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—— Abstract

Reticulate evolution gives rise to complex phylogenetic networks, making their interpretation
challenging. A typical approach is to extract trees within such networks. Since Francis and Steel’s
seminal paper, “Which Phylogenetic Networks are Merely Trees with Additional Arcs?” (2015),
tree-based phylogenetic networks and their support trees (spanning trees with the same root and
leaf-set as a given network) have been extensively studied. However, not all phylogenetic networks
are tree-based, and for the study of reticulate evolution, it is often more biologically relevant to
identify support networks rather than trees. This study generalizes Hayamizu’s structure theorem,
which yielded optimal algorithms for various computational problems on support trees of rooted
almost-binary phylogenetic networks, to extend the theoretical framework for support trees to
support networks. This allows us to obtain a direct-product characterization of each of three sets:
all, minimal, and minimum support networks, for a given network. Each characterization yields
optimal algorithms for counting and generating the support networks of each type. Applications
include a linear-time algorithm for finding a support network with the fewest reticulations (i.e., the
minimum tier). We also provide exact and heuristic algorithms for finding a support network with
the minimum level, both running in exponential time but practical across a reasonably wide range
of reticulation numbers.
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1 Introduction

Evolutionary histories involving reticulate events, such as horizontal gene transfer, hybridiza-
tion, and recombination, are better represented by networks than trees. However, networks
can be far more complex than trees, making their interpretation challenging. A typical
approach is to find meaningful subgraphs, particularly spanning trees, of these networks.

Since Francis and Steel’s seminal paper “Which Phylogenetic Networks are Merely Trees
with Additional Arcs?” [8], tree-based networks and their support trees (spanning trees
with the same root and leaf-set as the network, also known as subdivision trees) have
been extensively studied (e.g., [9, 10, 16]). Hayamizu [9] developed optimal (linear-time or
linear-delay) algorithms for various computational problems, including counting, listing, and
optimization of support trees, by establishing a theoretical foundation called a structure
theorem for rooted almost-binary phylogenetic networks, a class encompassing binary ones.
This theorem provides a canonical way to decompose any such network into its unique
maximal zig-zag trails, and characterizes the family of edge-sets of support trees of the
network.

While tree-based phylogenetic networks encompass many well-studied subclasses such as
tree-child [1], stack-free [14], and orchard networks [4, 12], networks inferred from biological
data are not necessarily tree-based. This has led to increased interest in non-tree-based
networks (e.g., [2, 6, 7, 15]). Indeed, for the study of reticulate evolution, it is often more
biologically relevant to consider networks within networks rather than trees. In such contexts,
finding a most concise subgraph, such as one with the fewest reticulations (minimum tier)
or with the minimum level, is particularly meaningful. These metrics can be interpreted as
measures of deviation from being tree-based [7, 6], as they equal zero for tree-based networks.

In this paper, we generalize Hayamizu’s structure theorem to build a theoretical framework
for support networks of rooted almost-binary phylogenetic networks. Building on the maximal
zig-zag trail decomposition established in [9], we derive direct-product characterizations of
three families of support networks for a given network N: all support networks Ay, minimal
support networks By, and minimum support networks Cy. These characterizations yield
closed-form product formulas for their cardinalities, revealing unexpected connections to
Fibonacci, Lucas, Padovan, and Perrin numbers. We present a linear-time algorithm for
counting each of |Ay|, |By|, and |Cx|, as well as a linear-delay algorithm to list the support
networks in each family.

Our theoretical results lead to practical algorithms for two key optimization problems:
Problem 1 (RETICULATION MINIMIZATION) and Problem 2 (LEVEL MINIMIZATION). Prob-
lem 1 asks for a support network with the minimum reticulation number (minimum tier).
We present a linear-time optimal algorithm for solving Problem 1, which can be achieved by
selecting any element from Cp. Problem 2 asks for a support network with the minimum level.
We conjecture that this problem is NP-hard and present exact and heuristic algorithms for
solving Problem 2 (Algorithms 1 and 2). Although they are both exponential-time algorithms,
they are practical for networks with a reasonably wide range of reticulation numbers. The
heuristic is particularly scalable and accurate in most cases.

The remainder of the paper is organized as follows. In Section 2, we define graph
theoretical terminology and review the relevant materials on support trees (Section 2.1) and
the structure theorem (Section 2.2). In Section 3, we define support networks, their families
An, By, and Cy, and relevant concepts. Section 4 provides characterizations and counting
formulas for each family. Numerical results are also presented in Section 4.4. In Section 5,
we give a linear-time algorithm for solving Problem 1. Section 6 presents the exact and
heuristic algorithms for Problem 2, along with performance evaluations using synthetic data.
Section 7 concludes with a summary of our contributions and directions for future research.
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2 Preliminaries

The graphs in this paper are finite, simple (i.e. having neither loops nor multiple edges),
acyclic directed graphs, unless otherwise stated. For a graph G, V(G) and E(G) denote the
sets of vertices and edges of G, respectively. For two graphs G and H, G is a subgraph of H if
both V(G) C V(H) and E(G) C E(H) hold, in which case we write G C H. Two graphs G
and H are isomorphic, denoted by G = H, if there exists a bijection ¢ : V(G) — V(H) such
that (u,v) € E(G) if and only if (¢(u), p(v)) € E(H) for all u,v € V(G). A subgraph G of
H is proper if G # H. A subgraph G of H is a spanning subgraph of H if V(G) = V(H).

Given a graph G and a non-empty subset S C E(G), the edge-set S is said to induce the
subgraph G[S] of G, that is, the one whose edge-set is S and whose vertex-set is the set of the
ends of all edges in S. For a graph G with |E(G)| > 1 and a partition {E1, ..., Es} of E(G),
the collection {G[E1],...,G[E4]} is a decomposition of G, and G is said to be decomposed
into G[E1],...,G[E4]. Here we recall that a partition of a set is a collection of pairwise
disjoint non-empty subsets whose union is the entire set.

For an edge e = (u,v) of a graph G, u and v are denoted by tail(e) and head(e),
respectively. For a vertex v of a graph G, the in-degree of v in G, denoted by indeg.(v), is
the cardinality of {e € E(G) | head(e) = v}. The out-degree of v in G, denoted by outdegs(v),
is defined in a similar way. For any graph G, a vertex v € V(G) with outdeg(v) = 0 is
called a leaf of G. Subdividing an edge (u,v) means replacing it with a directed path from u
to v of length at least two. Smoothing a vertex v where indegq~(v) = outdegs(v) = 1 means
suppressing v from G, namely, the reverse operation of edge subdivision.

An undirected graph is connected if there is a path between every pair of vertices. For a

connected simple undirected graph G, a cut vertex (resp. cut edge) of G is a vertex (resp.

edge) whose removal disconnects G, and a block of G is a maximal connected subgraph of G
that contains no cut vertex. In this paper, a block of a directed graph refers to a block of its
underlying undirected graph.

2.1 Phylogenetic networks and support trees

Suppose X represents a non-empty finite set of present-day species. A rooted almost-binary
phylogenetic network (on a leaf-set X ) is defined to be a finite simple directed acyclic graph
N with the following properties (P1)—(P3). The vertex p is called the root of N, and any
vertex v with indegy(v) > 1 is called a reticulation of N.

(P1) There exists a unique vertex p of N with indegy(p) = 0 and outdegy(p) € {1,2};
(P2) The set of leaves of N is identical to X;

(P3) For any v € V(N) \ (X U{p}), indegy (v) € {1,2} and outdegy (v) € {1,2};

The above definition allows N to contain a vertex v with indegy (v) = outdegy (v) = 2
or indegy (v) = outdeg, (v) = 1. In this sense, it slightly generalizes the notion of rooted
binary phylogenetic networks N on X, which is defined by (P1), (P2) and (P4). When N
has the properties (P1), (P2) and (P5), N is particularly called a rooted binary phylogenetic
tree on X.

(P4) For any v € V(N) \ (X U{p}), {indegy (v),outdeg(v)} = {1,2}.
(P5) For any v € V(N) \ (X U{p}), (indegy (v),outdegy (v)) = (1,2).

While the concept of support trees was originally defined for rooted binary phylogenetic
networks in [8], the theoretical framework developed in [9], which includes the structure
theorem and associated algorithms and forms the foundation of the present work, applies
equally to rooted almost-binary networks. Therefore, in this paper, following the approach
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taken in [15], we will consider support trees of almost-binary (including binary) networks,
unless stated otherwise. For brevity, we omit “rooted almost-binary” when no confusion is
likely to arise.

» Definition 1. Let N be a rooted almost-binary phylogenetic network on X. If there exists
a rooted binary phylogenetic tree T on X and a spanning tree T of N such that T is obtained
by smoothing all v € V(T') with indegp(v) = outdegp(v) =1, then N is called a tree-based
network on X. In this case, T is called a support tree of N and T a base tree of N.

As a support tree T is a spanning tree of N = (V| E), each T is specified by its edge-set.
This leads to the natural question: Which subsets S of E yield a support tree N[S] = (V, 5)
of N? Francis and Steel [8] proved that such “admissible” subsets S of E are characterized
by the following conditions (C1)—(C3). As in [9], we slightly generalize the original definition
in [8] so that we can consider admissible edge selections for any subgraph of N.

» Definition 2. Let N be a rooted almost-binary phylogenetic network and let Z be any

subgraph of N. A subset S of E(Z) is admissible if it satisfies the following conditions:

(C1) If (u,v) is an edge of Z with outdegy (u) =1 or indegy (v) =1, then S contains (u,v).

(C2) If ey and ey are distinct edges of Z with tail(ey) = tail(es), then S contains at least
one of {e1,ea}.

(C3) If ey and es are distinct edges of Z with head(e1) = head(es), then S contains exactly

one of {e1,ea}.

» Theorem 3 (almost-binary version of Theorem 1(a) in [8]). Let N be a rooted almost-binary
phylogenetic network and let S C E(N). Then, the subgraph N[S] of N induced by S is a
support tree of N if and only if S is an admissible subset of E(N). Moreover, there exists a
one-to-one correspondence between the family of admissible subsets S of E(N) and the family
of support trees of N.

» Remark 4. In the setting where the internal vertices of N (those except the root and leaves)
are unlabeled and thus indistinguishable from one another, two different admissible subsets
S1 # Sy of E(N) can induce isomorphic support trees N[S1] = N[Ss]. Due to this subtlety,
multiple variations of the support tree counting problem have been explicitly formulated (see
Fig. 1 and Section 7.2 in [9]). Therefore, a more precise interpretation of Theorem 3 may be
that it establishes a one-to-one correspondence between the family of admissible subsets S of
E(N) and the family of support trees of N, under the assumption that all vertices (or edges)
of N are distinguishable. In this paper, we adopt this assumption to obtain generalizations
of Theorem 3.

Theorem 3 and Remark 4 allow us to identify each support tree T' of N with its edge-set
E(T). In other words, counting or listing support trees of N refers to counting or listing
admissible subsets of E(N).

2.2 Structure theorem for rooted almost-binary phylogenetic networks

We recall the relevant materials from [9, 15]. Given a rooted almost-binary phylogenetic
network N, a connected subgraph Z of N with m := |E(Z)| > 1 is a zig-zag trail (in N)
if the edges of Z can be permuted as (eq,...,e) such that either head(e;) = head(e; 1)
or tail(e;) = tail(e;+1) holds for each i € [1,m — 1]. A zig-zag trail is represented by an
alternating sequence of (not necessarily distinct) vertices and distinct edges, e.g., (vo, (vo,v1),
v1, (V2,01), 02, .+« (Vim, Um—1), U ), but this can be more concisely written as vy > vy < vo >
coo > vpm_1 < Uy, or its reverse, where each edge (v;,v;11) is represented by v; > v;11. A
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zig-zag trail Z in N is mazximal if N contains no zig-zag trail Z’ such that Z is a proper
subgraph of Z’. Each maximal zig-zag trail in N falls into one of the following four types.
A crown is a maximal zig-zag trail Z that has even m := |E(Z)| > 4 and can be written
in the cyclic form vy < v; > vo < w3 > -+ > Vo < Upm—1 > Uy = 9. A fence is any
maximal zig-zag trail that is not a crown. An N-fence is a fence Z with odd m := |E(Z)| > 1,
expressed as vg > v1 < Vg > -+ < U1 > Uy A fence Z with even m := |E(Z)] > 2 is an
M-fence if expressed as vg < v1 > vy < -+ - < Um—_1 > Um, and it is a W-fence if expressed as
Vo >0 <V > >Up-1<Unp.

As established in [9] (and will be restated in Theorem 8), any rooted almost-binary
phylogenetic network N admits a unique decomposition Z = {Zy,..., Z3} into its maximal
zig-zag trails (d > 1), called the zig-zag trail decomposition of N (see Figure 1 for an
illustration). To understand how this decomposition arises, observe that every edge e of N
belongs to an obvious zig-zag trail tail(e) > head(e) in N. If tail(e) has out-degree two in N,
or head(e) has in-degree two in N, then this trail is not maximal. In such cases, by repeatedly
extending the zig-zag trail, one can eventually obtain a maximal one. By construction, if
each vertex of N has in-degree and out-degree at most two, then a maximal zig-zag trail
containing e is unique for each e. In other words, if N is almost-binary, then no two distinct
maximal zig-zag trails in N have a common edge. It follows that {E(Z;),...,E(Z4)} is a
partition of E(N), and thus Z is indeed a decomposition of N.

Figure 1 (a) A rooted binary phylogenetic network N. (b) The maximal zig-zag trail decom-
position Z = {Z1,...,Z7} of N (different arrow styles are used to distinguish the individual trails),
where Z1, Z> and Z3 are M-fences, Z4 is a crown, Z5 is a W-fence, and Zg and Z; are N-fences.

» Remark 5. If Z is a maximal zig-zag trail in N, then, the following is equivalent to
condition (C1) in Definition 2: If (u, v) is an edge of Z with outdeg,(u) = 1 or indeg,(v) =1,
then S contains (u,v). In fact, by the maximality of Z, we have outdeg,(u) = 1 if and only
if outdeg (u) = 1 holds. Similarly, indeg,(v) = 1 and indegy (v) = 1 are equivalent.

» Proposition 6 ([9]). The maximal zig-zag trail decomposition Z of N can be computed in
O(|E(N)|) time.

As in the approach taken in [9, 10], we often consider a maximal zig-zag trail Z as a
sequence (e, ..., elE( Z)|) of edges, ordered according to their appearance in the trail, where
e1 and e|g(z) are called the terminal edges of Z when Z is a fence. For any maximal
zig-zag trail Z = (e1,...,e/g(z)) in N, any subset S of E(Z) is specified by a 0-1 sequence
(b1 by ... b\E(z)|>, where b; = 1 if e; € S and b; = 0 otherwise. For example, given a crown
Z = (e1,e2,€e3,€4), a subset {e1,e3} of E(Z) can be encoded as (1 01 0). We often write
((10)?) to avoid a repetition such as (1 0 1 0).

For the reader’s benefit, we now illustrate how to find admissible subsets using small
examples. Let Z = {Z,...,Z4} be the maximal zig-zag trail decomposition of N. Suppose
71 = (e1, ea,e3,¢€4,€5) is an N-fence with head(es) = head(es). Then, {eq, e3,e5} is the only
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admissible subset of F(Z;) because (C1) requires inclusion of both terminal edges e; and e,
(C3) excludes selecting both e4 and e, and (C2) then requires e3, which in turn excludes
eo due to (C3). Thus, the family S(Z;) of admissible subsets of E(Z;) consists of a single
element {e1,es3,e5}, and so S(Z1) = {(1 010 1)}. Next, suppose Zy = (e, ea,e3,e4) is a
crown. Then, {e1,e3} and {eq, e4} are the only two admissible subsets of E(Z3), because
they are the only subsets that satisfy both (C2) and (C3), and crowns have no edge subject
0 (C1). Thus, 8(Z3) ={(1010),(0101)}.

» Remark 7. The choice of an admissible subset from S(Z;) is independent of and does not
influence the selection concerning any other S(Z;). Indeed, Remark 5 implies that condition
(C1) merely requires both terminal edges of each fence in Z be always selected (i.e. be marked
by 1). In addition, (C2) and (C3) are relevant only to a fence or crown that has a pair of
edges expressed as vg_1 < Vg > Vg4+1 and vg_1 > v < V41, respectively. Recalling that the
maximal zig-zag trails are edge-disjoint, whenever such a pair of edges exists, it is contained
in a unique maximal zig-zag trail in N. Thus, one can check whether S C E(Z;) is admissible
or not even without looking at the entire network N.

Remark 7 provides a key idea behind the direct product decomposition in Theorem 8.
After obtaining Z = {Z,... Z4} for N, one can construct an admissible subset S of E(N)
simply by computing S = S; U---U Sy, where S; is any admissible subset of F(Z;). The
family 7 of support trees of N — the family of admissible subsets of E(N) — by listing all
such combinations (S1,...,Sq) with each S; € E(Z;).

Using the definitions, notation, and key ideas outlined above, we now state the structure
theorem for rooted almost-binary phylogenetic networks. It provides a way to canonically
decompose such networks N and characterizes the family of admissible subsets S of E(N),
namely, the family of edge-sets of support trees of N.

» Theorem 8 ([9]). For any rooted almost-binary phylogenetic network N, the following hold:

1. The mazimal zig-zag trail decomposition Z ={Zy,...,Zq} of N is unique to N.

2. Given S C E(N), N[S] is a support tree of N if and only if for each Z; € Z, SN E(Z;)
is an admissible subset of E(Z;). Here, the family S(Z;) of admissible subsets of E(Z;)
is given by Equation (1).

3. The family T of support trees of N is non-empty (i.e., N is tree-based) if and only if each
S8(Z;) is non-empty (i.e., no element of Z is a W-fence). When T is non-empty, it is
characterized by T = Hle S(Z;), where (Z1,...,24) is an arbitrary ordering for Z.

0 if Z; is a W-fence

S(Z) = {(1(01)(1E(ZDI=1/2)} if Z; is an N-fence
T HA0)EEIR) (o1 E0l2)) if Zi is a crown

{(1(01)P(10)91) | p,q € Z>o0,p + q = (|E(Z;)| — 2)/2} if Z; is an M-fence

(1)

Theorem 8 and Proposition 6 have furnished optimal algorithms for various computational
problems on support trees [9, 10]. For example, the number |T| of support trees of N is
given by |T| = H?Zl |S(Z;)|, and using (2), it can be computed in O(|E(N)]|) time.

0 if Z; is an W-fence
1 if Z; is an N-fence
15(Zi)| =
2
|

if Z; is a crown
E(Z;)|/2 if Z; is an M-fence
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3 The family of support networks and its two subfamilies

For a rooted (not-necessarily-binary) phylogenetic network N = (V, E), r(N) denotes the
reticulation number of N, i.e., the number of reticulations in V, and level(IN) denotes the
level of N, i.e., the maximum number of reticulations of NV contained in a block of N, and the
tier is |E| — |V| + 1. By definition, level(N) < r(N) holds. In general, 7(N) < |E| — |[V] +1
holds. If N is almost-binary, then r(N) = |E| — |V| 4+ 1 holds by the hand-shaking lemma
for directed graphs, which states that the sum of the in-degrees over all vertices equals the
number of edges gives. Since N is assumed to be almost-binary in this paper, we will use the
terms “tier” and “reticulation number” interchangeably.

Let N be a rooted almost-binary phylogenetic network on X and let G be a spanning
subgraph of N. If GG is also a rooted almost-binary phylogenetic network on X, then G is
a support network of N. The base network G of N is obtained from G by smoothing all
vertices v € V(@) with indegq(v) = outdegs(v) = 1. Unlike support and base trees, support
and base networks always exist since NN itself is a support network of N. The base tier of N,
denoted by 7*(N), is the minimum value of 7(G) := |E(G)| — |V(G)| + 1, which equals 7(G),
over all support networks G of N. Similarly, the base level of N, denoted by level”(N), is
the minimum value of level(G), which equals level(G), over all support networks G of N. If
k is the base tier (resp. base level) of N, then N is tier-k-based (resp. level-k-based).

For unrooted phylogenetic networks, Fischer and Francis [6] has introduced the concept
of support networks to discuss tier-k-based and level-k-based networks. While the definitions
are analogous, the mathematical properties of these concepts differ between rooted and
unrooted networks. Indeed, for unrooted N, it was shown in [6] that r*(N) = level*(N)
holds if N has at most one “non-trivial blob” — a maximal connected subgraph without a cut
edge and with at least two vertices. For rooted IV, however, this equality does not hold in
general (see Figure 2 for a counterexample).

Figure 2 (a) A rooted binary phylogenetic network N with r*(N) = 2 and level*(N) = 1. (b) A
support network G of N that attains the optimal values r(G) = 2 and level(G) = 1. The edges of G
are shown by solid arrows. The reticulations in each graph are colored red.

The focus of this paper is on the computation of r*(N) and level*(N) for rooted N,
with particular emphasis on the latter which presents greater computational challenges. We
approach these problems using the families of minimal and minimum support networks of IV,
which are defined as follows:

» Definition 9. For a rooted almost-binary phylogenetic network N,
Ap is the set of all support networks of N;
By is the set of minimal support networks of N (i.e. those with a minimal edge-set);
Cn is the set of minimum support networks of N (i.e. those with the fewest edges).

Definition 9 implies (§ #)Ax 2 By 2 Cy. As Figure 3 shows, these families can be all
distinct. We also note that if N is tree-based, then Cp is nothing but the set 7 of support
trees of N characterized in Theorems 3 and 8.
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Figure 3 (a): A rooted binary phylogenetic network N. (b): A support network in Ax \ Bn.
(c): A support network in By \ Cn. (d): A support network in Cx. The reticulations in each graph
are colored red.

4 Counting the support networks of three types

Examining the proper subfamilies By and Cy rather than the entire family Ay of support
networks could reduce the search space for computing 7*(N) or level*(N). A natural question
is how substantial this reduction might be. In this section, we generalize Theorem 8 to
derive analogous direct-product characterizations of Ay, By, and Cy, and determine their
cardinalities. To achieve this, we relax condition (C3) in Definition 2 to introduce different
notions of admissibility as follows.

» Definition 10. Let N be a rooted almost-binary phylogenetic network and let Z be any

subgraph of N. A subset S of E(Z) is A-admissible if it satisfies the following conditions:

(C1*) If (u,v) is an edge of Z with outdegy(u) = 1 or indegy(v) = 1, then S contains
(u,v);

(C2*) If ex and es are distinct edges of Z with tail(e;) = tail(es) or head(e;) = head(es),
then S contains at least one of {e1,ez}.

In particular, given an A-admissible subset S of E(Z), S is B-admissible if it is minimal,

i.e. mo proper subset of S is an A-admissible subset of E(Z), and S is C-admissible if it is

smallest among all A-admissible subsets of E(Z).

The definition of A-admissibility differs from the previous admissibility (Definition 2)
in a single aspect: it relaxes the original condition (C3). In fact, (C1*) is identical to the
original condition (C1). Similarly to Remark 5, when Z is a maximal zig-zag trail in N, we
may replace outdeg (v) and indegy (v) in condition (C1*) with outdeg, (v) and indeg, (v),
respectively. The new condition (C2*) is an amalgamation of the original condition (C2)
and a relaxed version of (C3). In other words, (C2*) retains the original requirement for
edges sharing the same tail, while it replaces the “exactly one” requirement for edges with
the same head by a weaker “at least one”. This modification of (C3) allows an A4, B, and
C-admissible subsets of E(N) to contain both incoming edges at a reticulation vertex and to
induce a non-tree subgraph of N with a reticulation.

Lemma 11 generalizes Theorem 3 and the second statement of Theorem 8. The proof is
given in Appendix A.1.

» Lemma 11. Let N be a rooted almost-binary phylogenetic network, and let X € {A,B,C}.
Then, there is a one-to-one correspondence between the family Xy of support networks and
the family Sx of X-admissible subsets of E(N). Moreover, the subgraph N[S] of N induced
by S C E(N) is a support network in Xy if and only if SN E(Z;) is an X -admissible subset
of E(Z;) for each maximal zig-zag trail Z; in N.
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4.1 The number |Ay]| of all support networks

By Lemma 11, one can find an A-admissible subset of E(N) in essentially the same manner
as for an admissible subset of E(N): first, compute the zig-zag trail decomposition Z =
{Z1,...,Z4} of N, and then select edges of Z; according to the conditions (C1*) and (C2*)
in Definition 10. As explained in Remark 7, when Z; = (e1,...,e|p(z,)) is a fence, (C1*)
requires that the terminal edges e; and e g(z,) be marked 1. In contrast, new condition
(C2*) prohibits unselected consecutive edges of Z; — consecutive 0’s in the 0-1 sequence —
regardless of whether Z; is a crown or a fence.

Thus, the family S4(Z;) of A-admissible subsets of E(Z;) is expressed by (3) for each
Z; € Z. We note that, if Z; is a crown, different choices of e; result in different sequences
representing the same subset of F(Z;). For example, both (100 1) and (0 1 1 0) represent
the same subset that does not satisfy condition (C2*).

.{<b1 .. b|E(Zz)‘> | bl = b|E(Zz)‘ = 1, and no <00> OCCU.I'S}'
if Z; is a fence

SalZi) = , , . 3)
{{b1 -+ bE(z,)) | no (00) occurs in any circular ordering}

if Z; is a crown

Moreover, by Lemma 11, Ay is characterized by Ay = H?Zl Sa(Z;), similarly to T in
Theorem 8. Therefore, |Ay| = ngl [Sa(Z;)|. As in (3), each number |S4(Z;)| depends on
whether Z; is a fence or not. This number can be more explicitly represented using Fibonacci
and Lucas numbers (OEIS A000045 and OEIS A000032, respectively) as follows. The proof
of Theorem 12 is given in Appendix A.2.

» Theorem 12. Let N be a rooted almost-binary phylogenetic network and Z = {Z1,...,Zq}
be the mazimal zig-zag trail decomposition of N. Let {F,} be the Fibonacci sequence defined
by Fy=Fy=1and F,, = F,_1+ F,_o (n>3), and {L,,} be the Lucas sequence defined by
Li=1,Ly=3and L, = Lp_1+ Lp_a (n>3). Then, the number of support networks |Ap|
is given by (4).

Anvl= TI Fecy- II Lee (4)

Zi:fence Z;:crown
Moreover, |Ay| = O(¢!EMN) holds, where ¢ = (14 /5)/2 = 1.6180. .. is the golden ratio.

Theorem 12 yields an obvious algorithm for counting | Ax|. It first computes the maximal
zig-zag trail decomposition Z = {Z1,...,Zy} of N, and then calculates |Ay| using (4).

» Proposition 13. |Ay| can be computed by in O(|E(N)|) time.

Proof. By Proposition 6, Z can be computed in ©(|E(N)|) time. For each Z; € Z, deciding
whether Z; is a crown or not takes O(|E(Z;)|) time, and F|g(z,)| and L|g(z,)| can be computed
in O(|E(Z;)|) time. Since |Z| = O(]E(N)|), one can count |An| using (4) in O(|E(N)]|) time.
Loading N takes Q(|E(N)|) time, so the overall complexity is ©(|E(N)]). <

Similarly, we can develop an algorithm to generate all (or a desired number of) elements of
An by sequentially outputting each element of Hle Sa(Z;), achieving O(|E(N)]|) delay. We
refer the reader to [9] or [10] for the basics on the complexity analysis of listing algorithms.
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4.2 The number |By| of minimal support networks

We can see that A-admissible subset S of E(Z;) is B-admissible if and only if S’ contains no
three consecutive edges in the edge sequence (e1,...,eg(z,)) of Z;. Thus, the family Sp(Z;)
of B-admissible subsets of F(Z;) is expressed as in (5) for each Z; € Z.

{{by - ~~b|E(Zi)‘> | by = big(z,) =1, and no (00) or (111) occurs}
if Z; is a fence
Sp(Zi) = . . . (5)
{{b1---bE(z,)) | no (00) or (111) occurs in any circular ordering}

if Z; is a crown
By Lemma 11, By is characterized by By = H?Zl Sg(Z;). Therefore, |By| =

Hle |S(Z;)|. This number is expressed using Padovan numbers (OEIS A000931) and
Perrin numbers (OEIS A001608) as follows. The proof of Theorem 14 is in Appendix A.3.

» Theorem 14. Let N be a rooted almost-binary phylogenetic network and Z2 = {Zy,...,Zq}
be the mazimal zig-zag trail decomposition of N. Let {P,} be the Padovan sequence defined
by (P, P2, P3) = (1,1,1) and P, = P9+ P,—3 (n > 4), and {Q,} be the Perrin sequence

defined by (Q1,Q2,Q3) = (0,2,3) and Q,, = Qn_o + Qn_3 (n > 4). Then, the number of
minimal support networks |By| is given by (6).

Byl =TI Peey- [I Qe (6)

Zi:fence Zi:crown
Moreover, |By| = O@FEWN) holds, where ¢ = {/(9+v69)/18 + {/(9 —/69)/18 =
1.3247 ... is the plastic number.
» Proposition 15. |By| can be computed in O(|E(N)|) time.

Proof. The only difference between (4) and (6) is that F|g(z,)| and L|g(z,) are replaced by
Piez,y and Q|g(z,)|, respectively. For each Z; € Z, both Pg(z,)| and Q|g(z,) can also be
computed in O(|E(Z;)|) time. The remainder is the same as the proof of Proposition 13. <«

As noted in Section 4.1, the elements of By can also be listed with ©(|E(N)|) delay.

4.3 The number |Cy| of minimum support networks

The construction of C-admissible subsets of each F(Z;) is the same as that of admissible
subsets for support trees, with the only difference that C-admissible subsets allow W-fences.

{((10)1EZ172) ((01)IE(Z)1/2)} if Z; is a crown
{(1(01)(IE(ZI=1)/2)1 if Z; is an N-fence
{(1(01)P(10)1) [ p,q € Z>0,p + q = (|E(Zi)| - 2)/2}

if Z; is an M-fence or a W-fence

Sc(Z;) = (7)

By Lemma 11, Cy is characterized by Cny = H?Zl Sc(Z;). Therefore, |Cn| = H?:l |Sc(Z5)].
From (7), we have |S¢(Z;)| = 2 for any crown Z;, |S¢(Z;)| = 1 for any N-fence Z;, and
|Se(Z;)| = |E(Z;)|/2 for any other Z;. Thus, we obtain Theorem 16 and Proposition 17.

» Theorem 16. Let N be a rooted almost-binary phylogenetic network and Z = {Z1,...,Zq4}
be the mazimal zig-zag trail decomposition of N. Then, |Cx| =211y cz,,,, |1 E(Zi)|/2) holds,
where ¢ is the number of crowns in Z, and Zyw :={Z; € Z | Z; is an M-fence or W-fence}.
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» Proposition 17. |Cx| can be computed in ©(|E(N)|) time.

As noted in Section 4.1, the elements of Cx can also be listed with O(|E(N)|) delay.

4.4 Case study: Comparison of the numbers |Ay/|, |By|, and |Cy/|

One can solve any optimization problem on support networks by listing all elements of Ay,
but this approach is generally infeasible due to its enormous size. Although all of |An|, |Bn]|,
and |Cx| grow exponentially with the size of N, we present a comparison of their practical
sizes to motivate our approach to Problem 2 described in Section 6. The full implementation
including the code used to generate the networks, along with the generated samples and
detailed count data, is available in our GitHub repository.

For this case study, we generated rooted binary phylogenetic networks with n leaves and
r = 2(n — 1) reticulations. Such a network has 2n — 2 + 3r = 8(n — 1) edges, and thus
50% of its edges are reticulation edges, representing a high level of reticulation. For each
3 < n <10, we created 100 such networks by the following procedure: starting from a rooted
binary phylogenetic tree Ny, the procedure repeatedly adds a new edge between two arbitrary
edges of N;, directing it so as to preserve the acyclicity of N;;1, and returns N,.. Note that
networks generated in this manner may or may not be tree-based, since every new edge is
added not between edges of the initial tree Ny but between edges of the current network N;.

For each generated network N, we computed |An|, |Bn|, and [Cxn| using the linear-time
algorithms described in Sections 4.1-4.3. The minimum, maximum, and median counts
across the 100 samples of each size are summarized in Table 1.

Table 1 shows that |[Bx| is consistently much smaller than | Ax|, and |Cx| is even smaller.

This indicates that, even though |Ay| can be prohibitively large, both |By| and |Cy| are
typically small enough to allow exhaustive enumeration. We also see that the number of
support networks varies widely even among networks of the same size, suggesting that the
computational cost of exhaustive search within By or Cy may vary substantially depending
on the structure of N. For example, the number |Cy| of minimum support networks of N
with r = 18 was 1728 for a certain sample but was only 4 for another sample.

Table 1 Summary of the case study results: minimum, maximum, and median of |Ax|, |Bw|,
and |Cn| for 100 rooted binary phylogenetic networks with n leaves and r = 2(n—1) reticulations.

- |AN| |By| Cn|

Min Max Median  Min Max Median Min Max  Median
3 4 15 64 30 2 10 4 1 9 3
4 6 55 336 160 4 28 9 1 18 4
5 288 2,640 900 8 72 24 1 36 8
6 10 900 15,840 4,478 6 256 48 1 108 12
7 12 6,435 134,784 24,720 24 768 142 2 192 24
8 14 34,272 571,914 134,400 40 1,680 270 2 576 38
9 16 93,600 4,186,080 699,920 90 2,880 576 2 1,152 68
10 18 449,280 21,715,200 3,861,936 144 7,056 1,372 4 1,728 124

5 Finding a support network with the fewest reticulations

As defined in Section 3, the base tier 7*(NN) of N is the minimum value of r(G) over all
support networks G of N. This leads us to Problem 1.
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» Problem 1 (RETICULATION MINIMIZATION). Given a rooted almost-binary phylogenetic
network N, compute the base tier 7*(N), and find a support network G of N with r(G) =
r*(N).

Since r(G) := |E(G)| — |V(G)| + 1 and G is a spanning subgraph of N, the support
networks G of N minimize r(G) if and only if it has the fewest edges among all support
networks, i.e., it is a minimum support network. Therefore, an optimal solution of Problem 1
can be obtained by simply selecting an arbitrary element from Cy = Hle Sc(Z;). This is
done by computing the maximal zig-zag trail decomposition {Z1,...,Z4} of N, and then
selecting an arbitrary element of S¢(Z;) expressed in (7) for each Z;.

For example, the network N in Figure 1 is decomposed into the maximal zig-zag trails
Zy through Z7. According to (7), the sequence (11) is C-admissible for E(Z;), E(Z3), and
E(Z5); (1010) is C-admissible for E(Z3) and E(Z,); and (1) is C-admissible for E(Zs) and
E(Z;). Piecing these C-admissible subsets together yields the edge-set of a support network
G* of N with the minimum reticulation number, that is, r(G*) = 1.

» Theorem 18. The above algorithm solves Problem 1 in ©(|E(N)]|) time.

When N is tree-based, r*(IN) = 0 holds and a support network G with r(G*) = 0 is
simply its support tree. In general, r(G*) equals the number of W-fences in the maximal
trail decomposition of N, as easily shown by induction on the number of W-fences.

6 Finding a support network with the minimum level

In Section 3, we have also defined level”(IV), i.e., the base level of N. In contrast to Problem 1,
we conjecture that Problem 2 is NP-hard. Here, we provide exact and heuristic exponential
algorithms for solving Problem 2.

» Problem 2 (LEVEL MINIMIZATION). Given a rooted almost-binary phylogenetic network N,
compute the base level, level*(N), and find a support network G with level(G) = level” (V).

6.1 Exact algorithm

An obvious exact algorithm for Problem 2 computes level(G) of each element G in Ay to
obtain the minimum value, but this method is clearly impractical. Algorithm 1 performs an
exhaustive search in By instead of Ap. Recalling the numerical results in Table 1, we know
that this search space reduction is significant. We can prove that By contains a correct G*,
yielding Theorem 19. The proof is given in Appendix A.4.

Algorithm 1 Exact method for solving LEVEL MINIMIZATION (Problem 2).

Input: A rooted almost-binary phylogenetic network N

Output: A support network G* of N with the minimum level, the value of level* (V)
1 foreach G € By do
2 L compute level(G)

3 let G* be a support network G with the minimum level(G) in By;
4 return G*, and level(G*) as level*(N)

» Theorem 19. Algorithm 1 returns a correct solution of Problem 2. It runs in O(|By]| -
|E(N)]) = O@IFMI | B(N)|) time, where 1 is as in Theorem 14.
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6.2 Heuristic algorithm

Algorithm 2 performs an exhaustive search in an even smaller search space Cy. It repeats

the same procedure as Algorithm 1, except its iteration number is reduced from |By| to |Cn]|.

By Theorem 19, Algorithm 2 therefore runs in O(|Cy| - |E(N)]|) time.

Algorithm 2 does not always output a correct solution of Problem 2, because minimizing
the number of reticulations does not imply minimizing the level of support networks. Consider
a level-1-based network N in Figure 4(a), which has the property that any G € Cx satisfies
r(G) = 2 and level(G) = 2. Then, Algorithm 2 outputs a level-2 support network as
illustrated in Figure 4(b). An optimal support network G* with level(G*) = 1 exists in
By \ Cny while it is not optimal in terms of reticulation numbers, as shown in Figure 4(c).

Algorithm 2 Heuristic method for solving LEVEL MINIMIZATION (Problem 2).

Input: A rooted almost-binary phylogenetic network N

Output: A support network G* of N with the minimum level, the value of level*(N)
1 foreach G € Cy do
2 L compute level(G)

3 let G* be a support network G with the minimum level(G) in Cy;
4 return G*, and level(G*) as level”(N)

Figure 4 (a) An instance of Problem 2 for which Algorithm 2 cannot find a correct solution.
(b) An example of a support network output by Algorithm 2 with two reticulations (red) and level 2.

(c) An optimal support network that has three reticulations (red) yet achieves level 1.

6.3 Performance evaluation of the exact and heuristic algorithms

We evaluated the performance of our exact algorithm (Algorithm 1) and heuristic algorithm
(Algorithm 2) using rooted binary phylogenetic networks with n = 8 leaves and various
reticulation numbers r. Although our experiment focuses on only binary networks, this
simplification does not undermine the validity of our evaluation, as the search space sizes
|Bn| for Algorithm 1 and |Cy| for Algorithm 2 are not affected by whether N is binary or
almost-binary.

For each r ranging from 1 to 50, we generated 25 instances using the procedure described
in Section 4.4. The experiments were conducted on a MacBook Pro equipped with an
Apple M3 Max CPU (4.05 GHz) and 36 GB of memory, with a timeout limit of 30 minutes
per instance. The Python code and experimental results, including the outputs of both
algorithms for all instances, are available in our GitHub repository.
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We first assessed computational efficiency of Algorithms 1 and 2 by measuring runtime on
each instance. Figure 5 shows average runtime on a log scale with minimum and maximum
values across 25 instances for each 7. Both algorithms exhibit expected exponential runtime
growth as r increases. Algorithm 1 completed up to r = 36, beyond which timeouts occurred,
while Algorithm 2 successfully handled all instances up to r = 49. The performance gap is
particularly pronounced for larger networks. For example, at r = 35, Algorithm 1 approaches
its limits while Algorithm 2 completes within seconds on average.

Notably, both algorithms exhibit substantial runtime variability even for the same 7,
as shown by the wide error bars in Figure 5. This variation reflects runtime dependence
on network structure beyond just reticulation number, consistent with our observations
in Section 4.4 regarding the significant variability of |By| and |Cy| among instances with
identical r values.

10000

1000

/
100 ,4/ /|

pa

5

-

Runtime (sec)

5}

0.01

0.001

0.0001
123456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Number of reticulation(s)
—e— Algorithm 1 - & - Algorithm 2

Figure 5 Runtimes (log scale) of Algorithms 1 and 2 on rooted binary phylogenetic networks
with 8 leaves and various reticulation numbers r (1 < r < 36 for exact, 1 < r < 49 for heuristic).
Runtime is averaged over 25 instances per r, with error bars showing minimum and maximum.

While Algorithm 1 guarantees optimal solutions (Theorem 19), Algorithm 2 provides
no such theoretical guarantee. To evaluate the practical quality of the heuristic solutions,
we compared the outputs of Algorithm 2 against the optimal values level*(N) computed
by Algorithm 1 for all instances with r» < 36 where both algorithms completed successfully
within the time limit. Figure 6 provides a breakdown of the output differences A for each
r, where A is defined as the difference between the value returned by Algorithm 2 and
the optimal value level*(N) computed by Algorithm 1. The bars show the proportion of
instances (out of 25) with A =0 (exact match), A =1, A =2, and A > 3.

Although the accuracy gradually declines as r increases, Algorithm 2 maintains practical
effectiveness across the entire range of tested networks. In fact, up to r < 17, Algorithm 2
achieved exact solutions (A = 0) for all instances. Even at r = 30, it still returned optimal
values for approximately 80% of instances. Large deviations (A > 3) remain rare throughout
the tested range, occurring in less than 10% of instances even for the largest networks.
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Figure 6 Accuracy of Algorithm 2 on randomly generated rooted binary phylogenetic networks
with 8 leaves and r € {1,...,36} (25 instances per 7). Bars show the percentage of instances with
difference A between Algorithm 2’s output and optimal level*(N) found by Algorithm 1: A =0
(blue), A =1 (green), A = 2 (orange), A > 3 (red).

7 Conclusion and future directions

In this paper, we have extended Hayamizu’s structure theorem to develop a theoretical
foundation for support networks of rooted almost-binary phylogenetic networks. The extension
from support trees allows us to analyze not only tree-based networks but also general, non-
tree-based rooted phylogenetic networks. Our main contributions are threefold:

First, we established direct-product characterizations of three families of support networks
for a given network N: all support networks A, minimal support networks By, and minimum
support networks Cy. These characterizations yielded closed-form counting formulas that
can be computed in linear time, revealing interesting connections to well-known integer
sequences such as Fibonacci, Lucas, Padovan, and Perrin numbers. We also described and
implemented a linear-delay algorithm for listing the support networks in each family.

Second, we developed a linear-time algorithm for RETICULATION MINIMIZATION, which
finds a support network with the minimum reticulation number (minimum tier). We proved
that an optimal solution can be found simply by picking any element from the set Cy.

Third, we proposed both exact and heuristic algorithms for LEVEL MINIMIZATION.
While both algorithms have exponential time complexity, our experimental evaluations
demonstrated their practicality across a wide range of reticulation levels. Notably, the
heuristic method found optimal solutions in most cases, and when it did not, it still produced
good approximations.

There are some promising avenues for future research. In this paper, we have discussed
support networks of almost-binary networks, which form a subclass of non-binary networks.
However, extending this framework to fully non-binary networks is challenging because the
uniqueness of the maximal zig-zag trail decomposition of N, a key component of Hayamizu’s
structure theorem that underpins our work, is not guaranteed beyond the almost-binary case.
It is also important to explore whether support networks with the minimum tier or level can
gain meaningful insights into reticulate evolutionary processes from biological data. As our
heuristic algorithm empirically produces good approximate solutions, theoretical analysis of
its approximation ratio and the design of improved approximation algorithms also remain
valuable pursuits.
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A.1 Proof of Lemma 11

We begin by proving the first statement. To show the one-to-one correspondence between
Xn and Sy in the case of X = A, we first prove that N[S] is a support network of N if and
only if S is an A-admissible subset of E. Assume that G is a support network of N. Then,
V(G) = V by definition. We will now verify that S := E(G) satisfies conditions (C1*) and
(C2%). Recall that Z in Definition 10 is any subgraph of N, so we may let Z be N. For any
(u,v) € E with outdegy (u) = 1, we have (u,v) € S since otherwise outdegg(u) = 0 would
hold and thus G would have a leaf u not in the leaf-set X of N. Also, for any (u,v) € E
with indegy (v) = 1, we have (u,v) € S since otherwise indegg (v) = 0 would hold and thus
G would have a root v other than the unique root of N. Hence, S satisfies (C1*). Next, for
any distinct eq,ep € E with either tail(e;) = tail(ez) or head(e;) = head(ez), at least one
of {e1, ez} is in S since otherwise, by the assumption that N is almost-binary, tail(e;) ¢ X
would be a leaf of G or head(e;) would be an extra root of G. Hence, S satisfies (C2*).

To prove the converse, assume that S is an A-admissible subset of E. Then, S satisfies
(C1*) and (C2*). This implies that N[S] is a spanning subgraph of N. Indeed, if there were
v € V with v ¢ {head(e), tail(e)} for any e € S, then (C1*) or (C2*) (or both) would be
violated, as easily verified for each possible case of indegy (v) € {0,1,2}. Let G := (V, S)
be the spanning subgraph of N. Since S satisfies both (C1*) and (C2*), outdegy(v) = 0
if and only if outdegs(v) = 0, so the root of N remains the unique root of G. Similarly,
outdegy (v) = 0 if and only if outdegs(v) = 0, so the leaf-set of G remains X. Hence,
G = (V,S) is a support network of N.

By the assumption on N described in Remark 4, if S; and Ss are different A-admissible
subsets of E, then N[S;] = (V,S1) and N[Ss] = (V, S2) are different support networks of N,
and the converse also holds. Thus, the map p: S4 — Ay, defined by p(S) = N[S], is a
bijection.

The above arguments X = A apply for similarly to X € {B,C}. Indeed, by Definitions 9
and 10, an A-admissible subset S € S4 belongs to Sg if and only if the support network
N[S] € Ay belongs to By. Thus, the restriction of i to Sg gives a bijection between Sp
and By. The same holds for X = C. This completes the proof of the first statement.

To prove the second statement for X = A, we show that a subset S C FE satisfies
conditions (C1*) and (C2*) with Z := N if and only if S N E(Z;) satisfies (C1*) and (C2*)
with Z := Z; for each i € [1,d]. First, observe that if (u,v) € E satisfies outdegy(u) = 1
or indegy(v) = 1, then there exists a unique Z; € Z such that (u,v) € E(Z;). Since
{E(Z1),...,E(Z4)} is a partition of F, the condition (C1*) for S with Z := N holds if and
only if each SN E(Z;) satisfies the condition (C1*) with Z := Z;. Similarly, if two distinct
edges e1, e € E share the same head or the same tail, then both edges must belong to a
unique Z; € Z, i.e., {e1,ea} C E(Z;). Then, the requirement that S contains e; or ez is
equivalent to requiring that SN E(Z;) contains e or e;. Thus, S satisfies (C2*) with Z := N
if and only if each S N E(Z;) satisfies (C2*) with Z := Z;. Hence, S is an A-admissible
subset of E (i.e., N[S] is a support network of N) if and only if each S; := SN E(Z;) is an
A-admissible subset of E(Z;).

The result just proved for X = A implies that any A-admissible subset S C E can be
obtained by independently selecting, for each Z; € Z, an A-admissible subset S; C E(Z;),
and then taking their union: S =57 U---US;. Then, similarly to Remark 7, the admissible
subset S is minimal (resp. minimum) if and only if each S; is minimal (resp. minimum). This
completes the proof.
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A.2 Proof of Theorem 12

We prove that |[S4(Z;)| = Fn, holds if Z; is a fence and that |S4(Z;)| = L, holds if Z;
is a crown. Consider a fence Z; = (e1,...,em,;) € Z. As the case of m; < 2 is trivial, we
may assume m; > 3. Let Z] = (e7,...,e;, ) be the undirected graph obtained from Z; by
ignoring all edge orientations, and let Z' = (e5, ..., e, ;) be its subgraph induced by the
non-terminal edges of Z,. We can assume without loss of generality that Z!’ is a path. Indeed,
when N is binary, this holds trivially because the fence Z; visits each internal vertex exactly
once. If N is almost-binary but not binary, Z!” may fail to be a path due to the presence of
a vertex v with both indeg, (v) = 2 and outdegy, (v) = 2. However, we can transform N
by a preprocessing step that splits each such vertex v into two vertices connected by a new
edge, which ensures that Z!’ is a path. This operation preserves |Ay| and does not affect
the set S4(Z;).

Let S be a subset of F(Z;) and let S := E(Z;)\ S. By Lemma 11 and Equation (3), S is
A-admissible if and only if e1, e ¢ S and for any k € [1,m; — 1], {ex, ex+1} € S. Then, there
exists a bijection between S4(Z;) and the family of matchings in the path Z!. For example,
when m; = 5, an A-admissible subset S = {e1, e3,e5} of E(Z;) corresponds to a matching
S ={eh, e} in Z!' = (e}, e, €}). Theorem 1 in [5] says that the number of (possibly empty)
matchings in a path with ¢ > 1 edges equals Fyi. Since |E(Z!")| = m; — 2, the number of
matchings in Z!' equals F,,,. Hence, |S4(Z;)| = F,,, holds.

Consider a crown Z; = (eq,...,€m,;). Since a crown has no terminal edges, S C E(Z;) is
A-admissible if and only if for any k € [1,m; — 1], {ex,ex+1} € S. Let Z! be the undirected
graph obtained from Z; by ignoring all edge orientations. Using the pre-processing described
above, we can treat Z, as a cycle graph without loss of generality. Similarly to above, there
is a bijection between S4(Z;) and the family of matchings in the cycle Z;. Theorem 2 in [5]
says that the number of (possibly empty) matchings in a cycle with ¢ > 3 edges equals Ly.
Hence, |S4(Z;)| = Ly, holds.

Theorems 5.6 and 5.8 in [13] say that F,, and L, are expressed by the closed-forms
F, = (¢" — (—¢)™™)/v/5 and L, = ¢™ + (1 — ¢)", respectively. Then, F,, = O(¢") and
L, = ©(¢") hold. This implies O(|Ax|) = O(¢/F@) x ... x glE(Za)l) = ©(¢/EWNI) holds.
This completes the proof.

A.3 Proof of Theorem 14

We prove that |Sg(Z;)| = P, holds if Z; is a fence and |Sg(Z;)| = @m, holds if Z; is a crown.
Consider a fence Z; = (e1,...,€m,;). As the case of m; < 2 is trivial, we may assume m; > 3.
Let Z! be the undirected path as in the proof of Theorem 12. An A-admissible subset S
of E(Z;) is minimal (namely, B-admissible) if and only if a matching in Z!' corresponding
to S := E(Z;)\ S is maximal. Then, there exists a bijection between Sp(Z;) and the
family of maximal matchings in Z/'. For example, when m; = 5, a B-admissible subset
S = {e1, €2, e4,e5} of E(Z;) corresponds to a maximal matching S = {e4} in Z!' = (e}, e}, €}).
Proposition 3.1 in [3] say that the number of maximal matchings in a path with ¢ edges
equals Pypyo. Since |E(Z))] = m; — 2, the number of maximal matchings in Z! equals P, .
Hence, |Sg(Z;)| = Py, holds.

Consider a crown Z; = (e1,...,em,;). Let Z! be the undirected cycle as in the proof of
Theorem 12. Then, there exists a bijection between Sp and the family of maximal matchings
in the cycle Z,. By the statement after Proposition 3.9 in [3], the number of maximal
matchings in a cycle with £ > 3 edges equals Q. Thus, |Sg(Z;)| = Qm,-

By [3], P, = ©(¢") and Q,, = ©(¥") hold. Hence, O(|By|) = O(!F@II x ... x
PlEZal) = @(p!E(N) holds. This completes the proof.
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A.4 Proof of Theorem 19

As Algorithm 1 checks the level of each support network in By, our goal is to show that
By contains a level-k support network of N. To obtain a contradiction, assume that
level(G) > k holds for any G € By. This implies that any level-k support network G’ of N

is in Ay \ By. Since G’ is not minimal, there exists a minimal one G € By with G € G.

Then, level(G) < level(G’) = k since each block of G is a subgraph of its corresponding block
of G', which is a contradiction. This completes the proof of the correctness of Algorithm 1.

Since N is a binary network, we have O(|V(N)|) = O(|]E(N)]|). Also, as any minimal
support network G € By is a subgraph of N, we have O(|E(G)|) = O(|E(N)|). For each
G € By, it takes O(|V(G)| + |E(G)|) = O(JE(N)]|) time to compute its block decomposition
{G4, ..., Gy} using depth-first search [11]. For any block G;, one can compute r; = |E(G;)| —
[V(G;)|+1in O(J]E(G;)]) time. Then, for each G € By, it takes O(|E(G1)|+- - -+ |E(Gk)|) =
O(JE(G)|) = O(|E(N)]) time to calculate level(G), namely the maximum r; across all blocks
G; of G. Overall, it takes O(|Bn| - |E(NV)|) time to obtain the minimum value of level(G)
across all G € By. By Theorem 14, O(|By| - |E(N)|) = O(¢!FMN . |E(N)|) holds.
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