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Abstract
String matching problems in bioinformatics are typically for finding exact substring matches between
a query and a reference text. Previous formulations often focus on maximum exact matches (MEMs).
However, multiple occurrences of substrings of the query in the text that are long enough but not
maximal may not be captured by MEMs. Such long matches can be informative, especially when
the text is a collection of similar sequences such as genomes. In this paper, we describe a new type
of match between a pattern and a text that aren’t necessarily maximal in the query, but still contain
useful matching information: locally maximal exact matches (LEMs). There are usually a large
amount of LEMs, so we only consider those above some length threshold L. These are referred to as
long LEMs. The purpose of long LEMs is to capture substring matches between a query and a text
that are not necessarily maximal in the pattern but still long enough to be important. Therefore
efficient long LEMs finding algorithms are desired for these datasets. However, these datasets are too
large to query on traditional string indexes. Fortunately, these datasets are very repetitive. Recently,
compressed string indexes that take advantage of the redundancy in the data but retain efficient
querying capability have been proposed as a solution. We therefore give an efficient algorithm for
computing all the long LEMs of a query and a text in a BWT runs compressed string index. We
describe an O(m + occ) expected time algorithm that relies on an O(r) words space string index for
outputting all long LEMs of a pattern with respect to a text given the matching statistics of the
pattern with respect to the text. Here m is the length of the query, occ is the number of long LEMs
outputted, and r is the number of runs in the BWT of the text. The O(r) space string index we
describe relies on an adaptation of the move data structure by Nishimoto and Tabei. We are able to
support LCP [i] queries in constant time given SA[i]. In other words, we answer P LCP [i] queries in
constant time. These P LCP queries enable the efficient long LEM query. Long LEMs may provide
useful similarity information between a pattern and a text that MEMs may ignore. This information
is particularly useful in pangenome and biobank scale haplotype panel contexts.
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17:2 Long LEM Query in BWT-Runs Space

1 Introduction

Bioinformatics sequence data is often large and very repetitive. Furthermore, efficient
matching queries on the data are frequently needed for many biological analyses. Therefore,
bioinformatics problems have incentivized and profited from the development of efficient
string indexes. The Burrows-Wheeler transform (BWT) has thus been used in bioinformatics
algorithms. The BWT is a permutation of a text that has found wide use in string indexing
and data compression [11]. Position i in the BWT of the text is essentially the character
preceding the i-th lexicographically smallest suffix of the text. Due to this lexicographic
sorting, adjacent characters in the BWT correspond to the characters preceding highly locally
similar suffixes of the text. Therefore, the BWT of highly repetitive texts tends to have large
runs of one character, with an overall small number of runs. The BWT of highly repetitive
texts therefore compresses well. In fact, the number of runs in BWT, r, is sometimes used as
a measure of the repetitiveness of a string [35]. Finally, given only the BWT of a text, the
text can be reconstructed in linear time [11] and the BWT of a text can be constructed in
linear time by construction of the suffix array [22]. The BWT ordering also allows efficient
string indexes. In other words, given a pattern, find all occurrences of the pattern within
the text. String indexes have been shown that output all occurrences of a pattern (a locate
query) in space linear to the product of the length of the text and the size of the alphabet
and time linear to the sum of the length of the pattern and the number of occurrences [18].

Compressed string indexes have also been shown [3, 18, 32]. These indexes output all
occurrences of a pattern in space sublinear to the size of the text. Although the time
complexity of locating these occurrences is not linear in the length of the pattern and the
number of occurrences, they are typically independent of the length of the text barring
logarithmic factors and close to linear in the length of the pattern and number of occurrences.
In particular for highly repetitive texts, the space of the index can be much smaller than the
space of the text. Notably, recent compressed string indexes have achieved space linear to the
number of runs in the BWT (r) [19,36]. The r-index by Gagie et al. was the first compressed
string index offering close to linear time locate queries in O(r) space [19]. Nishimoto and
Tabei recently improved on this result with their OptBWTR, which achieves linear time
locate queries for texts with alphabets of size polylogarithmic in the length of the text.
OptBWTR relies on the move data structure, which was introduced in the same paper [36].

Compressed string indexes have been fruitfully applied to the growing collection of
bioinformatics data. Over the past two decades, large collections of genomics data have
grown increasingly larger in size. For example, the UK Biobank has whole genome sequencing
data of roughly one million haplotypes [29], and the All of Us program has released whole
genome sequencing data of half a million haplotypes [7]. Furthermore, recent arguments have
been made that a human reference pangenome should be used instead of a singular human
reference genome to avoid reference bias in downstream analyses [33, 43, 46]. The Human
Pangenome Reference Consortium has released a draft human pangenome reference of more
than two hundred high quality phased diploid assemblies and is planning to release over three
hundred and fifty in the final release [12,30]. The UK Biobank whole genome sequencing data
has 1.5 billion variants, the All of Us whole genome sequencing data has 1 billion variants,
and the typical diploid assembly in the draft human pangenome has 6 billion bases. Therefore,
these datasets have 1,500 trillion, 250 trillion, and 1.2 trillion characters each respectively.
However, while very large, these datasets are very repetitive. Furthermore, queries on these
datasets are frequently needed for biological applications including read mapping [24, 27],
read alignment [28], read classification for metagenomes [1, 15, 45] or pangenomes [10]. Many
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general purpose compressed string indexes have also been implemented for exact pattern
matching and matching substrings of the pattern [16,26,38,49]. These indexes may compute
the maximal exact matches (MEMs) of the pattern with respect to the text. MEMs are
matches between the pattern and the text that cannot be extended in the pattern.

While MEMs typically refer to matches that are maximal in the pattern, matches that
are simultaneously maximal in the pattern and the text may sometimes be desired. Notably,
in two data structures related to the BWT, algorithms for outputting matches that are
simultaneously maximal in the pattern and the text have already been developed. These data
structures are the positional Burrows-Wheeler transform (PBWT) and the graph Burrows-
Wheeler transform (GBWT) [17,44]. In the PBWT and GBWT, matches that cannot be
extended in the pattern are referred to as set maximal matches, and matches that cannot be
simultaneously extended in the pattern are referred to as locally maximal matches. Locally
maximal matches that are longer than some length threshold L are referred to as L-long
matches, or long matches for short. Algorithms for outputting set maximal matches and
long matches have been published in the PBWT in uncompressed [17,34,40] and compressed
space [8,13,42,48]. Algorithms for outputting these matches have also been published for
the GBWT in compressed space [39].

In this paper, we use these concepts in the traditional pattern and text context, and name
matches that cannot be simultaneously extended in the pattern and the text locally maximal
exact matches (LEMs). LEMs that are longer than L are long LEMs. The distinction between
matches that do not extend in the pattern and matches that do not extend simultaneously
in the pattern and the text has been made before. Notably, in ropebwt3 MEMs refers to
LEMs of our paper and super maximal exact matches (SMEMs) refers to MEMs of our
paper [26]. The term SMEM has been used in place of MEM in a few papers to avoid the
confusion in terminology [8, 13, 15, 26], however MEM is still the most common term by
far for matches that cannot be extended in the pattern. The authors are not aware of any
published algorithms for the computation of LEMs or long LEMs.

In this work, we describe an algorithm for outputting all long LEMs of a pattern with
respect to a text in O(m+occ) expected time given the matching statistics of the pattern with
respect to the text, where m is the length of the pattern and occ is the number of long LEMs
it has with respect to the text. In order to do so, we modify the OptBWTR data structure of
Nishimoto and Tabei to also compute LCP [i] given SA[i] (i.e. compute PLCP ). We name
this modified OptBWTR, OptBWTRL (i.e. OptBWTR for long LEMs or OptBWTR with
LCP). OptBWTRL maintains the O(r) words space complexity of OptBWTR and computes
ϕ[i] and PLCP [i] in constant time. The long LEM finding algorithm also requires as input
an OptBWTRL of the text. We also discuss possible future work related to this paper,
including avenues for improving the results, utilization of constant time PLCP computation
to speed up matching statistics computation, and biological applications of long LEMs. Long
LEMs may have many biological applications, from identity by descent segment detection
and local ancestry inferences, to seeds or anchors for approximate matching algorithms for
genome to genome alignment, genome to pangenome, read to genome or other alignments.
In this paper, our main contributions are the following:

OptBWTRL: OptBWTRL is an O(r) words space data structure that maintains the
capabilities of OptBWTR and adds the ability to compute ϕ, PLCP, and long LEMs
efficiently. r is the number of runs in the BWT of the text.

PLCP: OptBWTRL enables constant time PLCP [i] computation in O(r) space. Note
that PLCP [SA[j]] = LCP [j], therefore PLCP computation in constant time allows
LCP [j] computation in constant time given SA[j].

WABI 2025



17:4 Long LEM Query in BWT-Runs Space

Long LEM Query: We describe an O(m + occ) expected time long LEM query
for pattern P and text T given the matching statistics of P with respect to T . The
underlying index (OptBWTRL) uses O(r) space. m is the length of P and occ is the
number of long LEMs P has with respect to T . A deterministic time bound for a
similar algorithm we show is O

(
m + occ

√
log occ

log log occ

)
.

Long LEM Query with random access to the text: Given O(tRA) time random
access to the text and a BWT related index, algorithms for computing matching statistics
efficiently are known. Therefore, our long LEM query algorithm results in the following.

In Uncompressed Space: An algorithm for long LEM query in O(m + occ) expected
time in uncompressed string indexes such as the FM Index (Corollary 3.2, variant with
O(nσ) space, where n is the length of the text and σ is the size of the alphabet) [18].
In Compressed Space: An algorithm for long LEM query in O(m log n

δ + occ)
expected time in O(r + δ log n

δ ) space given a block tree [4, 23] (with random access to
the text in O(log n

δ ) time in O(n log n
δ ) space) and an OptBWTRL of the text.

2 Background

In this section, we review definitions used throughout the rest of the paper. We begin with
strings, then in Section 2.1, we review BWT related concepts. In Section 2.2, we give a short
overview of the results of Nishimoto and Tabei in [36]. Matching statistics are reviewed
in Section 2.3. Finally we review maximal exact matches (MEMs) and define locally maximal
exact matches (LEMs) in Section 2.4.

Let Σ = {1, 2, 3, . . . , σ} be an ordered alphabet of size σ. The size (number of characters
it contains) of a string T is represented by |T |. T refers to a text of length n (|T | = n)
where the last character is $. The character $ is lexicographically smaller than all other
characters in T and occurs only in the last position of T . The i-th character of T is T [i],
i ∈ [1, n]. T [i, j] refers to the substring of T that starts at position i and ends at position
j, inclusive (T [i, j] = T [i]T [i + 1]T [i + 1] . . . T [j]). Prefix i of T is the string T [1, i], suffix
i of T is T [i, n]. The longest common prefix of two strings T and T ′ is referred to by
lcp(T, T ′). |lcp(T, T ′)| is the largest value i s.t. i ≤ min(|T |, |T ′|) and T [1, i] = T ′[1, i]
(then, lcp(T, T ′) = T [1, i] = T ′[1, i]). A string T ′ being lexicographically smaller than T is
represented by T ′ ≺ T . If T ′ = T , T ′ ⊀ T and T ⊀ T ′. If T ′ ̸= T , T ′ ≺ T iff T ′ = lcp(T, T ′)
or T ′[|lcp(T, T ′)| + 1] < T [|lcp(T, T ′)| + 1].

2.1 Burrows-Wheeler Transform
The Suffix Array (SA) of a text T is an array of length n = |T | where the i-th position
stores the index of the i-th lexicographically smallest suffix of T . Therefore, T [SA[1], n] ≺
T [SA[2], n] ≺ T [SA[3], n] ≺ · · · ≺ T [SA[n], n]. The Burrows-Wheeler Transform (BWT) of
a text T is a string of length n where the i-th character in the string is the SA[i] − 1-th
character of T (the n-th character if SA[i] = 1). The LF array is an array of length n that
stores the position of the previous suffix in the suffix array, LF [i] = j s.t. SA[j] = SA[i] − 1
for all SA[j] ∈ [1, n − 1], LF [i] = j s.t. SA[j] = n for SA[i] = 1. The ϕ array stores at
position i, the suffix above suffix i in the suffix array, i.e. if SA[k] = i, ϕ[i] = SA[k − 1]
(ϕ[i] = SA[n] if i = SA[1]). The ϕ−1 array stores at position i, the suffix below suffix i in the
suffix array, i.e. if SA[k] = i, ϕ−1[i] = SA[k + 1] (ϕ−1[i] = SA[1] if i = SA[n]). Therefore,
ϕ[ϕ−1[i]] = i and ϕ−1[ϕ[i]] = i. The LCP array is an array of length n where LCP [i] stores
the length of the longest common prefix of suffix SA[i] and SA[i − 1]. LCP [1] = 0 and for
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i SA LCP LF F L
1 20 0 2 $missisismississippi
2 19 0 11 i$missisismississipp
3 16 1 13 ippi$missisismississ
4 5 1 14 isismississippi$miss
5 7 2 15 ismississippi$missis
6 13 2 16 issippi$missisismiss
7 2 4 9 issisismississippi$m
8 10 5 10 ississippi$missisism
9 1 0 1 missisismississippi$
10 9 6 17 mississippi$missisis
11 18 0 12 pi$missisismississip
12 17 1 3 ppi$missisismississi
13 15 0 18 sippi$missisismissis
14 4 2 19 sisismississippi$mis
15 6 3 4 sismississippi$missi
16 12 3 20 sissippi$missisismis
17 8 1 5 smississippi$missisi
18 14 1 6 ssippi$missisismissi
19 3 3 7 ssisismississippi$mi
20 11 4 8 ssissippi$missisismi

Text: m i s s i s i s m i s s i s s i p p i $

ISA: 9 7 19 14 4 15 5 17 10 8 20 16 6 18 13 3 12 11 2 1

PLCP: 0 4 3 2 1 3 2 1 6 5 4 3 2 1 0 1 1 0 0 0

ϕ: 10 13 14 15 16 4 5 12 1 2 3 6 7 8 17 19 18 9 20 11

ϕ−1: 9 10 11 6 7 12 13 14 18 1 20 8 2 3 4 5 15 17 16 19

o
r
d
e
r
e
d

b
y

p
o
s
i
t
i
o
n

i
n

t
e
x
t

ordered by position in SA

cyclic shifts of text

RLBWT: (i,1),(p,2),(s,3),(m,7),($,9),(s,10),(p,11)(i,12),(s,13),(i,15),(s,16),(i,17)

Figure 1 BWT and related structures for T = missisismississippi$. SA, LCP, LF, F, and L

are ordered by position in SA while ISA, P LCP, ϕ, and ϕ−1 are ordered by position in the text.

i ∈ [2, n], LCP [i] = |lcp(T [SA[i], n], T [SA[i − 1], n])|. The PLCP (permuted LCP ) array is
an array of length n where the LCP array is stored by suffix index. Therefore, if SA[i] = j,
PLCP [j] = LCP [i] = |lcp(T [j, n], T [ϕ[j], n])|. Finally, the inverse suffix array, ISA, is an
array of length n that stores at position i the position of suffix i in the suffix array, if
ISA[i] = j, SA[j] = i. ISA[SA[i]] = i and SA[ISA[i]] = i. The SA, LF, ϕ, ϕ−1, and ISA

arrays are permutations of the integers in [1, n]. SA and ISA are inverses of each other and
ϕ and ϕ−1 are inverses of each other.

The run-length Burrows-Wheeler Transform (RLBWT) is the run-length encoding of
the BWT of a text. Call L the BWT of text T . Then, L is partitioned into r nonempty
substrings L1, L2, . . . , Lr. Li is a substring of L corresponding to the i-th run of L. A run is
a maximal repetition of the same character in L. Therefore, Li[1] = Li[2] = · · · = Li[|Li|] for
all i ∈ [1, r] and Li[1] ̸= Li+1[1] for all i ∈ [1, r − 1]. li is the starting position of the run Li

in L. The RLBWT is represented as r pairs (Li[1], li) for i ∈ [1, r]. All of these structures
can be seen in Figure 1 for a text T = missisismississippi$.

2.2 Move Data Structure

The move data structure is a data structure for representing a permutation of a contiguous
range of integers efficiently. It was introduced by Nishimoto and Tabei [36]. In the original
introduction, the structure was described for a permutation of [1, n]. This of course may be
extended to any bijective function from a contiguous range of integers to another contiguous
range of integers. The move data structure takes space proportional to the number of
intervals conserved in the function. An interval is conserved in a bijective function from a
contiguous range of integers to another contiguous range of integers if for any i, j in the
interval, f(i) − f(j) = i − j (therefore, f(i) = f(j) + i − j and f(i) − i = f(j) − j). The
move data structure computes the represented function in constant time. The important
arrays, LF and ϕ−1, are permutations of [1, n] with O(r) conserved intervals, where r is the
number of runs in the BWT. Therefore, Nishimoto and Tabei define the OptBWTR data
structures using move data structures. OptBWTR supports efficient count and locate queries
in BWT-runs compressed space. Below, we more formally review some of the results from
their paper [36].

WABI 2025



17:6 Long LEM Query in BWT-Runs Space

2.2.1 Disjoint Interval Sequence

I = (p1, q1), (p2, q2), . . . , (pk, qk) is a sequence of k pairs of integers. Let pk+1 = n + 1.
Then i is a disjoint interval sequence iff there exists a permutation π of [1, k] s.t. (i)
p1 = 1 < p2 < · · · < pk ≤ n, (ii) qπ[1] = 1, and (iii) qπ[i] = qπ[i−1] + (pπ[i−1]+1 − pπ[i−1]).
[pi, pi+1 − 1] is referred to as the i-th input interval, and [qi, qi + (pi+1 − pi) − 1] as the i-th
output interval. The input intervals don’t overlap, and their union is [1, n]. The output
intervals don’t overlap and their union is [1, n].

A move query on a disjoint interval sequence I takes as input (i, x), where i is an index
in [1, n] and x is the index of the input interval sequence that contains it, i ∈ [1, n] and
px ≤ i < px+1 and x ∈ [1, k]. The move query outputs (i′, x′) where i′ = qx + (i − px) and
px′ ≤ i′ < px′+1, i.e. i′ is the mapping of position i from the input to output intervals by
I and x′ is the index of the input interval that contains i′. f , a permutation of [1, n] with
k conserved intervals, can be represented by a disjoint interval sequence where the input
intervals are the conserved intervals and the output intervals are the mapping of the input
intervals by f . Then, a move query of (i, x) returning (i′, x′) computes f by f(i) = i′.

Nishimoto and Tabei show that move queries on a disjoint interval sequence of k input
intervals (and therefore k output intervals) can be computed in constant time and O(k)
space with the move data structure. The move data structure is built by splitting the k

input intervals of I into at most 2k intervals. This results in a disjoint interval sequence of
at most 2k input intervals (and an equivalent number of output intervals) that represents
the same permutation as the original disjoint interval sequence. The split interval sequence
of i that the move data structure is built on is referred to as a balanced interval sequence.
The notation for a balanced interval sequence of I is B(I), and the notation for a move data
structure of I is F (I). In this paper, we occasionally use input interval of F (I) as shorthand
for input interval of B(I) (for example, i-th input interval of a move data structure refers to
the i-th input interval of the balanced interval sequence it was built on). Brown et al. extend
the balanced interval sequence result of Nishimoto and Tabei to splitting I’s k intervals into
at most k + k

d−1 intervals, resulting in a move data structure with O(d) time move query
computation for any d ≥ 2 [9].

2.2.2 OptBWTR

The arrays LF and ϕ−1 are permutations of [1, n] with O(r) conserved intervals. For LF , a
conserved interval is within a run in the BWT. For ϕ−1, a conserved interval is a range of
suffixes of T that don’t occur at the bottom of a run in the BWT (except the first position
of the interval may be at the bottom of a run). Therefore, Nishimoto and Tabei define
the OptBWTR data structure as the combination of the move data structures of the LF

and ϕ−1 functions along with a rank-select data structure on an O(r) length string Lfirst.
OptBWTR supports O(m log logw σ) time count queries and O(m log logw σ + occ) time
locate queries in O(r) words of space, where r is the number of runs in the BWT of the
text, m is the length of the pattern, occ is the number of occurrences of the pattern in
the text, w is the word size, σ is the size of the alphabet (Theorem 9 of [36]). The input
intervals of B(ILF ), the disjoint interval sequence of the move data structure of LF , are
contained within a run in the BWT. Call the i-th input interval of B(ILF ) [pi, pi+1 − 1].
Then, Lfirst = L[p1]L[p2]L[p3] . . . L[pk], where k ≤ 2r is the number of input intervals of
B(ILF ), L is the BWT of T , and ∀i ∈ [1, k], j ∈ [pi, pi+1 − 1]L[j] = L[pi]. Call B(ISA) the
disjoint interval sequence of the move data structure of ϕ−1, and [p−

i , p−
i+1] its i-th input

interval. OptBWTR is composed of:
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move data structures for LF and ϕ−1 (F (ILF ) and F (ISA) respectively),
a rank-select data structure on Lfirst (R(Lfirst)),
samples of the SA at the beginning of input intervals of the LF move data structure
(SA+, where SA+[i] = SA[pi]), and
the index of the input interval of the ϕ−1 move data structure that contains each SA

sample in SA+ (SA+
index, where SA+

index = y ⇐⇒ SA+[i] ∈ [p−
y , p−

y+1]).

2.3 Matching Statistics

The matching statistics of a pattern P with respect to a text T represents information on
the local similarity of the pattern to the text. The matching statistics of P with respect to
T , P MST , is an array of length |P | = m that stores at position i three values: P MST [i].len,
P MST [i].suff , and P MST [i].row. P MST [i].len is the length of the longest substring of P

starting at i that occurs in T . P MST [i].suff is a suffix of T that has a longest common
prefix with P [i, m] of length P MST [i].len (or equivalently, P MST [i].suff is the starting
position of an occurrence of P [i, i + P MST [i].len − 1] in T ). P MST [i].row is the index in
the SA of T that has value P MST .suff . Formally for all i ∈ [1, m],

P MST [i].len = maxj∈[1,|T |] |lcp(P [i, m], T [j, |T |])|,
|lcp(T [P MST [i].suff, n], P [i, m])| = P MST [i].len, and
SA[P MST [i].row] = P MST [i].suff .

When P and T are clear from the context, we omit them from P MST and refer to the
matching statistics of P with respect to T as MS.

2.4 Maximal and Locally Maximal Exact Matches

For a pattern P and a text T (|P | = m, |T | = n), a maximal exact match (MEM), P [i, j] =
T [i′, j′], is a match between P and T that cannot be extended left or right in the pattern.
Formally, (i = 1 or P [i − 1, j] doesn’t occur in T ) and (j = m or P [i, j + 1] doesn’t occur in
T ). A MEM can be fully specified by the triple (i, i′, k) where k = j − i + 1 is the length of
the match and i and i′ are the starting positions of the match in the pattern and the text
respectively.

For a pattern P and a text T , a locally maximal exact match (LEM), P [i, j] = T [i′, j′],
is a match between P and T that cannot be simultaneously extended in the pattern and
the text. The match cannot be simultaneously extended left in the pattern and the text.
Likewise, it cannot be simultaneously extended right in the pattern and the text. Formally,
(i = 1 or i′ = 1 or P [i − 1, j] ̸= T [i′ − 1, j′]) and (j = m or j′ = n or P [i, j + 1] ̸= T [i′, j′ + 1]).
A LEM can also be fully specified by the triple (i, i′, k) where k is the length of the LEM
and k = j − i + 1. For some length threshold L, a long LEM is a LEM with length at least
L. See Figure 2 for a depiction of MEMs and LEMs in a text representing a pangenome.

3 Methods

Here we describe the main results of our paper. In Section 3.1, we prove move data structures
can compute ϕ and PLCP in constant time. Then we describe OptBWTRL, our modification
of OptBWTR that utilizes these move data structures. In Section 3.2, we describe multiple
algorithms for long LEM query provided an OptBWTRL of the text and matching statistics
of the pattern with respect to the text.
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a c t g a c c c a c t g a a a c t c g g g c c c t t $1
a c t g g g g a c t g a a a c t c g g g c c c t t $2
g g g a c t g a a a g t g t t $3
a c t g a c c c a c t g a a a c t c g g g c c c a g g $4
g g g a c t g a a a g t g g t g g t g g t g c c c a g g $5
a c t g a c c c a c c c a c t g a a a c t c g g g g t g a g g $6
a c t g g g g a c t g a a a g t g a g g $7
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g g g a c t g a a a c t g a t g g t g g a a a c t c g g g g t

Text

Pattern

Long LEMs

MEMs

Figure 2 MEMs and LEMs of a pattern (haplotype) vs a text (pangenome). Haplotype i is the
sequence of characters between $i−1 and $i. The text is the concatenation of the haplotypes T =
“actgacccactgaaactcgggccctt$1actggggactgaaactcgggccctt$2 . . . ”. MEMs and long LEMs (length
threshold for long LEMs: L = 10) of the pattern (a haplotype not contained in the pangenome) with
respect to the text (the pangenome) are highlighted. MEMs are shaded in while LEMs are boxed in.
In this example, MEMs are only able to detect relationships among the haplotypes most closely
related to the pattern haplotype. Haplotypes similar to the pattern but not maximally similar at
any location remain undetected. Notably, haplotype 2 is very similar to the pattern but doesn’t
contain any MEMs with it. The number of undetected similar haplotypes in biobank scale haplotype
panels may be an order of magnitude larger.

3.1 Computing LCP with Move Data Structures
We define p+

j to be the j-th smallest suffix that occurs at the top of a run in the BWT.
Therefore let (i) p+

1 < p+
2 < · · · < p+

r < p+
r+1 = n + 1 and (ii) {p+

1 , p+
2 , . . . , p+

r , p+
r+1} =

{SA[l1], SA[l2], . . . , SA[lr], n + 1}. Lemma 1 and its proof are phrased very similarly to
Lemma 4 in [36] to demonstrate its derivativeness and the similarity of the properties.

▶ Lemma 1. (i) Let x be the integer satisfying p+
x ≤ i < p+

x+1 for some integer i ∈ [1, n].
Then LCP [ISA[i]] = LCP [ISA[p+

x ]] − (i − p+
x ).

Proof. Lemma 1(i) clearly holds for i = p+
x . We show that Lemma 4(i) holds for i ̸= p+

x

(i.e., i > p+
x ). Let st be the position in SA with sa-value p+

x + t for an integer t ∈ [1, y] (i.e.,
SA[st] = p+

x + t) where y = i − p+
x . Two adjacent positions st − 1 and st are contained in

an interval [lv, lv + |Lv| − 1] on LCP which corresponds to the v-th run Lv of L. This is
because st is not the starting position of a run, i.e., (SA[st] = p+

x + t) /∈ {p+
1 , p+

2 , . . . , p+
r }.

The LF function maps st to st−1, where s0 is the position with sa-value p+
x . LF also

maps st − 1 to st−1 − 1 by Lemma 3(i) of [36]. LCP [st−1] = LCP [st] + 1 due to st

and st − 1 being in the same interval on L, Lv. These relationships produce y equalities
LCP [s0] = LCP [s1] + 1, LCP [s1] = LCP [s2] + 1, . . . , LCP [sy−1] = LCP [sy] + 1. The
equalities lead to LCP [s0] = LCP [sy] + y, and therefore LCP [sy] = LCP [s0] − y. Which
represents LCP [ISA[i]] = LCP [ISA[p+

x ] − (i − p+
x ) by ISA[i] = sy, ISA[p+

x ] = s0, and
y = (i − p+

x ). ◀

▶ Lemma 2. (i) Let x be the integer satisfying p+
x ≤ i < p+

x+1 for some integer i ∈ [1, n].
Then PLCP [i] = PLCP [p+

x ] − (i − p+
x ).

Proof. By Lemma 1 and PLCP [j] = LCP [ISA[j]] for all j ∈ [1, n] [21]. ◀
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3.1.1 Move Data Structure for ϕ

p+
j remains as defined in the previous section. Let δ+ be a permutation of [1, r] satisfying

ϕ(p+
δ+[1]) < ϕ(p+

δ+[2]) < · · · < ϕ(p+
δ+[r]). ϕ has the following properties on RLBWT.

▶ Lemma 3. The following three statements hold: (i) Let x be the integer satisfying p+
x ≤

i < p+
x+1 for some integer i ∈ [1, n]. Then ϕ(i) = ϕ(p+

x ) + (i − p+
x ); (ii) ϕ(p+

δ+[1]) = 1 and
ϕ(p+

δ+[i]) = ϕ(p+
δ+[i−1]) + d where d = p+

δ+[i−1]+1 − p+
δ+[i−1]; (iii) p+

1 = 1.

Proof. See Appendix A. ◀

We can compute ϕ by using a move data structure. A sequence Iϕ consists of r pairs
(p+

1 , ϕ(p+
1 )), (p+

2 , ϕ(p+
2 )), . . . , (p+

r , ϕ(p+
r )). Iϕ satisfies the three conditions of a disjoint interval

sequence by Lemma 3, and ϕ is equal to the bijective function represented by Iϕ.

▶ Lemma 4. (i) Iϕ is a disjoint interval sequence. (ii) ϕ is equal to the bijective function
represented by Iϕ.

Proof. (i) Iϕ has the following three properties: (a) p+
1 = 1 < p+

2 < · · · < p+
r ≤ n holds

by Lemma 3(iii) and the definition of the sequence p+
1 , p+

2 , . . . , p+
r+1, (b) ϕ(p+

δ+[1]) = 1 by
Lemma 3(ii), and (c) ϕ(p+

δ+[i]) = ϕ(p+
δ+[i−1]) + (p+

δ+[i−1]+1 − p+
δ+[i−1]). Therefore Iϕ satisfies

the three conditions of the disjoint interval sequence.
(ii) Let fϕ be the bijective function represented by Iϕ. Then fϕ(i) = ϕ(p+

x )+(i−p+
x ) where

x is the integer such that p+
x ≤ i < p+

x+1 holds. On the other hand, ϕ(i) = ϕ(p+
x ) + (i − p+

x )
holds by Lemma 3(i). Therefore fϕ(i) = ϕ(i) and fϕ and ϕ are the same function. ◀

Let F (Iϕ) be the move data structure built on the balanced interval sequence B(Iϕ) for
Iϕ. By Lemma 6 of [36], F (Iϕ) requires O(r) words of space. By the results of Section 3.2
of [36], evaluation of a move query using a move data structure for a balanced disjoint interval
sequence takes constant time. Finally, ϕ(i) = i′ holds for a move query Move(B(Iϕ), i, x) =
(i′, x′) by Lemma 4. Therefore we have proved (i) of the following lemma.

▶ Lemma 5. (i) There exists a move data structure F (Iϕ) that computes ϕ(i) in O(r) space
and constant time given x, the index of the input interval of Iϕ that contains i. (ii) This
move data structure can be modified to also compute PLCP [i] in O(r) space and constant
time given i and x. Call the modified move data structure F (Iϕ,P LCP ).

Proof. Say that B(Iϕ) has k+ input intervals and the i-th input interval is [p+
i , p+

i+1]. Then we
modify the move data structure F (Iϕ) by adding an array LCP + of size k+. LCP +[i] stores
the value LCP [ISA[p+

x ]] for each x ∈ [1, k+]. (PLCP [p+
x ] = LCP [ISA[p+

x ]].) PLCP [i] =
PLCP [p+

x ] − (i − p+
x ) by Lemma 1. Therefore PLCP [i] is computed in constant time by

evaluating LCP +[x] − (i − p+
x ). Call this modified move data structure F (Iϕ,P LCP ). ◀

A similar function that we may need to compute is LCP [i + 1] given SA[i], i.e. given
SA[i] = y, compute |lcp(T [y, n], T [ϕ−1(y), n])| = PLCP [ϕ−1(y)] = LCP [i + 1]. Nishimoto
and Tabei described F (ISA), a move data structure computing ϕ−1. F (ISA) can be modified
to compute PLCP [ϕ−1(y)] in constant time as well in a similar fashion to the modification
of the F (Iϕ) data structure. Call the disjoint interval sequence F (ISA) is built on B(ISA).
Call the i-th input interval of B(ISA) [p−

i , p−
i+1 − 1], where B(ISA) has k− input intervals

and p−
k−+1 = n + 1. Note that by the construction of Nishimoto and Tabei, every suffix at

the bottom of a BWT run is the start of an input interval, {SA[l2 − 1], SA[l3 − 1], SA[l4 −
1], . . . , SA[lr − 1], SA[n]} ⊆ {p−

1 , p−
2 , . . . , p−

k }. Then for any i, j ∈ [p−
x , p−

x+1 − 1], ϕ−1(i) −
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ϕ−1(j) = i − j. Therefore ϕ−1(i) = ϕ−1(j) + (i − j) (see Lemma 4 in [36]). Below, we
prove (ii) that for any i, j ∈ [p−

x , p−
x+1 − 1], PLCP [ϕ−1(i)] − PLCP [ϕ−1(j)] = j − i, therefore

PLCP [ϕ−1(i)] = PLCP [ϕ−1(j)] + j − i.

▶ Lemma 6. Let x be the integer satisfying p−
x ≤ i < p−

x+1 for some i ∈ [1, n]. Then (i)
PLCP [ϕ−1(i)] = PLCP [ϕ−1(p−

x )] − (i − p−
x ). Therefore, (ii) for any i, j ∈ [p−

x , p−
x+1 − 1],

PLCP [ϕ−1(i)] = PLCP [ϕ−1(p−
x )] − (i − p−

x ), PLCP [ϕ−1(j)] = PLCP [ϕ−1(p−
x )] − (j − p−

x ),
and PLCP [ϕ−1(i)] − PLCP [ϕ−1(j)] = j − i.

Proof. Lemma 6(i) clearly holds for i = p−
x . We show that Lemma 6(i) holds for p−

x < i <

p−
x+1 (i.e. i ≠ p−

x ). Let st be the position in the SA with sa-value p−
x +t for an integer t ∈ [1, y]

where y = i−p−
x . Two adjacent positions st and st +1 are contained in an interval [lv, lv+1 −1]

corresponding to the v-th run in the BWT (Lv). This is because st is not the ending position
of a run, SA[st] /∈ {p−

1 , p−
2 , . . . , p−

k−}. The LF function maps st to st−1, where s0 is the
position in the SA with value p−

x . LF also maps st + 1 to st−1 + 1 by Lemma 3(i) of [36].
PLCP [ϕ−1(p−

x +t−1)] = LCP [st−1 +1] = LCP [st +1]+1 = PLCP [ϕ−1(p−
x +t)]+1 since st

and st + 1 are in the same interval in the BWT, Lv. These relationships produce y equalities
PLCP [ϕ−1(p−

x )] = PLCP [ϕ−1(p−
x + 1)] + 1,PLCP [ϕ−1(p−

x + 1)] = PLCP [ϕ−1(p−
x + 2)] +

1,. . . ,PLCP [ϕ−1(p−
x + y − 1)] = PLCP [ϕ−1(p−

x + y)] + 1. This leads to PLCP [ϕ−1(p−
x )] =

PLCP [ϕ−1(p−
x + y)] + y. Which leads to PLCP [ϕ−1(i)] = PLCP [ϕ−1(p−

x )] − (i − p−
x ) by

y = i − p−
x and p−

x + y = i. ◀

Therefore, the move data structure that computes ϕ−1(i), F (ISA), can be modified to
compute PLCP [ϕ−1(i)] as well.

▶ Lemma 7. F (ISA) can be modified to compute PLCP [ϕ−1(i)] as well as ϕ−1(i) in constant
time and O(r) space given x, the index of the input interval of B(ISA) that contains i. Call
the modified move data structure F (Iϕ−1,P LCP ).

Proof. We modify the F (ISA) move data structure by LCP −, an array of size k− where the
x-th element stores the value PLCP [ϕ−1(p−

x )]. Then, PLCP [ϕ−1(i)] can be computed in
constant time by evaluating LCP −[x] − (i − p−

x ) by LCP −[x] = PLCP [p−
x ] and Lemma 6(i).

We call this modified move data structure F (Iϕ−1,P LCP ). ◀

3.1.2 OptBWTRL
We slightly modify OptBWTR by adding a move data structure that computes ϕ and PLCP

and arrays that allow jumping to the closest input intervals corresponding to adjacent runs in
the BWT in constant time. We call it OptBWTRL, L for LCP and L long LEMs. In addition
to the structures of OptBWTR, OptBWTRL contains F (Iϕ,P LCP ), ND, PD, SA−, SA+

ϕ ,
SA−

index, and SA−
ϕ . Furthermore, the F (ISA) move data structure of OptBWTR is replaced

by the F (Iϕ−1,P LCP ) move data structure described in Lemma 7. Recall that B(ILF ) is the
disjoint interval sequence the move data structure F (ILF ) is built on. Let B(ILF ) contain k

input intervals where the i-th input interval is [pi, pi+1 − 1], and pk+1 = n + 1. Further recall
that every input interval is contained in a run in the BWT, i.e. for all i ∈ [1, k], ∀j, j′ ∈
[pi, pi+1 − 1], L[j] = L[j′]. Then, ND and PD are arrays of length k where ND contains the
index of the next input interval with a different character in the BWT and PD contains
the index of the previous input interval with a different character in the BWT. Formally,
for all i ∈ [1, k], ND[i] = min{j > i|L[pi] ̸= L[pj ]}, and PD[i] = max{j < i|L[pi] ̸= L[pj ]}.
If no such j exists, ND[i] = k + 1 and PD[i] = −1. ND and PD can be constructed in
O(k) (and therefore, O(r)) time given Lfirst. SA− are samples of the SA at the ends of
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input intervals of B(ILF ). SA+
ϕ are the indices of the input intervals of the top of B(ILF )

input interval suffix array samples in F (Iϕ,P LCP ). SA−
index and SA−

ϕ are the indices of the
input intervals of the bottom of B(ILF ) input interval suffix array samples in F (Iϕ−1,P LCP )
and F (Iϕ,P LCP ) respectively. Below, let [p+

i , p+
i+1 − 1] and [p−

i , p−
i+1 − 1] be the i-th input

intervals of F (Iϕ,P LCP ) and F (Iϕ−1,P LCP ) respectively. Then, OptBWTRL differs from
OptBWTR in the following ways.

Replaced F (ISA) with F (Iϕ−1,P LCP ) from Lemma 7.
Added F (Iϕ,P LCP ) from Lemma 5.
Added ND and PD. ND[i] = minj>i{Lfirst[j] ̸= Lfirst[i] or j = n + 1}. PD[i] =
maxj>i{Lfirst[j] ̸= Lfirst[i] or j = −1}.
Added SA−. SA−[i] = SA[li+1 − 1].
Added SA+

ϕ . SA+
ϕ [i] = j s.t. p+

j ≤ SA+[i] < p+
j+1.

Added SA−
index. SA−

index[i] = j s.t. p−
j ≤ SA−[i] < p−

j+1.
Added SA−

ϕ . SA−
ϕ [i] = j s.t. p+

j ≤ SA−[i] < p+
j+1.

3.2 Computing Long LEMs
Here, we describe an algorithm for outputting all the long LEMs of a pattern P with respect
to a text T in O(m+occ) expected time using an index of size O(r) words given the matching
statistics of P with respect to T and an OptBWTRL of T . m is the length of P and
occ is the number of long LEMs P has with T . Furthermore, the matching statistics are
slightly augmented to contain the input intervals it’s corresponding data are contained in. In
particular, the input interval of F (ILF ) that MS.row is contained in is stored as MS.i, the
input interval of F (Iϕ,P LCP ) that MS.suff is contained in is stored as MS.w, and the input
interval of F (Iϕ−1,P LCP ) that MS.suff is contained in is stored as MS.x. Note that the long
LEM query algorithm we present here does not necessarily result in an O(m + occ) expected
time algorithm for outputting all long LEMs of P with respect to T given a OptBWTRL
of T because an algorithm for computing the matching statistics of P with respect to T in
O(m) time and O(r) space is not known.

We define the balanced salcp-interval of a string P as a 13-tuple (b, d, e, SA[b], SA[d], SA[e],
i, j, k, v, w, x, y) where [b, e] is the sa-interval of P , d ∈ [b, e], i, j, and k are the indexes of
the input intervals of B(ILF ) that contain b, d, and e respectively, v and w are the indexes
of the input intervals of B(Iϕ,P LCP ) containing SA[b] and SA[d] respectively, and x and
y are the indexes of the input intervals of B(Iϕ−1,P LCP ) of SA[d] and SA[e] respectively.
The balanced salcp-interval keeps track of three positions in the sa-interval: the top (b),
bottom (e), and the middle (d). d is any position in the interval, it may be equivalent to
the top or the bottom. Each position also maintains its corresponding suffix array value
and index of the input interval of the position in F (ILF ) (i, j, and k for top, middle, and
bottom respectively). Finally, the top maintains the index of the input interval of its sa-value
in F (Iϕ,P LCP ) (v), the bottom maintains the index of the input interval of its sa-value in
F (Iϕ−1,P LCP ) (y), and the middle maintains the index of the input interval of its sa-value in
both F (Iϕ,P LCP ) and F (Iϕ−1,P LCP ) (w and x respectively). The balanced salcp-interval of
a string P with no occurrences in T is undefined.

The high level idea of the long LEM finding algorithm is to compute the balanced salcp-
interval of adjacent substrings of length L of the pattern while outputting long LEMs along
the way. I.E. given the balanced salcp-interval of P [f + 1, f + L], compute the salcp-interval
of P [f, f + L − 1] and output all long LEMs of the form P [f + 1, g] = T [f ′, g′]. We call
this problem long salcp-interval advancement. Given an algorithm for long salcp-interval
advancement in O(tL) time, a straightforward long LEM computation algorithm is iterating
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from f = m → 1, repeatedly advancing the salcp-interval and outputting all long LEMs in
O(mtL) time. In Section 3.2.1, we outline an algorithm for balanced salcp-interval extension
and in Section 3.2.2, we outline an algorithm for long salcp-interval advancement. These
algorithms result in an O(m + occ) expected time algorithm for long LEM computation.

3.2.1 Balanced salcp-interval Extension
Here, we provide algorithms for obtaining the balanced salcp-interval of cP given the balanced
salcp-interval of P and an OptBWTRL of T . The first algorithm runs in O(log logw σ) time
by making use of the rank-select structure on Lfirst. The second runs in time linear to the
number of runs in the balanced salcp-interval of P , rP , by iterating through them. Call
the balanced salcp-interval of P (b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y) and the balanced
salcp-interval of cP (b′, d′, e′, SA[b′], SA[d′], SA[e′], i′, j′, k′, v′, w′, x′, y′). Recall that pj , p+

j ,

and p−
j are the starting indexes of the j-th input intervals of F (ILF ), F (Iϕ,P LCP ), and

F (Iϕ−1,P LCP ) respectively.
We first discuss the computation of the top values, b′, SA[b′], i′, and v′. If L[b] = c, then

b′ = LF [b] and i′ can be computed with F (ILF ) in constant time using (b, i). SA[b′] =
SA[b] − 1, and v′ = v if SA[b] ̸= p+

v , otherwise v′ = v − 1. If L[b] ̸= c, b′ = LF [b̂], where
b̂ is the first location in [b, e] such that L[b̂] = c. If î is the index of first input interval
i ≤ î ≤ k such that Lfirst [̂i] = c, then b̂ = pî, where pa is the starting position of the
a-th input interval of F (ILF ). î can be computed in O(log logw σ) time using R(Lfirst)
or O(rP ) time by iterating through the runs of balanced salcp-interval of P using the ND

array. Then, i′ and b′ = LF [b̂] can be computed with F (ILF ) in constant time using (b̂, î).
SA[b′] = SA+ [̂i] − 1, and v′ = SA+

ϕ [̂i] − 1.
The bottom values e′, SA[e′], k′, and y′ can be computed in a similar fashion. If L[e] =

c, then e′ = LF [e] and k′ can be computed with F (ILF ) in constant time using (e, k).
SA[e′] = SA[e] − 1, and y′ = y if SA[e] ̸= p−

k , otherwise y′ = y − 1. If L[e] ̸= c, then
e′ = LF [ê], where ê is the last location in [b, e] such that L[ê] = c. If k̂ is the index of the
last input input interval i ≤ k̂ ≤ k such that Lfirst[k̂] = c, then ê = pk̂+1 − 1. k̂ can be
computed in O(log logw σ) time using R(Lfirst) or O(rp) time by iterating through the runs
of the balanced salcp-interval of P using the PD array. Then, k′ and e′ = LF [ê] can be
computed with F (ILF ) in constant time using (ê, k̂). Finally, SA[e′] = SA−[k̂] − 1, and
y′ = SA+

index[k̂] − 1.
Lastly, the middle values d′, SA[d′], j′, w′ and x′ need to be computed. Pseudocode for

middle value computation is provided as Algorithm 4 in Appendix B. If L[d] = c, then d′ =
LF [d] and j′ can be computed in constant time with F (ILF ) using (d, j). SA[d′] = SA[d − 1].
w′ = w if SA[d] ̸= p+

w , otherwise w′ = w − 1. Finally, x′ = x if SA[d] ̸= p−
x , otherwise

x′ = x − 1. If L[d] ̸= c and cP occurs in T , then there is a preceding or succeeding input
interval of B(ILF ) that intersects with the balanced salcp-interval of P and has value c in
the BWT. Suppose there is a preceding interval, ĵ. Then the middle values can be updated
similar to the bottom values. Let d̂ = pĵ+1 − 1, then j′ and d′ = LF [d̂] are computed in
constant time with F (ILF ), SA[d′] = SA−[ĵ] − 1, x′ = SA−

index[ĵ] − 1, and w′ = SA−
ϕ [ĵ] if

SA[d̂] ̸= p+
SA−

ϕ
[ĵ], otherwise w′ = SA−

ϕ [ĵ] − 1. If there is no preceding interval, then set ĵ to
the index of the succeeding interval. Then the middle values can be updated similar to the
top values. Let d̂ = pĵ , then j′ and d′ = LF [d̂] are computed in constant time with F (ILF ),
SA[d′] = SA+[ĵ], w′ = SA+

ϕ [ĵ] − 1, and x′ = SA+
index[ĵ] if SA[d̂] ̸= p−

SA+
index

[ĵ], otherwise

x′ = SA+
index[ĵ] − 1. The index, ĵ, of the preceding or succeeding interval in the salcp-interval

of P with value c in the BWT can be found in O(log logw σ) time with R(Lfirst) or O(rP )
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time by iterating through the runs in the BWT with PD and ND. Therefore, the balanced
salcp-interval of cP can be computed in O(log logw σ) time or O(rP ) time given the balanced
salcp-interval of P . See Algorithm 3 in Appendix B for the O(rP ) time algorithm pseudocode.

3.2.2 Long salcp-interval Advancement
Let occstart,f+1 be the number of long LEMs of the form P [f + 1, g] = T [f ′, g′] and
occend,f+L−1. be the number of long LEMs of the form P [h, f + L − 1] = T [f ′′, g′′]. Here,
we describe an algorithm that computes the balanced salcp-interval of P [f, f + L − 1] and a
dynamic dictionary of the suffixes of T present in the balanced salcp-interval of P [f, f +L−1].
This algorithm also outputs all occstart,f+1 long LEMs of the form P [f + 1, g] = T [f ′, g′].
The algorithm runs in O(occstart,f+1 + occend,f+L−1) expected time and requires as input
the balanced salcp-interval of P [f + 1, f + L], an OptBWTRL of T , and a dynamic dictionary
of the suffixes of T present in the balanced salcp-interval of P [f + 1, f + L].

We begin with the description of the dynamic dictionary, dictocc. There are numerous
dynamic dictionary data structures that support expected constant time insertion, deletion,
and queries [5, 6, 14,37]. Therefore, we maintain a dynamic dictionary of the suffixes in the
balanced salcp-interval. More precisely, if the balanced salcp-interval of P [f + 1, f + L] is
(b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y), then the dynamic dictionary provided as input to
the long salcp-interval advancement algorithm has e−b+1 elements. ∀a ∈ [b, e], SA[a]−(f +1)
is contained in the dictionary and has the value (f + 1) + |lcp(T [SA[a], n], P [f + 1, m])| − 1 =
f + |lcp(T [SA[a], n], P [f + 1, m])| associated with it. I.E. the value associated with each
suffix SA[a] of the text contained in the dictionary is the ending position (in the pattern) of
the longest match between suffix SA[a] of the text and suffix f + 1 of the pattern. It is not
possible that multiple suffixes of T share the same key in dictocc. Each suffix of T can occur
only once in the dictionary because each suffix of T can occur only once in any balanced
salcp-interval. Each suffix of T can occur only once in any balanced salcp-interval since each
suffix of T occurs exactly once in SA.

Here, we describe the procedure for outputting all occstart,f+1 long LEMs of the form
P [f + 1, g] = T [f ′, g′] in O(occstart,f+1) expected time (we call this outputMatches). The
high level idea is to iterate through the input intervals of B(ILF ), skipping intervals cor-
responding to a run of P [f ] in constant time per run using ND. We outline two functions:
outputMatchesDown(s, ι, z) and outputMatchesUp(s, ι, z). For both functions, s represents
a suffix of T and ι is the index of the input interval that contains it in F (Iϕ−1,P LCP ) and
F (Iϕ,P LCP ) in outputMatchesDown and outputMatchesUp respectively. z represents the
number of matches to output (directly above s in SA for outputMatchesUp and directly below
s in SA for outputMatchesDown) including s. outputMatchesUp(s, ι, 1) outputs a match
P [f +1, g] = T [s, s+g−(f +1)], where g = dictocc[s−(f +1)], and removes the key-value pair
(s − (f + 1), g) from dictocc. outputMatchesUp(s, ι, z) for z > 1 similarly outputs a match
P [f +1, g] = T [s, s+g−(f +1)] where g = dictocc[s−(f +1)], then removes the key-value pair
(s− (f +1), g) from dictocc. Then, it recurses on outputMatchesUp(s′, ι′, z −1), where ι′ and
s′ = ϕ(s) are computed in constant time using F (Iϕ,P LCP ). outputMatchesDown(s, ι, z)
operates in the same way as outputMatchesDown except it computes ϕ−1 instead of ϕ (using
F (Iϕ−1,P LCP ) instead of F (Iϕ,P LCP )). It is simple to see that outputMatchesUp(s, ι, z) and
outputMatchesDown(s, ι, z) operate in O(z) expected time and output z matches each. Now
we utilize outputMatchesUp and outputMatchesDown to output the occstart,f+1 long LEMs
of the form P [f +1, g] = T [f ′, g′]. If the salcp-interval of P [f +1, f +L] is fully contained in one
input interval of F (ILF ), then i = k. If Lfirst[i] = P [f ], then there are no matches to output,
otherwise, every suffix in the balanced salcp-interval needs to be outputted and we do so by
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calling outputMatchesUp(SA[d], w, d−b+1) and outputMatchesDown(ϕ−1(SA[d]), x′, e−b),
where x′ and ϕ−1(SA[d]) are computed with (SA[d], x) and F (Iϕ−1,P LCP ). In the case where
the balanced salcp-interval of P [f +1, f +L] is not fully contained in one input interval (i ̸= k),
we do the following. For the first input interval, i, if Lfirst[i] ̸= P [f ], then the pi+1 − b long
LEMs starting at SA[pi+1 −1], SA[pi+1 −2], . . . , SA[b] in the text are outputted in O(pi+1 −b)
expected time by calling outputMatchesUp(SA−[i], SA−

ϕ [i], pi+1 − b). For any middle input
interval o, i < o < j, if Lfirst[o] = P [f ], then this run in the BWT is skipped, o = ND[o]. Oth-
erwise, if Lfirst[o] ̸= P [f ], then the long LEMs starting at SA[po], SA[po+1], . . . , SA[po+1−1]
are outputted by calling outputMatchesDown(SA+[o], SA+

index[o], po+1 − po). For the last
input interval, k, if Lfirst[k] ̸= P [f ], then the e−pk +1 long LEMs starting at SA[pk], SA[pk +
1], . . . , SA[e] are outputting by calling outputMatchesDown(SA+[k], SA+

index[k], e − pk + 1).
Overall, outputting the occstart,f+1 long LEMs of the form P [f + 1, g] = T [f ′, g′] takes
O(occstart,f+1 + rP [f+1,f+L]) expected time. Furthermore, for every run of character P [f ]
intersecting the salcp-interval of P [f + 1, f + L] except the first one, there is a run of charac-
ters ̸= P [f ]. Therefore rP [f+1,f+L] = O(occstart,f+1) Therefore outputting the occstart,f+1
long LEMs of the form P [f + 1, g] = T [f ′, g′] takes O(occstart,f+1) expected time. See
Algorithms 5–7 in Appendix B for outputMatches and related pseudocodes.

Finally, we must compute the balanced salcp-interval of P [f, f + L − 1]. First suppose
that the balanced salcp-interval of P [f + 1, f + L] is nonempty. Then, we use the algorithm
described in Section 3.2.1 to obtain the salcp-interval of P [f, f + L] in O(rP [f+1,f+L]) time.
Now, let the salcp-interval of P [f, f + L] be (b̂, d̂, ê, SA[b̂], SA[d̂], SA[ê], î, ĵ, k̂, v̂, ŵ, x̂, ŷ) and
the salcp-interval of P [f, f + L − 1] be (b′, d′, e′, SA[b′], SA[d′], SA[e′], i′, j′, k′, v′, w′, x′, y′).
These salcp-intervals differ only by those suffixes of the text whose lcp with P [f, m] has length
exactly L. There are exactly occend,f+L−1 such suffixes. Furthermore, PLCP [SA[b′]] < L
and PLCP [ϕ−1(SA[e′])] < L. Finally, ∀b′ < a ≤ b̂, LCP [a] = PLCP [SA[a]] ≥ L, and
∀ê ≤ a < e′, LCP [a + 1] = PLCP [SA[a + 1]] = PLCP [ϕ−1(a)] ≥ L. Therefore, we initialize
b′ = b̂, SA[b′] = SA[b̂], i′ = î, and v′ = v̂. Then, while LCP [b′] = PLCP [SA[b′]] ≥ L, we (i)
set i′ = i′ −1 if b′ = pi′ , (ii) set b′ = b′ −1, (iii) update SA[b′] and v′ by F (Iϕ,P LCP ), and (iv)
insert the key SA[b′]−f into dictocc with value f+L−1. When LCP [b′] = PLCP [SA[b′]] < L,
the final value b′ has been computed. Similarly for e′, we initialize e′ = ê, SA[e′] = SA[ê], k′ =
k̂, and y′ = ŷ. Then, while LCP [e′ + 1] = PLCP [SA[e′ + 1]] = PLCP [ϕ(SA[e′])] ≥ L,
we (i) set k′ = k′ − 1 if e′ = pk′+1 − 1, (ii) set e′ = e′ − 1, (iii) update SA[e′] and y′ by
F (Iϕ−1,P LCP ), and (iv) insert the key SA[e′] − f into dictocc with value f + L − 1. When
LCP [e′+1] = PLCP [SA[e′+1]] = PLCP [ϕ−1(e′)] < L, the final value e′ has been computed.
This takes constant time per suffix added to the interval, therefore O(occend,f+L−1) time.

If the balanced salcp-interval of P [f + 1, f + L] is empty, the balanced salcp-interval
of P [f, f + L − 1] is only nonempty if MS[f ].len = L. If it is, we initialize the balanced
salcp-interval of P [f, f + L − 1] to (b̂ = MS[f ].row, d̂ = MS[f ].row, ê = MS[f ].row, SA[b̂] =
MS[f ].suff, SA[d̂] = MS[f ].suff, SA[ê] = MS[f ].suff, î = MS[f ].i, ĵ = MS[f ].i, k̂ =
MS[f ].i, v̂ = MS[f ].w, ŵ = MS[f ].w, x̂ = MS[f ].x, ŷ = MS[f ].x) and insert the key
MS.suff − f into dictocc with value f + L − 1. Then, the interval is expanded to the
salcp-interval of P [f, f + L − 1] in O(occend,f+L−1) time as in the other case.

In the case where the balanced salcp-interval of P [f + 1, f + L] is empty, long salcp-
interval advancement is performed in O(occend,f+L−1) expected time . If it is not empty,
the algorithm we have described first performs salcp-interval extension, obtaining the salcp-
interval of P [f, f + L] in O(rP [f+1,f+L]) time and then takes O(occend,f+L−1) expected time
to compute the salcp-interval of P [f, f + L − 1] from the salcp-interval of P [f, f + L]. Finally,
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rP [f+1,f+L] = O(occend,f+L−1). Therefore, the algorithm described here performs the long
salcp-interval advancement in O(occstart,f+1 + occend,f+L−1) expected time. See Algorithm 2
in the Appendix for the pseudocode of this algorithm.

3.3 Time Complexity
If the above algorithm is iterated from f = m → 0, all long MEMs of the pattern with
respect to the text are outputted. The time complexity of the algorithm is the sum of the
time complexity of the m long salcp-interval advancements. Note that the sum of occstart,f+1
for f = m → 0 is occ and the sum of the occend,f+L−1 for f = m → 0 is also occ. Therefore,
the time complexity of the algorithm overall is O(m + occ) expected time. See Algorithm 1
in Appendix B for pseudocode. The algorithm takes O(r) space for the OptBWTRL and
O(occ) space for maintaining the dynamic dictionary [5]. Also note that if a deterministic
time bound is desired, this algorithm runs in O

(
m + occ

√
log occ

log log occ

)
time with the same

space by replacing the dictionary with a deterministic dictionary implemented by exponential
search trees [2,47]. Recall these complexities are when given the modified matching statistics.
A linear time algorithm for computing matching statistics in O(r) space is not known.
However, note that since the values of matching statistics are only needed for positions i

where MS[i].len = L, a straightforward algorithm for long LEM query follows from our
algorithm in O(mL log logw σ + occ) expected time when matching statistics are not given
as input. This algorithm is obtained by computing the salcp-interval of each P [i, i + L − 1]
independently in O(L log logw σ) time using the standard count algorithm described by
Nishimoto and Tabei [36] followed by performing the long LEM query described here. The
long LEM query algorithm described here results in an O(m + occ) expected time long LEM
query algorithm in uncompressed string indexes since algorithms for O(m) time matching
statistics computation are known in uncompressed space.

4 Discussion

In this paper, we have described OptBWTRL, a modification of OptBWTR by Nishimoto
and Tabei [36]. OptBWTRL adds the ability to compute PLCP and ϕ in constant time
with additional move data structures. It also retains a space complexity of O(r) words. We
also define locally maximal exact matches (LEMs), a match that cannot be simultaneously
extended in the pattern and the text instead of one that is only unable to be extended in the
pattern (MEMs). Finally, we describe an algorithm for outputting all LEMs with length at
least L in O(m + occ) expected time given an OptBWTRL of the text and the matching
statistics of the pattern with respect to the text. Note that this doesn’t result in a linear
time algorithm for computing long LEMs in O(m + occ) expected time in O(r) space because
an algorithm for computing matching statistics of a pattern with respect to a text in linear
time in O(r) space is not known. A deterministic bound for our long LEM query algorithm
is O

(
m + occ

√
log occ

log log occ

)
. Finally, our long LEM query admits a direct computation of long

LEMs in O(mL + occ) expected time without being provided matching statistics as input.
This algorithm may be faster than computation of matching statistics followed by O(m + occ)
long LEM query in some cases, especially when L is small.

It is likely that the move data structures F (Iϕ,P LCP ) and F (Iϕ−1,P LCP ) can be merged
into one data structure that still takes O(r) space and computes ϕ, ϕ−1, PLCP [i], and
PLCP [ϕ−1(i)] in constant time in one data structure. This would greatly reduce the number
of samples needed per input interval F (ILF ). It would also allow bidirectional movement
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in the SA with one input interval index. This is left as future work. Possible other future
work includes a practical implementation of the structures and algorithms described here,
possibly as a modification of MOVI or b-move [16, 49]. Thirdly, the ability to compute
PLCP in constant time may speed up matching statistics computation in compressed space.
The intuition is that when MS[i].len ≤ MS[i + 1].len, then when MS[i].len is large, the
sa-interval of P [i, i + MS[i].len − 1] is small and is faster to compute with PLCP and
ϕ and ϕ−1 than with reverse LF . When MS[i].len is small, computing the sa-interval is
faster with reverse LF . In Heng Li’s forward-backward algorithm [25], the new sa-interval is
always computed by reverse LF . Computing the sa-interval with PLCP and reverse LF

simultaneously is likely to be faster in practice than reverse LF alone while retaining the
same worst case time complexity. The authors are currently exploring this idea. Furthermore,
variable length threshold long LEMs may be useful. I.E. output long LEMs that are x% of
the length of the MEMs in the same area. The authors believe a linear time algorithm for
this or a similar problem given matching statistics exist. Finally, applications utilizing the
long LEMs of a pattern with respect to the text is a possible fruitful direction for future
work. Particularly in biological applications.

Long LEMs may have many biological applications. In general, in any application where
long MEMs are used, long LEMs may also be used. Note that MEMs are a subset of LEMs
and long MEMs are a subset of long LEMs. For example, in biobank scale haplotype datasets,
long matches (long LEMs) in the PBWT have revealed genealogical relationships that set
maximal matches (MEMs) are not able to uncover. As the compressive power of compressed
string indexes increases and the number of variants in biobank scale whole genome sequencing
data increases, storing unaligned genomes becomes more viable. In that case, algorithms
for outputting long LEMs are needed to replace the long match algorithms in the PBWT.
These matches have many applications from identity by descent segment detection, haplotype
phasing, haplotype imputation, inferring genealogical relationships, and ancestry inference.
Utilizing unaligned matches from a large collection of haplotype sequences instead of aligned
matches from haplotypes aligned to a linear reference genome may also reduce reference
bias. Finally, novel applications for long LEMs may exist, long LEMs may be used as seeds
for seed and extend algorithms. They may be used as anchors for approximate matching
matching algorithms [20] possibly for long read alignment to either a reference pangenome
or a linear reference genome [31]. Lastly, genome to genome or genome to pangenome long
LEMs detection may find similar sequences in the genomes on different genomic regions.
MEMs detection may miss these similar sequences on different genomic regions because
these matches will typically be overshadowed by larger encompassing matches that occur in
roughly the same region in the pattern and the text. The long LEMs may therefore reveal
old structural variants that MEMs and general alignment algorithms are both unable to
reveal. MEMs don’t reveal these variants due to looking for only the largest matches in a
region on the pattern while alignment algorithms don’t due to better alignments existing in
closeby genomic regions or alignment algorithms being too computationally expensive to run
on very large datasets.

Overall, we have provided a linear time algorithm for outputting all long LEMs of a
pattern with respect to a text in BWT runs compressed space given the matching statistics
of the pattern with respect to the text. We have also applied the move data structure of
Nishimoto and Tabei to computation of PLCP in constant time. Therefore, we can compute
LCP [i] given SA[i] in constant time. We apply these results to modify the OptBWTR,
creating OptBWTRL. OptBWTRL is an O(r) space data structure that computes ϕ and
PLCP in constant time and long LEMs in linear time given matching statistics. These
algorithms result in a linear time long LEM query algorithm in uncompressed string indexes.
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A Proofs

▶ Lemma 3. The following three statements hold: (i) Let x be the integer satisfying p+
x ≤

i < p+
x+1 for some integer i ∈ [1, n]. Then ϕ(i) = ϕ(p+

x ) + (i − p+
x ); (ii) ϕ(p+

δ+[1]) = 1 and
ϕ(p+

δ+[i]) = ϕ(p+
δ+[i−1]) + d where d = p+

δ+[i−1]+1 − p+
δ+[i−1]; (iii) p+

1 = 1.

Proof. (i) Lemma 3(i) clearly holds for i = p+
x . We show that Lemma 3(i) holds for

i ̸= p+
x (i.e., i > p+

x ). Let st be the position in SA with sa-value p+
x + t for an integer

t ∈ [1, y] (i.e., SA[st] = p+
x + t), where y = i − p+

x . Two adjacent positions st and st − 1
are contained in an interval [lv, lv + |Lv| − 1] on SA (i.e., st, st − 1 ∈ [lv, lv + |Lv| − 1]),
which corresponds to the v-th run Lv of L. This is because st is not the starting position
of a run, i.e. (SA[st] = p+

x + t) /∈ {p+
1 , p+

2 , . . . , p+
r }. The LF function maps st to st−1,

where s0 is the position with sa-value vx. LF also maps st − 1 to st−1 − 1, by Lemma 3(i)
of [36]. The two mapping relationships established by LF produce y equalities ϕ(SA[s1]) =
ϕ(SA[s0]) + 1, ϕ(SA[s2]) = ϕ(SA[s1]) + 1, . . . , ϕ(SA[sy]) = ϕ(SA[sy−1]) + 1. The equalities
lead to ϕ(SA[sy]) = ϕ(SA[s0]) + y, which represents ϕ(i) = ϕ(p+

x ) + (i − p+
x ) by SA[sy] =

i, SA[s0] = p+
x , and y = i − p+

x .
(ii) Let p be the integer satisfying Lp = $. Then there exists an integer q such that p+

q is
the sa-value at position lp + 1 (lp + 1 = lp+1) if p ̸= r; otherwise if p = r, p+

q is the sa-value
at position 1 and q = 1. ϕ(p+

q ) = 1, because SA[lp] = 1 always holds. Hence ϕ(p+
δ+[1]) = 1

holds by δ+[1] = q.
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Next, ϕ(p+
δ+[i]) = ϕ(p+

δ+[i−1]) + d holds for any i ∈ [2, r] because (a) ϕ maps the interval
[p+

δ+[i], p+
δ+[i] + d − 1] into the interval [ϕ(p+

δ+[i]), ϕ(p+
δ+[i]) + d − 1] by Lemma 3(i) for any

i ∈ [1, r], (b) ϕ is a bijection from [1, n] to [1, n], and (c) ϕ(p+
δ+[1]) < ϕ(p+

δ+[2]) < · · · < ϕ(p+
δ+[r])

holds.
(iii) Recall that p is an integer satisfying Lp = $. Then there exists an integer q′ such that

p+
q′ is the sa-value at position lp. Finally, recall SA[lp] = 1. Hence, v1 = vq′ = 1 holds. ◀

B Algorithm Pseudocodes

Pseudocode for the long LEM query algorithm is provided in Algorithm 1. The long
LEM query algorithm is separated into subroutines to aid understanding. The long LEM
query algorithm is provided as input the length threshold L, the query/pattern P , and an
OptBWTRL of the text T . Subroutines have access to their calling function’s variables
implicitly. Structures of the OptBWTRL of T are referenced directly, i.e., ND[i] instead
of OptBWTRLT .ND[i]. Finally, operations on move data structures use the notation of
Nishimoto and Tabei [36].

Algorithm 1 LongLEMQuery: Long LEM Query.

/* Input: L: length threshold, P: pattern, and OptBWTRL of T */
/* Outputs all long LEMs of P to T with length at least L */
(b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y) = ∅
for f = |P | → 1 do

(b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y) = LongAdvance(P [f ], MS[f ]);
OutputMatches(#) // # is any character that doesn’t occur in the text
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Algorithm 2 LongAdvance: Long salcp-interval Advancement.

/* Input: c: character to advance by, ms: one element of the
matching statistics of P */

/* Subroutine of Algorithm 1, implicitly has access to L and
(b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y) */

OutputMatches(c)
if (b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y) ̸= ∅ then

(b̂, d̂, ê, SA[b̂], SA[d̂], SA[ê], î, ĵ, k̂, v̂, ŵ, x̂, ŷ) =
BalancedExtend(b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y)

if ms.len = L then
// Note that ms.len = L iff (b̂, d̂, ê, SA[b̂], SA[d̂], SA[ê], î, ĵ, k̂, v̂, ŵ, x̂, ŷ) = ∅
b̂ = d̂ = ê = ms.row

SA[b̂] = SA[d̂] = SA[ê] = ms.suff

î = ĵ = k̂ = ms.i

v̂ = ŵ = ms.w

x̂ = x̂ = ms.x

if (b̂, d̂, ê, SA[b̂], SA[d̂], SA[ê], î, ĵ, k̂, v̂, ŵ, x̂, ŷ) ̸= ∅ then
(s′, v′, lcp) = Move(B(Iϕ,P LCP ), SA[b̂], v̂)
while lcp ≥ L do // Expand block boundary upwards

if b̂ = F (ILF ).Dpair[v̂].first then v̂ = v̂ − 1
b̂ = b̂ − 1
SA[b̂] = s′

v̂ = v′

dictocc[s′ − f ] = f + L − 1
(s′, v′, lcp) = Move(B(Iϕ,P LCP ), SA[b̂], v̂)

(s′, y′, lcp) = Move(B(Iϕ−1,P LCP ), SA[ê], ŷ)
while lcp ≥ L do // Expand block boundary downwards

ê = ê + 1
if ê = B(ILF ).Dpair[ŷ + 1].first then ŷ = ŷ + 1
SA[ê] = s′

ŷ = y′

dictocc[s′ − f ] = f + L − 1
(s′, y′, lcp) = Move(B(Iϕ−1,P LCP ), SA[ê], ŷ)

return (b̂, d̂, ê, SA[b̂], SA[d̂], SA[ê], î, ĵ, k̂, v̂, ŵ, x̂, ŷ)
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Algorithm 3 BalancedExtend: Balanced salcp-interval extension.

/* Input: c: character to extend by,
(b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y): balanced salcp-interval of P ′,
and OptBWTRL of T */

/* Output: (b′, d′, e′, SA[b′], SA[d′], SA[e′], i′, j′, k′, v′, w′, x′, y′): balanced
salcp-interval of cP ′ */

if (b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y) = ∅ then return
b̂ = b, SA[b̂] = SA[b], î = i, v̂ = v

while î ≤ k do // compute b̂, SA[b̂], î, and v̂

if Lfirst[b̂] = c then break
î = ND[̂i]
b̂ = F (ILF ).Dpair [̂i].first

SA[b̂] = SA+ [̂i]
v̂ = SA+

ϕ [̂i]
if î > k then return ∅ // cP doesn’t exist in T

(b′, i′) = Move(B(ILF ), b̂, î)
SA[b′] = SA[b̂] − 1
if SA[b̂] = F (Iϕ,P LCP ).Dpair[v̂].first then v′ = v̂ − 1
else v′ = v̂

ê = e, SA[ê] = SA[e], k̂ = k, ŷ = y

while k̂ ≥ i do // compute ê, SA[ê], k̂, and ŷ

if Lfirst[ê] = c then break
k̂ = PD[k̂
ê = F (ILF ).Dpair[k̂ + 1].first − 1
SA[ê] = SA−[k̂]
ŷ = SA−

index[k̂]
(e′, k′) = Move(B(ILF ), ê, k̂)
SA[e′] = SA[ê] − 1
if SA[ê] = F (Iϕ−1,P LCP ).Dpair[ŷ].first then y′ = ŷ − 1
else y′ = ŷ

(d′, SA[d′], j′, w′, x′) = ComputeMiddle()
return (b′, d′, e′, SA[b′], SA[d′], SA[e′], i′, j′, k′, v′, w′, x′y′)
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Algorithm 4 ComputeMiddle.

// Subroutine of Algorithm 3, has access to everything in Algorithm 3
d̂ = d, SA[d̂] = SA[d], ĵ = j, ŵ = w, x̂ = x

/* compute d̂, SA[d̂], ĵ, ŵ, and x̂ */
while ĵ ≥ i do // try traversing upwards

if Lfirst [̂[j]] = c then break
ĵ = PD[ĵ]
d̂ = F (ILF ).Dpair[ĵ + 1].first − 1
SA[d̂] = SA−[ĵ]
ŵ = SA−

ϕ [ĵ]
x̂ = SA−

index[ĵ]
if ĵ < i then

d̂ = d, SA[d̂] = SA[d], ĵ = j, ŵ = w, x̂ = x

while ĵ ≤ k do // traverse downwards
if Lfirst[ĵ] then break
ĵ = ND[ĵ]
d̂ = F (ILF ).Dpair[ĵ].first

SA[d̂] = SA+[ĵ]
ŵ = SA+

ϕ [ĵ]
x̂ = SA+

index[ĵ]
(d′, j′) = Move(B(ILF ), d̂, ĵ)
SA[d′] = SA[d̂] − 1
if SA[d̂] = F (Iϕ,P LCP ).Dpair[ŵ].first then w′ = ŵ − 1
else w′ = ŵ

if SA[d̂] = F (Iϕ−1,P LCP ).Dpair[x̂].first then x′ = x̂ − 1
else x′ = x̂

return (d′, SA[d′], j′, w′, x′)
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Algorithm 5 OutputMatches.

/* Input: c */
/* Subroutine of Algorithm 2, implicitly has access to

(b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y) and OptBWTRL of T */
if (b, d, e, SA[b], SA[d], SA[e], i, j, k, v, w, x, y) = ∅ then return
if i = k then

if Lfirst[i] ̸= c then
OutputMatchesUp(SA[d], w, d − b + 1)
(s′, x′) = Move(B(Iϕ−1,P LCP ), SA[d], x)
OutputMatchesDown(s′, x′, e − d)

else
if Lfirst[i] ̸= c then

OutputMatchesUp(SA−[i], SA−
ϕ [i], F (ILF ).Dpair[i + 1].first − b)

if Lfirst[k] ̸= c then
OutputMatchesDown(SA+[k], SA+

index[k], e − F (ILF ).Dpair[k].first + 1)
i′ = i + 1
while i′ < k do

if Lfirst[k] ̸= c then
OutputMatchesDown(SA+[i′], SA+

index[i′], F (ILF ).Dpair[i′ + 1].first −
F (ILF ).Dpair[i′].first)

i′ = i′ + 1
else i′ = ND[i′]

Algorithm 6 OutputMatchesDown.

/* Input: s: suffix of T, ι: interval of s in F (Iϕ−1],P LCP ), z:
number of matches to output */

/* Subroutine of Algorithm 5, implicitly has access to f, dictocc, and
OptBWTRL of T */

for a = 1 → z do
g = dictocc[s − f − 1]
dictocc.remove(s − f − 1)
output match T [s, s + g − f − 1] = P [f + 1, g] // Long LEM
(s, ι) = Move(B(Iϕ−1,P LCP ), s, ι)

Algorithm 7 OutputMatchesUp.

/* Input: s: suffix of T, ι: interval of s in F (Iϕ,P LCP ), z:
number of matches to output */

/* Subroutine of Algorithm 5, implicitly has access to f, dictocc, and
OptBWTRL of T */

for a = 1 → z do
g = dictocc[s − f − 1]
dictocc.remove(s − f − 1)
output match T [s, s + g − f − 1] = P [f + 1, g] // Long LEM
(s, ι) = Move(B(Iϕ,P LCP ), s, ι)
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