges, that
is, the reaction edges in G cannot be matched by the VF2 with edges in H, and similarly,
reaction edges in H will have no matching edge in G, i.e., these edges cannot satisfy either
one or both feasibility tests of the VF2. Consequently, we remove the reaction edges in a
preprocessing step in line 6 of our algorithm. We remove, moreover, all edges whose ends are
both reacting vertices, simplifying the search even further whenever possible.

The remainder graphs Ĝπ and Ĥπ obtained after removing all reaction edges edges may
be disconnected. As mentioned in Subsection 2.3, we are interested in applying Algorithm 1
only over balanced single-step reactions producing connected ITS graphs. Thus Lemma 12
implies that, even under such conditions, every connected component of Ĝπ and Ĥπ contains
at least one reacting vertex. Hence all non-reacting vertices in Ĝπ and Ĥπ remain, in general,
reachable during the progressive expansion with the VF2 through the terminal sets. This
implies a reduction in complexity of the search space, in particular, when processing molecular
graphs, by avoiding the exhaustive evaluation of trivial or non-informative matches.

Algorithm 1 Anchored graph isomorphism search (VF2-variant).
Data: Reactants graph G, products graph H and partial AAM π : U → W as ordered list of matches

Mπ = [(gk, hk)] for 1 ≤ k ≤ |U |, gk ∈ U ⊆ V (G), hk ∈ W ⊆ V (H), π(gk) = hk.
Result: An isomorphism α from Ĝπ to Ĥπ extending π (if any) as an ordered list of matches

Mα = [(gk′ , hk′ )] for 1 ≤ k′ ≤ |V (G)|, gk′ ∈ V (G), hk′ ∈ V (H), α(gk′ ) = hk′ , and such that
Mα ⊇Mπ , or False if no such α exists.

1 /* Get anchor sets of input graphs */
2 AG ← {gk ∈ V (G) | (gk, hk) ∈ Mπ} and AH ← {hk ∈ V (H) | (gk, hk) ∈ Mπ};
3 /* Get heuristic total order for V (G) necessary for VF2-search */
4 T ← Total_Order_Routine(G, AG);
5 /* Initialize search state + ignoring input anchors and their edges */
6 S ← Search_State_Constructor(G, H, T, AG, AH );
7 /* Add Mπ to search state + updating VF2’s terminal and unmatched sets */
8 foreach (gk, hk) ∈ Mπ do S ← Extend_Matches_in_Search_State(gk, hk, S);
9 /* Call to regular VF2-search with primed state + extends matches internally */

10 S ← VF2_Isomorphism_Search(S);
11 /* Unpack isomorphism (if any) or list of matches of maximum cardinality */
12 Mα ← S.list_of_matches;
13 /* Report result */
14 if |Mα| < |V (G)| then return(False); else return(Mα) ;
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Publicly available implementations of the VF2 algorithm, such as the one from the Python
package NetworkX [18], do not provide default options to handle the initialization of a search
state with an anchor map, as required by line 9 of Algorithm 1. We opted, therefore, to
develop a custom implementation of this anchored search. For this we made use, in particular,
of the Cython language [4], which allows the implementation of C and C++ data structures
through a Python-like syntax, and facilitates the back-and-ford conversion of these data
containers and data types, respectively, with Python native objects and types.

Our implementation is available as the routine search_stable_extension, inside
the Python package GranMapache (GRAphs-and-Networks MAPping Applications with
Cython and HEuristics), in the repository: https://github.com/MarcosLaffitte/
GranMapache, where we provide diverse functionalities to address problems related to map-
pings between graphs.

Relabeling-and-isomorphism strategy. Throughout this contribution, except for a few
cases, e.g. for the definition of ITS graphs, we have considered vertex labels to represent
atom types. Formally speaking, nonetheless, these labels embody the broader notion of
comparability classes of vertices, i.e., two vertices are comparable with each other if and only
if they have the same label.

Here we device a relabeling strategy, condensed in Algorithm 2, that offers an equivalent,
but simpler alternative, to the anchored isomorphism approach described earlier. To illustrate
this, consider a balanced reaction G −−→ H with a partial AAM π : U → W with U ⊆ V (G)
and W ⊆ V (H), and four vertices u, x ∈ V (G) and w, y ∈ V (H). Suppose that π(u) = w

and aG(x) = aH(y), but x /∈ U and y /∈ W . Assume, moreover, that there exists a stable
extension α of π such that α(x) = y. Thus, any algorithm capable of retrieving α as an
isomorphism between the remainder graphs Ĝπ and Ĥπ, has to (i) match again u and w

without admitting for them any other matches and (ii) must be able to recognize x and y as
comparable vertices. Clearly Algorithm 1 satisfies these conditions.

The same result, however, can be achieved by creating copies of Ĝπ and Ĥπ with new
labeling functions, enforcing comparability constrains with these new labels. By slight abuse
of notation we write a′G : V (G) → {0, 1, ..., |U |} × LV for the labeling function on the copy
of Ĝπ, and a′H : V (H) → {0, 1, ..., |W |} × LV for the copy of Ĥπ. This labels are described
formally in lines 6 and 7 of Algorithm 2. With them, for the example above, the vertices
matched by π are now labeled by ordered pairs a′G(u) = (k, aG(u)) = (k, aH(w)) = a′H(w)
for a unique integer k ∈ {1, ..., |U |}, while remaining vertices are assigned a label a′G(x) =
(0, aG(x)) = (0, aH(y)) = a′H(y), thus satisfying as well conditions (i) and (ii) from before.

Once the new labeling functions are built, we only need to create the copies of Ĝπ and Ĥπ

as stated in line 11 of Algorithm 2, and finally run for these graphs an arbitrary isomorphism
routine handling labeled graphs, as in line 13, in order to recover the stable extension α. An
example of the application of this algorithm is shown in Figure 8 in Appendix B.

We implemented this method in Python, making use of the NetworkX [18] package for the
handling of graphs and their labeling functions. This implementation is also available in the
repository GranMapache, in a directory dedicated to examples of usage of our functionalities:
https://github.com/MarcosLaffitte/GranMapache/tree/main/examples/Stable_
Extensions.

Integer Linerar Programming formulation. Finally, Algorithm 3 describes, as a pipeline,
the formulation of the Integer Linear Programming (ILP) search for stable extensions, that
we originally proposed in [26]. For this we made use of the CBC solver 2.10.3 [29], made
in C++ and callable from Python.

https://github.com/MarcosLaffitte/GranMapache
https://github.com/MarcosLaffitte/GranMapache
https://github.com/MarcosLaffitte/GranMapache/tree/main/examples/Stable_Extensions
https://github.com/MarcosLaffitte/GranMapache/tree/main/examples/Stable_Extensions
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Algorithm 2 Special relabeling and graph isomorphism search.
Data: Reactants graph G, products graph H and partial AAM π : U → W as ordered list of matches

Mπ = [(gk, hk)] for 1 ≤ k ≤ |U |, gk ∈ U ⊆ V (G), hk ∈ W ⊆ V (H), π(gk) = hk.
Result: An isomorphism α from Ĝπ to Ĥπ extending π (if any) as an ordered list of matches

Mα = [(gk′ , hk′ )] for 1 ≤ k′ ≤ |V (G)|, gk′ ∈ V (G), hk′ ∈ V (H), α(gk′ ) = hk′ , and such that
Mα ⊇Mπ , or False if no such α exists.

1 /* Get anchor sets of input graphs */
2 AG ← {gk ∈ V (G) | (gk, hk) ∈ Mπ} and AH ← {hk ∈ V (H) | (gk, hk) ∈ Mπ};
3 /* Get removable edges - with both ends in an anchor (includes reaction edges) */
4 RG ← {xy ∈ E(G) | x, y ∈ AG} and RH ← {uv ∈ E(H) | u, v ∈ AH};
5 /* Prepare new vertex-labeling functions */
6 the new vertex-labeling w.r.t G is the map a′

G : V (G)→ {0, 1, . . . , |U |} × LV , given by,
a′

G ← {(gk, (k, aG(gk))) | (gk, hk) ∈ Mπ} ∪ {(x, (0, aG(x))) | x ∈ V (G) \ AG};
7 the new vertex-labeling w.r.t H is the map a′

H : V (H)→ {0, 1, . . . , |W |} × LV , given by,
a′

H ← {(hk, (k, aH (hk))) | (gk, hk) ∈ Mπ} ∪ {(y, (0, aH (y))) | y ∈ V (H) \ AH};
8 /* Prepare new edge-labeling functions */
9 these are the restrictions b′

G of bG to E(G) \ RG and b′
H of bH to E(H) \ RH ;

10 /* Build (reduced) remainder graphs - no edges with both ends in an anchor */
11 Ĝπ ← (V (G), E(G) \ RG, a′

G, b′
G) and Ĥπ ← (V (H), E(H) \ RH , a′

H , b′
H );

12 /* Evaluate and get stable extension as isomorphism of remainder graphs */
13 Mα ← Search_Graph_Isomorphism(Ĝπ , Ĥπ);
14 /* Report result */
15 if |Mα| = 0 then return(False); else return(Mα) ;

Algorithm 3 Isomorphism of remainder graphs with ILP.
Data: Reactants graph G, products graph H and partial AAM π : U → W as ordered list of matches

Mπ = [(gk, hk)] for 1 ≤ k ≤ |U |, gk ∈ U ⊆ V (G), hk ∈ W ⊆ V (H), π(gk) = hk.
Result: An isomorphism α from Ĝπ to Ĥπ extending π (if any) as an ordered list of matches

Mα = [(gk′ , hk′ )] for 1 ≤ k′ ≤ |V (G)|, gk′ ∈ V (G), hk′ ∈ V (H), α(gk′ ) = hk′ , and such that
Mα ⊇Mπ , or False if no such α exists.

1 /* Denote order of graphs by N := |V (G)| = |V (H)| and maximum bond order as K */

2 /* Get anchor sets of input graphs */
3 AG ← {gk ∈ V (G) | (gk, hk) ∈ Mπ} and AH ← {hk ∈ V (H) | (gk, hk) ∈ Mπ};
4 /* Obtain adjacency matrices with entries saving the bond orders, i.e., {1, 2, 3} */
5 AG ← Adjacency_Matrix(G) and AH ← Adjacency_Matrix(H);
6 /* Get total order for V (G) and V (H) extending the enumeration given by Mπ */
7 TG ← {(k, gk) | (gk, hk) ∈ Mπ} ∪ Enumeration({|AG|+ 1, · · · , N } × (V (G) \ AG));
8 TH ← {(k, hk) | (gk, hk) ∈ Mπ} ∪ Enumeration({|AH |+ 1, · · · , N } × (V (H) \ AH ));
9 /* Initialize ILP model with matrices X for α and D for degree differences */

10 S ← ILP_Solver_Constructor(X = Zero_Matrix(N ×N), D = AHX− XAG);
11 /* Add binary variables and set logical constraints and constraints from Mπ */
12 for i = 1; i ≤ N ; i + + do
13 for j = 1; j ≤ N ; j + + do
14 S.add_binary_variables(sij , gij);
15 S.add_constraints(Dij ≤ Kgij and Dij ≥ −K + gij(K + 1));
16 S.add_constraints(−Dij ≤ Ksij and −Dij ≥ −K + sij(K + 1));
17 if i = j and i ≤ |Mπ| then S.add_constraint(Xij = 1);
18 if aG(TG[i]) ̸= aH (TH [j]) then S.add_constraint(Xij = 0);
19 end
20 end
21 /* Add linear constraints necessary for X to be a permutation matrix */
22 for i = 1; i ≤ N ; i + + do S.add_constraint(ΣN

j=1Xij = 1);
23 for j = 1; j ≤ N ; j + + do S.add_constraint(ΣN

i=1Xij = 1);
24 /* We seek to maximize zero entries in D and so we minimize the cost function f */
25 S.minimize(f = Σij(gij + sij));
26 /* Get isomorphism (if any) from entries */
27 Mα ← {(TG[i], TH [j]) | S.Xij = 1};
28 /* Report result */
29 if |Mα| < |V (G)| then return(False); else return(Mα) ;
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4 Benchmarking, Empirical Results and Discussion

We evaluate the methodologies discussed in the previous section over two sets of empirical
data, one of real chemical reactions with partial AAMs covering exactly the ground-truth
reacting vertices, and another set consisting of random graphs with AAMs inducing connected
ITS graphs with connected reaction centers and an increasing number of nodes and edges.

Four different implementations are evaluated: (GM) our custom anchored isomorph-
ism search from our package GranMapache [24] implementing Algorithm 1, two relabeling-
and-isomorphism variants implementing Algorithm 2 from which one (RB1) uses the VF2
isomorphism function [9] from NetworkX and another (RB2) uses a custom isomorphism func-
tion from GranMapache, and lastly (ILP) implementing the ILP formulation in Algorithm 3
from the package AAMutils introduced in previous work [26].

Stable extensions over real chemical reactions

The reactions were retrieved from USPTO_50K corpus of 50,016 reactions [36]. Each reaction
was rebalanced with the tool SynRBL [34] and preprocessed with the SynTemp pipeline [35],
which enforces ensemble consistency, resolves hydrogen ambiguity and validates that the
partial maps are good. The preprocessing stage yield 39,732 rebalanced and consistent reac-
tions with full AAMs, good partial AAMs derived from the full ones, and the corresponding
ITS graphs. We process the mapped reactions in SMILES format, via another custom tool
SynKit for the methods GM, RB1 and RB2, and with the AAMutils API [26] for the ILP.

The 39,732 reactions were processed five times with each of the four methods. Here we
report the average running time of these procedures over this data set. From Theorem 20 and
Corollary 21, moreover, it follows that all possible full AAMs recovered by our algorithms
are to be equivalent and thus produce isomorphic ITS graphs. As a back-up test for our
implementations, therefore, we corroborate the successful recovery of the full AAMs by
means of the isomorphism of the initial and recovered ITS graphs. The graph-based methods
GM, RB1 and RB2 were able to recover 100% of the ground AAMs of the 39,732 reactions,
while the ILP retrieved the AAMs successfully in 99.48% of the reactions. The few ILP
mismatches are attributable to discrepancies in the canonicalization SMILES during the
conversion of the output of reaction-mapping tools to the graph representations used here.

Figure 4 below shows the distributions of the average running time per reaction for each
method, and with respect to each of the five repetitions. The numerical values of the average
running times per trial are summarized in Table 1 in Appendix B. All benchmarks were run
under Python 3.11 on a 12-core Intel Core i7-8700 @ 3.20 GHz, Fedora 37. The programs
made for this analysis can be found in https://github.com/TieuLongPhan/PartialAAMs.
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Figure 4 (A) Running times per reaction and per execution of the four methods. (B) Running
time focused only on the graph-based methods GM, RB1 and RB2. Numerical values [ms] of
average and maximum outlier are reported in black and red, respectively.

https://github.com/TieuLongPhan/PartialAAMs
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While the ILP average running time exceeds 1 second, all graph-based methods take only
a few milliseconds (p < 0.05). Among these, RB2 is the fastest on average for processing the
molecular graphs (2.88 ± 1.22 ms), followed by RB1 (3.02 ± 1.46 ms) and GM (3.36 ± 1.39
ms). The small differences of 0.14 to 0.48 ms attained on this set of real molecular graphs, and
disclosed by Figure 4, are attributable to the time required by the custom implementations
RB2 and GM to convert native Python objects into C++ containers and vice versa, carried
by the Cython functions on run time when called by other external Python scripts.

Tests for scalability were carried by analyzing the obtained running times while varying
the number of vertices in the input molecular graphs. The distribution of the reactions
with each number of vertices is shown in Figure 9A in Appendix B. On the other hand,
Figure 10 shows that for small graphs (less than 30 vertices), RB1 is faster than RB2
and GM, while beyond the 30-vertices threshold RB2 scales more favorably. Moreover,
GM surpasses RB1 on larger graphs, suggesting that the custom implementations RB2
and GM offer an scalability advantage with respect to the amount of vertices in the input
graphs. The small discrepancies in the running time of RB2 and GM is further explained
by the implementation of different heuristics for building the total order required by VF2-like
approaches. The trial and evaluation of such heuristics is out of the scope of this contribution.

Another scalability analysis was carried with respect to the proportion of reacting vertices
vs total vertices in the ITS graph of each reaction. See the distribution of such proportions in
Figure 9B. The scatter plot in Figure 5 below, together with Figures 11 and 12 in Appendix B,
suggest that all graph-based methods perform best for reactions with bigger proportions of
reacting vertices from the total amount of vertices. This is expected since smaller proportions
of reacting vertices lead to a bigger search space for the VF2-based approaches.

Figure 5 Scatter plot projection. Counts of graph vertex (x-axis) vs of reacting vertices (left
y-axis) and running times (right y-axis [ms]) for the GM, RB1, and RB2 methods.

Stable extensions over random graphs

We implemented the generation and analysis of random ITS graphs in Cython making use, in
particular, of NetworkX [18]. All scripts for this analysis can be found in the GranMapache
repository [24], and were run under Python 3.11 on an 8-core 11th Gen Intel Core i7-1165G7
@ 2.80GHz, Lenovo ThinkPad E15 Gen 2 with 16GB and Ubuntu 22.04.

For this analysis we produced connected ITS graphs with connected reaction centers.
These graphs were built with an increasing amounts of edges outside the reaction center so as
to test the performance of our methods over (simple) labeled graphs with varying density, i.e.,
with an increasing proportion of existing edges in the graph with respect to the theoretical
maximum. Based on this we built 5 data sets of such graphs having each a different number
of non-reacting vertices, specifically for 100, 125, 150, 175 and 200 nodes.
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Within each data set we built 10 ITS graphs per each percentage-point for the percentage
of edges outside the reaction center, starting at 3% and up to 97%. This leads to a total of
4,750 randomly generated ITS graphs conforming ∼1.6 GB of labeled graphs serialized and
stored with the package Pickle [12] from Python. The interval 3 - 97 % was chosen under
theoretical reasons for the graphs to be connected and for them to have the exact specified
density. All the graphs were produced with a (randomly generated) connected reaction center
of 15 vertices and 20 edges, in addition to the specified number of non-reacting vertices.

The pairs of labels needed for vertices and edges of these ITS graphs were chosen uniformly
at random from a set of 6 integer labels for the vertices, and 3 labels for the edges. The labels
in the reaction center, moreover, were produced by selecting the source of the (reaction) edge
uniformly at random from the reactants graph, the products graph, or both of them. Finally,
we tested the extension of the partial map covering exactly the reaction center.

For this we made use of the graph-based methods RB1, RB2 and GM, but omitted the
ILP approach due to its comparably slower performance. All methods successfully extended
the reaction center in all cases. The average running times for the analysis over the graphs
with 100 non-reacting vertices are summarized in Figure 6, while the results for graphs
with 125-200 vertices are included in Figure 13 in Appendix B. These show a consistent
hierarchical performance, where GM completes the analysis faster, followed by RB2, and
then RB1. This is consistent with the observations over real reactions, where molecules have
at most 98 vertices and 108 edges and thus density ≤ 2.28%. This suggests again that the
custom methods GM and RB2 are appropriate for dealing with bigger graphs, while RB1
proves to be comparably efficient for processing smaller and more sparse graphs.
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Figure 6 Average running times of different algorithms for stable extensions RB1: green, custom
RB2: orange, and GM: blue) on ITS graphs with 100 nodes and varying densities.

5 Concluding Remarks

In this contribution we first gave a comprehensive mathematical description of the rela-
tionships between good partial AAMs and full descriptions of the underlying reaction. In
particular, we showed that good partial AAMs, i.e., those that cover the reaction center,
are exactly the partial AAMs that have unique extensions constituting isomorphisms of the
remainder graphs of the reactant and product sides. These results extend our work in [26]
by establishing equivalent characterizations of good AAMs. This shows that the practical
problem of determining whether a partial AAM is good and, if so, retrieving its unique
stable extension, is equivalent to a restricted graph isomorphism problem. Based on these
theoretical insights we benchmark different implementations of graph isomorphism tests.
Not all such methods lend themselves to incorporate additional constraints implied by the
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partial AAM. In VF2-like methods, these constitute an immutable set of initial matches.
Canonization-based methods can be used after modifying the vertex labels, such that the
two vertices of the corresponding pairs (x, π(x)) are assigned unique matching labels. For
comparison we also consider an ILP formulation. Benchmarking simulations show that the
completion is feasible for graphs relevant to applications in chemistry. Moreover, we observe
that dedicated graph isomorphism algorithms are much more efficient than the ILP.

In contrast to graph-based methods, however, the ILP can potentially be used for bad
partial AAMs, for which the plausible extensions are, of course, no longer isomorphisms
between Ĝπ and Ĥπ, and are determined by minimizing the number of necessary reaction
edges in an AAM α extending π [26]. This is of practical importance since most reaction
mapping tools do not predict correspondences between hydrogen atoms, though these often
take part in the reactions and hence are reactive vertices. A further extension to the – usually
bad – partial AAMs on unbalanced reactions remains an open problem for future research.
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A Appendix: Mathematical Results and Proofs

▶ Proposition 5. Let α be an AAM for the balanced reaction G −−→ H and let β be an
isomorphism from the remainder graph Ĝα to the remainder graph Ĥα. If α(x) = β(x) holds
for all reacting vertices x of α, then α and β are equivalent AAMs for G −−→ H.

Proof. To prove the equivalence of α and β it suffices to show that β−1α ∈ Aut(G). To
see this note first that by Lemma 3 we have α ∈ Iso(Ĝα, Ĥα). Thus by inverses and
composition of isomorphisms it follows β−1α ∈ Aut(Ĝα) and therefore, by definition, we
get aG(x) = aĜα

(x) = aĜα
(β−1α(x)) = aG(β−1α(x)) for all x ∈ V (G). Consider now

xy ∈ E(G). Then either xy ∈ E(Ĝα) or xy is a reaction edge of G. In the first case, from
β−1α ∈ Aut(Ĝα) follows that (A1) xy ∈ E(Ĝα) if and only if β−1α(x)β−1α(y) ∈ E(Ĝα),
and again bG(xy) = bĜα

(xy) = bĜα
(β−1α(x)β−1α(y)) = bG(β−1α(x)β−1α(y)). Suppose, on

the other hand, that xy ∈ E(G) is a reaction edge, i.e., xy ∈ (E(G) \ E(Ĝα)). Then, both x
and y are reacting vertices, and by hypothesis α(x) = β(x) and α(y) = β(y), or equivalently
β−1α(x) = x and β−1α(y) = y. Thus formally we also have (A2) xy ∈ (E(G) \ E(Ĝα)) if
and only if β−1α(x)β−1α(y) ∈ (E(G) \E(Ĝα)) and similarly bG(xy) = bG(β−1α(x)β−1α(y)).
In this way, from (A1) and (A2) we get xy ∈ E(G) if and only if β−1α(x)β−1α(y) ∈ E(G),
i.e., β−1α preserves adjacency in G, and since it also preserves vertex and edge labels we have
β−1α ∈ Aut(G). Therefore, by setting φ := β−1α ∈ Aut(G) and ψ := iH ∈ Aut(H) for the
identity automorphism iH : V (H) → V (H), we get ψα = iHα = (ββ−1)α = β(β−1α) = βφ

and thus α ≡ β, proving the proposition. ◀

▶ Lemma 7. Let Υ⊛(G,H,α) be the (non-empty) collection of all ITS graphs built for a
balanced reaction G −−→ H with AAM α and consider a graph T ∈ Υ⊛(G,H,α). Then
T ′ ∈ Υ⊛(G,H,α) if and only if T ′ ≃ T .

Proof. Suppose first that T ′ ∈ Υ⊛(G,H,α). Let τ and τ ′ be the bijections required by
Definition 6 for T and T ′, respectively.
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Consider two arbitrary vertices u and v in V (G) and their preimages τ−1(u) and τ−1(v) in
V (T ). Condition (i) in the definition can be restated for u and v as τ−1(u)τ−1(v) ∈ E(T ), if
and only if, uv ∈ E(G) or α(u)α(v) ∈ E(H). At the same time, for two vertices x, y ∈ V (T ′)
it holds xy ∈ E(T ′), if and only if, τ ′(x)τ ′(y) ∈ E(G) or α(τ ′(x))α(τ ′(y)) ∈ E(H). From
these statements it follows that xy ∈ E(T ′) if and only if τ−1(τ ′(x))τ−1(τ ′(y)) ∈ E(T ), i.e.,
the bijection τ−1τ ′ : V (T ′) → V (T ) preserves adjacency between T and T ′. We see, moreover,
that aT (τ−1τ ′(x)) = (aG(τ(τ−1τ ′(x))), aH(α(τ(τ−1τ ′(x))))) = (aG(τ ′(x)), aH(α(τ ′(x)))) =
aT ′(x), thus the map τ−1τ ′ preserves vertex labels. Similarly, and without loss of generality,
we have

bT (τ−1τ ′(x)τ−1τ ′(y)) = (bG(τ(τ−1τ ′(x))τ(τ−1τ ′(y))), bH(α(τ(τ−1τ ′(x))))α(τ(τ−1τ ′(x))))
= . . .

. . . = (bG(τ ′(x)τ ′(y)), bH(α(τ ′(x))α(τ ′(x)))) = bT ′ (xy),

that is, τ−1τ ′ also preserves edge labels and is, therefore, an isomorphism from T ′ to T , i.e.,
T ′ ≃ T proving the forward direction.

Suppose, on the other hand, that there exist an isomorphism φ : V (T ′) → V (T ) from T ′

to T . Given that φ preserves adjacency, vertex-labels and edge-labels, it follows that: (i)
xy ∈ E(T ′), if and only if, φ(x)φ(y) ∈ E(T ′), and equivalently, τ(φ(x))τ(φ(y)) ∈ E(G) or
α(τ(φ(x)))α(τ(φ(y))) ∈ E(H), also (ii) aT ′(x) = aT (φ(x)) = (aG(τ(φ(x))), aH(α(τ(φ(y))))),
and lastly (iii) bT ′(xy) = aT (φ(x)φ(y)) = (bG(τ(φ(x))τ(φ(y))), bH(α(τ(φ(x)))α(τ(φ(y))))).
Thus τφ : V (T ′) → V (G) satisfies all the conditions required by Definition 6 for T ′ and
therefore T ′ ∈ Υ⊛(G,H,α), which proves the converse statement. ◀

▶ Proposition 9. Let α and β be AAMs for, respectively, two balanced reactions G −−→ H and
G′ −−→ H ′, and let Υ(G,H,α) and Υ(G′, H ′, β) be their corresponding ITS representations.
Then Υ(G,H,α) ≃ Υ(G′, H ′, β) if and only if G′ ≃ G, H ′ ≃ H, and α ≡ β.

Proof. Note that by Lemma 7 and by the transitivity of the isomorphism relation ≃,
from Υ(G,H,α) ≃ Υ(G′, H ′, β), it follows that Υ⊥(G,H,α) ≃ Υ⊥(G′, H ′, β) holds
for the canonical ITS representations Υ⊥α := Υ⊥(G,H,α) of (G,H,α) and Υ⊥β :=
Υ⊥(G′, H ′, β) of (G′, H ′, β), having V (Υ⊥α ) = V (G) and V (Υ⊥β ) = V (G′), and for
which the identity maps iG over V (G) and iG′ over V (G′) satisfy Definition 6, re-
spectively. Consider an isomorphism φ ∈ Iso(Υ⊥α ,Υ⊥β ), and note that this is also a
bijection φ : V (G) → V (G′). Thus when applying condition (i) in Definition 6 and
given that φ preserves adjacency between Υ⊥α and Υ⊥β it follows that, xy ∈ E(G) or
α(x)α(y) ∈ E(H), if and only if, φ(x)φ(y) ∈ E(G′) or β(φ(x))β(φ(y)) ∈ E(H ′). This
suggests that the bijections φ and βφα−1 : V (H) → V (H ′) are the required isomorph-
isms φ ∈ Iso(G,G′) and βφα−1 ∈ Iso(H,H ′). To actually prove this, note first that
under φ all labels are preserved component-wise, i.e., for any vertices x, y ∈ V (G) we
have, (P1) (a1

Υ⊥
α

(x), a2
Υ⊥

α
(x)) = aΥ⊥

α
(x) = aΥ⊥

β
(φ(x)) = (a1

Υ⊥
β

(φ(x)), a2
Υ⊥

β

(φ(x))) and
(P2) (b1

Υ⊥
α

(xy), b2
Υ⊥

α
(xy)) = bΥ⊥

α
(xy) = bΥ⊥

β
(φ(x)φ(y)) = (b1

Υ⊥
β

(φ(x)φ(y)), b2
Υ⊥

β

(φ(x)φ(y))).
For G and G′, (P1) implies aG(x) = a1

Υ⊥
α

(x) = a1
Υ⊥

β

(φ(x)) = aG′(φ(x)), while from (P2) we
get b1

Υ⊥
α

(xy) = b1
Υ⊥

β

(φ(x)φ(y)) ∈ LE ∪ {⊗}, which by condition (iii) in the definition can only
happen if φ preserves adjacency, i.e., xy ∈ E(G) if and only if φ(x)φ(y) ∈ E(G′), also yielding
bG(xy) = bG′(φ(x)φ(y)) when the edges are present in these graphs. Thus φ : V (G) → V (G′)
preserves adjacency, vertex labels and edge labels, and therefore φ ∈ Iso(G,G′). Similarly
for H and H ′, (P1) implies aH(α(x)) = a2

Υ⊥
α

(α(x)) = a2
Υ⊥

β

(β(φ(x))) = aH′(β(φ(x))), which
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we can rewrite as aH(v) = aH′(β(φ(α−1(v)))) for v := α(x) ∈ V (H), thus βφα−1 pre-
serves vertex labels. Since from (P2) it holds b2

Υ⊥
α

(α(x)α(y)) = b2
Υ⊥

β

(β(φ(x))β(φ(y))) ∈
LE ∪ {⊗}, we have bH(α(x)α(y)) = bH′(β(φ(x))β(φ(y))), and equivalently bH(uv) =
bH′(β(φ(α−1(u)))β(φ(α−1(v)))) for v := α(x) and u := α(y) in V (H), whenever the respect-
ive edges are present, while in general, from this together with condition (iii) in Definition 6,
we get again α(x)α(y) ∈ E(H) if and only if β(φ(x))β(φ(y)) ∈ E(H ′), or equivalently,
uv ∈ E(H) if and only if β(φ(α−1(u)))β(φ(α−1(v))) ∈ E(H ′). This shows that βφα−1

preserves adjacency, and vertex and edge labels, and thus βφα−1 ∈ Iso(H,H ′). Lastly, since
G′ ≃ G and H ′ ≃ H hold, the hypothesis Υ(G,H,α) ≃ Υ(G′, H ′, β), together with Corol-
lary 8, now implies also that α ≡ β. The converse statement follows from Corollary 8. ◀

▶ Lemma 10. Let Υ := Υ(G,H,α) be an ITS representation of the balanced reaction
G −−→ H with AAM α and let η : V (G) → V (Υ) and η′ := η ◦ α−1 : V (H) → V (Υ)
be the corresponding bijections that embed G and H into Υ, i.e., where η := τ−1 for
τ : V (Υ) → V (G) as required by Definition 6. Then the following hold,

(i) xy ∈ E(G) is a reaction edge in G if and only if b1
Υ(η(x)η(y)) ̸= b2

Υ(η(x)η(y)), and
x′y′ ∈ E(H) is a reaction edge in H if and only if b1

Υ(η′(x′)η′(y′)) ̸= b2
Υ(η′(x′)η′(y′)).

(ii) xy ∈ E(Ĝα), and thus also α(x)α(y) ∈ E(Ĥα), if and only if, η(x)η(y) ∈ E(Υ) and
b1

Υ(η(x)η(y)) = b2
Υ(η′(α(x))η′(α(y))).

Proof. Set η := τ−1 for τ as in Definition 6. This implies that η(x)η(y) ∈ E(Υ) if and
only if xy ∈ E(G) or α(x)α(y) ∈ E(H). The definition of the edge labels and the bijection
η′ : V (H) → V (Υ) now yield bΥ(η(x)η(y)) = bΥ(η′(α(x))η′(α(y))) = (bG(xy), bH(α(x)α(y))).
Recall that xy is a reaction edge in G if either, α(x)α(y) ∈ E(H) in which case bG(xy) ̸=
bH(α(x)α(y)), or α(x)α(y) /∈ E(H) and thus bΥ(η(x)η(y)) = (bG(xy),∅, ). In either case
Definition 6 yields b1

Υ(η(x)η(y)) ̸= b2
Υ(η(x)η(y)). The same argument can be made for edges

α(x)α(y) ∈ E(H). The second statement now follows directly from Definition 2 since the
remainder graph Ĝα contains exactly the edges with bG(xy) = bH(α(x)α(y)) and hence
b1

Υ(η(x)η(y)) = b2
Υ(η′(α(x))η′(α(y))). ◀

▶ Lemma 17. Let G −−→ H be a balanced reaction and π : U → W with U ⊆ V (G) and
W ⊆ V (H) be a partial AAM. Consider an extension α of π. Then, π is a good partial AAM
with stable extension α, if and only if, Ĝα = Ĝπ and Ĥα = Ĥπ.

Proof. Suppose first that π is a good partial AAM with stable extension α. Thus, by
definition we have Γ⊥(G,H,α) = Γ⊥(G[U ], H[W ], π). Consider then a reaction edge xy of G
induced by α. By taking, in Lemma 10, the bijection η (resp. τ) to be the identity mapping
on G, it follows that xy is an edge in Υ⊥ := Υ⊥(G,H,α) with b1

Υ⊥(xy) ̸= b2
Υ⊥(xy), and

therefore xy ∈ Γ⊥(G,H,α).
Then xy is also a reaction edge of Υ⊥(G[U ], H[W ], π), and by another application of

Lemma 10 we conclude that xy is also a reaction edge of G[U ]. By contraposition, moreover,
this implies that if xy ∈ E(Ĝπ), then xy ∈ E(Ĝα), proving the contention E(Ĝπ) ⊆ E(Ĝα),
which together with Observation 16, yields E(Ĝα) = E(Ĝπ) and thus Ĝα = Ĝπ. By similar
arguments, for a reaction edge uv of H induced by α it follows that α−1(u)α−1(v) is an
edge in Υ⊥ with b1

Υ⊥(α−1(u)α−1(v)) ̸= b2
Υ⊥(α−1(u)α−1(v)). Then α−1(u)α−1(v) is also an

edge in Γ⊥(G[U ], H[W ], π), implying that α−1(u), α−1(v) ∈ U . But α and π coincide for all
vertices U , and so α−1(u) = π−1(u) and α−1(v) = π−1(u), that is, π−1(u)π−1(v) is an edge
in Υ⊥(G[U ], H[W ], π) with b1

Υ⊥(π−1(u)π−1(v)) ̸= b2
Υ⊥(π−1(u)π−1(v)) and thus, applying

Lemma 10, we see that uv is also a reaction edge of H induced by π. By contraposition this
also proves the inclusion E(Ĥπ) ⊆ E(Ĥα). Observation 16 implies Ĥα = Ĥπ, proving the
forward direction.
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For the proof of the converse statement note that the hypotheses Ĝα = Ĝπ and Ĥα = Ĥπ,
imply that α and π induce the same reaction edges for each G and H, that is, (R1) xy is
a reaction edge of G w.r.t α if and only if xy is a reaction edge of G w.r.t π and similarly
(R2) uv is a reaction edge of H w.r.t α if and only if uv is a reaction edge of H w.r.t π.

This implies, by definition of the remainder graphs, that the vertices x, y, α−1(u), α−1(v)
are all in U , and thus α and π coincide for each of the two ends of every reaction edge of
G and/or H. Thus, denoting Υ⊥α := Υ⊥(G,H,α) and Υ⊥π := Υ⊥(G[U ], H[W ], π), through
Lemma 10 condition (R1) implies (R1’) given xy ∈ E(G), xy is a reaction edge of Υ⊥α if and
only if xy is a reaction edge of Υ⊥π , i.e., xy is labeled by an ordered pair with different entries
and, moreover, bΥ⊥

α
(xy) = bΥ⊥

π
(xy) since x, y ∈ U . Similarly, (R2) implies (R2’) given uv ∈

E(H), α−1(u)α−1(v) is a reaction edge of Υ⊥α if and only if α−1(u)α−1(v) is a reaction edge
of Υ⊥π , and again bΥ⊥

α
(α−1(u)α−1(v)) = bΥ⊥

π
(α−1(u)α−1(v)) since α−1(u), α−1(v) ∈ U . But

every reaction edge xy of Υ⊥α , and Υ⊥π , is labeled by a pair bΥ⊥
•

(xy) ∈ {(a,⊗), (⊗, b), (c, d)}
with a, b, c, d ̸= ⊗, that is: xy is only a reaction edge of G, α(x)α(y) = π(x)π(y) is only
a reaction edge of H, or both edges are respective reaction edges of G and H. Thus
(R1’) and (R2’) are exhaustive cases, and since the edge labels are the same in both Υ⊥α
and Υ⊥π , we have xy ∈ E(Γ⊥(G,H,α)) if and only if xy ∈ E(Γ⊥(G[U ], H[W ], π)) with
bΓ⊥

α
(xy) = bΓ⊥

π
(xy). Thus Γ⊥(G,H,α) = Γ⊥(G[U ], H[W ], π). Therefore π is good and has α

as stable extension. ◀

▶ Lemma 18. Let G −−→ H be a balanced reaction and π : U → W with U ⊆ V (G) and
W ⊆ V (H) be a partial AAM. Consider an extension α of π. Then, α is an isomorphism
from Ĝπ to Ĥπ, if and only if, π is a good partial AAM with stable extension α.

Proof. Suppose first that α ∈ Iso(Ĝπ, Ĥπ). Consider any edge xy ∈ E(Ĝπ) ⊆ E(G). Since
α by assumption preserves adjacency, vertex labels and edge labels, we obtain α(x)α(y) ∈
E(Ĥπ) ⊆ E(H). Since Ĝπ and Ĥπ take their edge labels from G and H, respectively, we
also have bG(xy) = bH(α(x)α(y)), i.e., xy is not a reaction edge of G w.r.t α and thus
xy ∈ E(Ĝα). Similarly, for uv ∈ E(Ĥπ) ⊆ E(H), we get α−1(u)α−1(v) ∈ E(Ĝπ) ⊆ E(G)
and bG(α−1(u)α−1(v)) = bH(uv), from where uv ∈ E(Ĥα). This shows E(Ĝπ) ⊆ E(Ĝα) and
E(Ĥπ) ⊆ E(Ĥα). Then, Observation 16 implies that Ĝπ = Ĝα and Ĥπ = Ĥα, and from
Lemma 17 it follows, therefore, that π is good and α is a stable extension for π.

To prove the converse, suppose α is a stable extension for π. Then, by definition, α is
also a full AAM for G −−→ H, and by Lemma 3 we see that α is also an isomorphism from
Ĝα to Ĥα. But from Lemma 17 we should have Ĝπ = Ĝα and Ĥπ = Ĥα, and therefore
α ∈ Iso(Ĝπ, Ĥπ). ◀

▶ Theorem 20. Let π be a good partial AAM for a balanced reaction G −−→ H and let α
and β be two stable extensions of π. Then α ≡ β.

Proof. Suppose π is the map π : U → W for subsets U ⊆ V (G) to W ⊆ V (H). Since
α and β are extensions of π, by definition we have α(x) = π(x) and β(x) = π(x) for all
x ∈ U ⊆ V (G). Moreover U contains all reacting vertices induced by π. In symbols we
have V (Γ⊥(G[U ], H[W ], π)) ⊆ V (Υ⊥(G[U ], H[W ], π)) = V (G[U ]) = U and thus α(x) = β(x)
holds in particular for all x ∈ V (Γ⊥(G[U ], H[W ], π)). By definition we get V (Γ⊥(G,H,α)) =
V (Γ⊥(G[U ], H[W ], π)) = V (Γ⊥(G,H, β)), since α and β are stable extensions of π. Therefore
Γ⊥(G[U ], H[W ], π) contains all reacting vertices of Υ⊥(G,H,α) and Υ⊥(G,H, β). Lemma 10
implies that α and β coincide for all reacting vertices induced, in particular, by α for G −−→ H,
i.e., understood as reacting vertices x ∈ V (G) and α(x) ∈ V (H). In addition, statement (iii)
of Proposition 19 yields β ∈ Iso(Ĝπ, Ĥπ), while statement (ii) ensures that Ĝπ = Ĝα and
Ĥπ = Ĥα. Thus β is an isomorphism from the remainder graph Ĝα to the remainder graph
Ĥα. Proposition 5 therefore applies to α and β, and implies α ≡ β. ◀
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B Appendix: Additional Figures and Tables

Figure 7 The remainder graphs Ĝπ and Ĥπ are isomorphic, and all isomorphisms between them
must map the vertex x ∈ V (Ĝπ) to y ∈ V (Ĥπ), since these are the only vertices of degree 4 in them.
Yet, the neighbors 1 and 2 of x in Ĝπ are mapped by π to a different component than that of y in
Ĥπ. Therefore, no isomorphism between these graphs extends the partial AAM π, i.e., π has no
stable extensions.
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3 4

1 2

3 4

1
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4
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3 4
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Figure 8 A good partial AAM π for the reaction in Figure 1 with full AAM α. (A) shows
the remainder graphs w.r.t π, and (B) their respective computational representation used for
Algorithm 2.

Table 1 Average time to complete one partial atom mapping (mean ± std in ms).

Trial GM (ms) RB1 (ms) RB2 (ms) ILP (ms)
1 3.39 ± 1.44 3.07 ± 1.54 2.92 ± 1.30 1153.77 ± 2983.54
2 3.33 ± 1.38 3.00 ± 1.45 2.87 ± 1.22 1142.43 ± 2978.49
3 3.36 ± 1.40 3.01 ± 1.46 2.87 ± 1.23 1139.71 ± 2979.89
4 3.35 ± 1.38 3.02 ± 1.49 2.87 ± 1.21 1135.71 ± 2967.40
5 3.34 ± 1.39 3.00 ± 1.45 2.88 ± 1.23 1148.98 ± 2991.35
Average 3.36 ± 1.39 3.02 ± 1.46 2.88 ± 1.22 1144.12 ± 2979.50
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Figure 9 Histogram of number of vertices in molecular graphs (A) and in anchored graphs (B).
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Figure 10 Running times of RB1, RB2, and GM as a function of ITS graph bins by number
of vertices (top to bottom and left to right: less than 20, 20-30, 30-40, 40-50, 50-60, more than 60
vertices). RB1 is faster on average for small graphs (<30 vertices), while RB2 and GM exhibit
better scalability on larger graphs, with a crossover at approximately 30 vertices.
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Figure 11 Running time comparison of RB1, RB2, and GM across six non-reacting vertex
count-bins (top to bottom and left to right: less than 4, 4, 5, 6, 7, and at least 7 vertices).

(a) (b) (c)

Figure 12 Scatter plots of running time against proportion of reacting vertices in real reactions
for the graph based-methods (a) RB1, (b) RB2 and (c) GM. A smaller proportion of reacting
vertices leads to a bigger search space for the VF2-based approaches and thus bigger running times.
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Figure 13 Average running times (10k [ms] for each k = 2, ..., 7) for the methods RB1 (green),
and the custom RB2 (orange) and GM (blue) over ITS graphs having different number of nodes:
(a) 125, (b) 150, (c) 175 and (d) 200 nodes, and having a varying percentage of edges (3% to 97%).
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