
Human Readable Compression of GFA Paths Using
Grammar-Based Code
Peter Heringer #

Department for Endocrinology and Diabetology, Medical Faculty and University Hospital
Düsseldorf, Heinrich Heine University Düsseldorf, Germany
German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research Germany, and Center for
Digital Medicine, Heinrich Heine University Düsseldorf, Germany

Daniel Doerr #

Department for Endocrinology and Diabetology, Medical Faculty and University Hospital
Düsseldorf, Heinrich Heine University Düsseldorf, Germany
German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research Germany, and Center for
Digital Medicine, Heinrich Heine University Düsseldorf, Germany

Abstract
Pangenome graphs offer a compact and comprehensive representation of genomic diversity, improving
tasks such as variant calling, genotyping, and other downstream analyses. Although the underlying
graph structures scale sublinearly with the number of haplotypes, the widely used GFA file format
suffers from rapidly growing file sizes due to the explicit and repetitive encoding of haplotype paths.
In this work, we introduce an extension to the GFA format that enables efficient grammar-based
compression of haplotype paths while retaining human readability. In addition, grammar-based
encoding provides an efficient in-memory data structure that does not require decompression, but
conversely improves the runtime of many computational tasks that involve haplotype comparisons.

We present sqz, a method that makes use of the proposed format extension to encode haplotype
paths using byte pair encoding, a grammar-based compression scheme. We evaluate sqz on recent
human pangenome graphs from Heumos et al. and the Human Pangenome Reference Consortium
(HPRC), comparing it to existing compressors bgzip, gbz, and sequitur. sqz scales sublinearly
with the number of haplotypes in a pangenome graph and consistently achieves higher compression
ratios than sequitur and up to 5 times better compression than bgzip in HPRC graphs and up to
10 times in the graph from Heumos et al.. When combined with bgzip, sqz matches or excels the
compression ratio of gbz across all our datasets.

These results demonstrate the potential of our proposed extension of the GFA format in reducing
haplotype path redundancy and improving storage efficiency for pangenome graphs.

2012 ACM Subject Classification Applied computing → Bioinformatics; Theory of computation →
Data compression; Mathematics of computing → Graph algorithms

Keywords and phrases pangenomics, pangenome graphs, compression, grammar-based code, byte
pair encoding

Digital Object Identifier 10.4230/LIPIcs.WABI.2025.14

Related Version
Previous Version: https://www.biorxiv.org/content/10.1101/2025.05.22.655470v1

Supplementary Material Software (Source Code): https://github.com/codialab/sqz [7]
archived at swh:1:dir:d7c4cb1cc536abc10166918dda34b0b373987c7b

1 Introduction

In the past two decades, numerous initiatives have focused on producing reference assemblies
for a wide range of species. These reference assemblies play a critical role in tasks such
as genotyping, variant calling, and higher-order omics analyses, including epigenomics,

© Peter Heringer and Daniel Doerr;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Algorithms for Bioinformatics (WABI 2025).
Editors: Broňa Brejová and Rob Patro; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peter.heringer@hhu.de
https://orcid.org/0009-0005-5985-2317
mailto:daniel.doerr@hhu.de
https://orcid.org/0000-0002-3720-6227
https://doi.org/10.4230/LIPIcs.WABI.2025.14
https://www.biorxiv.org/content/10.1101/2025.05.22.655470v1
https://github.com/codialab/sqz
https://archive.softwareheritage.org/swh:1:dir:d7c4cb1cc536abc10166918dda34b0b373987c7b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

14:2 Human Readable Compression of GFA Paths Using Grammar-Based Code

metagenomics, and transcriptomics. However, a single reference sequence is insufficient to
capture the full genomic diversity within a species and can introduce reference bias into the
aforementioned analyses.

In contrast, pangenomes consist of sets of individual haplotype assemblies that collectively
represent the genetic variability of a species. Advances in long-read sequencing and as-
sembly technologies have recently enabled the construction of pangenomes from high-quality,
reference-grade haplotype assemblies [14, 5] that are particularly suited for identifying struc-
tural variation in a species. Although pangenome applications are just emerging, several
landmark studies have already demonstrated their advantages in genotyping [22, 3], variant
calling [6], and transcriptome analysis [21], outperforming traditional single reference based
methods.

In general, as more haplotypes are added to a pangenome, the number of novel genomic
variants decreases. A key determinant of the effectiveness of pangenome-based applications
is whether the pangenome sufficiently captures the genomic diversity of the species. This
is typically assessed by analyzing pangenome growth curves and estimating pangenome
openness [24]. These growth curves often plateau, suggesting that a finite set of haplotypes
is adequate to represent the genomic variation within a species. Consequently, in the long
term, we expect that numerous stable reference pangenomes will be established that will
ultimately replace traditional single reference assemblies.

Graph-based data structures have become the predominant approach for representing
pangenomes, as they reduce redundancy while preserving properties essential for locating
subsequences and visualizing genomic variation. Two widely used graph structures are
sequence graphs and de Bruijn graphs. In sequence graphs, non-overlapping genomic segments
are represented as vertices, with edges denoting adjacency relationships between them. These
segments are typically obtained from sequence alignments. In contrast, de Bruijn graphs are
built by decomposing haplotypes into overlapping sequences of fixed length, called q-grams.
In this model, q-grams form the edges of the graph, and vertices represent the (q − 1)-length
overlaps between them. In addition to the graph structure itself, pangenome graphs also
retain information on the paths of the original haplotype sequences through the graph.

A popular format for storing pangenome graphs is the Graphical Fragment Assembly (GFA)
format (https://github.com/GFA-spec/GFA-spec), a tabular representation in which each
line constitutes a record encoding a specific type of information, such as a node (S line), an
edge (L line), or a haplotype path (P or W line). The popularity of the format stems largely
from its simplicity, human readability, and scripting-friendliness. However, since P and W lines
store path information in an explicit, uncompressed form, as illustrated in Figures 2a and 2d,
file size is typically dominated by these entries that consume excessive amounts of storage,
undermining the original advantages of the format. This has led to the ironic situation where,
although the size of the pangenome graph itself follows the expected behavior of a saturating
growth curve, the corresponding file size increases linearly with the number of haplotypes, as
illustrated in Figure 1. For example, the GFA file for a recently released pangenome of human
chromosome 19 comprising 1,000 haplotypes occupies 14 GB, whereas the portion encoding
the graph structure accounts only for 178 MB. This discrepancy severely hampers the usability
of pangenome graphs, as the resulting data volumes become increasingly unmanageable, and
it poses a genuine risk to the broader adoption of pangenome-based applications.

Currently, to our knowledge only one tool is specifically designed for compressing pan-
genome graphs: gbz [23]. This tool constructs a variant of the positional Burrows–Wheeler
Transform (PBWT) from the haplotypes encoded in a pangenome graph and also encodes
the topology of the sequence graph using succinct data structures. Beyond storage, the

https://github.com/GFA-spec/GFA-spec

P. Heringer and D. Doerr 14:3

Figure 1 Pangenome growth vs file size. The growth curve computed with Panacus [16] of a
pangenome graph of human chromosome 19 comprising 1,000 haplotypes from [8] compared against
the file sizes of corresponding subsampled GFA-formatted pangenome graphs. While the growth
curve quickly saturates, the file size displays a linear increase.

gbz format provides efficient in-memory representations that support pangenome analysis;
for instance, it underpins the giraffe read aligner for mapping short reads to pangenome
graphs [22]. However, gbz only partially supports incremental updates–while modifications
such as adding nodes or new haplotypes are possible, refining existing haplotypes, e.g., by
replacing a short sequences of nodes with another or by splitting nodes into smaller ones,
requires the rebuilding of the entire data structure. The adoption of the gbz format within
the pangenome graph community has remained limited, largely due to its sophisticated data
structures, binary file format, and the consequential dependence on external libraries for
construction and usage.

In this work, we propose an extension of the more popular GFA file format that allows
haplotype paths to be specified in a compressed form, while preserving human readability.
Our approach is based on context-free grammars. To this end, we introduce a new line
type, the Q line, to define meta-nodes representing paths in the graph. This enables the
representation of repetitive substrings of haplotype paths of length two or more with a
single meta-node, resulting in a more compact path encoding. To reference these grammar-
defined subpaths within haplotype paths, we introduce an additional line type, the Z line.
We also present sqz, a proof-of-concept implementation, written in Rust, available at
https://github.com/codialab/sqz.

There is a long-standing body of research on the concept of grammar-based code [9]. In
grammar-based coding, nonterminal symbols are introduced to replace subsequences of the
original text that occur multiple times. Each nonterminal is associated with a production
rule that maps it to a sequence of symbols–potentially including other nonterminals–that
ultimately spells the original subsequence. A prominent grammar-based coding scheme is
byte pair encoding (BPE), in which each production rule corresponds to a digram, i.e., a pair
of adjacent symbols, that appears more than once in the text. To construct the grammar,
BPE iteratively identifies the most frequent digram, replaces all of its occurrences with a new
nonterminal symbol, and records the corresponding production rule. This process continues
until no digram appears more than once in the transformed text. BPE and its variants,
such as SentencePiece [12], have become standard in machine learning, particularly in large
language model (LLM) applications, where compact and consistent tokenization is crucial
for managing vocabulary size and handling rare or unseen words efficiently [19, 18].

WABI 2025

https://github.com/codialab/sqz

14:4 Human Readable Compression of GFA Paths Using Grammar-Based Code

2 Methods

2.1 Preliminaries
A sequence graph G = (V, E) is an undirected graph that represents DNA molecules drawn
from an alphabet Σ and links between them. A DNA molecule is composed of two antiparallel
strands of oligonucleotides, with one being designated forward and the other reverse comple-
mentary strand. DNA molecules are represented by the vertices of the graph G, with each
vertex v in V having a left and a right side. A visit of vertex v must respect the direction,
that is, if v is entered on its left side, it must be exited to its right side, and vice versa. If a
node is traversed left-to-right, then it spells the forward strand of the corresponding DNA
molecule, while a right-to-left traversal produces the corresponding reverse complementary
strand. Any two (not necessarily distinct) vertices can be connected through an undirected
edge. To indicate on which ends the two vertices connect, we mark vertices traversed in
right-to-left orientation with an overline, e.g., v with the default (non-overlined) reading
direction being left-to-right. For instance, if the left side of vertex u ∈ V is connected to the
left side of vertex v ∈ V , then (u, v) ≡ (v, u) ∈ E. We will also use the short form of uv to
refer to edge (u, v).

A haplotype path, or simply called haplotype, is a walk through G. Note that a haplotype
can also be a cycle or cover only a single vertex, although in the following, we will consider
without loss of generality that all haplotypes start and end with distinct vertices. A pangenome
is a tuple (G, H) constituting a sequence graph G = (V, E) and a set of haplotypes H that
covers G, that is, each edge in E is traversed at least once by any haplotype of H. In
incomplete assemblies, haplotypes may be split in smaller contigs, leading to a haplotype
being associated with multiple paths. For presentation purposes, we adopt a simplified
notation assuming each haplotype is represented by a single path, however, this does not
diminish the generality of our approach.

2.2 Extension of the GFA format
Reflecting the nature of the existing GFA format, we formulated several design requirements
for a compressed representation of haplotypes that extends this format:

Human readable. The format should remain accessible and interpretable by humans,
rather than resembling machine code.
Simple. The compressed information should be intuitively understandable when browsing
a GFA file, consistent with the style of existing record types.
Updatable. It should be straightforward to add new nodes and edges to the graph, as
well as new compressed haplotype path encodings without requiring decompression or
modification of previously stored compressed paths.
Versatile. The format should accommodate various compression strategies rather than
being tied to a single algorithm.

We propose a grammar based coding scheme for haplotype compression by introducing
two new record types, whose fields are detailed in Table 1. The Q record defines a meta-
node representing a reusable walk within the pangenome graph. These meta-nodes can be
defined recursively and may include references to other Q records. For example, the W record
associated with sample S1 in Figure 2d, which defines the haplotype path (1, 4, 6, 8, 9) in the
graph shown in Figure 2a, can be encoded as (1, q2, 9) using the Q records q1 = (4, 6) and
q2 = (q1, 8). To store such compressed paths, we introduce the Z record, which maintains
the same structure as the W record but supports references to meta-nodes. The resulting
compact encoding of all W records shown in Figure 2d is illustrated in Figure 2e.

P. Heringer and D. Doerr 14:5

1

2

3

4

5

6

7

8

9

10

(a) Pangenome graph.

1

2

3 4

q1

5 7

8

9

10

(b) Encoding walk (4, 6) by meta-node q1.

1

2

3 4

q2

5 7 8

9

10

q1

(c) Encoding walk (q1, 8) by meta-node q2.

W S1 0 contig1 * * >1>4>6>8>9
W S2 0 contig1 * * >1>4>6>8>9
W S3 0 contig1 * * >2>4>6>8>10
W S4 0 contig1 * * >2>4>5
W S5 0 contig1 * * >3>4>6>9
W S6 0 contig1 * * >7>8>10

(d) Path encoding in GFA format using W records.

Q q1 >4>6
Q q2 >q1>8
Z S1 0 contig1 * * >1>q2>9
Z S2 0 contig1 * * >1>q2>9
Z S3 0 contig1 * * >2>q2>10
Z S4 0 contig1 * * >2>4>5
Z S5 0 contig1 * * >3>q1>9
Z S6 0 contig1 * * >7>8>10

(e) Proposed path encoding using Q and Z records.

Figure 2 Haplotype compression with Q and Z records. (a) A pangenome graph containing 6
haplotypes. (b) The repeated walk (4, 6) is replaced by meta-node q1. (c) The repeated walk (q1, 8)
is replaced by meta-node q2. (d) Original W records for each haplotype. (e) Compressed encoding
using Q and Z records. Note that repeated walks (1, q2) and (q2, 9) could be replaced by additional
meta-nodes.

2.3 Grammar constructing using byte pair encoding
Our method is composed of three steps that will be explained in the following sections:

Grammar
construction

Rule
reduction

Haplotype
encoding

For grammar construction, we adopt a variant of byte pair encoding (BPE). BPE iteratively
replaces frequently occurring digrams, i.e., pairs of adjacent symbols, with new non-terminal
symbols and corresponding production rules that reconstruct the original sequence. At each
iteration, the most frequent digram is selected for replacement, with ties broken arbitrarily.

Unlike natural language text, haplotype paths in pangenome graphs are bi-directed,
meaning they can be traversed in both forward and reverse-complementary direction. In
our adaptation, digrams correspond to pairs of adjacent oriented vertices in the pangenome
graph, and repeats are detected irrespective of orientation. Because haplotypes may revisit
the same vertex multiple times, maintaining the correct ordering of digrams is crucial –
especially since the algorithm processes digrams by frequency rather than by their original
order in the haplotype paths. To preserve sequential information, we annotate each digram
with a pair of increasing integers, which we refer to as an address:

▶ Definition 1. An address is a pair of non-negative integers α|β associated with a digram,
satisfying α ≤ β. Given a haplotype H represented as a sequence of successive digram
occurrences, H = h0 · · ·hm, the addresses of consecutive digrams are overlapping: that is,
for all 0 ≤ i < m, if hi = (wu, α|β) and hi+1 = (uv, γ|δ), then β = γ. Additionally, each
digram occurrence in H is unique within the haplotype.

WABI 2025

14:6 Human Readable Compression of GFA Paths Using Grammar-Based Code

Table 1 Definitions for Q and Z lines that enable grammar based coding in GFA format. The
record definitions are analogous to those described in https://github.com/GFA-spec/GFA-spec/
blob/master/GFA1.md.

Column Field Type Regexp Description

1 RecordType Character Q Record type
2 Name String [!-)+-<>-~][!-~]* Name of meta-node
3 CompressedWalk String ([><][!-;=?-~]+)+ Compressed walk

1 RecordType Character Z Record type
2 SampleId String [!-)+-<>-~][!-~]* Sample identifier
3 HapIndex Integer [0-9]+ Haplotype index
4 SeqId String [!-)+-<>-~][!-~]* Sequence identifier
5 SeqStart Integer *|[0-9]+ Optional Start position
6 SeqEnd Integer *|[0-9]+ Optional End position (BED-

like half-close-half-open)
7 CompressedWalk String ([><][!-;=?-~]+)+ Compressed walk

One way to construct addresses is a left-to-right traversal of each haplotype such that the
first number of the address of a digram matches the second number of the preceding address:

1 2 1 2 3 2
0|1 1|2 2|3 3|4 4|5

As shown, the digram (1, 2) occurs twice. By assigning addresses, we retain the relative
position of each digram, enabling accurate identification of its neighbors – even when digrams
are processed out of sequence.

Our algorithm for grammar construction, presented in Algorithm 1, begins by initializing
table D with all digrams observed across the haplotypes. Each edge uv in the pangenome
graph is associated with an entry D[uv], which stores a list of tuples (i, a1|a2) indicating that
digram uv appears in haplotype Hi with address a1|a2 (see line 1). The algorithm proceeds
by iteratively replacing the most frequent digram with a new meta-node, continuing until
no digram occurs more than once (see line 3). Replacing a digram uv with a meta-node q

introduces two new digrams, wq and qw′, where wu and vw′ are the digrams immediately
preceding and succeeding uv at each of its occurrences across the haplotypes. Accordingly,
occurrences of wu and vw′ that are embedded in a walk of the form wuvw′ are removed from
the corresponding lists D[wu] and D[vw′], and the updated digrams wq and qw′ are added
to new entries D[wq] and D[qw′], respectively. These updates are handled by the for-loops
in lines 6 and 14, which generate the entries D[wq] and D[qw′] by traversing the occurrences
of the currently handled digram and finding their neighbors. To ensure that the sequential
structure of digrams is preserved, the addresses of the new digrams must be reconciled. This
is done in line 16: the first number of each address in D[qw′] is updated to match the first
number of the corresponding entry in Dq, which, by construction, equals the second number
of the address in D[wq] (see Figure 3a).

Our algorithm has to accommodate four special loop configurations that are treated
within the conditional block at line 10 and illustrated in Figure 3b. The first occurs when
u = v and u forms a loop on its own, while the remaining three configurations occur when
distinct (meta-)nodes u and v together form a loop:

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md

P. Heringer and D. Doerr 14:7

Algorithm 1 Grammar construction.

Require: Lists Hi, 1 ≤ i ≤ k, with tuples (uv, a1|a2), each indicating the occurrence of
digram uv in haplotype i with addresses a1|a2.

Ensure: Grammar Q

1: D[uv]← {(i, a1|a2) | i ∈ 1..k, (uv, a1|a2) ∈ Hi} ∀uv ∈ E ▷populate table
2: initialize empty list Q

3: for uv ∈ D from highest frequency to frequency of 2 do
4: initialize new meta-node node q

5: Dq ← D[uv]
6: for each (i, a1|a2) ∈ Dq do ▷update left neighbors of uv

7: remove entry (i, a0|a1) ∈ D[wu] for left neighbor w and a0 ≤ a1
8: add entry (i, a0|a1) to D[wq]
9: end for

10: if vu ∈ D then ▷treat special loop configurations
11: extract self-loop addresses of Dq into D[uu′]
12: set D[qq], D[vq] and D[qu] according to loop configurations
13: end if
14: for each (i, a1|a2) ∈ Dq do ▷update right neighbors of uv

15: remove entry (i, a2|a3) ∈ D[uw′] for right neighbor w′ and a3 ≥ a2
16: add entry (i, a1|a3) to D[qw′] ▷update addresses
17: end for
18: remove D[uv]
19: append (q, u, v, Dq) to Q

20: end for

1. u = v (self-loop), with u appearing in a walk of the form wuuuw′. At least two consecutive
addresses are associated with digram uu (green edge) of which every second must be
transferred onto the new meta-node. This is handled by extracting every second address
and placing them into a temporary list D[uu′] in line 11 that is then processed in the
conditional block along with the next cases.

2. uv appears in a walk of the form wuvuvw′. Any address of the reverse arc vu (red edge)
that simultaneously matches two addresses of uv, one by its first number and the other
by its second, must be transferred into D[qq], forming a new self-loop at the meta-node.

3. uv appears in a walk of the form wuvux. If an address of arc vu matches only the second
number of an address of uv, it is moved to D[qu] and does not contribute to a new
self-loop.

4. uv appears in a walk of the form yvuvw′. If an address of arc vu matches only the
second number of an address of uv, it is moved to D[vq] and does not contribute to a
new self-loop.

Runtime. For a given pangenome graph G = (V, E) with haplotypes H1, . . . , Hk, the total
number of digram occurrences across all haplotypes is given by n =

∑k
i=1 |Hi|. Accordingly,

the size of the digram table D after initial construction in line 1 is also n =
∑

uv∈E |D[uv]|.
We implement D as a hash table. Since we know the maximum number of entries of the
table is n, we can pre-allocate a large enough table, which provides constant-time access,
insertion, and removal of entries. The total number of digram occurrences n remains constant
throughout the algorithm. In each iteration, the algorithm processes a set of x = |D[uv]|

WABI 2025

14:8 Human Readable Compression of GFA Paths Using Grammar-Based Code

quw ww' w'v
α|β β|γ γ|δ α|β β|δ

(a) Creating a meta-node with addresses.

uw

w

w

w

w'

w'

w'

v
0|1 1|2

2|3

3|4

4|5

q u
0|1 1|3 3|4

q
0|1

1|3

3|5

u v
2|3

1|2

3|4

u v
0|1 1|2

2|3

3|4

0|1

w'

w

w

w'

q
0|1

1|3

3|5
w w'

x

x

v q
0|1 1|2 2|4

y w'

y

u
0|1

1|2
2|3
3|4

4|5

u u'
0|1 1|2

2|3

3|4

4|5

(1)

(2)

(3)

(4)

(b) Loop configurations.

Figure 3 (a) During meta-node creation neighboring addresses need to be changed to keep the
address guarantees that neighboring digrams share a number. (b) A number of special cases. (1) is
a self loop digram that needs to be split into two edges before a meta-node can be created. In case
(2) a meta-node creation along the green edge results in the creation of a new self loop based on the
red edge. Case (3) and (4) appear similar to (2) yet do not result in self loop edges.

digram occurrences and then removes the entry D[uv] (line 18). Other digram occurrences
looked at in this iteration are only moved between digrams in D (as in the loops at lines 6
and 14). Hence, the runtime can be captured by the recurrence T (n) = T (n − x) + f(x),
where f(x) accounts for retrieving and updating all data related to D[uv]. With appropriate
auxiliary data structures, we ensure that f(x) ∈ O(x).

We first introduce a frequency-based structure, Freq, to process digrams in linear time by
descending frequency. Let m = maxuv∈E |D[uv]| be the maximum initial digram frequency.
We implement Freq as a list of m entries, where index i stores a hash set of digrams with
frequency i (for 2 ≤ i ≤ m). Initialization of Freq requires a single pass over D and runs
in O(n) time. During the main loop (line 3), digrams are processed in decreasing order of
frequency using Freq. As new digrams are created, their frequencies are computed and
added to the appropriate buckets in Freq. Specifically, new digrams of the form wq and
qw′, created in the for-loops at lines 6 and 14, are inserted into Freq after computing their
respective frequencies |D[wq]| and |D[qw′]|. Importantly, the frequency of any newly created
digram cannot exceed the frequency of the currently processed digram uv.

Two additional hash tables, NeighborLeft and NeighborRight, track adjacency
relationships between (meta-)nodes in haplotypes. For each occurrence (i, a1|a2) of a digram
uv, we store an entry NeighborRight[(u, i, a1)] = (v, a2) which points to the succeeding
(meta-)node v and its associated number a2. Analogously, NeighborLeft[(v, i, a2)] = (u, a1)

P. Heringer and D. Doerr 14:9

points to the preceding (meta-)node u and its associated number a1. These structures allow
constant-time retrieval of address components, as in lines 7 and 15. The removal of (i, a0|a1)
from D[wu] and insertion into D[wq] then takes constant time. Simultaneously, we update

NeighborRight[(w, i, a0)]← (q, a1)
NeighborLeft[(q, i, a1)]← (w, a0),

and remove the entry NeighborLeft[(u, i, a1)]. All operations are in constant time. Analog-
ous updates occur in line 15. The space complexity is O(n), as all data structures, D, Freq,
NeighborLeft, and NeighborRight, are bounded by the number of digram occurrences.
This completes the runtime analysis. Since f(x) ∈ O(x), applying the substitution method
to the recurrence T (n) yields an overall linear runtime.

2.4 Space improvements
Haplotypes corresponding to chromosome-level assemblies can contain hundreds of millions of
nodes in pangenome graphs. As a result, address numbers must be stored as 64-bit integers,
which leads to high memory usage. We now present an encoding scheme for addresses that
scales with the number of repetitions in a sequence rather than with sequence length. This
allows both numbers of an address to be stored together within a 64-bit representation,
effectively halving the memory required.

We achieve this by splitting each haplotype into segments. Each segment is defined by a
node appearing twice, except for the last segment, where the right boundary is determined
by the end of the sequence. In doing so, segments overlap by one position, called the pivot
that constitutes the second appearance of the repeated node in the left segment. Note that
the first appearance of the repeated node can be at any preceding position of the segment:

1 2 1 2 3 2
0|0 0|1 1|1 1|1 1|2

segment 0 segment 1

Each segment is assigned a dedicated value that determines both numbers of the addresses
of all digram occurrences within that segment except for the digram immediately preceding
the pivot that connects to the next segment. This special digram occurence must preserve
the overlapping property of addresses as defined in Definition 1, ensuring that neighboring
addresses overlap. In the example above, the segment with the dedicated value 0 is linked
to its succeeding segment with value 1 by a transition digram carrying the address 0|1,
positioned just before their shared pivot.

▶ Proposition 2. A digram appearing multiple times on the same haplotype can always be
differentiated by its addresses.

Proof. By construction, in each segment only one node can appear twice and therefore no
digram occurrence is repeated. ◀

▶ Proposition 3. Addresses of consecutive digram occurrences overlap.

Proof. All addresses of a segment composed of the dedicated value overlap. The address of
the segment’s last digram, which occurs left of the pivot, is composed of the dedicated values
of the current and the next segment, again producing an overlap. ◀

WABI 2025

14:10 Human Readable Compression of GFA Paths Using Grammar-Based Code

Algorithm 2 Haplotype encoding.

Require: Haplotypes H0, · · · , Hk, Grammar Q

1: construct tables L and N ▷see appendix A
2: for j ∈ 1..k do
3: initialize empty stack C

4: for i ∈ 0..|Hj | do
5: (uv, a1|a2)← Hj [i]
6: if (j, uv, a1|a2) ∈ N then ▷meta-node can be applied
7: get size s and offset o from L

8: pop o nodes from C

9: push N [(j, uv, a1|a2)] to C

10: i← i + s− o− 1 ▷skip remainder of segment
11: else
12: push u onto C

13: end if
14: end for
15: print C

16: end for

2.5 Reducing grammar rules

Before encoding, we remove meta-nodes that appear only once, either in the set of production
rules (Q lines) or in the haplotype encoding (Z lines). A meta-node is removed by replacing
it with the outcome of its corresponding production rule, after which this rule is discarded
from the grammar. To identify such candidates, we first count for each meta-node the
number of production rules in which it is used. To identify how often a meta-node is used in
the haplotype encoding, we count the number of digram occurrences associated with each
meta-node. A decrease in this count between a meta-node and its parents indicates that the
meta-node also appears in at least one haplotype encoding. We denote such nodes in the
following as top-level meta-nodes.

2.6 Haplotype encoding

In the following, we present a linear-time algorithm for the encoding of haplotypes from the
constructed grammar. Our approach relies on the identification of anchoring meta-nodes
associated with top-level meta-nodes. Anchoring meta-nodes are nodes whose two children
are leaves, that is, they constitute pairs of vertices in the pangenome graph. Each top-level
meta node, corresponding to an entire segment of one or more digram occurrences, has a
left-most and right-most anchoring meta-node. However, not every right-most and left-most
meta-node of a top-level meta-node is an anchoring meta-node, as illustrated in the example
of Figure 4a.

Our algorithm, shown in Algorithm 2, produces the encoding of a haplotype without
repeated steps of inserting and replacing intermediary meta-nodes. Each haplotype is
processed separately in the main loop (line 2). The algorithm then iterates over each position
i associated with a digram occurrence (uv, a1|a2) in the current haplotype Hj (line 4). If
(j, uv, a1|a2) is associated with an anchoring meta-node, the entire segment is replaced by its
top-level meta-node (line 6). Otherwise, node u is pushed onto the stack. This is necessary as
some nodes of the haplotype–those not being contained in the grammar–will not be replaced
by any meta-node.

P. Heringer and D. Doerr 14:11

q2 q3

q4

x zyq1

vu

(a) Anchoring meta-nodes. (b) Coverage computation.

Figure 4 (a) For the encoding of haplotypes the left-most and right-most anchoring meta-nodes
have to be found. Additionally, the offset between the left-most (right-most) anchoring meta-nodes
and the true left-most (right-most) child is needed. For q4, q1 is the left-most anchoring meta-node
with an offset of 1 (due to node x) and q3 is the right-most anchoring meta-node. (b) Coverages
of nodes in haplotypes can be calculated by counting nodes in compressed paths and creating
presence/absence lists. These lists are then pushed down the directed acyclic graph of the grammar
to get the final lists. The coverage for a vertex is the number of presence entries in its list.

We utilize two auxiliary data structures that allow us to determine a top-level meta-node
from a single digram occurrence.
1. Table L stores for each meta-node q its size (in nodes), its left-most and right-most

anchoring meta-node, and corresponding offsets. The offsets correspond to the number of
leaf vertices within q that are left of its left-most anchoring meta-node and respectively
right of its right-most anchoring meta-node. This table is used in the construction of the
following table.

2. Table N maps digram occurrences of anchoring meta-nodes to their top-level meta-node.

Table L is constructed in a bottom-up traversal of the directed acyclic graph constituting
the grammar. In each step, one of the following two cases applies to the currently processed
meta-node q:
1. Meta-node q is already an anchoring meta-node, and therefore, its left-most and right-most

anchoring meta-node is q itself. Accordingly, q is stored in L with size 2, corresponding
to the number of its children, and offsets 0.

2. Otherwise, we determine q’s size, its left-most and right-most anchoring meta-node, and
their offsets by looking up q’s children in L.

We then construct table N by iterating over all top-level meta-nodes, and creating for each
such meta-node q′ entries in N that map digram occurrences associated with its left-most
and right-most anchoring meta-node to q′ itself.

Runtime. In the following, we study the runtime of our algorithm under a grammar where
each production rule maps to exactly two (meta-)nodes, as it is the case prior to rule
reduction. This will simplify the analysis, which operates on the directed acyclic graph
structure underlying the grammar, but does not change its outcome: If we remove a meta-
node q, then all the edges to q’s children are moved to q’s parent. Additionally, the edge
between q and its parent is removed. The total numbers of edges and nodes are reduced by
one, respectively. Therefore, we can analyze without loss of generality the grammar before
reduction, as it becomes only smaller through the reduction process.

WABI 2025

14:12 Human Readable Compression of GFA Paths Using Grammar-Based Code

Since we know the sizes of L and N in advance, we can pre-allocate the exact amount of
memory, allowing us O(1) time insertions. The construction of L has to iterate over all the
meta-nodes of the grammar. The lookup of the children of each meta-node is performed in
constant time by querying L. Thus, the runtime of L’s construction is limited by O(|Q|).

To construct N , again all the rules are iterated, however this time also all of its digram
occurrences are traversed. If the meta-nodes are processed in top-down order, we can simply
create a hash set of all the digram occurrences whose top-level meta-nodes were already
visited. Then the check whether a node is a top-level node can be done in O(1) time. Since
all of the remaining instructions are also constant-time look-ups, the runtime is bounded by
the number of total digram occurrences, which is O(n).

Haplotype encoding is performed by iterating over all digram occurrences. Inside the
loop, each iteration adds at most one element to the stack. This means we can pop only as
much elements as we have iterations. Additionally, the final stack for each haplotype has at
most the length of the inner loop, meaning the print instruction has the same complexity
as the inner loop. Therefore the whole runtime is depending only on the number of digram
occurrences, limiting the worst-case runtime to O(n).

2.7 Coverage computation with compressed haplotypes
In this section, we provide evidence that the compressed grammar can serve as an efficient
in-memory data structure and speed up haplotype analysis while simultaneously reducing
memory usage. To this end, we address the task of computing a node coverage table. In
this table each vertex of the pangenome graph is recorded with the number of haplotypes in
which it appears at least once.

For this task, the grammar-encoded haplotype paths do not need to be decompressed. In
fact, the calculation can be even more efficient by exploiting the directed acyclic graph that
underlies the grammar. We iterate over the encoded haplotypes and produce presence/absence
lists for all the (meta-)nodes, similar to how this process is done on uncompressed haplotypes.
However, since the compressed haplotypes are shorter than uncompressed counterparts
this process is faster. In the next step, the presence/absence lists are pushed down the
directed acyclic graph using a top-down approach, as seen in Figure 4b. Lists from parental
meta-nodes are combined using disjunction. Thereafter, lists of the leaf nodes are collected
and summed to produce the reported coverage table.

3 Results

We implemented our method, sqz, in Rust and released the source code under the MIT
license at https://github.com/codialab/sqz.

We evaluated sqz on three human pangenome graphs:
Chr19 , comprising 1,000 haplotypes [8],
HPRC v2.0 MC GRCh38 full and
HPRC v2.0 MC GRCh38 clipped, both comprising 464 haplotypes [14].

The full version of the HPRC v2.0 MC GRCh38 graph includes complete assemblies, but
alignment quality is poor in certain regions. Particularly centromeres contain essentially
large chunks of unaligned sequence. In contrast, the clipped version removes these segments,
limiting the pangenome graph to regions with reliable alignments.

We benchmarked our method against three compression tools: bgzip [1], gbz [23], and
sequitur [15]. bgzip produces gzip-compatible compressed binary files and is widely used
for compressing pangenome graphs in the GFA format, primarily because its output can be

https://github.com/codialab/sqz

P. Heringer and D. Doerr 14:13

decompressed with gzip, which is pre-installed on most Unix systems. Its key advantage
over gzip is support for indexing, allowing selective decompression of file segments. gbz, in
contrast, is specifically designed for compressing pangenome graphs and integrates with tools
in the GBWT ecosystem, as discussed in Section 1. sequitur is a classical grammar-based
compression algorithm in natural language processing (NLP).

Among existing BPE based algorithms, Re-Pair [13] is most similar to our approach. Both
algorithms iteratively replace the most frequent digram with a production rule or meta-node,
proceeding in descending order of frequency. However, Re-Pair operates on linear text rather
than graph structures, and it does not account for inverted digrams, unlike sqz and gbz.
Although several Re-Pair implementations are available, many operate solely on text or
binary files and are not designed to handle characters spanning multiple bytes. Therefore,
we were unable to successfully apply them to haplotype paths, which are composed of node
identifiers that cannot be represented by a single byte.

In contrast, we were able to evaluate sequitur [15], another BPE algorithm. sequitur
constructs and applies production rules as soon as it reads a repeated digram. As a result,
sequitur’s memory usage scales with the size of the compressed output rather than the
input. However, its compression performance depends on the input order, since it processes
digrams in the order they appear rather than by frequency. sequitur allows the user to set
the size of its core data structure, a hash table. This affects both memory usage and runtime:
larger tables reduce collisions and improve performance at the cost of increased memory.
For all evaluations, we set the hash table size to 2,000 MB, which was the maximum value
supported by the program.

As an initial experiment, we used the Chr19 pangenome to evaluate how compression
scales with the number of haplotypes in a pangenome graph. To this end, we randomly
removed haplotypes until only a specified number remained, and removed all S- and L-lines
corresponding to nodes and edges that are not covered by the remaining subset. We then
applied sqz, bgzip, sequitur, and gbz to the resulting trimmed graphs. Additionally, we
tested a combined approach using sqz followed by bgzip compression, as bgzip is commonly
used in transferring GFA files. The same thing we also did for gbz.

The resulting file sizes and compression ratios are shown in Figure 5. The compression
ratio is defined as uncompressed/compressed. bgzip exhibits constant compression behavior:
file size increases linearly with the number of haplotypes, and the compression ratio remains
constant at about a rate of 4. For fewer than 100 haplotypes, bgzip achieves better
compression than the purely grammar-based approaches sqz and sequitur. For all other
methods, the compression ratio improves as more haplotypes are added, benefiting from
increased redundancy. Up to 100 haplotypes, the difference between sqz and sequitur
remains small (e.g., 0.19 GB vs. 0.24 GB), but it gets larger with increasing number of
haplotypes. Among all methods, gbz+bgzip delivers the best compression results. sqz+bgzip
slightly outperforms gbz for fewer haplotypes.

A second benchmark was conducted on the clipped and full HPRC v2.0 MC GRCh38
graphs, that have been split up into their individual chromosome graphs. This setup enables
an evaluation of how compression performance is affected by the similarity among haplotypes,
due to the full graphs containing less similar haplotype paths than their clipped counterparts.

Due to the large input sizes (up to 36 GB), we were unable to run sequitur for this
benchmark, as it required excessive runtimes. We evaluated compression performance in
terms of both file size and compression ratio. For the clipped graphs, sqz+bgzip and gbz
perform similarly again, achieving compression ratios between 60 and 80, depending on the
specific graph. sqz alone achieves a compression ratio of around 20, while bgzip performs

WABI 2025

14:14 Human Readable Compression of GFA Paths Using Grammar-Based Code

0 200 400 600 800 1000
#haplotypes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fi
le

 s
iz

e
 (

G
B

)
sqz

bgzip

sqz+bgzip

sequitur

gbz

gbz+bgzip

0 250 500 750 1000
0

1

2

3

4

(a) File sizes for chr19 graphs.

0 200 400 600 800 1000
#haplotypes

0

50

100

150

200

co
m

p
re

ss
io

n
 r

a
ti

o

sqz

bgzip

sqz+bgzip

sequitur

gbz

gbz+bgzip

(b) Compression ratios for chr19 graphs.

Figure 5 File sizes and compression ratios for chr19 subgraphs with only the specified number of
haplotypes included.

worst overall. The best result achieves gbz+bgzip, reaching compression ratios of up to 150.
Except for bgzip, compression results on the full graphs vary considerably, as the amount of
heterochromatic sequence differs across chromosomes. For chromosomes 1 through 11, bgzip
typically outperforms sqz, but from chromosome 12 onward, sqz yields smaller files, with
the exception of chromosomes 1 and 9. gbz consistently produces smaller files than bgzip,
while the combined gbz+bgzip approach generally results in the smallest file sizes. With the
exception of chromosome 9, sqz+bgzip is always very close in terms of resulting file size.

To assess how effectively haplotypes are compressed using sqz, we examined the number
of nodes per haplotype for each chromosome in the clipped graphs, illustrated in Figure 7.
sqz achieves a reduction in haplotype length by more than two orders of magnitude. This
analysis also reveals a non-negligible variance across haplotypes, with some chromosomes,
e.g., chromosome 15, containing haplotypes that are much less compressed than others.

Another key consideration when working with large files is the runtime and memory
consumption of the compression algorithm. We compared the performance of sequitur,
sqz, gbz and bgzip on the Chr19 pangenome using the set of trimmed graphs containing a
varying numbers of haplotypes that we constructed for the first experiment.

In terms of runtime, sequitur outperforms sqz on graphs with up to 800 haplotypes.
However, for the two largest graphs with 900 and 1,000 haplotypes, sqz is faster and, for the
latter graph, requires more than an hour less runtime. The fastest method, however, is gbz
(with the exception of the smallest two graphs, where bgzip is equally as fast or faster). On
memory usage, bgzip performs the best by having a constantly very low memory usage. Still,
sequitur and gbz outperform sqz by a wide margin. Even for the largest graph, sequitur
stays below 5 GB of memory usage and gbz below 20 GB, while sqz requires up to 176 GB.

To evaluate the performance of computing coverage tables using the in-memory repres-
entation of the grammar, we implemented two Python scripts that make use of libraries
networkx and numpy. One does the calculation on an uncompressed GFA file of the Chr19
pangenome. The second one follows the approach described in the previous section and
takes a GFA file compressed by sqz. The script for the uncompressed GFA file takes 7:49
min, while the one on the sqz-compressed graph only takes 2:39 min. The memory usage
is reduced over ten-fold when using the script with the compressed graph, requiring only
14.8 GB instead of 159.6 GB. We also ran the two approaches over all of the HPRC v2.0
graphs (clipped and full), the results are shown in Figure 8. Similar to the Chr19 graph,

P. Heringer and D. Doerr 14:15

ch
r2

1

ch
r2

2

ch
r1

9

ch
r2

0

ch
r1

8

ch
r1

7

ch
r1

6

ch
r1

5

ch
r1

4

ch
r1

3

ch
r1

2

ch
r1

0

ch
r1

1
ch

r9
ch

r8
ch

r7
ch

r6
ch

r5
ch

r4
ch

r3
ch

r2
ch

r1

chromosomes (ordered by size)

0

25

50

75

100

125

150

co
m

p
re

ss
io

n
 r

a
ti

o

sqz

bgzip

sqz+bgzip

gbz

gbz+bgzip

(a) Compression of clipped graphs.

ch
r2

1

ch
r2

2

ch
r1

9

ch
r2

0

ch
r1

8

ch
r1

7

ch
r1

6

ch
r1

5

ch
r1

4

ch
r1

3

ch
r1

2

ch
r1

0

ch
r1

1
ch

r9
ch

r8
ch

r7
ch

r6
ch

r5
ch

r4
ch

r3
ch

r2
ch

r1

chromosomes (ordered by size)

0

2

4

6

8

fi
le

 s
iz

e
 (

G
B

)

sqz

bgzip

sqz+bgzip

gbz

gbz+bgzip

(b) File sizes of clipped graphs.

ch
r2

1

ch
r2

2

ch
r1

9

ch
r2

0

ch
r1

8

ch
r1

7

ch
r1

6

ch
r1

5

ch
r1

4

ch
r1

3

ch
r1

2

ch
r1

0

ch
r1

1
ch

r9
ch

r8
ch

r7
ch

r6
ch

r5
ch

r4
ch

r3
ch

r2
ch

r1

chromosomes (ordered by size)

0

50

100

150

200

co
m

p
re

ss
io

n
 r

a
ti

o

sqz

bgzip

sqz+bgzip

gbz

gbz+bgzip

(c) Compression of full graphs.

ch
r2

1

ch
r2

2

ch
r1

9

ch
r2

0

ch
r1

8

ch
r1

7

ch
r1

6

ch
r1

5

ch
r1

4

ch
r1

3

ch
r1

2

ch
r1

0

ch
r1

1
ch

r9
ch

r8
ch

r7
ch

r6
ch

r5
ch

r4
ch

r3
ch

r2
ch

r1

chromosomes (ordered by size)

0

2

4

6

8

10

12

fi
le

 s
iz

e
 (

G
B

)

sqz

bgzip

sqz+bgzip

gbz

gbz+bgzip

(d) File sizes of full graphs.

Figure 6 Compression of the HPRC v2.0 MC graphs.

working with the grammar-based strategy is faster and uses less memory for all chromosomes.
Particularly, the difference in terms of runtime is large, with the original method needing
2:08 hrs, while the compressed files only need 12 min for the clipped chromosome 1.

4 Discussion and Outlook

By introducing Q- and Z-records, we propose an extension to the GFA format that supports
human-readable, grammar-based compression. Grammar-based compression is simple and
intuitive, yet is as effective as any finite-state compression scheme [10]. It is highly versatile
and has given rise to a broad body of research, resulting in a variety of compression schemes [9].
Our proposed GFA extension fully supports incremental updates: nodes and edges can be
added to the graph without interfering with the grammar captured in Q-records. Likewise,

chr
1

chr
2

chr
3

chr
4

chr
5

chr
6

chr
7

chr
8

chr
9

chr
10

chr
11

chr
12

chr
13

chr
14

chr
15

chr
16

chr
17

chr
18

chr
19

chr
20

chr
21

chr
22

chromosome

104

105

106

107

#n
od

es

HPRC v2.0 MC GRCh38 clipped

path lengths
orig
sqz

Figure 7 Number of node entries per haplotype per chromosome.

WABI 2025

14:16 Human Readable Compression of GFA Paths Using Grammar-Based Code

Table 2 Runtimes and peak memory usage of the tools on the chromosome 19-1000 graph with
different numbers of haplotypes.

Haplo-
types

time (min) memory (GB)
sequitur sqz gbz bgzip sequitur sqz gbz bgzip

100 6 11 2 1 2.3 16.3 1.8 0.01
200 13 26 4 4 2.7 30.1 3.7 0.01
300 23 45 6 7 2.9 50.2 5.2 0.01
400 31 60 8 10 3.3 57.4 6.7 0.01
500 45 84 10 14 3.5 89.4 9.7 0.01
600 58 91 12 17 3.7 96.0 11.2 0.01
700 84 107 14 21 4.0 103.2 12.7 0.01
800 108 124 16 24 4.1 110.2 14.1 0.01
900 169 152 18 31 4.4 154.3 15.6 0.01
1000 289 223 20 34 4.7 175.8 17.0 0.01

(a) Runtime. (b) Memory usage.

Figure 8 Coverage calculation on clipped and full HPRC v2.0 MC GRCh38 graphs.

new haplotypes can be encoded using the existing grammar, although this may lead to
less efficient compression. In addition, common pangenome graph modifications, such as
“unchopping”, i.e., the merging of a universal digram into a single node or the decomposition
of a node into a series of smaller ones, affect the grammar only locally such that at most a few
low-level meta-nodes need to be updated. Most importantly, we argue that grammar-encoded
haplotypes need not be decompressed for analysis. Instead, they enable faster and more
memory-efficient haplotype analysis, without the need to use dedicated external libraries.
The simplicity of the grammar allows it to be represented by data structures available in
widely used scripting languages such as Python.

Our BPE-based implementation, sqz, serves as a proof of concept for the proposed
GFA extension. sqz often achieves higher compression ratios than bgzip and sequitur,
and performs on par with gbz when combined with bgzip. The latter combination is only
outperformed by gbz+bgzip that provides an even higher compression ratio. However,
sqz offers an advantage over gbz in that it provides a simple, human-readable, and easily
modifiable encoding.

We envision further variants of grammar based encodings that can be realized with our
proposed GFA extension, such as grammars based on q-grams for q > 2, or grammars derived
from maximal exact matches (MEMs) which are widely used in pangenomics [20]. Moreover,
Q-records can carry biological meaning by annotating shared sequences associated with
specific alleles. This enables not only compression, but also allows to encode haplotypes as
combinations of alleles, embodying a natural, biologically motivated representation.

P. Heringer and D. Doerr 14:17

Conceptually, our proposal represents a dichotomy to existing approaches in pangen-
omics that encode differences between haplotypes, such as snarl decomposition [17, 2] or
reference-based variant formats like the variant call format (VCF). We argue that capturing
commonalities rather than differences offers several advantages. First, decompression does
not require an external reference or computationally intensive edit operations to reconstruct
the original sequence. Second, there is often no unique or universally accepted way to repres-
ent differences, leading to arbitrary decisions that impede comparability across datasets, a
challenge exemplified by the persistent difficulties in VCF merging [11, 4]. Nevertheless, some
of these representations could potentially be reconciled with our grammar-based approach.
For example, a snarl decomposition can naturally give rise to a simple grammar, where each
tip and each shared block within a chain, as well as each distinct variant within a snarl, is
represented as a meta-node.

References

1 James K. Bonfield, John Marshall, Petr Danecek, Heng Li, Valeriu Ohan, Andrew Whitwham,
Thomas Keane, and Robert M. Davies. HTSlib: C library for reading/writing high-throughput
sequencing data. GigaScience, 10(2):giab007, 2021. doi:10.1093/gigascience/giab007.

2 Xian Chang, Jordan Eizenga, Adam M Novak, Jouni Sirén, and Benedict Paten. Distance
indexing and seed clustering in sequence graphs. Bioinformatics, 36(Suppl_1):i146–i153, July
2020. doi:10.1093/bioinformatics/btaa446.

3 Jana Ebler, Peter Ebert, Wayne E Clarke, Tobias Rausch, Peter A Audano, Torsten Houwaart,
Yafei Mao, Jan O Korbel, Evan E Eichler, Michael C Zody, Alexander T Dilthey, and Tobias
Marschall. Pangenome-based genome inference allows efficient and accurate genotyping
across a wide spectrum of variant classes. Nat. Genet., 54:518–525, 2022. doi:10.1038/
s41588-022-01043-w.

4 Adam C English, Vipin K Menon, Richard A Gibbs, Ginger A Metcalf, and Fritz J Sedlazeck.
Truvari: refined structural variant comparison preserves allelic diversity. Genome Biol.,
23(1):271, December 2022. doi:10.1186/s13059-022-02840-6.

5 Yang Gao, Xiaofei Yang, Hao Chen, Xinjiang Tan, Zhaoqing Yang, Lian Deng, Baonan Wang,
Shuang Kong, Songyang Li, Yuhang Cui, Chang Lei, Yimin Wang, Yuwen Pan, Sen Ma,
Hao Sun, Xiaohan Zhao, Yingbing Shi, Ziyi Yang, Dongdong Wu, Shaoyuan Wu, Xingming
Zhao, Binyin Shi, Li Jin, Zhibin Hu, Chinese Pangenome Consortium (CPC), Yan Lu, Jiayou
Chu, Kai Ye, and Shuhua Xu. A pangenome reference of 36 chinese populations. Nature,
619:112–121, 2023. doi:10.1038/s41586-023-06173-7.

6 Cristian Groza, Carl Schwendinger-Schreck, Warren A Cheung, Emily G Farrow, Isabelle
Thiffault, Juniper Lake, William B Rizzo, Gilad Evrony, Tom Curran, Guillaume Bourque,
and Tomi Pastinen. Pangenome graphs improve the analysis of structural variants in rare
genetic diseases. Nat. Commun., 15:657, 2024. doi:10.1038/s41467-024-44980-2.

7 Peter Heringer and Daniel Doerr. sqz. Software, swhId:
swh:1:dir:d7c4cb1cc536abc10166918dda34b0b373987c7b (visited on 2025-08-04). URL:
https://github.com/codialab/sqz, doi:10.4230/artifacts.24320.

8 Simon Heumos, Michael L Heuer, Friederike Hanssen, Lukas Heumos, Andrea Guarracino,
Peter Heringer, Philipp Ehmele, Pjotr Prins, Erik Garrison, and Sven Nahnsen. Cluster-
efficient pangenome graph construction with nf-core/pangenome. Bioinformatics, 40:btae609,
2024. doi:10.1093/bioinformatics/btae609.

9 J Kieffer and E Yang. Survey of grammar-based data structure compression. IEEE BIT Inf
Theory Mag, 2:19–35, 2022. doi:10.1109/MBITS.2022.3210891.

10 J C Kieffer and En-Hui Yang. Grammar-based codes: a new class of universal lossless source
codes. IEEE Trans. Inf. Theory, 46(3):737–754, May 2000. doi:10.1109/18.841160.

WABI 2025

https://doi.org/10.1093/gigascience/giab007
https://doi.org/10.1093/bioinformatics/btaa446
https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1186/s13059-022-02840-6
https://doi.org/10.1038/s41586-023-06173-7
https://doi.org/10.1038/s41467-024-44980-2
https://archive.softwareheritage.org/swh:1:dir:d7c4cb1cc536abc10166918dda34b0b373987c7b
https://github.com/codialab/sqz
https://doi.org/10.4230/artifacts.24320
https://doi.org/10.1093/bioinformatics/btae609
https://doi.org/10.1109/MBITS.2022.3210891
https://doi.org/10.1109/18.841160

14:18 Human Readable Compression of GFA Paths Using Grammar-Based Code

11 Melanie Kirsche, Gautam Prabhu, Rachel Sherman, Bohan Ni, Alexis Battle, Sergey Aganezov,
and Michael C Schatz. Jasmine and iris: population-scale structural variant comparison and
analysis. Nat. Methods, 20(3):408–417, March 2023. doi:10.1038/s41592-022-01753-3.

12 Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv [cs.CL], 2018. arXiv:1808.06226.

13 N.J. Larsson and A. Moffat. Off-line dictionary-based compression. Proceedings of the IEEE,
88(11):1722–1732, 2000. doi:10.1109/5.892708.

14 Wen-Wei Liao, Mobin Asri, Jana Ebler, Daniel Doerr, Marina Haukness, Glenn Hickey,
Shuangjia Lu, Julian K Lucas, Jean Monlong, Haley J Abel, Silvia Buonaiuto, Xian H Chang,
Haoyu Cheng, Justin Chu, Vincenza Colonna, Jordan M Eizenga, Xiaowen Feng, Christian
Fischer, Robert S Fulton, Shilpa Garg, Cristian Groza, Andrea Guarracino, William T Harvey,
Simon Heumos, Kerstin Howe, Miten Jain, Tsung-Yu Lu, Charles Markello, Fergal J Martin,
Matthew W Mitchell, Katherine M Munson, Moses Njagi Mwaniki, Adam M Novak, Hugh E
Olsen, Trevor Pesout, David Porubsky, Pjotr Prins, Jonas A Sibbesen, Jouni Sirén, Chad
Tomlinson, Flavia Villani, Mitchell R Vollger, Lucinda L Antonacci-Fulton, Gunjan Baid,
Carl A Baker, Anastasiya Belyaeva, Konstantinos Billis, Andrew Carroll, Pi-Chuan Chang,
Sarah Cody, Daniel E Cook, Robert M Cook-Deegan, Omar E Cornejo, Mark Diekhans, Peter
Ebert, Susan Fairley, Olivier Fedrigo, Adam L Felsenfeld, Giulio Formenti, Adam Frankish,
Yan Gao, Nanibaa’ A Garrison, Carlos Garcia Giron, Richard E Green, Leanne Haggerty,
Kendra Hoekzema, Thibaut Hourlier, Hanlee P Ji, Eimear E Kenny, Barbara A Koenig, Alexey
Kolesnikov, Jan O Korbel, Jennifer Kordosky, Sergey Koren, Hojoon Lee, Alexandra P Lewis,
Hugo Magalhães, Santiago Marco-Sola, Pierre Marijon, Ann McCartney, Jennifer McDaniel,
Jacquelyn Mountcastle, Maria Nattestad, Sergey Nurk, Nathan D Olson, Alice B Popejoy,
Daniela Puiu, Mikko Rautiainen, Allison A Regier, Arang Rhie, Samuel Sacco, Ashley D
Sanders, Valerie A Schneider, Baergen I Schultz, Kishwar Shafin, Michael W Smith, Heidi J
Sofia, Ahmad N Abou Tayoun, Françoise Thibaud-Nissen, Francesca Floriana Tricomi, Justin
Wagner, Brian Walenz, Jonathan M D Wood, Aleksey V Zimin, Guillaume Bourque, Mark
J P Chaisson, Paul Flicek, Adam M Phillippy, Justin M Zook, Evan E Eichler, David Haussler,
Ting Wang, Erich D Jarvis, Karen H Miga, Erik Garrison, Tobias Marschall, Ira M Hall, Heng
Li, and Benedict Paten. A draft human pangenome reference. Nature, 617:312–324, 2023.
doi:10.1038/s41586-023-05896-x.

15 C Nevill-Manning and I Witten. Identifying hierarchical structure in sequences: A linear-time
algorithm. J. Artif. Intell. Res., 7:67–82, 1997. doi:10.1613/JAIR.374.

16 Luca Parmigiani, Erik Garrison, Jens Stoye, Tobias Marschall, and Daniel Doerr. Panacus: fast
and exact pangenome growth and core size estimation. Bioinformatics, 40:2024.06. 11.598418,
2024. doi:10.1101/2024.06.11.598418.

17 Benedict Paten, Jordan M Eizenga, Yohei M Rosen, Adam M Novak, Erik Garrison, and
Glenn Hickey. Superbubbles, ultrabubbles, and cacti. J. Comput. Biol., 25(7):649–663, July
2018. doi:10.1089/cmb.2017.0251.

18 Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. BPE-dropout: Simple and effective
subword regularization. arXiv [cs.CL], 2019. arXiv:1910.13267.

19 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Katrin Erk and Noah A Smith, editors, Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1715–1725. Association for Computational Linguistics, 2016. doi:10.18653/v1/P16-1162.

20 Vikram S. Shivakumar and Ben Langmead. Mumemto: efficient maximal matching across
pangenomes. bioRxiv, 2025. doi:10.1101/2025.01.05.631388.

21 Jonas A Sibbesen, Jordan M Eizenga, Adam M Novak, Jouni Sirén, Xian Chang, Erik Garrison,
and Benedict Paten. Haplotype-aware pantranscriptome analyses using spliced pangenome
graphs. Nat. Methods, 20:239–247, 2023. doi:10.1038/s41592-022-01731-9.

22 Jouni Sirén, Jean Monlong, Xian Chang, Adam M Novak, Jordan M Eizenga, Charles
Markello, Jonas A Sibbesen, Glenn Hickey, Pi-Chuan Chang, Andrew Carroll, Namrata

https://doi.org/10.1038/s41592-022-01753-3
https://arxiv.org/abs/1808.06226
https://doi.org/10.1109/5.892708
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.1613/JAIR.374
https://doi.org/10.1101/2024.06.11.598418
https://doi.org/10.1089/cmb.2017.0251
https://arxiv.org/abs/1910.13267
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1101/2025.01.05.631388
https://doi.org/10.1038/s41592-022-01731-9

P. Heringer and D. Doerr 14:19

Gupta, Stacey Gabriel, Thomas W Blackwell, Aakrosh Ratan, Kent D Taylor, Stephen S Rich,
Jerome I Rotter, David Haussler, Erik Garrison, and Benedict Paten. Pangenomics enables
genotyping of known structural variants in 5202 diverse genomes. Science, 374:abg8871, 2021.
doi:10.1126/science.abg8871.

23 Jouni Sirén and Benedict Paten. GBZ file format for pangenome graphs. Bioinformatics,
38(22):5012–5018, 2022. doi:10.1093/bioinformatics/btac656.

24 Hervé Tettelin, David Riley, Ciro Cattuto, and Duccio Medini. Comparative genomics: the
bacterial pan-genome. Curr. Opin. Microbiol., 11:472–477, 2008. doi:10.1016/j.mib.2008.
09.006.

A Auxiliary data structures for haplotype encoding

Algorithm 3 Create table L.

Require: Grammar Q

Ensure: Table L

1: initialize empty table L

2: for each q ∈ Q in bottom-up order do
3: if q is a anchoring meta-node then
4: L[q]← (q, 0, q, 0, 2)
5: end if
6: set s to length of Q[q] using L

7: get left-most anchoring meta-node anchorleft and offset offsetleft
8: get right-most anchoring meta-node anchorright and offset offsetright
9: L[q]← (anchorleft, offsetleft, anchorright, anchorright, s)

10: end for

Algorithm 4 Create table N .

Require: Table L with L[q] = (anchorleft, offsetleft, anchorright, anchorright, s) for each q ∈ L.
Ensure: Table N

1: initialize empty table N

2: for each q ∈ Q in top-down order do
3: for each (i, a1|a2) of q do
4: if q is the top-level meta-node of (i, a1|a2) then
5: (anchorleft, offsetleft, anchorright, anchorright, s)← L[q]
6: get uv and (i, aL1 |aL2) from anchorleft
7: N [(i, uv, aL1 |aL2)]← q

8: get addresses aL2 from L[q]2
9: get u′v′ and (i, aR1 |aR2) from anchorright

10: N [(i, u′v′, aR1 |aR2)]← q

11: end if
12: end for
13: end for

WABI 2025

https://doi.org/10.1126/science.abg8871
https://doi.org/10.1093/bioinformatics/btac656
https://doi.org/10.1016/j.mib.2008.09.006
https://doi.org/10.1016/j.mib.2008.09.006

	1 Introduction
	2 Methods
	2.1 Preliminaries
	2.2 Extension of the GFA format
	2.3 Grammar constructing using byte pair encoding
	2.4 Space improvements
	2.5 Reducing grammar rules
	2.6 Haplotype encoding
	2.7 Coverage computation with compressed haplotypes

	3 Results
	4 Discussion and Outlook
	A Auxiliary data structures for haplotype encoding

