Spark: Sparsified Hierarchical Energy Minimization
of RNA Pseudoknots

Mateo Gray &

Department of Biomedical Engineering, University of Alberta, Edmonton, Canada

Sebastian Will &

Department of Computer Science, Institut Polytechnique de Paris, France

Hosna Jabbari! =24
Department of Biomedical Engineering, University of Alberta, Edmonton, Canada

—— Abstract

Motivation. Determining RNA structure is essential for understanding RNA function and interac-
tion networks. Although experimental techniques yield high-accuracy structures, they are costly
and time-consuming; thus, computational approaches — especially minimum-free-energy (MFE)
prediction algorithms — are indispensable. Accurately predicting pseudoknots, however, remains
challenging because their inclusion usually leads to prohibitive computational complexity. Recent
work demonstrated that sparsification can improve the efficiency of complex pseudoknot prediction
algorithms such as Knotty. This finding suggests similar gains are possible for already efficient
algorithms like HFold, which targets a complementary class of hierarchically constrained pseudoknots.

Results. We introduce Spark, an exact, fully sparsified algorithm for predicting pseudoknotted
RNA structures. Like its non-sparsified predecessor HFold, Spark searches for the minimum-energy
structure under the HotKots 2.0 energy model, a pseudoknot extension of the Turner model. Because
the sparsification is non-heuristic, Spark preserves the asymptotic time- and space-complexity
guarantees of HFold while greatly reducing the constant factors. We benchmarked the performance
of Spark against HFold and, as a pseudoknot-free baseline, RNAfold. Compared with HFold, Spark
substantially lowers both run time and memory usage, while achieving run-time figures close to
those of RNAfold. Across all tested sequence lengths, Spark used the least memory and consistently
ran faster than HFold.

Conclusion. By extending non-heuristic sparsification to hierarchical pseudoknot prediction, Spark
delivers an exceptionally fast and memory-efficient tool accurate prediction of pseudoknotted RNA
structures, enabling routine analysis of long sequences. The algorithm broadens the practical scope
of computational RNA biology and provides a solid foundation for future advances in structure-based
functional annotation.

Availability. Spark’s implementation and detailed results are available at https://github.com/
TheCOBRALab/Spark.

2012 ACM Subject Classification Applied computing — Computational biology

Keywords and phrases RNA, MFE, Secondary Structure Prediction, Pseudoknot, Sparsification,
Space Complexity, Time Complexity

Digital Object Identifier 10.4230/LIPIcs.WABI.2025.13

Supplementary Material Software (Source Code): https://github.com/TheCOBRALab/Spark (8]
archived at swh:1:dir:2cb07371af448bb6254c05d23ac106800c590d39

1 Corresponding author

© Mateo Gray, Sebastian Will, and Hosna Jabbari;

licensed under Creative Commons License CC-BY 4.0
25th International Conference on Algorithms for Bioinformatics (WABI 2025).
Editors: Brona Brejova and Rob Patro; Article No. 13; pp. 13:1-13:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:mateo2@ualberta.ca
https://orcid.org/0000-0001-7143-1367
mailto:sebastian.will@polytechnique.edu
https://orcid.org/0000-0002-2376-9205
mailto:jabbaria@ualberta.ca
https://thecobralab.com/
https://orcid.org/0000-0002-7155-2297
https://github.com/TheCOBRALab/Spark
https://github.com/TheCOBRALab/Spark
https://doi.org/10.4230/LIPIcs.WABI.2025.13
https://github.com/TheCOBRALab/Spark
https://archive.softwareheritage.org/swh:1:dir:2cb07371af448bb6254c05d23ac106800c590d39;origin=https://github.com/TheCOBRALab/Spark;visit=swh:1:snp:aeb39934d18efe24abf8aea90905fdbef5863e3f;anchor=swh:1:rev:51eaafa4fb54397a921a7c943d7747f4e226f5ba
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

13:2

Spark: Sparsified Hierarchical Energy Minimization of RNA Pseudoknots

1 Introduction

RNA molecules carry out essential biological functions that often depend critically on their
specific structural conformations [4, 15, 17, 21, 24]. Accordingly, a thorough understanding of
many biological systems demands accurate models of RNA structure. Because experimental
determination of RNA conformations is both costly and time-consuming, computational
methods have become indispensable. These approaches not only complement experimental
techniques by generating rapid structural hypotheses, but also enable new lines of inquiry,
such as probing thermodynamic ensembles, exploring folding kinetics, and pursuing the
rational design of functional RNAs.

A promising class of computational methods focuses on RNA secondary structure, where
structure prediction can be formalized as combinatorial optimization problem of finding
minimum-free-energy (MFE) structures. These techniques profit from energy models with
accurate empirically determined energy parameters [16], known as nearest neighbor models or
specifically, the “Turner model”, and efficient dynamic programming optimization algorithms.
Consequently, they can predict realistic RNA secondary structures with high accuracy.

However, most practically applied algorithms in this class are restricted to pseudoknot-free
structures, even though pseudoknots are common in RNAs; this limitation reduces their
accuracy and constrains their application range.

Exact and accurate pseudoknot prediction. To predict pseudoknotted RNA secondary
structures with high accuracy, several advanced dynamic-programming algorithms have been
developed [20, 14]. These methods extend the well-established Turner nearest-neighbor
framework by incorporating empirically trained pseudoknot parameters, such as those in
the HotKnots 2.0 energy model [5, 18]. Nevertheless, they are often limited by extreme
computational complexity, e.g. O(n%) time and O(n*) space in the sequence length n [20],
and sometimes still support only simple pseudoknots, e.g. [5] in O(n®) time.

While heuristics (e.g. [18]) were presented to overcome the computational limitations, we
advocate the use of exact combinatorial methods that yield exact, controlled and precisely
defined solutions. By restricting attention to well-chosen classes of pseudoknots and applying
targeted algorithmic optimizations — most notably sparsification — one can achieve both
tractability and broad practical utility.

We demonstrated this principle previously with the Chen,Condon,Jabbari (CCJ) algorithm
and its fully featured successor, Knotty. Space-efficient sparsification of the CCJ recurrences
enabled Knotty to compute MFE structures containing complex motifs such as 4-chains
pseudoknots and kissing hairpins [14].

For even greater efficiency, we previously introduced hierarchical pseudoknot prediction
in HFold [11, 12]. Fast enough to serve as the backbone of meta-strategies [10] and to fold
long RNA sequences, HFold predicts a wide, biologically relevant class of pseudoknots. It
complements an input non-crossing structure with a second, independently non-crossing
structure that may cross the first, thereby generating density-2 configurations (see Fig. 1
and [13, 14]).

Contributions. Further extending pseudoknot prediction capabilities, we introduce the
sparsified dynamic programming algorithm Spark to predict hierarchically constrained
pseudoknots. It solves exactly the same problem as HFold of predicting density-2 structures
as extension of a given secondary structure. While Spark preserves the asymptotic com-
plexity of HFold, it significantly improves practical run-time and space consumption due to
sparsification.

M. Gray, S. Will, and H. Jabbari

Figure 1 Band configuration of a density-2 structure. Bands and density-2 are elaborated in
[13, 14]; here, we recall their definitions. The pseudoknotted base pairs of a structure can be
partitioned into bands; all base pairs within one band are mutually nested and cross the exact
same other base pairs of the structure. A set of bands can be further decomposed into components
of transitively crossing bands, here {a,b,c,d} and {f,g}. The density-k property requires that no
position is covered by more than k£ base pairs of the same component. For example, the position at
the dashed red line satisfies density-2, since it is covered by the bands d, f and g, where only two of
them are from the same component.

We outline the recurrences of the novel algorithm Spark, contrasting them to HFold and
focusing on the requirements of sparsification. We show the correctness of the sparsification
and illustrate the algorithm using graphical notation (see Fig. 2). Finally, we empirically
show the improvements over HFold and compare to RNAfold for reference.

Further remarks on sparsification. Sparsification was originally suggested to non-
heuristically improve the time [22] and even the space efficiency [3] of pseudoknot-free
RNA secondary structure prediction. It has been applied to more complex prediction tasks,
e.g. interaction prediction [7]. These techniques can reduce time and space of prediction even
in accurate RNA energy models [23] and accounting for dangling ends (SparseRNAFolD [9]).
In the latter work, we closed a significant gap in utilizing of sparsification with realistic energy
models, by demonstrating sparsified MFE folding with dangling ends for the pseudoknot-free
case. This allowed us to surpass RNAfold [6] for the equivalent task.

As the key idea, sparsification limits the minimization cases in the dynamic program-
ming (DP) recursions to only candidate subproblems. This is done, by omitting non-candidate
cases, that provably are not required to compute the exact minima. In predicting the (non-
crossing) MFE structure given a sequence S, sparsification exploits the subadditivity of the
MFE of subsequences from 7 to j. Namely, denoting the MFE by W; ;, the additive energy
model implies the inverse triangle inequality W; ; < W, + Wiy ; (1 <k <j—1) [22].

For pseudoknot-free MFE, sparsification can thus reduce the time complexity from O(n?)
to O(n? +nZ) in the number of candidates Z [22]. It was demonstrated that minimizing
energy only requires to store the candidates and a linear number of subproblems. In nearest
neighbor energy models, the optimal structure can be reconstructed by recording a set of
trace arrows [23], of typically small size T'. This leads to a space complexity of O(n+ Z +T).
Our novel algorithm Spark achieves the same time complexity and similar space complexity
for pseudoknot MFE prediction.

2 Review of hierarchical pseudoknot prediction in HFold

The recurrences of HFold for (non-sparsified) hierarchical pseudoknot prediction were in-
troduced in [11, 12]. We begin with a concise overview of HFold ’s dynamic-programming
algorithm, since Spark follows the same overall framework.

HFold’s input consists of an RNA sequence S as well as a pseudoknot-free secondary
structure G. In the hierarchical folding scheme, the supplied input structure forms the
primary, first-folding layer of the complete structure. HFold then computes a second disjoint
pseudoknot-free structure G’ such that the energy of the combined structure G U G’ is
minimized. As noted in the Introduction, HFold is designed to produce density-2 struc-

13:3

WABI 2025

13:4

Spark: Sparsified Hierarchical Energy Minimization of RNA Pseudoknots

Figure 2 Reference of graphical notation. This notation is used consistently in all of our
illustrations of the recurrences of Spark and HFold. Dashed arcs indicate possible structure, each
solid arc represents a base pair. The vertical dotted line indicates an overlapping chain of bands
of arbitrary length and indicates that the chain can begin or end via G (above horizontal line) or
G’ (below horizontal line). Filled in arcs show regions covered by specific structure classes, e.g.
orange for V, and green for WMB. Green bidirectional arrows represent a nested structure inside a
pseudoknot (WT), while arrows that include an arc represent a nested structure inside a band (WI').

tures (Fig. 1). More precisely, each output can be viewed as a density-2 extension of the
given input structure. We illustrate the recurrences of HFold and Spark using systematic
graphical notation, which is shown for reference in Figure 2.

Let us define an RNA sequence of size n as S = s189...5,, where s, 1 < k < nis a
nucleotide in {A4,C,G,U}. W, ,; denotes the MFE of a substructure of the subsequence
Sl] = SiS8i4+1---Sj5-

In a density-2 structure, the terminal positions ¢ and j of any substructure can close a
loop in exactly two ways. (1) The nucleotides at positions ¢ and j form a single base pair
(i,7), thereby completing an ordinary, non-crossing loop. (2) The endpoints are connected
by a chain of crossing base pairs 1.1, 2.2, .. .,9k.Jk (k> 1) ordered so that i; < iy <
e < < 1 < Jo < -+- < ji with ¢ =47 and j = ji. This sequence of crossings closes a
pseudo-loop. If neither configuration applies, the substructure splits into two independent
components.

Fig. 3 illustrates this decomposition of general subproblems, which allows to calculate
W; j by minimizing over all possible cases. The HFold algorithm delegates the first two cases,
where the substructure is closed by either a regular loop or a pseudo-loop, to additional
recurrences V; ; and WM B, ;. V; ; refers to the MFE of the structures of the subsequence
S;.; that contain the base pair (i,7j); WMB,; ; refers to the MFE of the structures that
contain the chain of base pairs connecting 7 to j. In all remaining cases, the optimal structure
can be decomposed into the general MFE structures of a prefix S; and a suffix Sy, ; for
some ¢ < k < j.

77T (1)/—\) : 3)
I/ \\ \Y /‘ SNSRI
16—&W j =i il i WN_[B/’J W ‘&—&kW j

Figure 3 W, ; recurrence in graphical notation. (1) (¢,5) closes a regular loop, V; ;; (2) ¢ and j
are connected through a chain of crossing base pairs and close a pseudo-loop, WM B; ;; and (3) the
structure over the region [¢, j] can be decomposed into two disjoint substructures.

As illustrated in Fig. 4, the MFE V; ; of substructures closed by a regular loop, can
be obtained by minimizing energies over the cases of a hairpin loop, H; ;, an internal loop
Zi k1, or a multiloop closed by (3,7), VM, ;.

Note that V' M; ; accounts for branches leading into pseudoknotted substructures, yet its
recurrence otherwise mirrors the pseudoknot-free formulation. Consequently, we omit its
details and focus instead on WM B; ;, which computes the MFE when the substructure is
closed by a pseudoloop, where our principal algorithmic contributions arise.

M. Gray, S. Will, and H. Jabbari

@ 3
V H AR
i j =i j i j

Figure 4 V; ; recurrence in graphical notation. In case (1) (4,7) closes a hairpin loop, H; ;; in
case (2) base pairs (i,5) and (k,) close an internal loop, Z; k., ;, and in case (3) (i,5) closes a
multiloop, V M; ;.

()
i K j

1

In the recurrence for WM B, ;,
of the input structure G (Fig. 5): (1) j forms the base pair (5, j) in G, and (2) j is unpaired
in G (or paired only in G’). The latter is handled by the auxiliary matrix WMB’, introduced
by HFold to optimize the corresponding energy.

two cases arise depending on whether j is paired as part

In the first case, the pair (j',7) must be crossed by another pair (£, k) in G'. Each choice
of k specifies a unique band in G whose energy is computed in the matrix BE. Removing
this band leaves a prefix of the pseudoloop, whose energy is minimized with WMB’, and a
substructure spanning the region between k and the band around j. To optimize the energy
of the latter region, HFold employs the matrix WI, which is analogous to W but uses the
energy parameters specific to the interior of a pseudoloop.

3 @ BE
1/WiMyJ = IKW-M@J

2

@ =
WMBJn

Figure 5 WM B; ; recurrence in graphical notation. In case (1) j base pairs in G, and in case (2)
j is either unpaired of base pairs in G’. The green bidirectional arrow represents nested substructure
in a pseudoloop handled by WI.

When j is paired in G’, the recurrence for WM B; ; resorts to the auxiliary matrix
WMB' (Fig. 6). In its first branch, WMB’ resolves the two rightmost bands with the help
of BE and a new matrix VP, then recurses on the remaining prefix of the pseudoloop. The
matrix VP, defined below, handles segments closed by a base pair that crosses pairs in G, a
configuration not covered by the standard V matrix.

The second branch of WMB’ trims a recursive substructure from the right, while the
final two branches terminate the recursion, assigning the residual energy when only one or
two bands remain in the pseudoloop.

: @

(€)

4 8

@ .

=/

Figure 6 WM B; ; recurrence in graphical notation. Case (1) resolves the two rightmost bands
with the help of BE and a new matrix VP, then recurses on the remaining prefix of the pseudoloop.
Case (2) trims a recursive substructure from the right using W1 matrix. Cases (3) and (4) terminate
the recursion, assigning the residual energy when only one or two bands remain in the pseudoloop.

The recurrence for VP (Fig. 7) handles three loop types that cross a band of G: hair-
pin (cases 1-3), internal loop (cases 4 and 5) and multiloops that span the band (cases 6
and 7). These cases are broken down further based on how they cross the band(s) of G.

13:5

WABI 2025

13:6

Spark: Sparsified Hierarchical Energy Minimization of RNA Pseudoknots

Formulating these recurrences requires an additional auxiliary matrix, WI’. WI' is similar to
W and WI, but is evaluated in the context of multiloops that span a band and, moreover, it
cannot correspond to empty structures.

) (2) (©)] (4.).
X ‘:/”j :ié:jj it—éj iéjé‘j i

®) (6))

=
2

Pide
7
A

gl
o2/

Figure 7 VP; ; recurrence in graphical notation. Cases 1-3 handle hairpins crossing base pairs
of GG. The green bidirectional arrow represents nested substructures handled by WI. Cases 4 and 5
handle internal loops crossing G. Cases 6 and 7 handle multiloops that span a band. In these cases
green arrows with an arc represent a non-empty nested substructure handled by WI'.

Case 6 and 7 of VP, which handle multiloops that span a band, are broken down further by
the recurrence VP’ (Fig. 8), which handles parts of a multiloop that spans a band efficiently
by “consuming” recursive substructure on the right (cases 1 and 2) and the left (cases 3
and 4) of the base pair that crosses G.

Figure 8 VP, ; in graphical format. Cases 1 and 2 consume recursive substructures on the right
of the base pair that crosses G. Cases 3 and 4 similarly consume recursive substructures on the left
of the base pair that crosses G. The green bidirectional arrows with an arc represent a non-empty
nested substructure handled by WI'.

3 The Spark Algorithm

Recall that the presented algorithm Spark solves exactly the same problem as HFold but
uses sparsification to achieve better run-time and memory performance. Because Spark
follows the general recursion scheme of HFold, we focus on the novelties due to sparsification
and their correctness. Recall from the introduction that we developed Spark in order to
achieve the same theoretical complexities as sparsified pseudoknot-free minimum-free-energy
prediction [23]. In particular, we replace the quadratic storage requirements of HFold by
requiring only space for sparse data structures (Z candidates and T trace arrows) and
otherwise loglinear space. Notably, the space reduction by sparsification goes hand-in-hand
with an improvement of the time complexity from O(n?) to O(n? + nZ), since less entries
have to be considered in the linear minimizations cases.

We first outline the core sparsification strategy for pseudoknot-free MFE prediction and
then extend it to pseudoknotted structures. Recall that W; ; is computed by minimizing over
two alternatives: (1) nucleotides i and j close a loop, handled by V; ;, and (2) the optimal
substructure of region [¢, j] can be split at some index k into two disjoint substructures; in
this case, we obtain the best energy by minimizing over W; ;1 + Wy ; for all k, ¢ < k < j.
The latter minimization can be restricted to candidates, where W, ; is the energy of a closed
structure (i.e. Wy ; = Vi ;) and there is no equally good (or better) way to split [k, j] again.
This works, since non-candidate splits can not yield a better energy than candidate splits due

M. Gray, S. Will, and H. Jabbari

27T @ @, --- 3

Figure 9 Revised W recurrences for sparsification. In each case we consume the rightmost
structure. Breakpoints represent the candidates.

to Wi ; < W p—1+ Wy ; [22, 23], formally [7, j] is a candidate if and only if it is not optimally
decomposable, i.e. V; ; < W; 1 + Wy ; for all i < k < j. Consequently, the minimization of
Wi k-1 + Wiy, is sparsified by changing it to

, . min Wik—1+ Vi

i < k < j, [k, j] is a candidate
and adding an extra case W; j_1 (“unpaired j”). In this way, we can efficiently evaluate the
recurrences without storing the entire quadratic dynamic programming matrices, as long as
we remember the energies V; ; of the candidates [z, j] in a sparse data structure.

In the pseudoknotted case, W; ; has a third alternative, WM DB; ;,
pseudoloop. When sparsifying the split alternative, we therefore face two possibilities: (1)

where ¢ and j close a

as in the pseudoknot-free setting, nucleotide k pairs with j to close a regular loop, handled
by Vij; or (2) k and j close a pseudoloop. To distinguish these situations, we use the W
recurrence illustrated in Fig. 9, which strategically removes the rightmost substructure. In
case (1) the rightmost substructure is a regular loop, in case (2) it is a single unpaired base,
and in case (3) it is a pseudoloop. Note that cases (1) and (3) when k = ¢ correspond to the
cases 1 and 2 in Fig. 3. To distinguish between the candidates, we refer to candidates for
case (1) as V-candidates and for case (3) as WMB-candidates, and store them seperately.

When using a realistic energy model (such as HotKnots 2.0 or Turner 99), recovering
the MFE structure from candidates alone is not possible [23]. To enable reconstruction,
additional cells of the energy matrices, referred to as trace arrows, are kept. Trace arrows
are updated regularly and removed once no longer needed by garbage collection [23].

In the following, we discuss the required novel developments of Spark for sparsifying
the decomposition of pseudoloops, leading to sparse analogons of WMB, WMB’, VP and
auxilliary recurrences.

We systematically rewrite the linear minimization cases of HFold in order to replace
access to entries of the matrices W, WI, and WI’ by candidates. Since not every use of WI
can be replaced in this way, avoiding super-linear space for W1 requires specific novel data
structures WI-right and WI-left.

3.1 The decomposition of general pseudoloops

Recall the decomposition of pseudoloops in WMB (Fig. 5). Note that, in this recurrence, the
access to Wi-entries cannot be avoided by restriction to candidates as described before. At
the same time, storing more than a linear number of W1 entries would exceed the targeted
space complexity. We solve this issue by strategically selecting the breaking point in case (1),
such that we can store all required WI substructures in linear space.

Storing all relevant WI in linear space. In case (1) of WMB; ;, the subregion handled
by WI spans from index £ to the inner border of the rightmost band within G; ;. Because
the input structure G is fixed, this right boundary is known in advance. We leverage this
property to store the relevant W1 energies efficiently using the WI-right data structure, which
is defined as follows:

13:7

WABI 2025

13:8

Spark: Sparsified Hierarchical Energy Minimization of RNA Pseudoknots

Each subregion is denoted as [I,], where [is the leftmost index and r is the fixed rightmost
boundary of the subregion.

The right boundary r is determined by the immediate enclosing base pair (i, j), such that
r=j—1

Within the same WI region, no two WI-right subregions overlap.

These conditions ensure that WI-right partitions WI into distinct, non-overlapping
subregions, each corresponding to a nested disjoint substructure with a clearly defined right
boundary set by its parent base pair.

» Lemma 1. The linear-space data structure WI-right is sufficient to compute all relevant
WI cases in WMB.

Proof. Recall that WM B, ; case 1 requires the computation of terms of the form WMB’
(i,k — 1)+WI (k,B’), where B’ is the rightmost inner band border of G; ;. The goal is to
store all potentially relevant W1 values in linear space. If the regions covered by WI-right
entries do not overlap, linear storage is achievable.

We demonstrate by contradiction that no overlap between these regions is possible.
Suppose, for contradiction, that there is an overlap between two regions stored in WIi-right.
Specifically, assume base pairs (i,5) and (k,l) exist, with (k,!) nested within (¢,7), and
assume an overlap between their corresponding W1-right regions. Then there must exist some
position m that simultaneously defines two weakly closed regions: [m,! — 1] and [m,j — 1].
Consider the two possible positions for such an overlapping point m: m = my or m = mg, as
illustrated in Fig. 10.

If m = my, the overlapping region would be [m,k — 1]. However, by definition, for a
region [z, y] to be valid for a WT calculation, it must form a weakly closed region (i.e. no
base inside the region pairs with a base outside of the region) in which the immediate
base pair covering x and y are the same (referred to as cover(x) = cover(y)). Here,
region [m, ! — 1] fails to satisfy this condition (as cover(m) # cover(l — 1)), contradicting
its existence as a valid region.

Similarly, if m = mg, the overlapping region would occur within [m,! — 1] and [m, j — 1].

Again, region [m, j —1] does not satisfy the weakly closed condition (cover(m) # cover(j—

1)), contradicting the assumption that it is a valid region.

Since both cases lead to contradictions, no such overlapping regions exist. Hence, the
data structure WI-right requires only linear space to store all relevant WI cases. <

Figure 10 WI-right holds all values for WI where the right boundary r is the base immediately
preceding the closing base pair and the left boundary is any base such that WI; ,. is weakly closed.
As WI must be weakly closed, WI-right can hold all relevant values of WI without overlapping cases.
Here we show two indices — m; and mgo — to illustrate that the region [m,l — 1] and [m2,j — 1]
cannot exist under the clause that the regions remain weakly closed thus showing that regions do
not overlap.

M. Gray, S. Will, and H. Jabbari

3.2 Decomposition of pseudoloops with rightmost band in G’

To handle the prefixes of pseudoloops, where the rightmost position is not paired in G, we
rewrite the WMB’ recurrence (Fig. 6) following the general idea of replacing access to W1
with candidates. For this purpose, we introduce the recurrence WMBA.

As illustrated in Fig. 11, cases (1) and (3) recursively consume the substructure formed
by j and its paired nucleotide; this is computed by VP. Similar to selecting positions k
during sparsification of W, we restrict our choice of k here to those for which the region [k, j]
is a valid candidate (precisely, a VP-candidate). Case (2) represents a terminal case.

_/' _B/. VP, r QPM

Figure 11 Updated WMB’ recurrences for sparsification in graphical format. We show the revised
WMB’ in blue in the figure.

WMB?* recursively consumes the rightmost nested substructure. As illustrated in Fig. 12,
case (1) handles the scenario where position j is unpaired. Case (2) deals with the rightmost
nested V' substructure within [¢,j], while case (3) handles the rightmost nested WMB
substructure within [4, j]. Finally, case (4) recurses back to WMB’ to continue consuming
additional portions of the pseudoloop. Note that in cases (2) and (3), we only consider
substructures V; ; and WM By, ; for which the region [k, j] is a valid candidate.

@ @ 4@
/_ BA i = @;‘m WMBAm 1/W‘M>5..

Figure 12 WMB# manages nested rightmost substructures within the pseudoloop closed in
G’. Specifically, case (1) consumes one unpaired base at a time; case (2) handles a nested regular
loop (V); case (3) processes a nested WMB substructure; and case (4) recurses back to WMB' to
handle the remaining portions of the pseudoloop.

(3)

In the following lemma, we demonstrate that the revised recurrences for WMB’ and
WMB* together correctly cover all cases originally handled by the WMB’ recurrence.

» Lemma 2. Replacing the original WMB' recurrence with the revised WMB' and the newly
defined WMB# recurrences is both complete and correct.

Proof. The original recurrence for WMB’ ; ;, depicted in Fig. 6, includes four cases, with
case (2) recursively trimming a substructure from the right using the WI matrix. The revised
recurrence for WMB’ ; ; retains the original cases (1), (3), and (4), while delegating the
handling of case (2) to the newly introduced WMB? recurrence. The WMB* recurrence
explicitly addresses the distinct sub-cases previously embedded within the WI recursion and
employs sparsification to enhance efficiency.

By comparing the original definition in Fig. 6 with the revised definitions in Figures 11
and 12, we confirm that all original cases are accounted for, establishing the completeness
and correctness of the revised formulation. <

13:9

WABI 2025

13:10

Spark: Sparsified Hierarchical Energy Minimization of RNA Pseudoknots

3.3 Prediction of closed structures that cross G

Recall that HFold decomposed crossing closed structures by VP (Fig. 7). VP (i,7) is the
minimization over all structures R; ; in which (4,5) € G’ and crosses a base pair in G. If
i > j,ior jis paired in G, or (4, j) does not cross any base pair of G, then VP (i,j) = co. We
have updated the recurrences accordingly for sparsification. Fig. 13 illustrates the updated

cases.
@ 2) ®)
iUJ =ié/”—>j iU—KJ i}»KJ
VP
@ o ® (6)
BT Bz RN

Figure 13 Updated VP recurrences for sparsification in graphical format. We show the revised
VP in blue in the figure.

Cases (1)-(3) of our updated VP follow the same logic as in the original VP. Under the
assumption that there are no other base pairs within [7, j] that intersect the same bands
as (i,7), cases (1)-(3) handle the nested substructures within. The nested substructures are
broken down by the WI recurrence (see supplementary material).

Storing all relevant WI in linear space. In cases (1)-(3) of our revised VP recurrence
(similar to case (1) of the previously discussed the updated WMB’), the subregions handled
by WI extend either from the inner border of a left band or the outer border of a right
band within G; ;. Because the input structure G is fixed, these left boundaries are known in
advance. Analogous to our approach with WI-right, we exploit this property to efficiently
store the relevant WI energies using a dedicated data structure called the WI-left data
structure, defined as follows:

Each subregion is represented as [l, r], where [denotes the fixed left boundary and r is

the rightmost position of the subregion.

The left boundary [is determined either by the immediately enclosing base pair (4, j)

(thus I =i+ 1), or by another enclosing base pair (k,m) (thus [=m + 1).

Although multiple WI-left subregions within the same WI region may overlap spatially,

their use-cases remain non-overlapping.

» Lemma 3. The linear data structure WI-left is sufficient to calculate all relevant WI cases
in WMB’ and VP.

Proof. The proof follows similar reasoning to that of Lemma 1 for the WIl-right case.
Specifically, we proceed by contradiction to demonstrate that there are no overlapping
use-cases among the regions encompassed by WI-left. This ensures that the WI-left data
structure can be stored efficiently in linear space. <

In case (6) of the revised VP recurrences (i,7) closes a multiloop that spans a band.
Within this substructure, one band of the multiloop crosses the same band in G as (4, j),
while the remaining bands and unpaired bases are processed as nested substructures through
the WI' recurrence. In the Original VP recurrence — see Fig. 7 — cases (6) and (7) handled

M. Gray, S. Will, and H. Jabbari

the decomposition by either breaking off a non-empty region on the left or right via WI and
decomposing the rest through the VP’ recurrence — see Fig. 8. As the regions of WI, which
occur within both VP and VP’, are not contiguous with a band boundary, this would not
have been solvable through sparsification in the original recurrences. We instead define a new
recurrence, WV to handle this substructure which we illustrate in Fig. 14. Specifically, WV; ;
is the MFE of all valid structures R; ; over region [z, j] given that [4, j] is not weakly closed
(i.e. one base in the region pairs with a base outside of the region) and contains at least two
inner base pairs where one is a VP. WV represents the fragments of a multiloop that spans
a band. A multiloop spanning a band can be decomposed into three cases: empty on the left
side, empty on the right side, or non-empty on both sides. Since we must guarantee that at
least one side contains a substructure and that WI’ cannot represent an empty region, we
use WV*® to handle cases that are empty on the left but non-empty on the right. Figure 14
illustrates these cases.

Figure 14 Graphical representation of WV recurrences showcasing the ways a multiloop that
spans a band is consumed. In cases (1) and (2) left region is empty. In case (1) j pairs with a base
in the right region of the band forming a regular loop, while in case (2) j is a closing base of a
pseudoloop. Cases (3), (4) and (6) consume the right-most substructure (or empty region in case 6)
and recurse back to WV. Case (5) consumes the left-most nested substructure in a pseudoloop and
recurses to VP.

Cases (1) and (2) address scenarios in which the left side of the multiloop that spans
a band is empty. To ensure that these cases result in a valid multiloop, the right side
must contain either a candidate V' or WMB substructure (both involving j). Cases (3)
and (4) handle situations where multiple base pairs exist on the right side. In these scenarios,
the right-side region is segmented to accommodate these base pairs. Because the energy
computation depends on WV, j_1, one of the previous cases must also apply. We apply

sparsification in both these cases and only consider breaking points that result in candidates.

Case (5) covers scenarios in which the left side of the multiloop that spans a band consists
of a closed region. Since this condition does not impose additional constraints on the right
side, it allows either unpaired bases or another closed region. Finally, case (6) accounts for
situations involving an unpaired nucleotide on the right side.

Intuitively, cases 1, 2, and 5 represent terminal cases. In contrast, cases 3, 4, and 6 allow
the right region to be recursively decomposed until a terminal case is encountered.

To satisfy the conditions for multiloops in cases where the left region is empty (i.e. case (1)
and (2)), we have to ensure that the structure on the right is not empty. For this reason, we
define the recurrence WV, which handles structures that have unpaired bases on the left
and an interior base pair spanning the band. Notably, we apply this recurrence only when
the right side of the multiloop contains at least one base pair.

13:11

WABI 2025

13:12

Spark: Sparsified Hierarchical Energy Minimization of RNA Pseudoknots

Formally, WV, denotes the MFE of all valid structures R; ; within the region [i,], given
that [i, j] is not weakly closed. Specifically, WV characterizes multiloop fragments spanning
a band where the left side consists entirely of unpaired bases. Note that in case (1) we
utilize sparsification and only consider breaking points k for which [k, j] is a VP-candidate.
Figure 15 illustrates WV® recurrence.

Figure 15 Graphical representation of WV*® recurrence. In case (1) j pairs with k£ and region
[i, k] is empty, and in case (2) j is unpaired.

» Lemma 4. The combined recurrences WV and WV ¢ cover exactly the cases handled by
the original recurrences of VP'.

Proof. A multiloop spanning a band can be decomposed into exactly three scenarios:
(1) A paired region on the left, a band in the middle, and a paired region on the right.
(2) A paired region on the left, a band in the middle, and an empty region on the right.
(3) An empty region on the left, a band in the middle, and a paired region on the right.

The original recurrences for VP and VP’, illustrated in Fig. 7 and Fig. 8, handle these
scenarios as follows:

Case 6 of VP considers scenarios (1) and (2).

Case 7 of VP considers scenarios (1) and (3).

The resulting decomposition from VP is further detailed by VP’ explicitly addressing all

three scenarios.

We verify now that each of these three scenarios is fully represented by our updated
recurrences WV and WV*:

Scenario (1): Paired regions on both sides. Cases 3-6 of WV explicitly handle
paired structures on both the left and right sides. Cases 3,4, and 6 recursively decompose
the right side until the structure reduces to a single paired region on the left and a band
in the middle, which is then covered by case 5 of WV.

Scenario (2): Paired region on the left, empty region on the right. This scenario
is handled by cases 5 and 6 of WV. Case 6 recursively decomposes any unpaired bases
on the right until the structure simplifies to a single paired region on the left and an
adjacent empty region on the right. This simpler configuration is then directly managed
by case 5 of WV.

Scenario (3): Empty region on the left, paired region on the right. This case is
managed by cases 1-4,and 6 of WV If the right side has exactly one paired structure, we
directly transition into the WV recurrence using cases 1-2. If multiple paired structures
exist on the right, cases 3,4, and 6 recursively decompose them until a single remaining
paired structure allows entry into WV® through cases 1-2. Importantly, WV ensures
that a valid paired structure is indeed present on the right side (required due to the
left side being empty), and it explicitly considers scenarios where unpaired bases might
separate the band from the right-side paired structure.

As all scenarios originally covered by VP and VP’ are systematically addressed, the
combination of WV and WV*® fully and correctly captures these cases. <

M. Gray, S. Will, and H. Jabbari

3.4 Time and Space Complexity

After sparsification, Spark achieves efficient bounds in both time and space. Recall that n de-
note the sequence length, Z the total number of candidate intervals retained by sparsification,
and T the number of trace arrows stored for back-tracing the MFE structure.

Space complexity. The memory footprint of Spark is the sum of three subquadratic-sized

components:

1. Sequence array — the input RNA string and the array holding structure information
requires O(n) and O(nlog(n)) space (following an efficient implementation of sparse tree
to keep the band border information).

2. Candidate lists — sparsification keeps values only for intervals that can participate in
an optimal solution. Lemma 1 and its symmetric analogue for WI-left guarantee that
every position is contained in at most one active W1 region of each type, so all candidate
tables together use O(Z) space, where Z << n? typically.

3. Trace arrows — each stored sub-solution carries at most one predecessor pointer; therefore
the total number of arrows is O(T).

No other data structure grows with either n or Z, giving the overall memory bound
O(nlog(n) + Z+T).

Time complexity. The running time combines a quadratic baseline over all position pairs
with a linear scan of candidates per left index:
Constant-bounded internal loops. Each dynamic-programming recurrence considers
internal loops of size at most 30 — a standard cut-off.
Candidate-driven scanning. For every fixed left index ¢ we test at most Z candidate
intervals [k, j] that start at . The outer loop over i therefore adds n x Z = O(nZ) steps.
Combining both parts yields the total running time O(n? + nZ2).

4 Experimental Design

4.1 Dataset

We used the original dataset from SparseMFEFold [23], consisting of 3704 RNA sequences
categorized into 6 distinct families, sourced from the RNAstrand V2.0 database [1]. These
sequences range in length from 8 to 4381 nucleotides.

Constraint structures were generated by randomly selecting pairs of indices within each
sequence. If the chosen bases could pair and were separated by at least 3 nucleotides, the
base pair was extended via stacking interactions to form the maximal stem. Among these
stems, the one with the lowest energy was selected as the constraint structure. To allow for
potential long-range interactions, including multiloops or pseudoknots, the energy of the
innermost base pair was set to 0.

To expand the dataset and evaluate longer sequences, we included the SARS-CoV-2
genome (length 29903 nucleotides) with a constraint structure derived previously [26, 25].
This constraint structure was obtained by combining all non-overlapping stems to yield the
minimal free-energy constraint structure. Additionally, to systematically examine sequences
of increasing length, partial segments of the SARS-CoV-2 genome were extracted, beginning
from length 4000 nucleotides and incrementally increasing by 2000 nucleotides up to the
full-length genome.

13:13

WABI 2025

13:14

Spark: Sparsified Hierarchical Energy Minimization of RNA Pseudoknots

4.2 Energy Model

In Spark, we employ the DP09 parameter set from HotKnots 2.0 — an update to the earlier
DPO03 model that was trained on a large set of experimentally validated pseudoknotted
structures [2]. The pseudoknotted parameter list appears in Supplementary Table 1.

5 Results

5.1 Spark and HFold compute identical energies on crossing structures

We validated the implementation of Spark by comparing its results against the HFold
implementation on our dataset. Spark and HFold predicted identical MFE values across all
test cases. As expected, since the optimal structures are not necessarily unique, the tools
report different optimal structures in few cases. Detailed results of this comparison are
available in our repository.

5.2 Spark’s empirical time and space outperforms HFold and closely
matches RNAfold

We assessed the empirical time and memory requirements of Spark and compared them
with those of RNAfold and HFold. RNAfold—- a highly optimised, pseudoknot-free algorithm —
provides a practical lower bound: matching or approaching its performance demonstrates
that Spark ’s sparsification effectively offsets the extra cost of pseudoknot prediction. HFold,
which also predicts hierarchically constrained pseudoknots but is not sparsified, serves as the
natural unsparsified reference.

All experiments were run on an M2 Max Mac Studio with 64 GB of RAM. Runtimes
were recorded as user CPU time (Fig.16a) and memory usage as maximum resident set
size (Fig. 16b). Because constrained pseudoknot prediction requires an input scaffold, every
algorithm — including RNAfold— received the same partial structure for each sequence. For
all sequences we selected the minimum-free-energy stem-loop as described in section 4.1,
ensuring a fair comparison.

HFold can process only sequences shorter than 5000 nt, so it was evaluated solely on the
original SparseMFEFold dataset [23]. On this set, HFold ’s maximum runtime and memory
footprint were 31,047 s and 937 MB. By contrast, RNAfold required at most 12.8 s and 106
MB, while Spark needed just 15.7 s and 35.8 MB.

To highlight the impact of sparsification on longer RNAs, we extended the dataset as
detailed in section 4.1. The largest sequence, the complete SARS-CoV-2 genome (29903 nt),
is beyond HFold ’s range. RNAfold processed this genome in 2,927 s using 4.81 GB of memory;
Spark completed in 2,869 s with only 1.43 GB. Results for all sequences are summarised in
Fig. 16.

These experiments demonstrate that Spark maintains pseudoknot-handling capability
while using substantially less memory than either comparator and achieving runtimes com-
parable to the pseudoknot-free RNAfold even on the largest sequences tested.

5.3 Effect of Pseudoknot Parameters on Candidate Growth

Sparsification inevitably increases the number of candidate intervals when the recurrence
system is extended from pseudoknot-free to pseudoknotted prediction. Figure 17 quantifies
this effect for the entire test set, including the full SARS-CoV-2 genome (n = 29,903) and
its subsequences.

M. Gray, S. Will, and H. Jabbari

1e+04
1
5e+06
1

o
5e+05
L1

1e+02
Memory (KB)
|

Time (s)

1e+00

g —— Spark (2.4) —— Spark (1.7)
IS HFold (3.3) HFold (1.7)
- —— RNAFold (2.6) —— RNAFold (2)

2e+03 1e+04 5e+04

T T T T T T
500 1000 2000 5000 10000 20000

1000 2000 5000 10000 20000
Length Length

(a) Time vs Length (b) Memory vs Length

Figure 16 We plot the results of Spark against two state of the art algorithms: HFold and RNAfold

when given an RNA sequence and input structure only as input against each other on our dataset.

(a) Run-time (s) versus length (log-log plot) over all benchmark instances. For each tool in both
plots, we report (in parenthesis) the exponent x that we estimated from the benchmark results; it
describes the observed complexity as ©(n®). (b) Memory Usage (maximum resident set size in KB)
versus length (log-log plot) over all benchmark instances. The solid line shows an asymptotic fit
(el 4 ¢2n®) for sequence length n, constants c1,c2, and exponent x for the fit. We ignored all values
< 1000.

The input constraint structure is the primary determinant of how many intervals survive
sparsification; nevertheless, the energy parameters also matter. Switching to pseudoknot
recurrences introduces harsher unpaired-base penalties inside pseudoloops, so base pairs
that minimise the number of unpaired bases become energetically preferable. As a result,
additional V-candidates (and their associated trace arrows) must be kept because they
participate in WI and WI' computations (cf. SparseRNAFolD [9] for the analogous rules in
the pseudoknot-free case).

Empirically, the growth is moderate: on our largest sequences we observe at most a
four-fold increase in V-candidates and a two-fold increase in V' trace arrows relative to the
pseudoknot-free setting. Crucially, the total number of candidates and trace pointers grows
strictly slower than a quadratic function, slightly deviating from a linear growth. Figure 17
plots these counts alongside the n? curve for a full quadratic matrix; even for the 30 kb
SARS-CoV-2 genome the candidate count remains well below the quadratic envelope. These
results confirm that extending the model to pseudoknots increases the search space, but not
to the point of negating the asymptotic advantages of sparsification.

6 Conclusion

In this work we present Spark, a biologically-motivated, sparsified algorithm that applies the
hierarchical-folding hypothesis to compute the MFE structure of an RNA sequence given
a pseudoknot-free input structure as constraint. By integrating sparsification into every
dynamic-programming table as explained above, Spark reduces the effective search space
to a small set of candidates. Formally, for a sequence of length n, let Z be the number of
candidates, and T the number of trace arrows required to reconstruct the optimal structure.
We show (see the complexity argument above) that Spark runs in O(n? + nZ) time and
O(nlog(n) + Z + T) space, improving on the O(n?®) time and O(n?) space bounds of the
original hierarchical algorithm HFold. In typical datasets, Z grows close to linearly with n,
so the practical cost approaches quadratic time and loglinear space.

13:15

WABI 2025

13:16 Spark: Sparsified Hierarchical Energy Minimization of RNA Pseudoknots

1e+09

1e+07
1e+08

1e+05

Candidates
Candidates
1e+06

1e+03

. < d
- — K 3 | s — K
? PKfree o) 5}-55’9“‘ PKfree
2 —— Quadratic o —— Quadratic
T T T T T T T T T T T T T T
200 500 1000 2000 5000 10000 20000 200 500 1000 2000 5000 10000 20000
Length Length
(a) Candidates vs Length (b) Trace arrows vs Length

Figure 17 We plot the V candidates and trace arrows of the standard Spark against the PKfree,
when given the same input.

Empirical evaluation. We benchmarked Spark against the unsparsified HFold and the highly
optimised, pseudoknot-free RNAfold on a collection of 3704 RNA sequences drawn from six
RNA families, augmented with partial and full SARS-CoV-2 genomes (up to 29903 nt). On
the SparseMFEFold set — where HFold can still be run — Spark required at most 15.7 s and
35.8 MB, compared with 31047 s and 917 MB for HFold and 12.8 s and 106 MB for RNAfold.
On the full SARS-CoV-2 genome, Spark finished in 2869 s using 1.43 GB, while RNAfold
needed 2927 s and 4.81 GB; HFold cannot handle sequences of this length at all.

Practical impact. Efficient sparsification allows Spark to predict hierarchically-constrained
pseudoknotted structures in RNA sequences exceeding 30000 nt — a regime previously out
of reach for MFE-based methods. This capability opens the door to routine large-genome
analyses, such as coronavirus or plant-viral RNAs, while retaining the theoretical guarantees
of exact dynamic programming.

—— References

1 Mirela Andronescu, Vera Bereg, Holger H Hoos, and Anne Condon. RNA STRAND: The
RNA secondary structure and statistical analysis database. BMC' Bioinformatics, 9(1):340+,
August 2008. doi:10.1186/1471-2105-9-340.

2 Mirela S Andronescu, Cristina Pop, and Anne E Condon. Improved free energy parameters
for RNA pseudoknotted secondary structure prediction. RNA, 16(1):26-42, 2010.

3 Rolf Backofen, Dekel Tsur, Shay Zakov, and Michal Ziv-Ukelson. Sparse RNA folding:
Time and space efficient algorithms. Journal of Discrete Algorithms, 9:12—-31, March 2011.
doi:10.1016/j.jda.2010.09.001.

4 José A Cruz and Eric Westhof. The dynamic landscapes of RNA architecture. Cell, 136:604—609,
February 2009. doi:10.1016/j.cell.2009.02.003.

5 Robert M Dirks and Niles A Pierce. A partition function algorithm for nucleic acid secondary

structure including pseudoknots. Journal of Computational Chemistry, 24:1664—-1677, August
2003. doi:10.1017/s1355838298980116.

6 Andreas Gruber et al. The Vienna RNA websuite. Nucleic Acids Res, 36:W70-W74, July
2008. doi:10.1093/nar/gkn188.

7 Raheleh Salari et al. Time and space efficient RNA-RNA interaction prediction via sparse
folding. In Lecture Notes in Computer Science, volume 6044, pages 473—490. Research in
Computational Molecular Biology, 2010. doi:10.1007/978-3-642-12683-3_31.

https://doi.org/10.1186/1471-2105-9-340
https://doi.org/10.1016/j.jda.2010.09.001
https://doi.org/10.1016/j.cell.2009.02.003
https://doi.org/10.1017/s1355838298980116
https://doi.org/10.1093/nar/gkn188
https://doi.org/10.1007/978-3-642-12683-3_31

M. Gray, S. Will, and H. Jabbari

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Mateo Gray, Sebastian Will, and Hosna Jabbari. Spark. Software, swhld:
swh:1:dir:2cb07371af448bb6254c05d23ac106800c590d39 (visited on 2025-08-05). URL:
https://github.com/TheCOBRALab/Spark, doi:10.4230/artifacts.24328.

Mateo Gray, Sebastian Will, and Hosna Jabbari. SparseRNAfolD: optimized sparse RNA
pseudoknot-free folding with dangle consideration. Algorithms Mol Biol, 19(9):26-42, 2024.
Hosna Jabbari and Anne Condon. A fast and robust iterative algorithm for prediction
of RNA pseudoknotted secondary structures. BMC Bioinformatics, 15, May 2014. doi:
10.1186/1471-2105-15-147.

Hosna Jabbari, Anne Condon, Ana Pop, Christina Pop, and Yinglei Zhao. Hfold: RNA
pseudoknotted secondary structure prediction using hierarchical folding. In Raffaele Gian-
carlo and Sridhar Hannenhalli, editors, Algorithms in Bioinformatics, pages 323-334, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-74126-8_30.

Hosna Jabbari, Anne Condon, and Shelly Zhao. Novel and efficient RNA secondary structure
prediction using hierarchical folding. J. Comput. Biol., 15(2):139-163, March 2008. doi:
10.1089/cmb.2007.0198.

Hosna Jabbari, Ian Wark, Carlo Montemagno, and Sebastian Will. Sparsification Enables Pre-
dicting Kissing Hairpin Pseudoknot Structures of Long RNAs in Practice. In 17th International
Workshop on Algorithms in Bioinformatics (WABI 2017), volume 88 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 12:1-12:13. Schloss Dagstuhl — Leibniz-Zentrum
fir Informatik, 2017. doi:10.4230/LIPIcs.WABI.2017.12.

Hosna Jabbari, Ian Wark, Carlo Montemagno, and Sebastian Will. Knotty: efficient and
accurate prediction of complex RNA pseudoknot structures. Bioinformatics, 34:3849-3856,
November 2018. doi:10.1093/bioinformatics/bty420.

Marilyn Kozak. Regulation of translation via mRNA structure in prokaryotes and eukaryotes.
Gene, 361:13-37, November 2005. doi:10.1016/j.gene.2005.06.037.

David H Matthews, Matthew D Disney, Jessica L. Childs, Susan J Schroeder, Michael Zuker,
and Douglas H Turner. Incorporating chemical modification constraints into a dynamic
programming algorithm for prediction of RNA secondary structure. Proceeding of the National
Academy of Science of the USA, 101:7287-7292, May 2004. doi:10.1073/pnas.0401799101.
Stephanie A Mortimer, Mary A Kidwell, and Jennifer A Doudna. Insights into RNA structure
and function from genome-wide studies. Nature Reviews Genetics, 15:469-479, May 2014.
doi:10.1038/nrg3681.

Jihong Ren, Baharak Rastegari, Anne Condon, and Holger H Hoos. HotKnots: Heuristic
prediction of RNA secondary structures including pseudoknots. RNA, 11:1494-1504, October
2005. doi:10.1261/rna.7284905.

Jihong Ren, Baharak Rastegari, Anne Condon, and Holger H Hoos. Hotknots: heuristic
prediction of RNA secondary structures including pseudoknots. RNA, 11(10):1494-1504, 2005.
Elena Rivas and Sean R Eddy. A dynamic programming algorithm for rna structure prediction
including pseudoknots. Journal of Molecular Biology, 285:2053—2068, February 1999. doi:
10.1006/ jmbi.1998.2436.

Bryan M Warf and Andrew J Berglund. Role of RNA structure in regulating pre-mRNA
splicing. Trends Biochem Sci., 35:169-178, March 2010. doi:10.1016/j.tibs.2009.10.004.
Ydo Wexler, Chaya Zilberstein, and Michal Ziv-Ukelson. A study of accessible motifs and
RNA folding complexity. Journal of Computational Biology, 14:856-872, August 2007. doi:
10.1089/cmb.2007 .R020.

Sebastian Will and Hosna Jabbari. Sparse RNA folding revisited: space-efficient minimum
free energy structure prediction. Algorithms for Molecular Biology, 11, April 2016. doi:
10.1186/s13015-016-0071-y.

Timothy J Wilson and David M J Lilley. RNA catalysis—is that it? RNA, 21:534-537, April
2015. doi:10.1261/rna.049874.115.

Alison Ziesel and Hosna Jabbari. Structural impact of synonymous mutations in six sars-cov-2
variants of concern. bioRziv, 2024.

Alison Ziesel and Hosna Jabbari. Unveiling hidden structural patterns in the sars-cov-2 genome:
Computational insights and comparative analysis. Plos one, 19(4), 2024.

13:17

WABI 2025

https://archive.softwareheritage.org/swh:1:dir:2cb07371af448bb6254c05d23ac106800c590d39;origin=https://github.com/TheCOBRALab/Spark;visit=swh:1:snp:aeb39934d18efe24abf8aea90905fdbef5863e3f;anchor=swh:1:rev:51eaafa4fb54397a921a7c943d7747f4e226f5ba
https://github.com/TheCOBRALab/Spark
https://doi.org/10.4230/artifacts.24328
https://doi.org/10.1186/1471-2105-15-147
https://doi.org/10.1186/1471-2105-15-147
https://doi.org/10.1007/978-3-540-74126-8_30
https://doi.org/10.1089/cmb.2007.0198
https://doi.org/10.1089/cmb.2007.0198
https://doi.org/10.4230/LIPIcs.WABI.2017.12
https://doi.org/10.1093/bioinformatics/bty420
https://doi.org/10.1016/j.gene.2005.06.037
https://doi.org/10.1073/pnas.0401799101
https://doi.org/10.1038/nrg3681
https://doi.org/10.1261/rna.7284905
https://doi.org/10.1006/jmbi.1998.2436
https://doi.org/10.1006/jmbi.1998.2436
https://doi.org/10.1016/j.tibs.2009.10.004
https://doi.org/10.1089/cmb.2007.R020
https://doi.org/10.1089/cmb.2007.R020
https://doi.org/10.1186/s13015-016-0071-y
https://doi.org/10.1186/s13015-016-0071-y
https://doi.org/10.1261/rna.049874.115

13:18 Spark: Sparsified Hierarchical Energy Minimization of RNA Pseudoknots

A Definitions

Table 1 ENERGY PARAMETERS. All parameters were derived at 37 degrees celsius and 1 M
salt (NaCl) concentration or extrapolated from experimental values cf. [12, 2, 19].

Name Description Value (kcal/mol)
Ps Exterior pseudoloop initiation penalty -1.38
Py Penalty for introducing pseudoknot inside a multiloop 10.07
Py Penalty for introduce pseudoknot inside a pseudoloop 15.00
Py Band penalty 2.46
Pup Penalty for unpaired base in a pseudoloop 0.06
Py Penalty for closed subregion inside a pseudoloop 0.96
en(t,J) Energy of a hairpin loop closed by (i, 5)

es(i,i+1,7—1,7) Energy of a stacked pair closed by (4, j)

estp(i,9+ 1,5 —1,7) Energy of a stacked pair that spans a band 0.89 x es(i,7)
eint(i,r, 7", 7) Energy of a pseudoknot-free internal loop

eintp(i,7,7",7) Energy of an internal loop that spans a band 0.74 X eint(i,d, e, j)
a Multiloop initiation penalty 3.39
b Multiloop base pair penalty 0.03
c Penalty for unpaired base in a multiloop 0.02
a Penalty for introducing a multiloop that spans a band 3.41
v Base pair penalty for a multiloop that spans a band 0.56

c Penalty for unpaired base in a multiloop that spans a band 0.12

	1 Introduction
	2 Review of hierarchical pseudoknot prediction in HFold
	3 The Spark Algorithm
	3.1 The decomposition of general pseudoloops
	3.2 Decomposition of pseudoloops with rightmost band in G'
	3.3 Prediction of closed structures that cross G
	3.4 Time and Space Complexity

	4 Experimental Design
	4.1 Dataset
	4.2 Energy Model

	5 Results
	5.1 Spark and HFold compute identical energies on crossing structures
	5.2 Spark's empirical time and space outperforms HFold and closely matches RNAfold
	5.3 Effect of Pseudoknot Parameters on Candidate Growth

	6 Conclusion
	A Definitions

