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Abstract
Genome comparison often involves quantifying dissimilarities between genomes with identical gene
sets, commonly using breakpoints – points where adjacent genes in one genome are not adjacent in
another. The concept of a median genome, used for comparison of multiple genomes, aims to find a
genome that minimizes the total distance to all genomes in a given set. While median genomes are
useful for extracting common genomic information and estimating ancestral traits, the existence of
multiple divergent medians raises concerns about their accuracy in reflecting the true ancestor. The
median problem is known to be NP-hard, particularly for unichromosomal genomes, and solving it
becomes increasingly challenging under different genome distance models. In this work, we introduce
a novel branching algorithm to efficiently find all breakpoint medians of k linear unichromosomal
genomes, represented as unsigned permutations. This algorithm constructs a rooted labeled tree,
where the sequence of labels along each complete ray defines a genome, providing a structured and
efficient way to explore the space of candidate medians by narrowing the search to a well-defined and
significantly smaller subset of the permutation space. We validate our approach with experiments
on randomly generated sets of three permutations. The results show that our method successfully
finds the exact medians and also identifies many near-optimal approximations. Our experiments
further show that most medians lie relatively close to the input permutations, in agreement with
prior theoretical results.
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1 Introduction

Comparing genomes with the same syntenic blocks involves computing their dissimilarities.
This dissimilarity is often quantified by identifying breakpoints, points at which genes are
adjacent in one genome but not in the other. Introduced formally by Sankoff and Blanchette
in 1997 [13], the total number of breakpoints serves as a metric for dissimilarity. To compare
multiple genomes, we can use the concept of median. Given a set of three or more genomes
X = {g1, ..., gk} and a distance d, a median for the set X is a genome that minimizes the
total distance function dT (·) :=

∑k
i=1 d(gi, ·). The concept of the median was first employed

by Sankoff et al. [14] in 1996 within the context of evolutionary gene order models. Motivated
by the search for ancestral genomic information and its applications to small phylogeny
problems, the median problem has since attracted significant attention [2, 3, 15, 7, 6, 16, 17].
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18:2 Identifying Breakpoint Median Genomes: A Branching Algorithm Approach

However, the complexity of the median problem varies with different genome distances,
often proving to be NP-hard [3, 15, 7] particularly for unichromosomal genomes. For
instance, the breakpoint median problem was shown to be NP-hard by Bryant [2] for
linear unichromosomal genomes. Moreover, identifying a median in which adjacency sets
are contained within the union of the adjacency sets of the input genomes has also been
proven to be NP-hard [2]. Following the reduction of the median problem to the Traveling
Salesman Problem (TSP) by Sankoff and Blanchette [13], in 2012, Boyd and Haghighi [1],
using Concorde (a fast software to find TSP solutions), presented a fast algorithm to find
breakpoint medians of samples of large genomes.

While median genomes aim to extract common information among given genomes and
estimate ancestral characteristics, the existence of multiple medians with considerable
divergence [8] raises questions about their proximity to the true ancestor or their usability
in providing ancestral insights. Additionally, determining which, if any, of these medians
accurately reflects ancestral traits poses a significant challenge. In fact, Zheng and Sankoff [18],
Jamshidpey and Sankoff [10] and Miardan et al. [12] showed that median may fail to
approximate the ancestor for the long-time evolution of genomes, while for genomes involved
in evolution for a shorter period of time medians may approximate the true ancestor.

To address the challenge of identifying relevant medians, we propose a novel branching
algorithm for efficiently finding all breakpoint medians of k linear unichromosomal genomes
represented by unsigned permutations of length n. This exponential algorithm constructs
a rooted labeled tree, whose sequence of labels for each ray (a shortest path connecting
the root to a leaf) with length n − 1 determines a unichromosomal genome (represented
as a permutation). The set of all such unichromosomal genomes contains all medians of
the k input genomes. We show that this tree construction reduces the median search space
significantly compared to the full space of n! permutations (see Table 3).

This paper is organized as follows. We begin by laying the foundation. In Section 2
we introduce the basic concepts of a genomic space with breakpoint distance and review
some essential prior results in the literature. In Section 3, we delve into the methodology
behind our branching algorithms designed to identify all medians within a given set of
genomes. Subsequently, in Section 4, we provide empirical validation of our approach through
a series of experiments using sets of three random permutations. A key contribution of this
experimental section is that our method is able to compute the median value exactly, even
in cases where it remained unknown in previous work. We examine how the median value
behaves as the permutation length increases and analyze the distribution of approximate
medians in the reduced search space generated by our algorithm. The results indicate that,
although not all permutations in this space are true medians, a substantial proportion have
total distances very close to the minimum, making them effective median approximations.
We also explore how far the medians tend to be from the input permutations and find that
most lie relatively close, an observation consistent with prior theoretical results [8, 9, 11, 4].
We conclude the paper with a discussion of our findings, their implications, and potential
avenues for future research.

2 Breakpoint medians

We represent an unichromosomal genome by a permutation π which is a bijection on
[n] := {1, · · · , n}. In other words, a permutation π can be represented by π(1), · · · , π(n),
which indicates a specific order on [n]. When there is no risk of ambiguity, we often write
πi instead of π(i), and denote π := π1...πn. We define the set of adjacencies of π as
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Aπ = {{πi, πi+1} | 1 ≤ i ≤ n − 1}, where each adjacency is treated as an unordered pair.
Let Sn denote the set of all permutations of length n. Given x, y ∈ Sn, we denote by
Ax,y := Ax ∩ Ay the set of all common adjacencies of x and y. For a set X ⊂ Sn, we also
denote by AX :=

⋂
x∈X Ax the set of all common adjacencies of permutations in X. The

breakpoint (bp) distance between x and y is define by d(x, y) := n− 1− |Ax,y|.
The breakpoint distance is neither a geodesic distance nor an edit distance, and for

this reason the notion of partial geodesics was introduced by Jamshidpey et al. [9]. We
can consider the breakpoint distance as a generalized edit distance that determines the
parsimonious (shortest) paths of transforming one permutation to another, but with many
missing points in the parsimonious path. In other words, in edit distances the length of every
jump from a point in the parsimonious path to its closest point in the the same path is one,
while in generalized edit distances such as the breakpoint distance this length may be bigger.
A partial geodesic [9] between x and y is a maximal chain x = π0, π1, ..., πk−1, πk = y in Sn

such that
∑k−1

i=0 d(πi, πi+1) = d(x, y). We denote by [x, y] the set of all permutations lying
on partial geodesics connecting x, y ∈ Sn, and call them geodesic points of x and y.

For a set of three or more genomes X = {x1, ..., xk}, a breakpoint median is a genome
that minimizes the total distance function dT (·, X) :=

∑k
i=1 d(xi, ·). The minimal value of

dT is known as the median value of the set X, denoted by µ(X). The set of all breakpoint
medians of X is denoted by M(X).

For a set of permutations X = {x1, ..., xk} in Sn for which the pairwise breakpoint
distances take the maximum value n − 1, Jamshidpey et al. [9] provide a necessary and
sufficient condition for a permutation m to be a median of X, that is m is a median of X if
and only if

Am ⊂
⋃

x∈X

Ax.

Also from [9], a permutation π is a geodesic point of two permutations x and y, and so it is
a median of {x, y}, if and only if Ax,y ⊂ π ⊂ Ax ∪Ay. On the other hand, we do not have a
result establishing a necessary and sufficient condition for a permutation to be a median of a
general set of permutations X. In fact, it is known that there may exist a median that does
not contain all common adjacencies of permutations in X, i.e., there may exist a median m

such that AX ⊈ Am, as the example given by Bryant [2]. However, even though there may
exist medians not containing all common adjacencies of elements of X, there always exists
at least one median with this property, namely, there exists at least one median m such
that AX ⊂ Am (cf. [2]). In addition, when we have a general set of permutations X, even
counter-intuitively, it is not necessary that every adjacency of a median m is an adjacency of
at least one of the permutations in X, that is, there may exist a median m such that

Am ⊈
⋃

x∈X

Ax,

as is shown by Bryant [2]. However, [5] provides an upper bound for the maximum number
of adjacencies of a median that are not in

⋃
x∈X Ax as stated in Theorem 1 (whose proof is

provided in Appendix A). Before the statement of Theorem 1, we need the following notation.
Denote by P(S) the set of all subsets of a set or space S. Let X = {x1, ..., xk} ⊂ Sn and let
BX

X = BX
x1,...,xk

:= Ax1,...,xk
. Then, for any j = 1, · · · , k, let

BX
x1,...,xj−1,xj+1,...xk

:= Ax1,...,xj−1,xj+1,...xk
\ BX

x1,...,xk

WABI 2025



18:4 Identifying Breakpoint Median Genomes: A Branching Algorithm Approach

Continuing this, for any i1, · · · , ir ∈ [n] and U = {xi1 , ..., xir
} ⊂ X, we set

BX
U = BX

xi1 ,...,xir
:= AU \ (

⋃
U⫋V

BX
V ).

In other words, BX
U includes all adjacencies that are common in every x ∈ U , but missing

from every y ∈ X \ U . We have the following theorem.

▶ Theorem 1 ([5]). Let X = {x1, ..., xk} ⊂ Sn be such that

dT (xk, X) = min
i=1...k

dT (xi, X),

and let m ∈M(X). Then

|Am \ (
k⋃

i=1
Axi

)| ≤ On(X) :=
k−1∑
r=2

(r − 1)
∑

1≤i1<...<ir<k

|BX
xi1 ,...,xir

|. (1)

In particular, for k = 3, for any m ∈M(X)

|Am \
3⋃

i=1
Axi | ≤ On({x1, x2, x3}) := |BX

x1,x2
|.

▶ Remark 2. Note that the theorem makes use of the upper bound dT (m, X) ≤ dT (xk, X),
for any m ∈M(X). In particular, for x = 3, dT (x3, X) = mini=1,2,3 dT (xi, X) is equivalent
to d(x1, x2) = maxi,j d(xi, xj), which itself is equivalent to |BX

x1,x2
| = mini ̸=j |BX

xi,xj
|. In this

case, On(X) = |BX
x1,x2
| = mini̸=j |BX

xi,xj
| implies that the upper bound is the number of

adjacencies common in the pair of farthest genomes, i.e. x1, x2, which are missing from x3.
This upper bound significantly restricts the median search space, and by making use of

it, we develop an algorithm to find all breakpoint medians of a general set of permutations.
We first analyze exponential algorithms that construct specific rooted labeled trees, where

each ray (a shortest path from the root to a leaf) of length n−1 corresponds to a permutation
determined by the sequence of labels along the path. The set of all such label sequences
includes all medians, thereby significantly reducing the search space. Specifically, the new
median search space consists of the set of all leaves of these trees. While the volume of this
new search space is exponential, it is negligible compared to the size of the permutation
group of length n.

3 An algorithm to find medians

To describe our algorithms, we first define the neighbors of a point (i.e., a number representing
a syntenic block or gene) with respect to a given set of permutations. Specifically, for
X = {x1, ..., xk} ⊂ Sn and i = 1, · · ·n, we define

NX(i) = Nx1,...,xk
(i) = {j : {i, j} ∈

k⋃
l=1
Axl
}.

Note that for each i, 1 ≤ |NX(i)| ≤ 2k. The equality |NX(i)| = 1 holds when i satisfies both
of the following conditions: i is either the first or last number in each permutation xl, for
1 ≤ l ≤ k; and i is an extremity of an adjacency in AX . On the other hand, the equality
|NX(i)| = 2k holds when i satisfies both of the following conditions: i is neither the first
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nor the last number of any permutation xl, for 1 ≤ l ≤ k; and i is not an extremity of an
adjacency in Axl,xp

, for any l ̸= p. If X is such that d(xl, xp) = n − 1 for any l ̸= p, then
k ≤ |NX(i)| ≤ 2k.

Our main goal in this paper is to find all medians for a given set of permutations X ⊂ Sn.
To achieve this, we construct a family of labeled rooted trees of height n−1 with the following
properties: Each vertex v of the tree is assigned a label, denoted by ℓ(v), which is a number
between 1 and n. In order for two vertices, u and v, to be connected by an edge, it is
necessary that ℓ(v) ∈ NX(ℓ(u)). Furthermore, for each path of length n− 1 from the root
to a leaf, the sequence of labels along the path forms a permutation y satisfying certain
conditions. In particular, the labels of the root and leaf determine the first and last numbers
in y, respectively, i.e., y1 and yn. We refer to y as a permutation given by a leaf.

In the rest of this paper, we first present an algorithm in Section 3.1 for constructing
trees in which every permutation y given by a leaf satisfies

Ay ⊂
⋃

x∈X

Ax.

In this case, if the breakpoint distance between every pair of permutations in X attains the
maximum value n− 1, then from Jamshidpey et al. [9], any permutation y given by a leaf at
level n− 1 is a median of X. Consequently, the algorithm finds all medians of X.

Next, in Section 3.2, we construct trees where every permutation y given by a leaf satisfies

AX ⊂ Ay ⊂
⋃

x∈X

Ax.

In this case, if the upper bound given in (1) is zero – a weaker condition than requiring all
pairwise distances in X to be maximal – then at least one of the permutations given by a
leaf of the tree is a median of X (cf. [2]). This allows us to determine the median value
within a relatively smaller search space.

Finally, in Section 3.3, we introduce a modification of the algorithm from Section 3.1,
providing additional flexibility to identify all medians of a general set of permutations. This
is achieved by allowing permutations to contain a limited number of adjacencies not present
in
⋃

x∈X Ax. The upper bound in (1) ensures that all medians of X are represented among
the leaves of the tree constructed by this flexible algorithm.

3.1 Finding all medians of permutations with maximum pairwise
distance to each other

Let id denote the identity permutation in Sn, and let x ∈ Sn be a permutation such that
d(id, x) = n− 1. We first describe the algorithm for the case of two permutations, id and x,
and later extend it to k > 2 permutations.

For each i = 1, . . . , n, we construct a tree whose root is labeled by i. We denote the root
of this tree by ∅. The root ∅ has |Nid,x(i)| children, denoted by ∅1,∅2, . . . ,∅|Nid,x(i)|.
The label of each child is a number in Nid,x(i), such that if j ̸= j′, then ℓ(∅j) ̸= ℓ(∅j′). In
other words, there is a bijection between the set {ℓ(∅r) | 1 ≤ r ≤ |Nid,x(i)|} and Nid,x(i).
By convention, we fix this bijection so that ℓ(∅r) is an increasing function of r; in particular,
ℓ(∅1) and ℓ(∅|Nid,x(i)|) are the smallest and largest numbers in Nid,x(i), respectively.

Each vertex ∅j1, for 1 ≤ j1 ≤ |Nid,x(i)|, has |Nid,x(ℓ(∅j1)) \ {i}| children, denoted by
∅j1j2, where 1 ≤ j2 ≤ |Nid,x(ℓ(∅j1)) \ {i}|, with ℓ(∅j1j2) ∈ Nid,x(ℓ(∅j1)) \ {i}. Moreover,
if j2 ̸= j′

2, then ℓ(∅j1j2) ̸= ℓ(∅j1j′
2). Continuing this process, the parent of a vertex

∅j1j2 . . . jl−1jl at level l is the vertex ∅j1j2 . . . jl−1. If

Nid,x(ℓ(∅j1j2 . . . jl−1jl)) \ {ℓ(∅), ℓ(∅j1), . . . , ℓ(∅j1j2 . . . jl−1)} ≠ ∅,

WABI 2025



18:6 Identifying Breakpoint Median Genomes: A Branching Algorithm Approach

then its children are ∅j1j2 . . . jl−1jljl+1, for

1 ≤ jl+1 ≤ |Nid,x(ℓ(∅j1j2 . . . jl−1jl)) \ {ℓ(∅), ℓ(∅j1), . . . , ℓ(∅j1j2 . . . jl−1)}|,

where ℓ(∅j1j2...jl−1jljl+1) ∈ Nid,x(ℓ(∅j1j2...jl−1jl)) \ {ℓ(∅), ℓ(∅j1), ..., ℓ(∅j1j2...jl−1)}.
Again, if jl+1 ̸= j′

l+1, then ℓ(∅j1j2 . . . jljl+1) ̸= ℓ(∅j1j2 . . . jlj
′
l+1). Since this is a finite

process, it results in a labeled tree for each i as the label of the root, with 1 ≤ i ≤ n.
More precisely, the sequence of labels along every (∅, u)-path, where u is a leaf at level

n− 1, represents a permutation y such that Ay ⊂ Aid ∪ Ax. Since Aid ∩ Ax = ∅, we have
y ∈ [id, x], meaning that we can identify all geodesic points of id and x when d(id, x) = n− 1.
Furthermore, the number of permutations in [id, x] is equal to the number of (∅, u)-paths of
length n− 1 in all n trees. An example is illustrated in Figure 1.

For each i, 1 ≤ i ≤ n, we denote by T i
id,x the tree constructed as above, where the root is

labeled by i. We also define Tid,x := {T i
id,x | 1 ≤ i ≤ n} as the set of all these n trees.

1

2 3 5

3 4

4 6

65

6 5

4 5

5 4

3 5 6

6

5

6

3
3 5

2 4 6

4
5 6

6 5

5
2

6

6 5

5 4

4 5 2

2

4 6

632

3

6
2 6 3

2

4 3

3 2

2 3

24

2 4

Figure 1 The representation of the tree T 1
id,x, for x = 246315, with its labels. In this example

we have Nid,x(1) = {2, 3, 5}, Nid,x(2) = {1, 3, 4}, Nid,x(3) = {1, 2, 4, 6}, Nid,x(4) = {2, 3, 5, 6},
Nid,x(5) = {1, 4, 6} and Nid,x(6) = {3, 4, 5}. Also, d(id, x) = n − 1 = 5, and so each path from the
root to a leaf in level 5 constitutes a permutation in [id, x]. The list of permutations in [id, x] given by
this tree is: id = 123456, 123465, 123645, 123654, 124365, 124563, 132456, 132465, 136542, 154236,
154632, 156432, 156423, 156342 and 156324. These are all the permutations in [id, x] that start at 1.
The bold edges represent the adjacencies of id and the other edges represent the adjacencies of x.

More generally, let X = {x1, ..., xk} ⊂ Sn be a set of permutations. Following the same
steps just replacing Nid,x(i) with Nx1,...,xk

(i), we can construct n labeled rooted trees, T i
X ,

such that the sequence of labels along each (∅, u)−path, where u is a leaf at level n−1, forms
a permutation y satisfying Ay ⊂

⋃k
l=1Axl

. Therefore, if X = {x1, ..., xk} ⊂ Sn satisfies
d(xl, xp) = n− 1 for any l ̸= p, then the set of all permutations given by leaves at level n− 1
in the trees T i

X , for i = 1, ..., n, is exactly the set of all medians of X. We denote

TX := {T i
X ; 1 ≤ i ≤ n}

and let Y (T i
X) be the set of all permutations y ∈ Sn that are given by a leaf of T i

X at level
n− 1. Moreover, let

Y (TX) :=
n⋃

i=1
Y (T i

X).

Each vertex of a tree T i
X is a sequence ∅j1j2...jl where each ji, i = 1, .., l, is a number

between 1 and 2|X|. To construct a child vertex and its label from its parent and the parent’s
label, we define the following operation. Given a sequence of symbols u = u1 . . . ul (e.g.,
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numbers) and a symbol r, we define the operation u ⊕ r as a new sequence of symbols
u ⊕ r := u1...ulr. We emphasize that in the above algorithm u1 = ∅ and u2, .., ul and r

are natural numbers in {1, ..., 2|X|}. For each fixed tree of TX , we denote by Tu(T i
X) = Tu

the ordered sequence of labels assigned to the vertices along the (∅, u)−path for a vertex
u in T i

X . Observe that Tu is a sequence of digits, where each digit is between 1 and n,
and all digits are distinct. We denote by dig(Tu) the set of labels appearing in Tu, and let
NX(Tu) := NX(ℓ(u)). Additionally, we define Lj(T i

X) = Lj to be the set of all vertices of
the tree T i

X at level j, for 0 ≤ j ≤ n − 1, considering the root at level zero. Using these
notations, the tree construction process for k ≥ 2 permutations is described in Algorithm 1.
These notations will also be used in the subsequent sections.

Note that we can also view the tree construction in suffix-tree terms, as follows. Each
tree T i

X has root label i, and every internal node that spells a prefix (i, u1, . . . , uj) branches
to a child uj+1 if and only if uj+1 is adjacent to uj in at least one genome in X, and uj+1
has not yet appeared in the prefix.

Algorithm 1 Gives permutations y such that Ay ⊂
⋃

x∈X

Ax.

Data: X = {x1, ..., xk} ⊂ Sn.

Result: Permutations y such that Ay ⊂
k⋃

l=1
Axl

.

for i = 1, ..., n do
for w = 0, ..., n do

Lw ←− ∅
L0 ←− {∅}
T∅ ←− i

for j = 1, ..., n− 1 do
for u ∈ Lj−1 do

r ←− 0
for k ∈ NX(Tu) do

if k /∈ dig(Tu) then
r ←− r + 1
Lj ←− Lj ∪ {u⊕ r}
Tu⊕r ←− Tu ⊕ k

for u ∈ Ln−1 do
print Tu

▶ Remark 3 (Finding permutations with maximum distance of a set X). Given X =
{x1, ..., xk} ⊂ Sn, denote by NX(i) = N x1,...,xk

(i) := [n] \ NX(i) the complement set
of NX(i), for 1 ≤ i ≤ n. Note that, if we replace NX(·) by NX(·) in Algorithm 1, we obtain
all permutations with maximum distance from X, i.e, we find all permutations y such that
d(y, xi) = n− 1, for 1 ≤ i ≤ n.

3.2 Finding all geodesic points for a general set of permutations
A segment s of a set of adjacencies I ⊂ Aπ, for π ∈ Sn, is a maximal set of consecutive
adjacencies of I, i.e. it is a set

s = {{π(r), π(r + 1)}, {π(r + 1), π(r + 2)}, · · · , {π(r + k − 1), π(r + k)}} ⊂ I

WABI 2025



18:8 Identifying Breakpoint Median Genomes: A Branching Algorithm Approach

such that {π(r−1), π(r)}, {π(r+k), π(r+k+1)} /∈ I, for r > 1 and r+k < n. We often denote
s by ∥π(r), · · · , π(r+k)∥, and write s∈̂I. We say that Int(s) := {π(r+1), · · · , π(r+k−1)} are
the internal points of s, and End(s) := {π(r), π(r + k)} are the end points of s. Generalizing
the idea, the internal and end points of I ⊂ Aπ are defined by

Int(I) :=
⋃
s∈̂I

Int(s), End(I) :=
⋃
s∈̂I

End(s).

Note that the above definitions do not depend on a specific choice of π, that is, the definitions
remain intact if we replace π by any π′ for which I ⊂ Aπ′ .

Now consider the case where x ∈ Sn satisfies d(id, x) < n− 1, that is, Aid,x ̸= ∅. We can
apply a similar idea as in the case of maximum distance, but now with some restrictions.
From [9], a permutation y ∈ [id, x] if and only if Aid,x ⊂ Ay ⊂ Aid ∪ Ax. As a result, if
s = ∥n0, ..., nl∥ is a segment of Aid,x, then the ordered sequence of digits n0...nl must appear
in the ordered sequence of labels of the (∅, u)-paths with length n−1. In order for this to hold,
first note that no internal point of Aid,x can be a label of the root. In fact, if i ∈ Int(Aid,x),
then there exist j and j′ with {i, j} and {i, j′} in Aid,x. Therefore, if i is the label of the
root, any permutation y given by a leaf at the level n− 1 will contain either {i, j} or {i, j′}
(but not both), and thus cannot satisfy Aid,x ⊂ Ay. This implies that if i ∈ Int(Aid,x),
then i can only be a label of an internal vertex of the tree. Moreover, since |Nid,x(i)| = 2,
the vertex of the label equal to i will have exactly one child. Therefore, for any segment
s = ∥n0, ..., nl∥∈̂Aid,x, either n0 or nl should appear before n1, . . . , nl−1 in Tu for any leaf u.
To ensure the condition Aid,x ⊂ Ay, it follows that each segment s = ∥n0, ..., nl∥∈̂Aid,x, if a
vertex v has label ℓ(v) = n0 and nl is not in Tv (or the opposite, ℓ(v) = nl and n0 is not in
Tv), then v must have exactly one child v ⊕ 1 with label ℓ(v ⊕ 1) = n1 (or ℓ(v ⊕ 1) = nl−1).

To describe the tree construction process, for a given segment s∈̂AX and j ∈ End(s),
we denote by j the other end point of s and by j∗ the unique point (number) such that
adjacency {j, j∗} ∈ s. In the case where d(id, x) < n − 1, for each i ∈ [n] \ Int(Aid,x) we
construct a rooted tree T i

id,x with the root label i. At each level l, a vertex ∅j1...jl−1jl is a
child of ∅j1...jl−1. Now, if Nid,x(ℓ(∅j1...jl−1jl))\{ℓ(∅), ℓ(∅j1), ..., ℓ(∅j1j2...jl−1)} ≠ ∅ then
∅j1...jl−1jl has children defined as follows. If ℓ(jl) ∈ End(s) and ℓ(jl) /∈ dig(T∅j1...jl

), for
some segment s∈̂Aid,x, then ∅j1...jl has exactly one child ∅j1...jl1 with label ℓ(∅j1...jl1) =
ℓ(∅j1...jl−1jl)∗. Otherwise, its children are ∅j1...jljl+1, for

1 ≤ jl+1 ≤ |Nid,x(ℓ(∅j1...jl−1jl)) \ {ℓ(∅), ℓ(∅j1), ..., ℓ(∅j1j2...jl−1)}|,

where ℓ(∅j1j2...jl−1jljl+1) ∈ Nid,x(ℓ(∅j1...jl−1jl))\{ℓ(∅), ℓ(∅j1), ..., ℓ(∅j1j2...jl−1)}, in the
same way that if jl+1 ̸= j′

l+1, then ℓ(∅j1j2...jljl+1) ̸= ℓ(∅j1j2...jlj
′
l+1). After a finite number

of steps, we construct |[n] \ Int(Iid,x)| trees such that for each leaf u at the level n− 1, Tu

gives a permutation y satisfying Aid,x ⊂ Ay ⊂ Aid ∪ Ax.
We can generalize this idea to a set of k permutations X = {x1, ..., xk} ⊂ Sn. Following the

same steps, just replacingNid,x(i) withNX(i) andAid,x withAX , we construct |[n]\Int(AX)|
labeled rooted trees T i

X , such that for each leaf u at the level n−1, the sequence Tu corresponds

to a permutation y with AX ⊂ Ay ⊂
k⋃

l=1
Axl

. Denote by

T X = {T i

X ; i ∈ [n] \ Int(AX)}

and define Y (T i

X) to be the set of all permutations y ∈ Sn given by a leaf of T i

X , and let

Y (T X) :=
⋃

i∈[n]\Int(AX )

Y (T i

X).
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For a set X where the upper bound in (1) is equal to zero (recall that this condition is
weaker than requiring all permutations in X to be at maximum pairwise distance), from [2],
there exists at least one y ∈ Y (T X) that is a median of X. More precisely, in this case, any
y′ ∈ Y (T X) such that

k∑
l=1

d(xl, y′) = min
y∈Y (T X )

(
k∑

l=1
d(xl, y)

)
,

is a median of X. Thus, in addition to finding some medians of X, this algorithm also finds
the median value of X efficiently. The tree construction process is described in Algorithm 2.

Algorithm 2 Gives all permutations y such that Ax1,...,xk ⊂ Ay ⊂
k⋃

l=1
Axl .

Data: X = {x1, ..., xk} ⊂ Sn.

Result: Permutations y such that Ax1,...,xk
⊂ Ay ⊂

k⋃
l=1
Axl

.

for i ∈ {1, ..., n} \ Int(AX) do
for w = 0, ..., n do

Lw ←− ∅
L0 ←− {∅}
T∅ ←− i

for j = 1, ..., n− 1 do
for u ∈ Lj−1 do

r ←− 0
if ℓ(u) ∈ End(AX) and ℓ(u) /∈ dig(Tu) then

r ←− r + 1
Lj ←− Lj ∪ {u⊕ r}
Tu⊕r ←− Tu ⊕ ℓ(u)∗

else
for k ∈ NX(Tu) do

if k /∈ dig(Tu) then
r ←− r + 1
Lj ←− Lj ∪ {u⊕ r}
Tu⊕r ←− Tu ⊕ k

for u ∈ Ln−1 do
print Tu

Note that, if X = {x1, ..., xk} is a set of permutations such that d(xl, xp) = n − 1, for
any l ̸= p, then AX = ∅. Therefore, in Algorithm 2, the condition

ℓ(u) ∈ End(AX) and ℓ(u) /∈ dig(Tu)

does not hold, and hence the algorithm proceeds directly to the“else” branch. In this case,
Algorithm 2 yields exactly the same output as Algorithm 1. Furthermore, for a general set of
permutations X = {x1, ..., xk}, the tree T i

X produced by Algorithm 1 contains, as a subgraph,
the tree T i

X generated by Algorithm 2, for all i ∈ [n] \ Int(AX). The main properties of
these subtrees are:
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No internal point of AX can be used as the label of the root, as previously noted;
For any path starting at the root, once the path reaches one of the end points of a segment
s∈̂AX , say j, the path continues without branching until it reaches the other end point
of s, namely j.

3.3 An algorithm to find all medians of a general set of permutations
As seen in Theorem 1, On(X), for X ∈ Sn, is an upper bound for the number of adjacencies
of any median m ∈M(X) outside ∪x∈XAx. To apply this result to k independent random
permutations, namely ξ1, ..., ξk ∈ Sn, recall that a sequence of random variables (Zn)n∈Z+

converges in probability to a random variable Z, as n goes to infinity, if for any ε > 0,
P(|Zn − Z| > ε) → 0. We know that On({ξ1, ..., ξk}) is very small, with high probability.
More explicitly, from [5], we know that

On(X)
an

→ 0, n→∞,

in probability, for any sequence (an)n∈N diverging to ∞, such that an/n → 0, as n → ∞.
Therefore, if we consider the flexibility of using On(X) adjacencies out of ∪x∈XAx in
Algorithm 1, then we obtain all permutations y with at most On(X) adjacencies out of
∪x∈XAx, which we call On(X)−freedom permutations. These permutations include all
medians of X with high probability. More generally, for a non-negative integer α ≥ 0, we
say a permutation π is α−freedom with respect to X ⊂ Sn, if |Aπ \ ∪x∈XAx| ≤ α. In this
section, we extend our algorithm to construct α−freedom medians of X ⊂ Sn for α = On(X),
i.e. the medians of X that include at most α adjacencies out of ∪x∈XAx.

Let X = {x1, ..., xk} ⊂ Sn be a set of permutations such that On(X) ̸= 0. For every
i = 1, ..., n, we construct a tree with a root labeled by i. We denote by ∅ the root of this
tree. Now for each vertex of a tree we add a new parameter, namely, for each vertex u

we assign a number τu, with 0 ≤ τu ≤ On(X), that determines the number of children of
vertex u in the tree and the number of adjacencies that are not in ∪x∈XAx and appear
in Tu, in the following way: if τu ̸= 0 then u has n − |dig(Tu)| children, i.e., we construct
n − |dig(Tu)| sequences of labels by adding to the Tu all possible numbers j, from 1 to n,
that did not appear in Tu, and so we add the adjacency {ℓ(u), j} for each permutation y

that is being constructed from the sequence of labels, which also includes adjacencies that
are not in ∪x∈XAx. If τu = 0 then any descendent vertex v of u has τv = 0 and u has
the same number of children given by Algorithm 1, which is |NX(ℓ(u)) \ dig(Tu)|. So in
this case, Tu already contain On(X) adjacencies out of ∪x∈XAx. For the root we assign
τ∅ = On(X). So the root has n− 1 children, called ∅1, ∅2, ..., ∅(n− 1), with ℓ(∅j) = j,
for j < i, and ℓ(∅j) = j + 1, for j ≥ i. We assign τ∅j = τ∅ − 1 if ℓ(∅j) /∈ NX(i), or
τ∅ = τ∅j if ℓ(∅j) ∈ NX(i). For each vertex ∅j, if τ∅j ̸= 0 then ∅j has n− 2 children, called
∅jj′, for 1 ≤ j′ ≤ n − 2, with ℓ(∅jj′) ∈ [n] \ {ℓ(∅), ℓ(∅j)} such that there is a bijection
between set {ℓ(∅jj′) : 1 ≤ j′ ≤ n − 2} and [n] \ {ℓ(∅), ℓ(∅j)}. If ℓ(∅jj′) /∈ NX(ℓ(∅j))
then τ∅jj′ = τ∅j − 1, and if ℓ(∅jj′) ∈ NX(ℓ(∅j)) then τ∅jj′ = τ∅j . On the other hand, if
τ∅j = 0, then ∅j has |NX(ℓ(∅j))\{i}| children, namely ∅jj′, for 1 ≤ j′ ≤ |NX(ℓ(∅j))\{i}|
with τ∅jj′ = 0 and ℓ(∅jj′) ∈ NX(ℓ(∅j)) \ {i} in the way that if j′ ̸= j′′, then ℓ(∅jj′) ̸=
ℓ(∅jj′′). Continuing this process, the parent of a vertex ∅j1j2...jl−1jl, in level l is the vertex
∅j1j2...jl−1. If τ∅j1j2...jl−1jl

̸= 0, then ∅j1j2...jl−1jl has n − |dig(T∅j1j2...jl−1jl
)| children,

called ∅j1j2...jljl+1, with ℓ(∅j1j2...jl−1jljl+1) ∈ [n] \ dig(T∅j1j2...jl−1jl
) such that there is a

bijection between set

{ℓ(∅j1j2...jljl+1) : 1 ≤ jl+1 ≤ n− |dig(T∅j1j2...jl−1jl
)|}
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and [n] \ dig(T∅j1j2...jl−1jl
). If ℓ(∅j1j2...jljl+1) /∈ NX(ℓ(∅j1j2...jl)) then τ∅j1j2...jljl+1 =

τ∅j1j2...jl
−1, and if ℓ(∅j1j2...jljl+1) ∈ NX(ℓ(∅j1j2...jl)) then τ∅j1j2...jljl+1 = τ∅j1j2...jl

. Now,
in the case that τ∅j1j2...jl

= 0, the children of ∅j1j2...jl are labeled by NX(ℓ(∅j1j2...jl)) \
dig(T∅j1j2...jl

), as in Algorithm 1. After a finite number of steps, we construct the tree
denoted by T i

X,O (or T i
X,α for general α ≥ 0) such that each permutation given by a leaf in

the level n− 1 is an On(X)−freedom permutation (α−freedom permutation, respectively).
We denote TX,O := {T i

X,O : 1 ≤ i ≤ n}, and TX,α := {T i
X,α : 1 ≤ i ≤ n}. We also let

Y (T i
X,O) be the set of all permutations y ∈ Sn that are given by a leaf of T i

X,O in the level
n−1, and let Y (TX,O) := ∪n

i=1Y (T i
X,O). The definitions of Y (T i

X,α), and Y (TX,α) are similar.
The construction of such trees is described in the following Algorithm 3, for general α ≥ 0.

Not only does Algorithm 3 give all On(X)−freedom permutations but also for each
possible permutation in the level n − 1, the parameter τ indicates the exact number of
adjacencies of the permutation from outside of ∪x∈XAx, e.g., if τu = i then (On(X) − i)
adjacencies are from outside in Tu. The trees constructed from Algorithm 3 have as subtrees
the trees given by Algorithm 1, considering the same set of permutations. An example is
given in Figure 2.

1

2 3 4 5

543 2 4 5 2 3 5 4 2

5 3 54 4 4 5 2 5 4 3 5 2 5 2 3 3 3

5 4 3 5 4 5 2

2

3 5 3 2 2 4

Figure 2 Representation of T 1
X,O, for X = {id = 12345, 52341, 23145}, where O5(X) = 1. The

subtree induced by the blue edges is T 1
X and the subtree induced by the blue and red edges is

T 1
X . The median value of X is µ(X) = 4 and 14523 is the unique median given by the tree T 1

X,O
which is different from the input permutations. In this example, all medians given by the tree
T 1

X,O are actually in the subtree T 1
X . Also, 13254 is an example of a permutation in the set

{y ∈ Sn; AX ⊂ Ay ⊂
⋃

x∈X
Ax} that is not a median for X.

4 Experimental results

For each n from 6 to 15, we performed 100 independent runs of Algorithm 3 on a set
X = {x1, x2, x3} ∈ Sn of three permutations, where x1 = id and x2, x3 are randomly
generated such that On(X) ≤ 3. For each n, we compute the mean of the normalized median
value. As shown in Figure 3, the mean of the normalized median value increases with n, and
we expect it to approach 2 as n→∞, which is in accordance with the last Theorem in [9].

Although not all the permutations in Y (TX,O) are medians, we find that non-median
permutations in Y (TX,O) often have total distances close to the median value, indicating
that they serve as good approximations. To formalize this, we define

Kj(TX,O) := {y ∈ Y (TX,O);
∑
x∈X

d(y, x)− µ(X) = j},
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Algorithm 3 α-freedom permutations w.r.t. X.

Data: X = {x1, ..., xk} ⊂ Sn.
Result: α-freedom permutations w.r.t. X

for i = 1, ..., n do
for w = 0, ..., n do

Lw ←− ∅
L0 ←− {∅}
T∅ ←− i

τ∅ ←− α

for j = 1, ..., n− 1 do
for u ∈ Lj−1 do

r ←− 0
if τu > 0 then

for k = 1, ..., n do
if k /∈ dig(Tu) then

r ←− r + 1
Lj ←− Lj ∪ {u⊕ r}
Tu⊕r ←− Tu ⊕ k

if k /∈ NX(Tu) then
τu⊕r ←− τu − 1

else
τu⊕r ←− τu

else
for k ∈ NX(Tu) do

if k /∈ dig(Tu) then
r ←− r + 1
Lj ←− Lj ∪ {u⊕ r}
Tu⊕r ←− Tu ⊕ k

for u ∈ Ln−1 do
print Tu

and compute the mean of the proportion |Kj(TX,O)|/|Y (TX,O)| over 100 runs for each
6 ≤ n ≤ 15. Note that K0(TX,O) = M(X) and for small j > 0 we can consider the
permutations in Kj(TX,O) as approximate medians, since the total distance is close to the
minimum total distance.

Figure 4 shows that a significant portion of permutations in Y (TX,O) have total distances
concentrated near the minimum, indicating that while most are not exact medians, many
are close approximations.

In fact, across all tested values of n, the union K0 ∪K1 ∪K2 consistently contains over
33% of Y (TX,O), confirming the abundance of near-optimal solutions in the reduced space.
For example, at n = 6, this set accounts for 61.9% of candidates; for n = 12, it still covers
36.4% despite the increase in size. Table 1 summarizes these proportions numerically for
selected values of n.

To analyze the proportion of medians far from the input set, we denote by Mi := {m ∈
M(X); d(m, xk) ≥ i, for xk ∈ X}. Note that M0 = M(X), Mi ⊂ Ml for l < i, and Mi is
empty set for i > 2n/3. Figure 5 shows the mean of the ratio of |Mi|/|M(X)|, for 6 ≤ n ≤ 15.
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n=6 n=7 n=8 n=9 n=10 n=11 n=12 n=13 n=14 n=15
 size of n

0.0

0.5

1.0

1.5

2.0

Average of Median Value over n
Minimum Median Value over n
Maximum Median Value over n

Figure 3 The blue line represents the mean normalized median value for sets of three permutations
{id, x2, x3}, where x2 and x3 are randomly and independently sampled (also independently for each
run) such that On({id, x1, x2}) ≤ 3. The red and green lines indicate the minimum and maximum
normalized median values observed across 100 independent runs of Algorithm 3, for each genome
size n = 6, ..., 15.

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12
0.00

0.05

0.10

0.15

0.20

0.25

0.30
n=6
n=7
n=8
n=9
n=10
n=11
n=12
n=13
n=14
n=15

Figure 4 The mean of |Ki(TX,O)|/|Y (TX,O)|, for each 6 ≤ n ≤ 15.

The results indicate that the proportion of medians far from all input permutations decreases
rapidly, consistent with the observations and conjectures of Haghighi and Sankoff [8]. For
example, when n = 12, over 91% of medians are within distance 3 of all inputs, and fewer
than 0.8% exceed distance 6. This illustrates the general trend that most medians tend to
remain close to at least one input genome.

However, as n increases, the number of medians that lie far from all inputs also grows.
Table 2 reports the proportion of medians lying in Mi for values of i near

⌊ 2n
3
⌋
, which

corresponds to the breakpoint distance of a “midpoint” genome – that is, one that draws
approximately one-third of its adjacencies from each of the three input genomes. As expected,
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Table 1 Proportion of permutations in K0 ∪ K1 ∪ K2 over Y (TX,O) for selected values of n.

n |K0| |K1| |K2| Total proportion (%)

6 7.77% 22.58% 31.55% 61.9%
8 4.91% 16.03% 25.08% 46.0%
10 4.07% 13.04% 21.01% 38.1%
12 4.25% 12.87% 19.29% 36.4%
14 4.46% 13.23% 20.20% 37.9%

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10
0.0

0.2

0.4

0.6

0.8

1.0
n=6
n=7
n=8
n=9
n=10
n=11
n=12
n=13
n=14
n=15

Figure 5 The mean of |Mi|/|M(X)|, for each 6 ≤ n ≤ 15.

the proportion of medians with distance at least
⌊ 2n

3
⌋

from all inputs is either zero or
negligible across all tested values of n, reflecting the rarity of truly equidistant medians. Still,
for slightly smaller values such as

⌊ 2n
3
⌋
− 1,

⌊ 2n
3
⌋
− 2, or

⌊ 2n
3
⌋
− 3, the proportion increases

noticeably. For instance, when n = 14, the set M6, consisting of medians at distance at
least 6 from all three inputs, contains more than 11% of all medians, and M5 contains over
41%. These medians are still far from each input genome – at least 5 breakpoints away –
yet appear with consistent frequency, indicating a non-negligible presence near the midpoint
region as n increases.

To quantify the algorithm’s efficiency, we compare the size of the reduced space to n!.
Table 3 demonstrates that the number of permutations explored by Algorithm 3 represents
only a tiny fraction of Sn, yet suffices to find all exact and many near-optimal medians. For
instance, when n = 15, the number of candidate medians generated by the algorithm – i.e.,
the search space – is less than 0.003% of the full 15! ≈ 1.31× 1012 permutations.

Although Algorithm 3 was run with On(X) ≤ 3, allowing up to three adjacencies outside
the union of the input adjacencies, we observed that such instances were extremely rare –
and when they occurred, each involved only a single external adjacency. For example, at
n = 6, only 0.04 medians per run (roughly 0.35% of all medians) included one adjacency not
present in the union of the inputs. At n = 12, the mean was 0.48 per run (under 0.015%).
For all other values of n ≤ 15, there was no external adjacency. These results indicate that
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Table 2 Mean proportion of medians in Mi for values of i near the midpoint distance
⌊

2n
3

⌋
.

n i =
⌊

2n
3

⌋
i =
⌊

2n
3

⌋
− 1 i =

⌊
2n
3

⌋
− 2 i =

⌊
2n
3

⌋
− 3 ≥ 4

7 0 3.8% 42.54% -
8 0 0.57% 27.59% -
9 0 9.34% 50.74% -
10 0 2.97% 26.85% -
11 0 15.83% 52.02% -
12 0 0.08% 6.94% 36.54%
13 0 2.06% 18.16% 53.56%
14 0 0.76% 11.90% 41.63%
15 0 0 5.29% 29.11%

Table 3 Reduction in search space by Algorithm 3 for selected values of n (with On(X) ≤ 3).

n Total candidates Total medians n! candidates
n! (%)

6 180.94 11.46 720 25.13%
8 2981.10 82.86 40320 7.40%
10 24824.90 513.54 3628800 0.68%
12 353921.52 3387.82 4.79 × 108 0.07%
14 1882425.04 23815.54 8.72 × 1010 0.002%
15 36659,718 48372.52 1.31 × 1012 0.0028%

nearly all medians are already covered when we allow zero-freedom, that is, when every
adjacency is drawn from the input genomes. In practice, therefore, we can use Algorithm 1,
which corresponds to the zero-freedom version of Algorithm 3, to recover most of the medians
while achieving substantial speed-ups. When no adjacency is taken from outside the union
∪x∈XAx, the algorithm completes around 0.75 seconds and uses approximately 19.26 MB of
memory for n = 10; about 40 seconds and 104.16 MB for n = 13; and around 3.5 minutes
and 289.94 MB for n = 15 (mean runtime and memory usage over 5 runs, measured on a 2.3
GHz quad-core Intel Core i7 machine with 32 GB RAM).

Finally, although it is known that, given a set of genomes X, there may exist medians that
do not contain all adjacencies in AX , we verified that for the input sets tested (6 ≤ n ≤ 15),
all medians returned by Algorithm 3 contained the full set of common adjacencies AX

shared by the input genomes. As a result, Algorithm 3 produced the same set of medians as
Algorithm 2 on all tested instances.

5 Conclusion

In this paper, we introduced a novel algorithmic framework to find all breakpoint medians
of a given set of linear unsigned genomes. Unlike previous methods – which reduce the
breakpoint median problem to an instance of the Traveling Salesman Problem (TSP) and
return only a single median – our approach is based on the construction of rooted, labeled
trees that allow us to find all medians, along with a substantial number of near-medians.
Each path of length n− 1 from the root to a leaf encodes a unique permutation, and the tree
structure is designed to efficiently capture the combinatorial space in which medians reside.
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This structural strategy provides a new perspective on the median problem. It not
only allows us to find all medians in exponential time, but also to systematically explore a
constrained and meaningful subset of the permutation space. This is particularly valuable for
comparative genomics, where the goal is often to infer an ancestral genome that minimizes
evolutionary distance to the observed genomes. Having access to the entire set of medians
makes it possible to evaluate and compare them based on additional biological or statistical
criteria, such as similarity to known ancestral features or consistency with gene orientation
and synteny.

From a theoretical point of view, we demonstrated that our method finds the exact
median value, even in cases where prior methods could not. Experimentally, we showed
that the number of candidate permutations generated by our trees is a vanishingly small
fraction of the full symmetric group (e.g., less than 0.0028% of S15), yet this restricted space
reliably captures all medians and a large portion of near-optimal solutions. In particular, we
found that a substantial fraction of permutations in the output tree fall into K0 ∪K1 ∪K2,
indicating that many are either exact or high-quality approximate medians. We also observed
that even when allowing up to three adjacencies outside the input set, the inclusion of such
external adjacencies was extremely rare, often occurring in fewer than 1% of medians.

Finally, we investigated how far medians tend to lie from all inputs using the Mi

decomposition. While truly equidistant medians are rare, we found that a non-negligible
proportion of medians are located near the theoretical midpoint region. Moreover, we
observed that most medians are relatively close to the input permutations, an observation
that aligns with theoretical results in the literature [8, 9, 4]. This suggests a layered structure
in the space of medians that could be exploited for further biological modeling and inference.

While our work focuses on the breakpoint median problem for unsigned unichromosomal
genomes, the algorithm and underlying methodology are not limited to this setting. The
core tree-based construction and median search strategy naturally extend to more general
models, including signed permutations and multichromosomal genomes. Overall, our method
not only offers a new algorithmic contribution but also opens up a range of possibilities for
deeper combinatorial and biological analysis of breakpoint medians and their role in gene
order phylogeny.
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A Proof of Theorem 1

Below, we include the proof of Theorem 1, as presented in [5].

Proof. For a permutation π and r ≤ k, let ε̄X
i1,...,ir

(π) := |Aπ ∩ BX
xi1 ,...xir

|. To ease the
notation, we let Bi1,··· ,iℓ

= Bxi1 ,...,xiℓ
. Let η = |Am \ ∪k

i=1Axi
|. Then

η +
k∑

r=1

∑
1≤i1<...<ir≤k

ε̄X
i1,...,ir

(m) = n− 1.

As m is a median of X, we have

dT (m, X) = k(n− 1)−
k∑

r=1
[r

∑
1≤i1<...<ir≤k

ε̄X
i1,...,ir

(m)]

= (k − 1)(n− 1) + η −
k∑

r=2
[(r − 1)

∑
1≤i1<...<ir≤k

ε̄X
i1,...,ir

(m)]

≤ dT (xk, X) = (k − 1)(n− 1)− (
∑

1≤i1<k

|BX
i1,k|+ 2

∑
1≤i1<i2<k

|BX
i1,i2,k|

+ · · ·+ (k − 2)
∑

1≤i1<...<ik−2<k

|BX
i1,...,ik−2,k|+ (k − 1)|BX

1,...,k|).

WABI 2025

https://doi.org/10.1186/1471-2105-13-S19-S5
https://doi.org/10.1186/1471-2105-14-S15-S7
https://doi.org/10.1186/1471-2105-14-S15-S7
https://doi.org/10.1089/CMB.2021.0468
https://doi.org/10.1007/BFB0045092
https://doi.org/10.1142/S0129054196000026
https://doi.org/10.1186/1471-2105-10-120
https://doi.org/10.1186/1471-2105-10-120
https://doi.org/10.1089/CMB.2010.0106
https://doi.org/10.1186/1471-2105-12-S1-S4


18:18 Identifying Breakpoint Median Genomes: A Branching Algorithm Approach

Hence,

η ≤

(
k∑

r=2
(r − 1)

∑
1≤i1<...<ir≤k

ε̄X
i1,...,ir

(m))− (
k∑

r=2
(r − 1)

∑
1≤i1<...<ir−1<k

|BX
i1,...,ir−1,k|)

≤
k−1∑
r=2

(r − 1)
∑

1≤i1<...<ir<k

|BX
i1,...,ir

|, (2)

where the last inequality holds because ε̄X
i1,...,ir

(m) ≤ |BX
i1,...,ir

|, for any r ≤ k and 1 ≤ i1 <

... < ir ≤ k. ◀
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