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Abstract
Methods utilizing k-mers are widely used in bioinformatics, yet our understanding of their statistical
properties under realistic mutation models remains incomplete. Previously, substitution-only muta-
tion models have been considered to derive precise expectations and variances for mutated k-mers
and intervals of mutated and non-mutated sequences. In this work, we consider a mutation model
that incorporates insertions and deletions in addition to single-nucleotide substitutions. Within
this framework, we derive closed-form k-mer-based estimators for the three fundamental mutation
parameters: substitution, deletion rate, and insertion rates. We provide theoretical guarantees
in the form of concentration inequalities, ensuring accuracy of our estimators under reasonable
model assumptions. Empirical evaluations on simulated evolution of genomic sequences confirm
our theoretical findings, demonstrating that accounting for insertions and deletions signals allows
for accurate estimation of mutation rates and improves upon the results obtained by considering a
substitution-only model. An implementation of estimating the mutation parameters from a pair of
fasta files is available here: github.com/KoslickiLab/estimate_rates_using_mutation_model.git.
The results presented in this manuscript can be reproduced using the code available here: git-
hub.com/KoslickiLab/est_rates_experiments.git.
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1 Introduction

Estimating the mutation rate between two evolutionarily related sequences is a classical
question in molecular evolution, with roots that pre-date the genomics era [20]. Early
quantitative efforts focused on amino-acid substitution: the seminal PAM matrices of Dayhoff
et al. converted curated alignments of close homologues into an evolutionary time-scale [3],
while the BLOSUM series by Henikoff and Henikoff mined ungapped blocks of conserved
proteins to improve sensitivity for more diverged sequences [6]. These approaches and later
profile-based HMM models [4] were derived from pairwise or multiple alignments and remain
the gold standard when accurate alignments are available.

Over the last decade, however, high-throughput sequencing has shifted the scale of
comparative genomics from dozens to millions of genomes, rendering high computational
cost pipelines (e.g. quadratic-time) increasingly impractical. Consequently, alignment-free
techniques that summarize sequences by inexpensive statistics have become indispensable
[17, 21]. These approaches most commonly utilize k-mer sets and sketches thereof. Popular
tools such as Mash [10], Skmer [13] and more recent sketch-corrected frameworks like Sylph [16]
and FracMinHash-based methods [7, 8, 11, 15] can build whole-genome phylogenies, screen
metagenomic samples, and compute millions of pairwise point-mutation rate estimates in
minutes rather than days.

Despite their empirical success, theoretical understanding of alignment-free estimators
has lagged behind practice. Nearly all existing models treat evolution as a pure-substitution
process, ignoring insertions and deletions (indels), or else their performance in the presence
of indels is often not thoroughly evaluated [12]. When indels are frequent, substitution-only
estimators systematically inflate divergence and can misplace taxa – even in otherwise
well-resolved trees of primates constructed from k-mer Jaccard similarities [10]. Recent work
has quantified how k-mer-based statistics are affected by substitutions and are also used to
estimate substitution-only mutation rates [8], yet a principled treatment that jointly infers
substitution and indel parameters from k-mer statistics is still absent. This omission is
particularly significant because indels represent a substantial fraction of genomic variation
and play crucial roles in evolution [19]. Such indels cause substitution-only k-mer-based
methods to underperform, as just like with substitutions, disruption of k-mer content by
indel events affects at least k k-mers, often leading to overestimates of mutation rates [2, 8].

In this paper we introduce the first closed-form, alignment-free estimators for the three
fundamental mutation parameters: substitution rate ps, deletion rate pd, and mean insertion
length d under a model that explicitly incorporates single-nucleotide substitutions, deletions,
and geometrically-distributed insertions. Starting from elementary counts of unmutated
and single-deletion k-mers, we derive algebraic expressions for ps, pd, and d and prove a
sub-exponential concentration bound that guarantees a strong form of consistency as the
sequence length grows as detailed in our main contribution: Theorem 9. Simulations on
synthetic and real bacterial genomes demonstrate that modeling indels yields markedly more
accurate distance estimates than substitution-only approaches. The remainder of this paper is
organized as follows: Section 2 defines our mutation model, Section 3 derives basic statistical
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properties, Section 4 presents our estimators, Section 5 provides theoretical guarantees about
these estimators, Section 6 details our implementation, Section 7 presents experimental
results, and Section 8 concludes with a discussion of implications and future directions.

2 The mutation model

We first describe the mutation model under consideration. We use the model from [14].
This model is a type of indel channel and various variations of it have been used to model
sequence evolution (e.g. [5]). Let S be a string over the alphabet {A, C, G, T}, and let L be
the number of characters in S. Let Si denote the i-th character in S where 1 ≤ i ≤ L. We
define four operations on a string S as follows:

Substitute(i): select a character c ∈ {A, C, G, T} \ {Si} uniformly at random and replace
Si by c.
Delete(i): remove the character Si.
Stay(i): do nothing.
Insert(i, s): insert string s between Si−1 and Si if i > 0. If i = 0, prepend s to the start
of S instead.

The mutation process takes as input a string S and three parameters ps, pd, and d, where
0 ≤ ps, pd < 1, ps + pd < 1, and d ≥ 0. Then,
1. For each i, let ai be the operation to be performed at position i. Then, ai = Sub with

probability ps, ai = Del with probability pd, or ai = Stay with the remaining probability
1 − ps − pd. (These operations are not performed at this point, but only recorded.)

2. Let track be a function mapping from a position in the original string S to its position
in the modified S. Initially, track(i) = i for all i. We assume that track is updated
accordingly whenever an insertion or deletion operation is performed.

3. For each i that is a substitute action, apply Substitute(i).
4. For each i, let li ≥ 0 be a sample from a geometric distribution with mean d. Then

generate a random string Qi of length exactly li by drawing each character in Qi from
{A, C, G, T} independently and uniformly at random. This is equivalent to sampling a
uniformly random string among all strings of length li with characters in {A, C, G, T}. If
li = 0, Qi is the empty string.

5. For every i, execute Insert(track(i), Qi).
6. For every i such that ai = Del, execute Delete(track(i)).
7. Return the resulting S′.

3 Preliminary statistics of the mutation process

In this section, we define several quantities whose statistics we use to design an estimator of
the parameters of the mutation process. For the remainder of the manuscript, we assume
that the mutation process described in Section 2 is applied to string S of length L, with the
unknown parameters ps, pd, and d, and a mutated string S′ is returned. The theoretical
results we present are centered around the concept of k-spans. We define Ki, the k-span at
position 1 ≤ i ≤ L − k + 1 as the range of integers [i, i + k − 1] (inclusive of the endpoints of
the range). In simpler terms, a k-span captures the interval of a k-mer. We assume that
the string S has at least k nucleotides, and therefore, at least one k-mer (and at least one
k-span). For the sake of theoretical rigor, we use k-spans to develop our results, and later
discuss how our practical implementation uses k-mers to estimate the substitution and indel
rates.

WABI 2025
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▶ Lemma 1. Let L′ be the length of S′. Then

E[L′] = L (1 + d − pd), (1)

Var[L′] = L
(

d(d + 1) + pd(1 − pd)
)

.

▶ Lemma 2. Let fA and fA
′ be the number of “A”s in S and S′, respectively. Then,

E[fA
′] = fA(1 − ps − pd) + ps(L − fA)

3 + dL

4 . (2)

We can analogously obtain expressions for the expectations of the corresponding counts
of “C”s, “G”s, and “T”s in S′, denoted by fC

′, fG
′, and fT

′, respectively.
Next, we say that a k-span has no mutations if (a) for all k positions in the k-span, the

mutation process picks a Stay(·) action, and if (b) for all k − 1 intermediate positions in
the k-span, the mutation process does not insert anything. Let N be the number of such
k-spans. Let K be the number of all k-spans in S.

▶ Lemma 3. E[N ] = K
(
1 − ps − pd

) k 1
(d+1) k−1 .

The last quantities we will use correspond to the number of k-spans with a single kind of
mutation. Let S be the number of k-spans with a single substitution, and no other mutations,
let D be the number of k-spans with a single deletion and no other mutations, and let I be
the number of k-spans with a single insertion and no other mutations.

▶ Lemma 4. The expectations of S, D, and I are given by:

E[S] = K k
(
1 − ps − pd

)k−1
ps

1
(d + 1) k−1 . (3)

E[D] = K k
(
1 − ps − pd

)k−1
pd

1
(d + 1) k−1 . (4)

E[I] = K (k − 1)
(
1 − ps − pd

)k d

(d + 1) k
. (5)

4 Estimating ps, pd and d

We describe next our estimators for the parameters of the mutation model ps, pd, and d. We
derive estimators for these rates based on the statistics defined in Section 3. Recall that S is
the known input string to the mutation process, and S′ is the resulting random string or
observation.

Our mutation model assumes ps + pd < 1, and d ≥ 0. In addition, we assume that L ≥ k

which implies that E[N ] > 0. In reality, strings are typically much longer than k-mer sizes
and therefore this is a reasonable assumption.

From Lemmas 3 and 4 we get
E[D]
E[N ] = k pd

1 − ps − pd
. (6)

From (1), (2) and (6), we obtain the following system of linear equations with variables ps,
pd, and d.

−pd + d = E[L′]
L

− 1 (7)

L − 4fA

3 ps − fA pd + L

4 d = E[fA
′] − fA (8)

E[D]ps + (kE[N ] + E[D]) pd = E[D]. (9)
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Solving this system of equations, we obtain that:

ps = 3
k E[N ]

(
E[L′] − L + 4fA − 4E[fA

′]
)

+ E[D]
(

E[L′] − 4E[fA
′]
)

(
4fA − L

)(
E[D] + 4kE[N ]

) ,

pd = E[D](4fA + 12E[fA
′] − L − 3E[L′])

(4fA − L)(E[D] + 4kE[N ]) ,

d = E[L′]
L

− 1 + E[D](−4fA − 12E[fA
′] + L + 3E[L′])

(−4fA + L)(E[D] + 4kE[N ]) .

Given S and S′, we can compute L′ and fA
′. Let us also assume that we know N and D

(we will discuss how to find these in Section 6). By replacing the expectations above with
these observations, we obtain our estimators for the parameters of the mutation model. That
is,

p̂s = 3
k N

(
L′ − L + 4fA − 4fA

′
)

+ D
(

L′ − 4fA
′
)

(
4fA − L

)(
D + 4kN

) , (10)

p̂d =
D

[
3(L′ − 4fA

′) + (L − 4fA)
]

(L − 4fA) (D + 4kN ) , (11)

d̂ = L′

L
− 1 +

D
[
3(L′ − 4fA

′) + (L − 4fA)
]

(L − 4fA) (D + 4kN ) . (12)

We briefly comment on our choice of estimators for the mutation model parameters, as
various statistical approaches based on a different set of observables could yield a different set
of estimators. For example, we considered a variant of the estimators based on the counts of
k-spans with a single insertion, deletion, or substitution (i.e., I, S, and D). These quantities
contain enough information to estimate the mutation parameters, specifically, by solving the
non-linear system of equations given by (3), (4), and (5); the resulting estimators performed
quite well in real data. However, establishing theoretical guarantees for these estimators
proved challenging, as they were defined as roots of degree-k polynomials . Our current
estimators address this theoretical limitation as they involve solely linear equations. As we
shall see in Section 7, the performance of our estimators in real data is strong, and they
strike a more favorable balance by offering both reasonable accuracy and rigorous theoretical
guarantees.

5 Concentration results

In this section, we provide a theoretical guarantee for the estimator (10) of the substitution
rate. In particular, we show that our estimate of ps is not only a consistent estimator, but
also that it is tightly concentrated in a symmetric interval around the true value of ps. Similar
techniques can likely be used to prove the consistency and concentration of pd and d, though
we do not do so in this paper. We provide the bias analysis for p̂s by proving asymptotically
tight concentration bounds for N , D, and L′ − 4fA

′.
The concentration bounds for N and D stem from the fact that, from the perspective of

the mutation process k-spans located more than k positions apart are independent of each
other.

WABI 2025



16:6 Estimation of Substitution and Indel Rates via k-mer Statistics

▶ Lemma 5. For any δ ∈ (0, 1):

Pr
[∣∣∣N − E[N ]

∣∣∣ ≥ δE[N ]
]

≤ 3k exp
{

− δ2E[N ]
3k

}
.

▶ Lemma 6. For any δ ∈ (0, 1):

Pr
[∣∣∣D − E[D]

∣∣∣ ≥ δE[D]
]

≤ 3k exp
{

− δ2E[D]
3k

}
.

We prove a similar result for P = L′ − 4fA
′ by noting that P can expressed as a sum of

independent sub-exponential random variables. Our concentration bound for P is as follows.

▶ Lemma 7. Let J1 = ln 2/ min{d + 1, 8}. Then, there exist absolute constants c1, c2 > 0
such that the following holds for any δ > 0:

Pr
[
|P −E[P ]| ≥ 3δ

]
≤ 2 exp

{
− δ2

8fA

}
+2 exp

{
− δ2

8(L − fA)

}
+2 exp

{
−c1 min

(
δ2

c22J1
2 ,

δ

c2J1

)}
.

Finally, we prove that L′ is also strongly concentrated around E[L′].

▶ Lemma 8. For any δ ∈ (0, 1):

Pr
[∣∣∣L′ −E[L′]

∣∣∣ ≤ δ(Ld+Lpd)
]

≥ 2 exp
{

− Lδ2d2

2(d + 1 − δd)(d + 1)

}
+2 exp

{
− Lpdδ2

3

}
.

We can piece the results of these lemmas together and prove the following result.

▶ Theorem 9. Suppose 4fA < L and 4
3 ps + pd < 1. Then, for sufficiently small δ > 0, there

exists constants c1, c2 > 0 such that

Pr[|p̂s − ps| ≥ 12δ] ≤ 8k exp
{

− δ2E[N ]
3k

}
+ 6k exp

{
− δ2E[D]

3k

}
+ 2 exp

{
− δ2E[P ]2

72fA

}
+ 2 exp

{
− δ2E[P ]2

72(L − fA)

}
+ 2 exp

{
− c1 min

(δ2E[P ]2

c22 ,
δE[P ]

c2

)}
.

The requirement that 4fA < L in this theorem does not restrict generality: aside from
equal nucleotide frequency (where the estimators are naturally invalid), at least one character
c ∈ {A, C, T, G} must satisfy 4fc ≤ L. In addition, the assumption that 4

3 ps + pd < 1 holds
when ps and pd are small (e.g., ps < 1/4 and pd < 1/4 suffices) which is the case most
frequently encountered in practice.

Theorem 9 is our central theoretical result, establishing that the estimators developed in
Section 4 are sound under the reasonable conditions. Before discussing our implementation
and presenting the experimental results, we comment on the error probability in Theorem 9.
This probability is small when each of the terms in the sum are small. Since each of these
terms decays (at least) exponentially with δ times an expectation that grows linearly with
the length of the string (assuming the mutation parameters are fixed), they will all generally
be small.
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6 Implementation details

Our estimators for the three rates require counting the number of k-spans with single
deletion, D, and the number of k-spans with no mutation, N . Counting D and N can be
challenging, particularly because k-mers do not contain the contextual information, and so
we do not have access to their corresponding k-spans. An additional layer of complexity
comes into play from the fact that identifying a k-mer with no mutation (or a single kind
of mutation) is more difficult, considering many edge cases that may arise from inserting
the same character that has been deleted. These challenges are cimcumvented when we
use k-spans, and therefore, counting D and N solely from k-mers is not trivial and can be
considered an interesting problem in and of itself. We therefore implemented an ad hoc
solution to estimate D and N given the two strings S and S′. The steps for estimating D
and N are as follows.

We start by extracting all k-mers in S, and building a de Bruijn graph using these k-mers
using the cuttlefish tool [9]. We then extract the unitigs from this graph. Let the set of
unitigs computed from S be U . We also compute the unitigs in S′ in a similar manner
and call this U ′. We next take an arbitrary unitig u from U , and align every unitig in U ′

with u. To allow for partial overlap, we use semi-global alignment by using the infix option
in edlib [18], which makes sure that gaps at the beginning and at the end of the alignment
are not penalized. For a particular u ∈ U , we align every u′ ∈ U ′ to make sure all relevant
alignments are considered. We use these alignments to look at all windows of length k,
and count D and N accordingly for u. We repeat this for all u ∈ U , and accumulate the
measurements from individual u’s into a single global count.

The motivation behind using unitigs is that if there is an isolated mutation, and if the
mutation is in the first or the last position of a k-mer, then there is no way to understand if
the mutation is a substitution, an insertion, or a deletion only from the k-mers. The only
way to resolve this ambiguity (and other similar ambiguities) is to scan beyond the context of
k characters – and unitigs are a natural way to do this. The core goal of our implementation
of these steps described above was not to make it efficient, but rather to obtain a working
solution. We found that executing these steps estimates D and N reasonably well, and the
estimated rates are also acceptable. As such, we leave finding an efficient way to compute D
and N as an open research question.

7 Experiments and results

In this section, we present a series of experiments to evaluate the performance of the estimators
detailed in Section 4. As discussed earlier, these estimators are sensitive to several input
parameters, including k-mer size, sequence length, and the fraction of “A” characters in the
sequence. Sections 7.1 through 7.3 explore the sensitivity of the estimators with respect to
these parameters. In Sections 7.4 and 7.5, we estimate mutation rates across a wide range of
known rate combinations. And finally, in Section 7.6, we demonstrate that our estimated
substitution rate outperforms estimates obtained under a substitution-only mutation model.
For the experiments in Sections 7.1 through 7.4, the original sequence is a randomly generated
synthetic sequence. In these cases, we compute the number of k-spans containing a single
deletion and the number of k-spans with no mutation directly from the known mutation
process. For the experiments in Sections 7.5 and 7.6, we use real reference genomes as the
original sequences. In these cases, the two types of k-span counts are estimated using the
steps described in Section 6.

WABI 2025
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7.1 Sensitivity of the estimators to k-mer lengths
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Figure 1 Effect of k-mer length on mutation rate estimation (true rates set to 0.05). A synthetic
genome of 1 million nucleotides, mutated genomes were generated by setting ps, pd, and d = 0.05 –
shown by the gray dashed horizontal line. Estimated rates were then computed using a range of
k-mer sizes. Each boxplot shows the variability in estimation across 20 simulations, with error bars
showing one standard deviation. The plots show that the estimators become more accurate and
more precise for shorter k-mers.

We begin our analysis by examining how the choice of k-mer length affects the estimation
of the mutation rates. To investigate this effect, we first generated a synthetic reference
sequence of 1 million nucleotides, randomly sampling bases with fixed frequencies: 30% “A”,
and equal proportions of “C”, “G”, and “T” – making sure total frequency is 100%. From
this reference, we simulated 20 mutated sequences, independently from each other, using the
mutation model described in Section 2. For each of these mutated sequences, we estimated
mutation rates using the estimators defined in Section 4 using a range of values for k. The
results of this analysis are summarized in Figure 1.

As illustrated, the choice of k has a substantial impact on the stability of the estimators.
In particular, longer k-mers tend to produce estimates with higher variability. This behavior
is consistent with the known sensitivity of k-mers to mutations: since a single mutation can
disrupt up to k consecutive k-mers, the longer the k-mer, the more susceptible it becomes to
such perturbations. Our theoretical result in Theorem 9 also captures this: with a larger k,
the error probabilities become larger, and the probabilistic guarantee for the estimators’
performances decreases accordingly.

Interestingly, for the estimator of substitution probability ps, we observe that the variab-
ility in the estimated values does not change significantly from 15 to 39. The reason behind
this behavior is not immediately clear and warrants further investigation. It is possible that
incorporating the number of k-spans with a single substitution S into the estimators may
correct this behavior, but additional analyses are required to substantiate this hypothesis.

7.2 Sensitivity of the estimators to sequence length
To investigate how the length of the original sequence S influences estimation of the mutation
rates, we simulated synthetic genomes ranging from 10K to 1M nucleotides in length. For
each genome length, we generated 10 independent synthetic sequences to capture variability
due to random sampling. The nucleotide composition of each sequence was fixed, with the
frequency of “A” set to 30% and frequencies of “C”, “G”, and “T” set equally – making sure
total frequency is 100%. For each synthetic sequence, we generated its mutated version by
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Figure 2 Effect of sequence length on mutation rate estimation (true rates set to 0.05). For
synthetic genomes of varying lengths, mutated genomes were generated by setting ps, pd, and
d = 0.05 – shown by the gray dashed horizontal line. Estimated rates were computed using three
k-mer sizes: 21, 31, and 41. Each boxplot shows the variability in estimation across 20 simulations.
The plots show that the estimators become more accurate and more precise for longer sequences.

running the mutation process described in Section 2, setting each of ps, pd, and d to 0.05.
We then estimated the mutation rates using the estimators outlined in Section 4 for three
k-mer sizes: k = 21, 31, 41.

Figure 2 displays the estimated rates across the varying sequence lengths. As shown,
the estimators are less stable for shorter sequences. However, with longer sequences, the
estimators yield more accurate results – a trend expected from our core theoretical result
in Theorem 9, which states that the associated error is asymptotically vanishing in L, the
length of the string S: as L increases, the number of k-spans K increases, and therefore the
probability of error decreases, leading to a more precise estimation.

7.3 Sensitivity of the estimators to base composition

We generated synthetic genomes of 1M nucleotides to investigate how the fraction of “A”
characters affects the estimation of the mutation rates. We varied the fraction of “A”s from
21% to 29% in increments of 1%. For each fraction of “A”s, we set the frequency of “C”s,
“G”s, and “T”s equally. For each preset fraction of “A”s, we generated 10 random genomes
to capture stochastic variation. For each of these genomes, we generated its mutated version
using the mutation process described in Section 2, setting each of ps, pd, and d to 0.05. We
then estimated the mutation rates using the estimators described in Section 4 using three
k-mer sizes: k = 21, 31, and 41. Figure 3 shows the sensitivity of the estimators to the
fraction of “A”s in the original string S.

We observe that the estimators p̂s, p̂d, and d̂ work reasonably well to estimate the true
rates when the frequency of “A” characters, fA is not L/4. On the contrary, when the fraction
of “A”s is exactly 25% in the original string S, the estimator gives inaccurate values, some of
which are even negative (see estimated values of ps). This behavior is captured in Theorem 9:
when L − 4fA = 0, µP = E[P ] = 0, and the probabilistic guarantees become unbounded. We
only get meaningful guarantees of consistency when 4fA is strictly smaller than L. While
Theorem 9 does not guarantee consistency when 4fA > L, this does not restrict generality,
as explained in Section 4, and as demonstrated by the estimators’ performances when the
fraction of “A”s is larger than 1/4.
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Figure 3 Effect of nucleotide composition on mutation rate estimation (true rates set to 0.05).
For synthetic genomes of length L = 1M, the fraction of “A”s is varied from 0.21 to 0.29, and the
frequencies of “G”s, “C”s, and “T”s are set equally. For each setting, the mutated string S′ was
generated by setting ps, pd, d = 0.05. Estimated rates were computed for three k-mer sizes: 21, 31,
and 41. Each boxplot shows the variability in estimation across 20 simulations. The results show
that the estimators generally work well for all three k-mer sizes, except when fA ≈ L/4, in which
case the estimators become unstable – as predicted by Theorem 9.

7.4 Estimating rates from a randomly generated synthetic sequence
After testing our estimators for varying k-mer lengths, sequence lengths, and base composi-
tions, we next turn to estimating mutation rates by varying the true rates across a range of
values. To do this, we generated a synthetic reference genome of 1 million base pairs, fixing
the base composition at 30% “A”, and equal proportions of “C”, “G”, and “T” – making
sure total frequency is 100%. Using the mutation model described in Section 2, we then
simulated mutated genomes from the synthetic reference by varying the mutation rates ps,
pd, and d across the values {0.01, 0.02, 0.03, 0.04, 0.05}. For every parameter combination,
we generated 10 independent mutated genomes to capture stochastic variability. We then
estimated the mutation rates using the estimators detailed in Section 4 for each of these
mutated genomes.

In Figure 4, we show two sets of results:
Fixed low rates (0.01): Fixing two of the rates at 0.01, we show the estimates of the
third rate as the true rate varies from 0.01 to 0.05. We repeat this process independently
for ps, pd, and d.
Fixed high rates (0.05): Fixing two of the rates at a higher value of 0.05, we also show
the estimates of the third rate as the true rate varies from 0.01 to 0.05. Again, we repeat
this for all three rates.

When we set the other two rates to 0.01 and estimate the third rate, we observe that
the estimated rates are highly accurate across all trials. In many cases, the boxplots of
the estimates nearly vanish due to minimal variance, indicating tight clustering around the
true values. This trend remains consistent across multiple k-mer sizes, suggesting that the
estimators are robust at low rates of mutation.

In contrast, when we fix the other two rates at 0.05 and estimate the third rate, the
accuracy of the estimation decreases slightly. While the estimates still track the true values
reasonably well, the variance increases, and the boxplots become more prominent. Notably,
the median estimate remains close to the true rate in most settings, which indicates that
the estimators retain their central tendency even under higher mutation rates. However, for
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Figure 4 Estimated mutation rates versus true values, where the original string is a synthetic
sequence. Each subplot corresponds to a case where two mutation rates are fixed (either at 0.01 or
0.05) and the third is varied from 0.01 to 0.05. Each boxplot shows the variability in estimation
across 10 simulations. The results show that the rate estimation is very accurate when the other
two rates are small, and is reasonably accurate when the other two rates are larger.

larger k-mer sizes, we observe increased variability in the estimates – an effect that mirrors
our earlier observations in Section 7.1, where longer k-mers resulted in decreased precision of
the estimators.

7.5 Estimating rates from real sequences
Having the estimators tested for a synthetic reference, we next estimate rates from a real
genome sequence. For this set of experiments, we used the reference assembly of Staphylococcus
aureus (subspecies: aureus USA300_TCH1516), which has 2.8 million nucleotides. We
simulated mutated sequences from this reference by running the mutation process described
in Section 2 by varying the mutation rates ps, pd, and d from 0.01 to 0.05. Similar to
Section 7.4, we generated 10 independent mutated sequences for each combination of ps,
pd, and d to capture stochastic variability. We then estimated the mutation rates using the
estimators outlined in Section 4 for each of these simulated sequences.

Figure 5 shows the estimated mutation rates plotted against the true rates that were used
to run the mutation process. We observe that the results shown in Figure 5 are consistent
with previously discussed results. Specifically, when estimating a given mutation rate while
keeping the other two rates low (0.01), the corresponding estimator performs with high
precision, closely tracking the true value. On the other hand, when the estimation is carried
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Figure 5 Estimated mutation rates versus true values, where the original string is the reference
genome of Staphylococcus (length 2.8 million). Each subplot corresponds to a case where two
mutation rates are fixed (either at 0.01 or 0.05) and the third varies from 0.01 to 0.05. Each boxplot
shows the variability in estimation across 10 simulations. Estimated mutation rates closely match
true values when other rates are low, but estimation becomes less precise under high total mutation
rates (>10%) due to increased difficulty in real genomic contexts.

out with the other two mutation rates set to higher values (0.05), the estimates appear
more confounded. This is likely due to the increased difficulty of accurately estimating
the number of k-spans with a single deletion (D) or no mutation (N ) in a real genomic
context. Notably, these experiments involve challenging conditions, with total mutation rates
exceeding 10%. Despite this, the estimators yield reasonably accurate results, indicating
potential for practical effectiveness.

7.6 Comparison with substitution rates estimated using simple mutation
model

We conclude the experiments section by contrasting the substitution rates estimated using
(10) with substitution rates estimated considering a simple mutation model. We use the
statistics of k-mers developed in a recent work [1] to estimate substitution rates under a
simple mutation model. The simple mutation model captures only substitutions, and no
insertions or deletions. Consequently, we can only compute substitution rates considering
this simple model. Henceforth, we refer to the simple mutation model as SMM.

We estimated the substitution rates using the SMM for the same simulated mutated
sequences described in Section 7.5. In Figure 6, we show the estimated substitution rates
using our estimators in (10), and using SMM. The results highlight that the substitution
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Figure 6 Estimated substitution rates versus true substitution rates, where the original string is
the reference genome of Staphylococcus (length 2.8 million). Rates were estimated using (10) and
using a simple mutation model (SMM) that only considers substitution. Each subplot corresponds to
a case where pd and d are fixed at either 0.01 or 0.05. The points show the average of 10 estimates,
and the error bars show one standard deviation. The dashed black line corresponds to the true
substitution rates. Estimated substitution rates using our method closely match true rates, whereas
SMM overestimates due attributing to substitutions mismatching k-mers originating from insertions
and deletions.

rates estimated using the estimator we developed track the true substitution rates accurately.
On the other hand, the substitution rates estimated using SMM make a gross overestimation.
This is because the SMM does not consider indels, and therefore, the effects of all three
mutation rates are subsumed in the single substitution rate we get using the SMM. As such, a
simple mutation model cannot disentangle the distinct contributions of substitution, insertion,
and deletion rates. In contrast, the mutation model we introduce effectively decomposes
these components, enabling more accurate and meaningful estimation of individual mutation
rates.

8 Conclusions

We have presented a mutation model that accommodates single-nucleotide substitutions,
as well as insertions and deletions while retaining enough mathematical structure to admit
closed-form rate estimators derived solely from k-mer statistics. From this model, we
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obtained algebraic estimators for the three elementary mutation rates: ps, pd, and d; we
also proved a relatively tight sub-exponential concentration bound on ps that guarantees
consistency as sequence length grows. We also identified regimes in which the estimation
becomes ill-conditioned (i.e. large k, pd = 0, or sequence composition with 25% “A”). These
results establish a bridge between sequence evolution and combinatorial word statistics, thus
providing additional tools for theoretical algorithmic computational biology.

In our prototype implementation, we demonstrated that our estimates remain accurate
on simulated evolution of real genomes, and outperforms a substitution-only simple mutation
model by avoiding spurious attribution of indel signals. While naive counting of unmutated
and single-deletion k-mers sufficed to show practical accuracy of our estimators, this raises
an interesting open problem: estimating the number of these unmutated and single-deletion
k-mers efficiently for large scale data sets.

Several directions invite further investigation. First, incorporating the count S of single-
substitution k-spans may illuminate why ps remains relatively stable even for moderately
large k. Second, our framework can extend to heterogeneous or context-dependent rates by
replacing global expectations with position-specific covariates. Third, coupling our estimators
with sketch-based distance measures (such as in [8]) may provide a theory-backed avenue for
larger scale applications such as phylogenetic placement in the presence of high indel activity.
Finally, a more thorough investigation on real genomic data (where the unitig-based approach
we used in the practical implementation starts to become infeasible) will be necessary to
understand the utility of the mutation estimates in practice.

In summary, by utilizing probabilistic modeling and concentration inequalities, we provide
a theoretical foundation and initial practical implementation for quantifying the parameters
of a relatively complex mutation process directly from k-mers. We anticipate that these
ideas will continue to inform new alignment-free computational biology tasks, particularly
relevant as sequencing data continues to outpace traditional alignment-based paradigms.
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