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Abstract
Phylogenetic diversity is a measure used to quantify the biodiversity of a set of species. Here, we
introduce the “average-tree” phylogenetic diversity score in rooted binary phylogenetic networks and
consider algorithms for computing and maximizing the score on a given network. Basically, the score
is the weighted average of the phylogenetic diversity scores in all trees displayed by the network,
with the weights determined by the inheritance probabilities on the reticulation edges used in the
embeddings. We show that computing the score of a given set of taxa in a given network is #P-hard,
directly implying #P-hardness of finding a subset of k taxa achieving maximum diversity score and,
thereby, ruling out polynomial-time algorithms for these problems unless the polynomial hierarchy
collapses. However, we show that both problems can be solved efficiently if the input network is close
to being a tree in the sense that its reticulation number is small. More precisely, we prove that we
can solve the optimization problem in networks with n leaves and r reticulations in 2O(r) · n · k time.
Using experiments on data produced by simulating a reticulate-evolution process, we show that our
algorithm runs efficiently on networks with hundreds of taxa and tens of reticulations.
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1 Introduction

Human-driven habitat degradation and environmental change have led to accelerated rates
of species extinction, posing a significant threat to global biodiversity [18]. In response,
conservation efforts face both logistical constraints – such as limited financial resources –
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and conceptual challenges, notably in identifying effective prioritization strategies. This has
motivated the development of formal criteria and quantitative indicators to guide decision-
making and assess biodiversity in a systematic and reproducible manner. Here, we study
formal measures for quantifying the biodiversity of a given set of species and algorithms for
computing and maximizing these measures.

Phylogenetic Diversity (PD) is a well-studied measure used to quantify the biodiversity
of a set of species using their evolutionary relationships [22]. When these relationships
are described by a rooted phylogenetic tree (with edge lengths) on a set X of species, the
phylogenetic diversity of a subset of the species A ⊆ X is simply the total length of all edges
that lie on at least one path from the root of the tree to a leaf in A [8]. The main intuition
behind this is that species that are evolutionarily further apart together contribute more
diversity than species that are evolutionarily closely related. Phylogenetic diversity can more
formally be interpreted as follows in terms of features (e.g., genes or morphological features).
Suppose that (1) the number of features introduced on each edge of the tree is proportional
to the length of that edge, (2) features are never lost, and (3) no feature is introduced
independently on multiple branches. Then, the number of features in A is proportional to its
phylogenetic diversity. While the assumptions on the model may seem somewhat unrealistic,
it has been used prominently in the literature [31, 3, 5, 24].

In many cases, however, describing evolutionary relationships by trees is too simplistic [7].
Rooted phylogenetic networks generalize rooted phylogenetic trees and are more suited to
represent complex evolutionary scenarios involving, for example, hybridization events [12, 1,
26]. Roughly speaking, a rooted phylogenetic network is a directed acyclic graph with a single
root and labeled leaves. Vertices with two (or more, in the nonbinary case) incoming arcs
are called reticulations and can be used to model hybridization events, lateral gene transfer,
or other types of horizontal evolutionary events. Generalizing the notion of phylogenetic
diversity to networks is not obvious, and multiple variants have recently been proposed for
rooted [32, 3, 5] and unrooted [20, 2, 4] networks.

The currently best-studied variants are AllPathsPD and NetworkPD [3, 14, 27, 5, 24].
Both definitions generalize PD on trees, in the following ways. AllPathsPD(A) is the
total length of all edges that lie on at least one path from the root of the network to a
leaf in A. NetworkPD generalizes AllPathsPD by allowing arcs to have inheritance
probabilities, representing the probability that a given feature in the parent is inherited by
the child. The idea of NetworkPD(A) is, roughly speaking, to compute the expected number
of distinct features in A by using the inheritance probabilities to compute, for each arc uv,
the probability γuv that at least one copy of a feature introduced on the arc uv is inherited
by a leaf in A. More precisely, γuv is defined as γvw times the inheritence probability of uv
if v is a reticulation with child w, as 1 −

∏
i(1 − γvwi

) if v is a tree node with children wi,
and as 1 or 0 if v is a leaf, depending on whether or not v ∈ A.

Note that, in the NetworkPD setting, features are inherited independently from different
parents. For example, in the network in Figure 1, a feature introduced on the arc ρu is
present in all parents of the reticulation above species B but it has only a 0.75 probability of
being inherited by B. In addition, in NetworkPD it is possible to inherit the same feature
from both parents, resulting in the presence of multiple copies of that feature. While this
can be realistic in certain scenarios (e.g. allopolyploidy), in other cases it is more realistic to
assume that each feature is inherited from at most one parent.

A less studied alternative averages the phylogenetic diversity score over all trees displayed
by the network [31]. Each tree has an assigned probability equal to the product of the
inheritance probabilities of the reticulation edges used by its embedding, and the PD-score
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Figure 1 A rooted phylogenetic network N on X = {A, B, C, D} along with the two rooted
phylogenetic trees T1, T2 that N displays. Edge weights are indicated above the edges. Reticulation
edges are in blue with their inheritance probability in blue below. The APD score of {B, D}
is 22 in T1 and in T2 and, hence, also in N . The NetworkPD score of {B, D} is 20 since γvA =
γwC = 0, γrB = γρD = 1, γvr = γuv = γwr = γuw = 0.5, and γρu = 0.75, implying a score of
2+0.5 ·(2+2+1+3)+0.75 ·8+8 = 20. However, the NetworkPD score of {C, D} is 3+3+8+8 = 22.
It turns out that the only size-2 set maxizing the NetworkPD score is {C, D}, while {B, D} is the
only size-2 subset maximizing the APD score.

of each tree is weighted by this probability. Thus, the resulting measure can be interpreted
as the expected diversity of any tree displayed by the network. In this model, features
inherited from different edges incoming to the same reticulation vertex are not considered
to be independent. The assumption is basically that each feature is inherited from exactly
one parent (or introduced on that edge). Note however that Wicke and Fischer [31] use an
uncommon definition of displayed trees, in which trees are only considered to be displayed if
they contain all vertices of the network and all their leaves are in X. In particular, a network
that is not tree-based [13] would have no displayed trees and an undefined phylogenetic
diversity score. Since we see no reason to ignore certain displayed trees, we will take the
(weighted) average over all displayed trees in this paper. We call the resulting phylogenetic
diversity measure on phylogenetic networks the average-tree phylogenetic diversity, APD for
short, see Figure 1 for an example.

While APD is a natural and biologically relevant generalization of phylogenetic diversity
from trees to networks, we show that it comes with great challenges. Although for most
PD measures on networks, such as AllPathsPD and NetworkPD, the diversity score
of a given set A ⊆ X of species can be easily computed in polynomial time, we will show
in this paper that for APD this is already computationally hard (more precisely, #P-hard;
a polynomial-time algorithm for it would imply a collapse of the polynomial hierarchy.)
Consequently, the maximization problem associated to APD is also computationally hard.
This problem, called Max-APD, aims to find a set A ⊆ X of k species with maximum APD
score.

On the positive side, we show that, although both these problems are #P-hard, they
can both be solved exactly and rather efficiently in practice. We do this by presenting a
parameterized algorithm finding a size-k set of leaves that maximizes the APD score in
binary networks with r reticulations and n leaves in O(26r · nk) time. This algorithm can
easily be adapted to compute the score of a given set A. The running time of our algorithm
scales linearly with the number of species but exponentially with the number of reticulations
in the network. Using practical experiments on simulated data we show that the algorithm
can solve instances with up to 500 species and 55 reticulations within 5 minutes on 16
GB RAM and 8 CPUs computer, with k ≤ 5. In addition, the algorithm efficiently solves
instances with k up to at least 40 if the number of reticulations is fixed as 12.

WABI 2025
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1.1 Related Literature
There is a rich body of literature on phylogenetic diversity on (rooted and unrooted)
phylogenetic trees. Most relevant to our work, the optimization problem of finding k species
with maximum phylogenetic diversity can be solved in polynomial time on (rooted and
unrooted) trees [21, 25]. Further research found fast algorithms on trees, where biological
dependencies were considered also [19, 23, 16]. However, only a few papers have studied
phylogenetic diversity on phylogenetic networks [32, 3, 15, 27].

Wicke and Fischer [31] introduced several generalizations of phylogenetic diversity of
rooted trees to rooted networks, including AllPathsPD and a variant of APD (as discussed
above). The question of efficient computability is not addressed, nor are the correspond-
ing maximization problems. Instead, the authors define several biodiversity indices on
phylogenetic networks, which can be used to rank species for conservation. The associ-
ated maximization problems are first addressed by Bordewich et al. [3], showing that the
decision versions of the maximization problems of AllPathsPD and NetworkPD are
NP-hard, even for tree-child networks but, on level-1 networks,1 a solution maximizing
the AllPathsPD score can be found in polynomial time. They also introduce two more
variants, MaxWeightTree-PD and MinWeightTree-PD. In these, the PDN (A) of taxa
is the maximum and minimum weight of the phylogenetic diversity of A in any display tree.
While for the former, the maximization problem is polynomial-time solvable, for the latter,
computing the score of a given subset of the species is already NP-hard.

The AllPathsPD problem was shown to also be susceptible to greedy approaches, as
long as the input network is semi-binary (maximum in-degree two) and has level1 at most
two [5].

Jones and Schestag [14] studied the maximization problem for AllPathsPD in more
detail. They showed that it is W[2]-hard when the parameter is the number of species to
save, but fixed-parameter tractable (FPT) when the parameter is the optimal phylogenetic
diversity, the acceptable loss of phylogenetic diversity, the number of reticulations in the
network, or the treewidth of the underlying graph. Recently, this measure has been considered
in semidirected networks [11].

In a recent study [27], the maximization problem for NetworkPD has been shown to
be FPT with respect to the number of reticulations of the network. Unfortunately, this
result cannot be strengthened by using the level as a parameter, since NetworkPD remains
NP-hard on level-1 networks [27].

2 Preliminaries

Phylogenetic Networks. In this paper, we consider binary, rooted phylogenetic networks
with integer weights on arcs, in which each reticulation has an associated probability
distribution on its incoming arcs. Formally, for a set X of taxa, a binary, rooted phylogenetic
network on X, later only called phylogenetic network, is a tuple N = (X,V,A, ℓ, ω, λ)
satisfying the following conditions:

(V,A) forms a directed acyclic graph with vertices V and arcs A, in which L(N ) is the
set of leaves (vertices with in-degree 1 and out-degree 0), and for which

There is a single vertex of in-degree 0 and out-degree ≤ 2, called the root ρ(N );
Vertices of in-degree 2 and out-degree 1 are called the reticulations and denoted R(N );
The remaining vertices have in-degree 1 and out-degree 2 and are called the tree nodes.

1 The level of a network is the maximum reticulation number of any biconnected component. It may be
arbitrarily smaller than the reticulation number of the network.
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Figure 2 Left: A network with edge-weights (above each edge) and reticulation edges in blue
with their inheritance proportions in blue below. Reticulation vertices are filled black. Right: The
four possible switching-trees with edges marked in orange if they are considered when Z = {A, B} is
saved, yielding APDN (Z) = .4 · 120 + .1 · 180 + .1 · 190 + .4 · 190 = 161.

An arc uv ∈ A is a reticulation arc if v ∈ R(N ) and AR(N ) is the set of reticulation arcs.
ℓ : L(N ) → X is a bijective mapping of leaves of N to taxa in X and is called labelling
of N . We refer to a leaf of N interchangeably with the taxa it is labeled with.
ω : A → Z≥0 assigns each arc uv a non-negative integer, called the (arc-)weight of uv.
λ : AR(N ) → [0, 1] is a function that assigns each reticulation arc a real value between 0
and 1, subject to the constraint that λ(u1v) + λ(u2v) = 1 for any reticulation v with
incoming arcs u1v and u2v. We call λ(uv) the inheritance probability of uv. Informally,
λ(uv) represents the probability that a randomly-selected gene in v is inherited from u.2

We often refer to the graph (V,A) as N and we refer to v ∈ V as a vertex of N and uv ∈ A

as an arc in N . For such an arc uv, we call u a parent of v, and v a child of u. For a vertex v
of a phylogenetic network, the offspring of v is the set of leaves reachable from v with a direct
path. We will permit ourselves to write V (N ) for V and A(N ) for A. A phylogenetic tree is
a phylogenetic network with no reticulations.

Phylogenetic Diversity. For a phylogenetic tree T = (V,A) on X, the phylogenetic diver-
sity PDT (Z) of a set Z ⊆ X is the total weight of arcs e ∈ A that are on a path from the
root to a leaf in Z [8]. In this section, we generalize this measure to phylogenetic networks.
For an example consider Figure 2.

A switching σ : R(N ) → A(N ) is a function that maps each reticulation to one of its
incoming arcs. That is, a switching corresponds to a decision about which incoming arc
each reticulation will inherit from. The set of switchings in N is denoted by S(N ). The
probability P (σ) of a switching σ is

∏
r∈R(N ) λ(σ(r)). That is, we assume that for each

reticulation, one of its incoming arcs is chosen (with probability given by λ) independently
at random.

The switching-tree Tσ for a switching σ is the subgraph of N derived by deleting all
reticulation arcs except for those in {σ(r) | r ∈ R(N )}. Observe that Tσ is a directed tree,
possibly with some “dead” (unlabelled) leaves and vertices of degree 2. Note that X is a
subset of the leaves of Tσ, for each switching σ. Given a switching σ and a set of taxa Z ⊆ X,
we define PDσ(Z) as PDTσ

(Z) under the usual definition of phylogenetic diversity on trees.

2 We explicitly point out the difference to NetworkPD, where λ(uv) represents the proportion of genes
in u that are inherited by v [3, 27]. Here, λ(uv) is the probability that a randomly chosen switching σ
has σ(v) = e. Consequently, λ(e) gives the probability that anything is inherited along e.

WABI 2025
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Figure 3 Left: part of graph G. Right: the corresponding part of N . Observe that ue has a
directed path to xv in N if and only if e is incident with v in G.

Now, we can define the measure we study in this paper. For a phylogenetic network N
and a set Z ⊆ X of taxa, the average phylogenetic diversity of Z with respect to N is

APDN (Z) :=
∑

σ∈S(N )

P (σ) · PDσ(Z)

Informally, APDN (Z) is the amount of phylogenetic diversity that we expect to preserve
by saving Z, under the assumption that each reticulation independently chooses one of its
parents to inherit from. Note that this is equivalent to the definition given in the introduction
based on displayed trees since suppressing degree-2 vertices and deleting unlabelled leaves
does not affect the phylogenetic diversity score of a tree. The associated decision problem is
as follows.

Max-APD
Input: A phylogenetic network N and integers k and D.
Question: Is there a set Z ⊆ X of taxa which has a size of k and with APDN (Z) ≥ D?

3 #P-Hardness of computing APDN when saving all taxa

In the following, we prove that computing APDN is #P-hard, even if all taxa are being saved,
in contrast to other phylogenetic diversity measures on networks like NetworkPD [3, 27]
or AllPathsPD [3, 14, 16], that can be computed (not optimized) in polynomial time.

▶ Theorem 3.1. Computing APDN (X) for a phylogenetic network N on X is #P-hard.

We prove the theorem by reduction from Counting Perfect Matchings. A perfect
matching of an undirected graph G = (V,E) is a set of |V |/2 edges E′ ⊆ E such that each
vertex of G is incident with exactly one edge of E′. Counting the number of perfect matchings
in a cubic graph is #P-hard [6, Theorem 6.2].

We first observe that the number of perfect matchings in a graph G = (V,E) is the same
as the number of mappings ϕ : V → E that are perfect assignments, as defined next. A
mapping ϕ : V → E is an assignment if ϕ(v) is an incident edge of v for all v ∈ V . An
assignment ϕ is perfect if |ϕ(V )| = |V |/2. As |ϕ−1(e)| ≤ 2 for each edge e, an assignment ϕ
is perfect if and only if |ϕ−1(e)| = 2 for each e ∈ ϕ(V ). That is, for each e ∈ E, a perfect
assignment ϕ assigns either both or none of the incident vertices to e. Thus, mapping each
perfect assignment ϕ to ϕ(V ) constitutes an injection from perfect assignments to perfect
matchings in G. On the other hand, if E′ ⊆ E is a perfect matching in G, then a perfect
assignment ϕ : V → E can be defined from E′ by setting ϕ(v) to be the unique edge in E′

incident to v for all v ∈ V . It is easy to see that this mapping is an injection from the set of
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Figure 4 Example of the top part of the network N , given a graph G with 5 edges. The heavy
arc u∗

1u∗
2 is in bold and blue. For each of the reticulations re1 to re5 , the inheritance probability of

the left incoming arc is (1 − δ), and the inheritance probability of the right incoming arc is δ.

all perfect matchings in G to the set of perfect assignments. Thus, the perfect matchings in G
are in bijection with its perfect assignments, so their number is the same. In the following,
we let MG denote this number.

Given an arbitrary cubic graph G = (V,E), we construct a network N on a set of taxa X
in such a way that MG can be determined from APDN (X). See Figure 3 for an example.

Let X := {xv | v ∈ V }, that is, X has one element for each vertex in G. Now, for
each v ∈ V , add two vertices r1

v and r2
v, where r2

v is a parent of r1
v, and r1

v is a parent of xv.
For each e ∈ E, add a vertex ue to N . For any vertex v ∈ V , choose one of its three incident
edges e arbitrarily (recall that G is cubic), and add an arc uer

1
v. Then, for the remaining two

edges e′ and e′′ incident with v, add the arcs ue′r2
v and ue′′r2

v. Observe that, so far, ue has
out-degree 2 and in-degree 0 for each e ∈ E, and r1

v and r2
v are reticulations for all v ∈ V .

Furthermore, ue has a directed path to xv in N if and only if e is incident to v in G.
Create two new special vertices u∗

1 and u∗
2 and add an arc u∗

1u
∗
2 (this will be the only arc

that gets a large weight). Add a root ρ as the parent of u∗
1. Now, for each e ∈ E, add a

new vertex re as the parent of ue. For each vertex re, add two parents pe and qe. Add arcs
such that {u∗

1} ∪ {qe | e ∈ E} and {u∗
2} ∪ {pe | e ∈ E} form paths. We now have that each

vertex re is a reticulation, and exactly one of the incoming arcs of re is on a directed path
from the root that passes through u∗

1u
∗
2. In Figure 4 an illustration is given.

We define the arc weights by setting ω(u∗
1u

∗
2) := H for H a large value to be defined later,

and setting ω(a) := 1 for all other arcs a ∈ A(N ).
It remains to define the inheritance probabilities on the reticulation arcs.
First, consider re for some e ∈ E. Then, set λ(pere) := 1 − δ and λ(qere) := δ,

where δ ∈ (0, 1) is a small constant to be defined later. Note that, when we choose Tσ with
probability P (σ) then, for each e ∈ E, the probability that u∗

2 has a path to some re is
exactly 1 − δ.

Now, consider r1
v and r2

v for some v ∈ V . Then, set λ(r2
vr

1
v) := 2/3, λ(a1) = 1/3, and

set λ(a2) := λ(a3) = 1/2, where a1 is the other arc incoming at r1
v and a2 and a3 are the two

arcs incoming at r2
v. The idea here is that when we choose a switching σ and corresponding

tree Tσ with probability P (σ), each vertex ue for e ∈ E adjacent to v has probability 1/3 of
having a path to xv in Tσ. As exactly one such xe will have a path to xv, we can think of
the choice of σ as corresponding to a choice of assignment (where v is mapped to e in the
assignment if ue has a path to xv in Tσ). Our choice of inheritance probabilities ensures
that each of the three edges incident to v is chosen with probability 1/3, independently for
each v, and so each possible assignment is chosen with equal probability. This completes the
reduction.

WABI 2025
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Figure 5 Left: part of a graph and an assignment ϕ on v1 and v2. Right: partial switching σV

on this segment. σV and ϕ agree on v1, but not on v2.

Given a switching σ, let χσ := 1 if u∗
2 has a path to some leaf xv in Tσ, and χσ := 0

otherwise. Thus, the expected contribution of u∗
1u

∗
2 to APDN (X) is H ·

∑
σ∈S(R) P (σ) · χσ.

We first show that this value depends entirely on the possible assignments of G.

▶ Lemma 3.2.
∑

σ∈S(R) P (σ) · χσ = (1/3)|V | ∑
ϕ(1 − δ|ϕ(V )|).

Proof. We first fix some notation. A partial switching on R′ ⊆ R is the restriction of a
switching to the subset R′ of reticulations. Let S(R′) denote the set of all partial switchings
on R′. For a partial switching σ′ ∈ S(R′), let P (σ′) :=

∏
r∈R′ λ(σ′(r)).

Let RV be the set of reticulations {ri
v | v ∈ V, i ∈ {1, 2}}, and let RE be the set of

reticulations {ue | e ∈ E}. If σ is a switching and σV and σE are the restrictions of σ to RV

and RE respectively, then we write σ = σV ∪σE . Observe that P (σ) = P (σV ) ·P (σE) in this
case and that R = RV ∪RE and therefore S(R) = {σV ∪ σE | σV ∈ S(RV ), σE ∈ S(RE)}.

For a partial switching σV on RV , we can associate an assignment ϕ on G, as follows.
For any v ∈ V , let e, e′, and e′′ be the incident edges of v in G, and without loss of
generality assume that ue is a parent of r1

v and the parents of r2
v are ue′ and ue′′ . We say

a partial switching σ′ ∈ S(RV ) and assignment ϕ agree on v if one of the following holds:
1. ϕ(v) = e and σ′(r1

v) = uer
1
v; 2. ϕ(v) = e′ and σ′(r1

v) = r2
vr

1
v, σ′(r2

v) = ue′r2
v; or 3. ϕ(v) = e′′

and σ′(r1
v) = r2

vr
1
v, σ′(r2

v) = ue′′r2
v. That is, ϕ(v) is the unique edge incident to v for which

the switching σV chooses a set of reticulation arcs that connect ue to xv. See Figure 5. An
assignment ϕ and a partial switching σ′ are associated if ϕ and σ′ agree on all v ∈ V .

For assignments ϕ on G, let Sϕ denote the set of all partial switchings σ′ ∈ S(RV )
associated with ϕ. We use these sets Sϕ to decompose the sum

∑
σ∈S(R) P (σ) ·χσ, as follows:∑

σ∈S(R)

P (σ) · χσ =
∑

σ′∈S(RV )

∑
σ′′∈S(RE)

P (σ′ ∪ σ′′) · χσ′∪σ′′

=
∑

σ′∈S(RV )

∑
σ′′∈S(RE)

P (σ′) · P (σ′′) · χσ′∪σ′′

=
∑

ϕ

∑
σ′∈Sϕ

P (σ′) ·
∑

σ′′∈S(RE)

P (σ′′) · χσ′∪σ′′

The next two claims allow us to express the above in terms of |ϕ(V )| for all assignments ϕ.

▷ Claim 3.3.
∑

σ′′∈S(RE) P (σ′′)·χσ′∪σ′′ = 1−δ|ϕ(V )|, for each assignment ϕ on G and σ′ ∈ Sϕ.

Proof. Let σ = σ′ ∪ σ′′ for some σ′′ ∈ S(RE) and recall that χσ = 1 if and only if u∗
2 has a

path to some leaf xv in Tσ. Any such path must pass through some ue, and ue only has a
path in Tσ to some xv if e is assigned to v by ϕ i.e. ϕ(v) = e. Thus, χσ = 1 if and only if u∗

2
has a path in Tσ to ue for some e ∈ ϕ(V ). This occurs if and only if σ′′(re) = pere for some
e ∈ ϕ(V ). Or, equivalently, χσ = 0 if and only if σ′′(re) = qere for all e ∈ ϕ(V ). It follows
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∑
σ′′∈S(RE)

P (σ′′) · χσ′∪σ′′ = 1 −
∑

σ′′∈S(RE)

∀e∈ϕ(V ): σ′′(re)=qere

P (σ′′)

as, roughly speaking, the sum of the probabilities of partial switchings that choose the
qere-arcs equals the probability that a random switching makes all these choices, this equals

= 1 −
∏

e∈ϕ(V )

λ(qere) = 1 −
∏

e∈ϕ(V )

δ = 1 − δ|ϕ(V )|. ◁

▷ Claim 3.4. For any assignment ϕ on G, it holds that
∑

σ′∈Sϕ
P (σ′) = (1/3)|V |.

Proof. Recall that, for any σ′ ∈ S(RV ) and any assignment ϕ, we have σ′ ∈ Sϕ if and only
if σ′ agrees with ϕ′ on all v ∈ V . Recall also that for any v ∈ V , whether σ′ and ϕ agree on v
depends only on ϕ(v), σ(r1

v) and σ(r2
v). So suppose we choose a partial switching σ∗ ∈ S(Rv)

with probability P (σ∗). Note that the probability that σ∗ ∈ Sϕ is
∑

σ′∈Sϕ
P (σ′).

Now consider the probability that σ∗ agrees with ϕ on some v ∈ V . If ϕ(v) = e for the
edge e such that uer

1
v ∈ A(N ), then σ∗ agrees with ϕ on v if and only if σ∗(r1

v) = uer
1
v,

and this occurs with probability λ(uer
1
v) = 1/3. Now, if ϕ(v) = e′ where ue′ is one of the

parents of r2
v, then σ∗ agrees with ϕ on v if and only if σ∗(r1

v) = r2
vr

1
v and σ∗(r2

v) = ue′r2
v,

and this occurs with probability λ(r2
vr

1
v)λ(ue′r2

v) = 2/3 · 1/2 = 1/3. In either case, σ∗ and ϕ

agree on v with probability 1/3. As these agreements are independent for each v ∈ V , the
probability that σ∗ agrees with ϕ on all v ∈ V is (1/3)|V |. But this is exactly the probability
that σ∗ ∈ Sϕ, which is

∑
σ′∈Sϕ

P (σ′). ◁

By Claim 3.3 and Claim 3.4, we have∑
ϕ

∑
σ′∈Sϕ

P (σ′) ·
∑

σ′′∈S(RE)

P (σ′′) · χσ′∪σ′′ =
∑

ϕ

∑
σ′∈Sϕ

P (σ′) · (1 − δ|ϕ(V )|)

=
∑

ϕ

(1/3)|V | · (1 − δ|ϕ(V )|)

= (1/3)|V | ·
∑

ϕ

(1 − δ|ϕ(V )|) ◀

Lemma 3.2 gives us an expression for the expected contribution H ·
∑

σ∈S(R) P (σ) · χσ, in
terms of the values |ϕ(V )| for all assignments ϕ on G. We next show that this value can be
restricted to a certain range depending on on the number MG of perfect assignments. For
this next step, we now fix the value of δ such that δ ≤ (1/3)|V | · 1/2. Let α := (1/3)|V | · δ|V |/2.

▶ Lemma 3.5. 1 − α ·MG ≥
∑

σ∈S(R) P (σ) · χσ ≥ 1 − α · (MG + 1/2).

Proof. From Lemma 3.2 we have that
∑

σ∈S(R) P (σ) · χσ = (1/3)|V | ·
∑

ϕ(1 − δ|ϕ(V )|). As
there are exactly 3|V | assignments ϕ on G, this is equivalent to∑

σ∈S(R)

P (σ) · χσ = (1/3)|V | · 3|V | − (1/3)|V | ·
∑

ϕ

δ|ϕ(V )| = 1 − (1/3)|V | ·
∑

ϕ

δ|ϕ(V )|

Recall that |ϕ(V )| ≥ |V |/2 for each assignment ϕ, with equality if and only if ϕ is a perfect
assignment. Then, counting only the perfect assignments,

1 − (1/3)|V | ·
∑

ϕ perfect
δ|ϕ(V )| = 1 − (1/3)|V | ·MG · δ|V |/2 = 1 − α ·MG

proving the first inequality.
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For the second inequality, observe that |ϕ(V )| ≥ |V |/2 + 1 for any imperfect assignment ϕ.
(As G is cubic, |V | is even). Then, counting perfect and imperfect assignments separately,
and using the fact that there are at most 3|V | imperfect assignments, we have

1 − (1/3)|V | ·
∑

ϕ

δ|ϕ(V )| ≥ 1 − (1/3)|V | ·MG · δ|V |/2 − (1/3)|V | · 3|V | · δ|V |/2+1

≥ 1 − α ·MG − δ
|V |/2 · δ

≥ 1 − α ·MG − δ|V |/2 · (1/3)|V | · 1/2

= 1 − α · (MG + 1/2) ◀

By what we have seen so far, the expected contribution of arc u∗
1u

∗
2 to APDN (X) is

between H · (1 − α · (MG + 1/2)) and H · (1 − α ·MG), where MG is the number of perfect
assignments (and therefore the number of perfect matchings) on G. It remains to show that
this term dominates the other terms in APDN (X), such that APDN (X) is also bounded
by a range dependent on MG. For this, we fix H such that H > 2|A(N )|/α. That is, the
weight of u∗

1u
∗
2 is more than 2/α times the total weight of all the other arcs in N .

▶ Lemma 3.6. We have

H · (1 − α · (MG + 1/2)) ≤ APDN (X) < H · (1 − α · (MG − 1/2))

or equivalently, MG − 1/2 < (H − APDN (X))/(H · α) ≤ MG + 1/2.

Proof. First, consider the tree Tσ associated with an arbitrary switching σ. If u∗
2 has a

path to a leaf xv in Tσ (i.e. if χσ = 1) then u∗
1u

∗
2 has an offspring in X, and so PDσ(X) ≥

ω(u∗
1u

∗
2) = H. Thus PDσ(X) ≥ H · χσ. As the weight of all other arcs is 1, we also have

that PDσ(X) < H · χσ + |A(N )| ≤ H · χσ +H · α/2. Then, by Lemma 3.5,

APDN (X) =
∑

σ∈S(R)

P (σ) · PDσ(X) ≥ H ·
∑

σ∈S(R)

P (σ) · χσ ≥ H · (1 − α · (MG + 1/2))

and

APDN (X) =
∑

σ∈S(R)

P (σ) · PDσ(Z)

< H ·
∑

σ∈S(R)

(P (σ) · χσ(Z)) +H ·
∑

σ∈S(R)

(P (σ) · α/2)

≤ H · (1 − α ·MG) +H · α/2 = H · (1 − α · (MG − 1/2)) ◀

Given Lemma 3.6, we can count the number of perfect matchings in a cubic graph G

as follows. Construct the network N on X as described above in polynomial time, then
compute M ′ := (H − APDN (X))/(H · α). Determine the unique integer M for which we
have M − 1/2 < M ′ ≤ M + 1/2. By Lemma 3.6, M is the number of perfect matchings in G.

As counting perfect matchings is #P-hard, it follows that computing APDN (X) is
also #P-hard. This completes the proof of Theorem 3.1.

4 Maximizing Average-Tree Phylogenetic Diversity

In this section, we show that Max-APD is fixed-parameter tractable (FPT) with respect
to the number of reticulations. For the sake of brevity, we restrict our theoretical proof to
simple networks – that is, N has no cut-arcs except for those incident to degree-1 vertices.
However, we see no reason why this result could not be extended to non-simple networks.
Indeed, our implementation, see Section 5, can deal with arbitrary networks.
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We make use of the notion of generators, as introduced in [28]. This gives us a certain
useful partition of the leaves of a network into sides. At the high level, our algorithm “guesses”
the optimal solution Z by guessing which sides of the network N contain a leaf from Z. As
the number of sides is O(|R(N )|, there are at most 2O(|R(N )|) such guesses to consider. Once
it has been decided which sides contain a leaf from the solution, the problem reduces to a
problem on forests, which can be solved in polynomial time.

In what follows, let N be a network and let r := |R(N )|, n := |V (N )| and m := |A(N )|.
That is, r, n, and m denote the number of reticulations, vertices, and arcs, respectively.

4.1 Characterizing solutions in terms of generator sides
We recall the notion of generators, introduced in [28]. Our definitions are taken from [29].

▶ Definition 4.1. Let N be a simple network. The generator of N is the directed multigraph G
obtained from N by (1) deleting nodes with in-degree one and out-degree zero (leaves) and
(2) suppressing all nodes with in- and out-degree one. The arcs and in-degree-2 out-degree-0
vertices of G are called sides. The arcs are also called arc sides, and the in-degree-2 out-
degree-0 vertices are also reticulation sides. We say that a leaf ℓ is on side S (or that side S
contains ℓ) if either

S is a reticulation side of G and the parent of ℓ in N , or
S is an arc side of G, obtained by suppressing in-degree-1 out-degree-1 vertices of a path P
in N and the parent of ℓ in N lies on P .

In addition, if S is an arc side of G, obtained by suppressing in-degree-1 out-degree-1 vertices
of a path P in N , then we say that every arc in P is a path-arc of side S. We call the lowest
arc in P the lowest path-arc of S. Observe that every arc in N is either a leaf-arc, or a
path-arc of some side.

For an arc side S, let TS denote the subgraph of N whose vertices are the leaves on side S
together with the vertices incident to any path-arcs of S, and whose arcs are the leaf-arcs
incident to the leaves of S together with the path-arcs of S. Note that TS is a tree (though
not necessarily a phylogenetic tree). We call TS the side-tree of S.

The generator of a simple binary network with r reticulations has at most r reticulation
sides and at most 4r − 2 arc sides [9].

In order to find solutions for Max-APD on simple networks, we characterize possible
solutions in terms of their relation to the generator of N .

▶ Definition 4.2. For a simple phylogenetic network N on X, let S(N ) denote the sides of
the generator of N . For Z ⊆ X, the signature SigZ of Z ⊆ X is the set of all sides that
contain at least one leaf of Z.

Now, to find a solution for Max-APD, it is enough to compute, for each signature Sig′,
the maximum value of APDN (Z) over all sets Z ⊆ X with signature Sig′ and |Z| ≤ k.

4.2 Contribution of lowest path-arcs
For an arc e in N , a set of taxa Z ⊆ X and a switching σ : R(N ) → A(N ), define χ(e, Z, σ)
to be 1 if e has an offspring from Z in Tσ, and 0 otherwise (if e is not an arc in Tσ then
define χ(e, Z, σ) to be 0). Then define ψN (e, Z) :=

∑
switching σ P (σ) · χ(e, Z, σ)

Intuitively, ψ(e, Z) corresponds to the expected probability that e has an offspring in Z

under a randomly selected switching. In the next lemma, we show that ω(e) · ψN (e, Z) gives
the contribution of arc e to APDN (z).
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▶ Lemma 4.3. APDN (Z) =
∑

e∈A(N ) ω(e) · ψN (e, Z).

Proof. By definition, PDσ(Z) =
∑

e∈A(Tσ) ω(e) ·χ(e, Z, σ) =
∑

e∈A(N ) ω(e) ·χ(e, Z, σ). Thus,

APDN (Z) =
∑

switching σ

P (σ) · PDσ(Z)

=
∑

switching σ

P (σ) ·
∑

e∈A(N )

ω(e) · χ(e, Z, σ)

=
∑

e∈A(N )

ω(e) ·
∑

switching σ

P (σ) · χ(e, Z, σ) =
∑

e∈A(N )

ω(e) · ψN (e, Z). ◀

Thus, to compute APDN (Z), it is enough to compute ψN (e, Z) for each arc e. The next
lemma shows that for certain arcs, the value of ψN (e, Z) depends only on the signature of Z.
This will be important for the construction that follows.

▶ Lemma 4.4. Let e be the lowest path-arc of a path side S and let Z,Z ′ ⊆ X be two subsets
of X with the same signature. Then ψN (e, Z) = ψN (e, Z ′).

Proof. By the definition of ψN (e, Z), it suffices to show that χ(e, Z, σ) = χ(e, Z ′, σ) for each
switching σ. So suppose that e has an offspring z ∈ Z in Tσ such that χ(e, Z, σ) = 1. Let S′ be
the side containing z. As Z and Z ′ have the same signature, S′ also contains some leaf z′ ∈ Z ′.
Since z and z′ are on the same side and z is an offspring of the arc e in Tσ, also z′ is an
offspring of e in Tσ. Thus z′ is an offspring of e in Tσ, and so χ(e, Z ′, σ) = 1. By a symmetric
argument, from χ(e, Z ′, σ) = 1 we conclude χ(e, Z, σ) = 1. Thus χ(e, Z ′, σ) = χ(e, Z, σ) for
all σ and we can conclude that ψN (e, Z) = ψN (e, Z ′). ◀

For a lowest path-arc e and signature S ′ ⊆ S(N ), define ϕ(e,S ′) to be ψN (e, Z) for
any Z ⊆ X with with signature SigZ = S ′. By Lemma 4.4, this is well-defined.

▶ Lemma 4.5. For any lowest path-arc e and any Z ⊆ X, the value of ψN (e, Z) can be
computed in O(2r · r) time. Consequently, ψN (e,S ′) can be computed in O(2r · r) time for
each lowest path-arc e and signature S ′.

Proof. Observe that as each reticulation has two incoming arcs and a switching maps each
reticulation to one of its incoming arcs, there are exactly 2r switchings. For each switching σ,
the value of P (σ) · χ(e, Z, σ) for all e that are lowest arcs of a generator arc side, can be
computed in O(r) time by a bottom-up traversal in the generator of N , registering whether
each such e has an offspring from Z in Tσ. Adding up all values of P (σ) · χ(e, Z, σ) (to
compute ψN (e, Z)) can therefore be done in O(2r · r) time.

To compute ψN (e,S ′), it is sufficient to construct a set Z ⊆ X with signature S ′ by
picking an arbitrary leaf from each side S ∈ S ′. As ψN (e, Z) = ψN (e,S ′), we can compute
this value in O(2r · r) time. ◀

4.3 Reduction to Forests
Let (N , k,D) be an instance of Max-APD. Fix a signature S ′ ⊆ S(N ) and assume there
exists a solution Z with SigZ = S ′ We now show how to reduce Max-APD under this
assumption to a related problem on forests.

Let X1, . . . , Xs be non-empty and pairwise disjoint subsets of X, and let F be a forest
of Xi-trees Ti. Define X∗ to be the union X1 ∪ · · · ∪Xs. For technical reasons, we allow Ti to
have non-integer arc weights and degree-2 vertices. A set Z ⊆ X∗ respects F if Z contains a
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taxon of each Xi for i ∈ {1, . . . , s}. For a set Z ⊆ X, define PDF (Z) :=
∑s

i=1 PDTi(Z ∩Xi).
For a forest F and two integers k,D ∈ N, we define a decision problem Max-PD in which
we are asked whether a set Z ⊆ X∗ exists such that Z has a size of k, PDF (Z) ≥ D, and
respects F . This definition generalizes the classic definition of Max-PD on trees [8].

▶ Construction 1. Initialize D∗ = 0, k′ = k, and let F be an empty set. Then for each
side S in S(N ) do the following:

If S is a reticulation side, then let x be the single leaf on this side and let rx be its
incoming arc. If S ∈ S ′, then increase D∗ by ω(rx), and add T ′

S to F , where T ′
S is a tree

with a single leaf x and single arc rx of weight ω(rx).
If S is an arc side, then let eS = vr denote the lowest path-arc of S. For each path-
arc e of S (including eS), add ω(e) · ψN (e,S ′) to D∗. Then if S ∈ S ′, add T ′

S to F ,
where T ′

S is derived from the side-tree TS as follows: Multiply the weight of each path-arc
by (1 − ψN (eS ,S ′)), then delete the lowest path-arc eS.

▶ Lemma 4.6. Let S ′ ⊆ S(N ) be a subset of sides and let (D∗, F ) be derived from (N ,S ′)
according to Construction 1. Then for Z ⊆ X, the signature of Z is SigZ = S ′ if and only
if Z respects F . Moreover, if SigZ = S ′, then APDN (Z) = PDF (Z) +D∗.

Proof. Observe that by construction, each tree in F corresponds to a side S ∈ S ′, and as
such Z respects F if and only if SigZ = S ′.

So now assume that SigZ = S ′. We prove that APDN (Z) = PDF (Z) +D∗.
Note that every arc in F has a corresponding arc in N . For ease of notation, we speak

of the same arc e as existing in F and N . Let ωN (e) denote the weight of an arc e in N ,
and let ωF denote the weight of e in F . For any arc e that is not a lowest path-arc in N , let
χF (e, Z) := 1 if e has an offspring from Z in F , and let χF (e, Z) := 0 otherwise. Observe
that PDF (Z) =

∑
e∈A(F ) ωF (e) · χF (e, Z).

Recall that ψN (e, Z) denotes the probability that, taken some switching σ, the arc e has
an offspring from Z in Tσ. By Lemma 4.3 we know APDN (Z) =

∑
e∈A(N ) ωN (e) · ψN (e, Z).

▷ Claim 4.7. For an arc side S with lowest path-arc eS , and e a path-arc of S that is not eS ,
if S ∈ S ′ then ωN (e) · ψN (e, Z) = ωF (e) · χF (e, Z) + ωN (e) · ψN (eS ,S ′) and, otherwise,
ωN (e) · ψN (e, Z) = ωN (e) · ψN (eS ,S ′).

▷ Claim 4.8. For a leaf-arc e = vx with x on side S, it holds that ωN (e) · ψN (e, Z) =
ωF (e) · χF (e, Z) if S ∈ S ′, and ψN (e, Z) = 0, otherwise.

Due to space constraints, Claim 4.7 and 4.8 are proven in the appendix.
Recall that, for any lowest path-arc eS on side S, it holds that ψN (eS , Z) = ψN (eS ,S ′) by

definition. Let AS(N ) denote the arc sides on N and let RS(N ) denote the reticulation sides.
Note that S(N ) = AS(N )∪RS(N ). By construction it is D∗ =

∑
S∈AS(N ) ωN (eS)·ψ(eS ,S ′).

To prove the main claim, let E1 denote the leaf-arcs of N , let E2 denote the path-arcs
which are not the lowest path-arc on their side, and let E3 denote the arcs which are the
lowest path-arc of their side. For each i ∈ {1, 2, 3}, let E1

i denote the arcs in Ei belonging
to a side in S ′, and let E0

i = Ei \ E1
i . Note that the arc set of F is E1

1 ∪ E1
2 . For each

arc e ∈ E2 ∪ E3, let eS denote the lowest path-arc on the side containing e (note that
if e ∈ E3 then eS = e). Due to space constraints, APDN (Z) = PDF (Z) +D∗ is proven in
the appendix. ◀

Finally, we show that Max-PD can be solved efficiently on forests. For this, we use
Faith’s famous greedy algorithm on trees [8, 21, 25].
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▶ Lemma 4.9. Max-PD can be solved in O(nk) time on forests.

Due to space constraints, Lemma 4.9 is proven in the appendix.

4.4 Putting everything together
For any signature S ′ ⊆ S(N ), let (FS′ , D∗

S′) denote the pair (F,D∗) derived for S ′ according
to Construction 1. Lemma 4.6 implies that APDN (Z) = PDFS′ (Z) +D∗

S′ , for any Z ⊆ X

with signature S ′. As every Z ⊆ X has a signature, it follows that (N , k,D) is a Yes-
instance of Max-APD if and only if (FS′ , k,D−D∗

S′) is a Yes-instance of Max-PD for some
S ′ ⊆ S(N ). We can therefore solve Max-APD on (N , k,D) using the following algorithm:
For each S ′ ⊆ S(N ) in turn, construct (FS′ , D∗

S′) and solve Max-PD on (FS′ , k,D −D∗
S′).

If the answer is Yes for any Max-PD instance, return Yes. Otherwise, return No.
As the generator of N has at most 5r − 2 sides [9], there are at most 25r−2 signatures to

consider. For each signature S ′ and each lowest path-arc eS , the value of ψN (eS ,S ′) can be
computed in O(2r · r) time by Lemma 4.5. After these values are computed, (FS′ , D∗

S′) can
be constructed in O(m) = O(n + r) time. Finally, solving Max-PD on (FS′ , k,D − D∗

S′)
can be done in O(nk) time by Lemma 4.9. Thus, the total running time of the algorithm is
in O(25r−2 · (2r · r + n+ r + nk)) ⊆ O(26r−2 · nk).

5 Experiments

5.1 Data
Phylogenetic networks have been simulated3 via the package SiPhyNetwork [17]. This
package allows simulations of phylogenetic networks as well as traits developing along the
networks, giving several customization options. In the following, we describe the choices
made for our simulations, and we refer to the SiPhyNetwork paper for more details [17].
We simulated 5324 phylogenetic networks with 1, 20, ..., 100, 150, ... 500 leaves using
the generalized sampling approach [10] implemented in SiPhyNetwork, with 100 simulation
replicates, speciation rate equal to 1, extinction rate equal to 0.6, and hybridization rate
varying from 0.1 to 0.001 for getting a reasonable reticulation number, even for large instances
(see distributions of instances in Figure 6).

In our simulations, we aimed at simulating hybridizations between plants and, for doing
so, we opted for the “lineage generative hybridizations” implemented in SiPhyNetwork,
with inheritance probability fixed to 1/2 and a trait model where hybridization occurs only
among species with equal ploidy. The rate of autopolyploidy has been fixed to 0.05. In this
simulation setting, the number of leaves and the number of reticulations are correlated, so it
is unlikely to produce large networks with small reticulation number or small networks with
large reticulation number.

5.2 Implementation Details
The algorithm presented in Section 4 was implemented in C++ in a serial manner (no
multithreading) in the framework of the phylo-tools library [30] (both published under the
open source CeCILL Free Software License 2.1) with a few heuristic improvements that we
discuss in the following.

3 All data is publicly available at https://sdrive.cnrs.fr/s/aEFNN3iRp7goQBT.

https://sdrive.cnrs.fr/s/aEFNN3iRp7goQBT
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Figure 6 Distribution of instances for the number n of leaves, and the reticulation number r.

Guesses on the Generator. Instead of “guessing” which of the O(r) sides of the generator
have tree-paths to selected leaves as stated in Construction 1, it is sufficient to guess which
nodes of the generator have tree-paths to selected leaves. The nodes are pre-filtered, so the
guess is done only on nodes that actually have tree-paths to leaves in the input network.
Then, all

∑
i≤k

(O(r)
i

)
subsets of size at most k of such nodes are enumerated. Note that

those are polynomially many if k is constant (with the degree depending on k).

Enumerating Switchings. Given the information which generator nodes have tree-paths to
selected leaves, we can group the possible switchings in order to avoid enumerating all 2r

of them. Indeed, if Z contains no leaf below some reticulation v, then the switching of its
reticulation arcs has no bearing on the value of χ(e, Z, σ) for any e. This allows us to restrict
enumeration to switchings involving reticulations above leaves in Z. If the input network
is mostly “flat”, that is, most paths contain only constantly many reticulations, then we
expect the enumeration-step to take O(

(
r
k

)
), rather than O(2r) steps. For fixed k, we would

therefore expect polynomial running time (with the degree depending on k).

Keeping Multiple Solutions. In order to assess the quality of our diversity measure and
compare it to other phylogenetic diversity measures, as well as the actual feature diversity,
it would be helpful to output not only one, but all best-scoring solutions, and maybe even
some sub-optimal solutions. To accommodate this, we store solutions in a sorted array that
retains a given number of solutions and automatically discards solutions with a lower score.

Implementation of Greedy Selection. Once the values ψN (e, Z) are computed for all e, we
set up a structure mapping each node u of the network to a list of its children v sorted by
diversity attainable by saving a leaf with a tree-path from v that avoids generator nodes.
Then, the best entry is selected, the pointers are followed down to the best leaf ℓ, and the
structure is updated from ℓ upwards until a generator node is encountered. While we incur a
factor of O(log ∆N ) (where ∆N is the maximum out-degree in the network), this degenerates
to O(1) since our input networks are binary. Note that we avoid explicitly constructing the
forest on which we run the greedy algorithm.

5.3 Experimental Results

While the theoretical running time of O(26r−2 · nk) may not seem convincing, the imple-
mentation performs satisfactorily in practice, possibly due to the heuristic improvements
discussed in Section 5.2.
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Figure 7 Plots of the observed running time in dependence of the reticulation number r (with
k = 5 fixed), and of the solution size k (with n = 60 and r = 12 fixed).

Reticulation number r. Figure 7 (left) shows that the observed dependence on the reticu-
lation number r for k = 5 behaves very similarly to the reference function x5/500. For k = 5,
this seems to confirm our hypothesis that the running time can be bounded in O∗(rk) on
most networks. While the real-time setting (up to 17ms per run) ends rather early at r ≈ 12,
we can cover up to r ≈ 55 in under 5 minutes, even for networks with many leaves (n = 500).

Solution size k. Figure 7 (right) shows a clear partition of growth scenarios for the running
time dependent on k with n = 60 and r = 12 fixed: For k ≲ r, the running time grows
exponentially, roughly proportional to 4k ≈ r0.56k but for k ≳ r, its growth behaves as a
linear function in k. Again, this is characteristic for functions in O(min{rk, 26r} · nk).

Each of the 18 instances with n = 60, r = 12 finished within 8 seconds for each k ∈ [1, 40].

6 Discussion

Multiple formulations of the concept of phylogenetic diversity on phylogenetic networks
have been proposed recently, and it is not yet clear which variants are most relevant in
practice, for example for conservation biology. In our opinion, the average-tree phylogenetic
diversity score (APD) appears to be a very natural and biologically relevant generalization
of phylogenetic diversity on trees. In addition, in the small toy example in Figure 1, APD
seems to make a more reasonable choice than NetworkPD by selecting the hybrid species.
However, to properly compare the different variants of phylogenetic diversity and to compare
them to the feature diversity [32], extensive simulations and multiple case studies are needed.
We believe that this is a very important topic for further research.

From a computational point of view, an interesting open problem that remains is whether
our FPT algorithm for the maximization version of APD can be improved to a parameterized
algorithm with respect to the level of the network. This would be interesting since the
level can be much smaller than the current parameter, the number of reticulations. We
conjecture that, in contrast to NetworkPD (which is NP-hard for level-1 networks [27]),
this is possible for APD. Another interesting direction would be to extend the algorithm to
nonbinary networks.

Finally, while the theoretical running time of our algorithm is O(26r · kn), experiments
suggest that the practical running time behaves like O(min{rk, 4r}·kn) on networks generated
by evolutionary processes. It could be interesting to study this further.
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A Appendix

A.1 Proof of Lemma 4.6
Even though only parts of the proof of Lemma 4.6 have been deferred to the appendix, we
present the entire proof here.

▶ Lemma 4.6. Let S ′ ⊆ S(N ) be a subset of sides and let (D∗, F ) be derived from (N ,S ′)
according to Construction 1. Then for Z ⊆ X, the signature of Z is SigZ = S ′ if and only
if Z respects F . Moreover, if SigZ = S ′, then APDN (Z) = PDF (Z) +D∗.

Proof. Observe that by construction, each tree in F corresponds to a side S ∈ S ′, and as
such Z respects F if and only if SigZ = S ′.

So now assume that SigZ = S ′. We prove that APDN (Z) = PDF (Z) +D∗.
Note that every arc in F has a corresponding arc in N . For ease of notation, we speak

of the same arc e as existing in F and N . Let ωN (e) denote the weight of an arc e in N ,
and let ωF denote the weight of e in F . For any arc e that is not a lowest path-arc in N , let
χF (e, Z) := 1 if e has an offspring from Z in F , and let χF (e, Z) := 0 otherwise. Observe
that PDF (Z) =

∑
e∈A(F ) ωF (e) · χF (e, Z).
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Recall that ψN (e, Z) denotes the probability that, taken some switching σ, the arc e has
an offspring from Z in Tσ. By Lemma 4.3 we know APDN (Z) =

∑
e∈A(N ) ωN (e) · ψN (e, Z).

▷ Claim 4.7. For an arc side S with lowest path-arc eS , and e a path-arc of S that is not eS ,
if S ∈ S ′ then ωN (e) · ψN (e, Z) = ωF (e) · χF (e, Z) + ωN (e) · ψN (eS ,S ′) and, otherwise,
ωN (e) · ψN (e, Z) = ωN (e) · ψN (eS ,S ′).

Proof. First suppose that S ∈ S ′ and χF (e, Z) = 1. Then e has an offspring z ∈ Z which is
a leaf of side S. As there are no reticulations on the path between e and z in N , it holds
that ψN (e, Z) = 1 and so ωN (e) · ψN (e, Z) = ωN (e). On the other hand,

ωF (e) · χF (e, Z) + ωN (e) · ψN (eS ,S ′) = ωF (e) + ωN (e) · ψN (eS ,S ′)
= (1 − ψN (eS ,S ′)) · ωN (e) + ωN (e) · ψN (eS ,S ′)
= ωN (e)

and so the claim holds.
Next suppose that χF (e, Z) = 0. Then e has no offspring from side S in N . It follows that e

has an offspring from Z in Tσ if and only if eS has an offspring from Z in Tσ, for any switching σ.
Thus ψN (e, Z) = ψN (eS , Z) = ψN (eS ,S ′). But then ωF (e) ·χF (e, Z) +ωN (e) ·ψN (eS ,S ′) =
ωN (e) · ψN (eS ,S ′) = ωN (e) · ψN (e, Z), and so the claim holds. A similar argument holds for
the case that S /∈ S ′. ◁

▷ Claim 4.8. For a leaf-arc e = vx with x on side S, it holds that ωN (e) · ψN (e, Z) =
ωF (e) · χF (e, Z) if S ∈ S ′, and ψN (e, Z) = 0, otherwise.

Proof. Observe that ψN (e, Z) = 1 if and only if x ∈ Z, and ψN (e, Z) = 0 otherwise. Since Z
has signature S ′, it follows that ψN (e, Z) = 0 if S /∈ S ′. On the other hand if S ∈ S ′,
then χF (e, Z) = 1 if and only if x ∈ Z and so ψN (e, Z) = χF (e, Z). The claim then follows
from the fact that ωN (e) = ωF (e) when e is a leaf-arc. ◁

Recall that, for any lowest path-arc eS on side S, it holds that ψN (eS , Z) = ψN (eS ,S ′) by
definition. Let AS(N ) denote the arc sides on N and let RS(N ) denote the reticulation sides.
Note that S(N ) = AS(N )∪RS(N ). By construction it is D∗ =

∑
S∈AS(N ) ωN (eS)·ψ(eS ,S ′).

To prove the main claim, let E1 denote the leaf-arcs of N , let E2 denote the path-arcs
which are not the lowest path-arc on their side, and let E3 denote the arcs which are the
lowest path-arc of their side. For each i ∈ {1, 2, 3}, let E1

i denote the arcs in Ei belonging
to a side in S ′, and let E0

i = Ei \ E1
i . Note that the arc set of F is E1

1 ∪ E1
2 . For each

arc e ∈ E2 ∪E3, let eS denote the lowest path-arc on the side containing e (note that if e ∈ E3
then eS = e).

APDN (Z) =
∑

e∈A(N )

ωN (e) · ψN (e, Z)

=
∑

e∈E1
1 ∪E0

1 ∪E1
2 ∪E0

2 ∪E3

ωN (e) · ψN (e, Z)

=
∑

e∈E1
1

ωF (e) · χF (e, Z) + 0 +
∑

E1
2 ∪E0

2 ∪E3

ωN (e) · ψN (e, Z)

=
∑

e∈E1
1

ωF (e) · χF (e, Z) +
∑

e∈E1
2

(ωF (e) · χF (e, Z) + ωN · ψN (eS ,S ′))

+
∑

E0
2 ∪E3

ωN (e) · ψN (e, Z)
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=
∑

e∈E1
1

ωF (e) · χF (e, Z) +
∑

e∈E1
2

ωF (e) · χF (e, Z) +
∑

e∈E1
2

ωN · ψN (eS ,S ′)

+
∑
E0

2

ωN (e) · ψN (eS ,S ′) +
∑
E3

ωN (e) · ψN (eS ,S ′)

=
∑

e∈E1
1 ∪E1

2

ωF (e) · χF (e, Z) +
∑

e∈E1
2 ∪E0

2 ∪E3

ωN · ψN (eS ,S ′)

=
∑

e∈A(F )

ωF (e) · χF (e, Z) +
∑

e∈E1
2 ∪E0

2 ∪E3

ωN · ψN (eS ,S ′) = PDF (Z) +D∗ ◀

A.2 Proof of Lemma 4.9
▶ Lemma 4.9. Max-PD can be solved in O(nk) time on forests.

Proof. Let I := (F, k,D) be an instance of Max-PD with forest F = {T1, . . . , Ts} where ρi

is the root of Ti. Let M be an integer bigger than ω(A(F )).
We define a tree T with root ρ, as the union of T1, . . . , Ts with additional arcs ρρi of

weight M for each i ∈ {1, . . . , s}. Solve the instance I ′ := (T, k,D+ s ·M) of Max-PD with
Faith’s greedy algorithm and return the result.

Let Z ⊆ X∗ be a solution for I. Because Z respects F , there is a taxon xi ∈ Z beneath ρi.
Consequently, ρρi is on the path from ρ to xi and so PDT (Z) = sM + PDF (Z) ≥ sM +D.

Conversely, let Z ⊆ X∗ be a solution for I ′. As PDT ≥ D + sM , we conclude that Z
contains a taxon of each tree and therefore respects F . Therefore, Z is a solution for I.

I ′ is constructed in linear time. On trees, Max-PD is solved in O(nk) time [25, 21]. ◀
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