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Abstract
K-mer-based analysis of genomic data is ubiquitous, but the presence of repetitive k-mers continues
to pose problems for the accuracy of many methods. For example, the Mash tool (Ondov et al. 2016)
can accurately estimate the substitution rate between two low-repetitive sequences from their k-mer
sketches; however, it is inaccurate on repetitive sequences such as the centromere of a human
chromosome. Follow-up work by Blanca et al. (2021) has attempted to model how mutations affect
k-mer sets based on strong assumptions that the sequence is non-repetitive and that mutations do
not create spurious k-mer matches. However, the theoretical foundations for extending an estimator
like Mash to work in the presence of repeat sequences have been lacking.

In this work, we relax the non-repetitive assumption and propose a novel estimator for the
mutation rate. We derive theoretical bounds on our estimator’s bias. Our experiments show
that it remains accurate for repetitive genomic sequences, such as the alpha satellite higher order
repeats in centromeres. We demonstrate our estimator’s robustness across diverse datasets and
various ranges of the substitution rate and k-mer size. Finally, we show how sketching can be
used to avoid dealing with large k-mer sets while retaining accuracy. Our software is available at
https://github.com/medvedevgroup/Repeat-Aware_Substitution_Rate_Estimator.

2012 ACM Subject Classification Applied computing → Bioinformatics; Applied computing →
Computational biology

Keywords and phrases k-mers, sketching, mutation rates

Digital Object Identifier 10.4230/LIPIcs.WABI.2025.20

Supplementary Material Software (Source Code):
https://github.com/medvedevgroup/Repeat- Aware_Substitution_Rate_Estimator [32]

archived at swh:1:dir:258c949c42d162c56f1e09a0ece39722a5076601

Funding This material is based upon work supported by the National Science Foundation under
Grants No. DBI2138585 and OAC1931531. Research reported in this publication was supported
by the National Institute Of General Medical Sciences of the National Institutes of Health under
Award Number R01GM146462. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

† The last two authors contributed equally.

© Haonan Wu, Antonio Blanca, and Paul Medvedev;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Algorithms for Bioinformatics (WABI 2025).
Editors: Broňa Brejová and Rob Patro; Article No. 20; pp. 20:1–20:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hvw5426@psu.edu
https://orcid.org/0000-0002-4158-8678
mailto:azb1015@psu.edu
https://www.cse.psu.edu/~azb1015/
https://orcid.org/0000-0002-4675-2596
mailto:pzm11@psu.edu
https://medvedevgroup.com/principal-investigator/
https://orcid.org/0000-0003-3143-594X
https://github.com/medvedevgroup/Repeat-Aware_Substitution_Rate_Estimator
https://doi.org/10.4230/LIPIcs.WABI.2025.20
https://github.com/medvedevgroup/Repeat-Aware_Substitution_Rate_Estimator
https://github.com/medvedevgroup/Repeat-Aware_Substitution_Rate_Estimator
https://archive.softwareheritage.org/swh:1:dir:258c949c42d162c56f1e09a0ece39722a5076601;origin=https://github.com/medvedevgroup/Repeat-Aware_Substitution_Rate_Estimator;visit=swh:1:snp:d00bef0b995d0a1fd07763ae894cb8aed24d28ea;anchor=swh:1:rev:5f4180f6722018f2b8ba393683b76ab66c51925f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


20:2 A k-mer-Based Estimator of the Substitution Rate Between Repetitive Sequences

Acknowledgements We thank Amatur Rahman for initial work on the project and Qunhua Li and
David Koslicki for helpful discussions. We thank Mahmudur Rahman for the helpful discussion
about hash functions. We thank Bob Harris for the idea of using dynamic programming to compute
the probability of the destruction of all k-spans.

1 Introduction

K-mer-based analysis of genomic data is ubiquitous. e.g. in genome assembly [1], error
correction [2], read mapping [13], variant calling [29], genotyping [30, 7], database search [14,
9], metagenomic sequence comparison [26], and alignment-free sequence comparison [28,
20, 24]. One of the major challenges is the presence of repetitive k-mers, which adversely
affects the practical performance as well as the theoretical analysis of downstream algorithms.
One example is that heuristic read aligners like minimap2 [15] and even more rigorous ones
like Eskemap [25] filter out highly repetitive k-mers in order to avoid explosive run times.
Another example is the recent paper [27] that proved that sequence alignment can on average
be done in almost O(n log n) time but could not account for sequences with a high number
of repeats.

One of the major advantage of k-mer-based methods is that they lend themselves more
easily to sketching [16, 22], which is important for scaling to large-scale data. The ground-
breaking Mash paper [20] was able to estimate the mutation rate between two genomes fast
enough to be able to construct a phylogeny of 17 primate species in a tiny fraction of the
time it would take an alignment-based method. Their approach uses an estimator based on
the Jaccard similarity between the k-mer sketches of two sequences. However, the derivation
behind their estimator assumes that the genomes have no repeats, making it inaccurate in
highly repetitive regions. Other methods for estimating mutation rates are not designed for
and/or not tested on highly repetitive sequences [34, 10, 18, 23].

In this paper we tackle the challenge of accounting for repeats when estimating the
mutation rate. We assume that a string t is generated from a string s through a simple
substitution process [5], where every nucleotide of s mutates with a fixed probability r. Given
the number of shared k-mers between s and t and the k-mer abundance histogram of s,
we define our estimator r̂ as the solution to a polynomial equation, which can be solved
using Newton’s method. We give a theorem to bound its bias, in terms of properties of s

(Theorem 3). Our estimator is designed to capture the most salient properties of the repeat
structure of the genome, with the rest of the information being captured in the bias bounds.
As a result, a user can decide a priori whether to trust our estimator, based on the quality
of the bias bounds and on another heuristic we provide (Theorem 4).

We evaluate our estimator r̂ empirically on various sequences, including the alpha satellite
centromeric region of human chr21 and the highly repetitive human RBMY gene. For
such repetitive sequences, our estimator remains highly accurate, while the repeat-oblivious
estimator of the kind used by Mash is unreliable. We make a comprehensive evaluation of r̂

across the spectrum of k and r values, which can guide a user towards choosing a k value for
their analysis. We also show that our estimator can be used on top of a FracMinHash sketch,
without systematically effecting the bias. Our software is available on GitHub [32].

2 Preliminaries

Let s be a string and let k > 0 be a parameter indicating the k-mer size. We will index
string positions from 1. We further assume in this paper that s is at least k nucleotides long.
We use L to denote the number of nucleotides in the string minus (k − 1), or, equivalently,
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the number of k-mers in s. For 1 ≤ i ≤ L, let si be the k-mer starting at position i of s.
Let spk(s) be the set of all distinct k-mers in s, also called the k-spectrum of s. We let
L0 be the size of spk(s), i.e. the number of distinct k-mers in s. Given a k-mer τ , we
will use the shorthand τ ∈ s to mean τ ∈ spk(s). Given two strings s and t, we define
I(s, t) ≜ |spk(s) ∩ spk(t)| as the number of k-mers shared between them. We will usually use
the shorthand of I for I(s, t). Given two k-mers τ and ν, we use HD(τ, ν) to denote their
Hamming distance.

Let K be a set of k-mers and let s be a string. We let occ(K) denote the number of
positions i in s such that si ∈ K. When K consists of a single element τ , we simply write
occ(τ). A set of positions J is said to be a set of occurrences of K if for all i ∈ J , we
have si ∈ K. A set of occurrences is said to be non-overlapping if, for all distinct i, j ∈ J ,
|j − i| ≥ k. We let sep(K) be the maximum size of a set of non-overlapping occurrences of
K, also referred to as the separated occurrence count. Observe that 0 ≤ sep(K) ≤ occ(K).
The abundance histogram of a string s is the sequence (a1, . . . , aL) where ai is the number of
k-mers in spk(s) that occur i times in s. Note that L0 =

∑L
i=1 ai.

We will consider the following random substitution process, parameterized by a rate
0 ≤ r ≤ 1. Given a string s, it generates an equal-length string where, independently, the
character at each position is unchanged from s with probability 1 − r and changed to one of
the three other nucleotides with probability r/3.

3 Problem overview and proposed solution

In this paper, we address the following problem. Let 0 ≤ r ≤ 1 be a substitution rate. Let s

be a string and let t be generated from s using the substitution process parametrized by r.
Let Iobs = I(s, t) be the observed spectrum intersection size. Given Iobs and the abundance
histogram of s, the problem is to estimate the mutation rate r.

The bias of an estimator r̂ for r is defined as E[r̂] − r. A good estimator should have
a small absolute bias, one that is within the error tolerance of downstream applications.
For our problem, directly finding an estimator for r with provably small bias turned out
to be technically challenging. Instead, we provide an estimator for q ≜ 1 − (1 − r)k, which
corresponds to the probability that a k-mer occurrence contains at least one substitution.
There is a natural one-to-one correspondence between an estimator q̂ of q and an estimator r̂

of r via the equation q̂ = 1 − (1 − r̂)k. Thus, an alternative to bounding the bias of r̂ is to
bound that of q̂; i.e., bound E[q̂] − q = E[1 − (1 − r̂)k] − (1 − (1 − r)k). While the difference
between the two approaches may intuitively seem minor, bounding the bias of q̂ turned out
to be more technically feasible.

The only previously known estimator for this problem is what we refer to as the repeat-
oblivious estimator1 and denote by robl. The derivation of this estimator assumes that 1) s

has no repeats and 2) if a k-mer mutates, it never mutates to anything that is already
in s. The estimator is then derived using a simple two step technique, called the method
of moments [6]. The first step is to derive E[I] in terms of r. Under the assumptions (1)
and (2), E[I] = L(1 − r)k. The second step is to take the observed value Iobs, plug it in
place of E[I], and solve for r. In this case, one solves the equation Iobs = L(1 − r)k and
gets the estimator robl = 1 −

(
Iobs

L

)1/k and the corresponding estimator qobl = 1 − Iobs
L . The

1 What we describe is based on the estimators used in [8, 20, 12], but with two important differences. The
first is that we use the modification adopted in the follow up work of [24] and described in Appendix
A.6 of [3]. The second is that the original estimator was calculated from the Jaccard similarity between
two sequences; however, under our substitution process model, we can state more simply in terms of the
spectrum intersection size.
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estimator qobl is an unbiased estimator of q when (1) and (2) hold, but the bias for general
sequences is not known. We are also not aware of any results about the bias of robl, even
under assumptions (1) and (2). As we will show in Section 6, the repeat-oblivious estimator
has a large empirical bias when the assumptions are substantially violated.

On the one hand, the repeat-oblivious estimator does not at all account for the repeat
structure of s. On the other hand, an estimator that would fully account for it seems to
be challenging to derive, analyze, and compute. Moreover, such an estimator would likely
be superfluous for real data. Instead, our approach is intended to achieve a middle ground
between accuracy and complexity by accounting for the most essential part of the repeat
structure in the estimator and expressing the non-captured structure in the bias formula.
We will show that under assumption (2) and the assumption that all k-mer occurrences are
non-overlapping in s,

E[I] ≈ L0 −
L∑

i=1
ai(1 − (1 − r)k)i. (1)

Following the method of moments approach, we define our estimator r̂ as the unique solution
(the uniqueness is shown in Lemma A.2) to this equation when plugging in Iobs in place of
E[I]. Though we are not able to analytically solve for r̂, we can find the solution numerically
using Newton’s Method.

Note that the assumptions we make are not necessary to compute r̂ and only represent
the ideal condition for our estimator. Our theoretical and experimental results will quantify
more precisely how the deviation from our assumptions is reflected in the bias.

4 Estimator bias

Recall that we define q̂ = 1 − (1 − r̂)k and, as mentioned earlier, we will prove the theoretical
results on the bias of q̂, rather than r̂. First, we need to derive the expectation and variance
of the intersection size. A closed-form expression for even the expectation is elusive, so we
will instead use an approximation and derive bounds on the error. The idea behind our
bounds is that the error becomes small on the types of sequences that occur in biological
data.

We want to underscore that when we make probabilistic statements, it is with regard to
the substitution process and not with regard to s. We do not make any assumptions about s,
and, in particular, we are not considering the situation where s itself is generated randomly.

First, it is useful to express I ≜ I(s, t) as a sum of indicator random variables. Let us
define Eτ

i as event that ti = τ and Eτ = ∪L
i=1Eτ

i as the event that at least one position in t

contains τ . By linearity of expectation, we have

E[I] =
∑
τ∈s

Pr[Eτ ] =
∑
τ∈s

Pr
[
∪L

i=1Eτ
i

]
.

Let F(q) ≜ L0 −
∑L

i=1 aiq
i. Relying on the approximation E[I] ≈ F(q) (i.e. Equation (1)),

we define q̂ as the solution to Iobs = F(q), or, equivalently, q̂ = F−1(Iobs). We show that
this approximation holds when we assume that 1) Pr[Eτ

i ] = 0 when si ̸= τ (see footnote2)
and 2) all occurrences of τ are non-overlapping in s:

2 We note that this assumption is not theoretically precise, because forbidding a k-mer at position i from
mutating to τ ∈ s usually implies that there is at least one ν /∈ s that the k-mer at position i + 1 can no
longer mutate to. Because of these dependencies, there are downstream effects on the probability space
that are complex to track. A theoretically robust alternative was given in [5] via the k-span formulation
of the problem. It could be used to formalize the assumption here, however, in this paper, we only use
the assumption to give intuition for the estimator and do not use it in any formal theorem statements
or proofs.
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E[I] =
∑
τ∈s

Pr[∪L
i=1Eτ

i ]

≈
∑
τ∈s

Pr[∪i:si=τ Eτ
i ] (because of (1))

=
∑
τ∈s

(1 − Pr[∩i:si=τ ¬Eτ
i ])

≈
∑
τ∈s

(1 −
∏

i:si=τ

Pr[¬Eτ
i ]) (because of (2))

=
∑
τ∈s

(1 − qocc(τ))

= L0 −
L∑

i=1
aiq

i

= F(q)

The underlying philosophy for our estimator is that while these assumptions are not
perfectly satisfied on real data, in most cases the contribution due to violations of these
assumptions is small. To make this mathematically precise, we will bound the difference
between E[I] and F(q) in terms of an expression that can be calculated for any s.

▶ Theorem 1. We have that LE ≤ E[I] ≤ UE, where

LE ≜
∑
τ∈s

1 − qsep(τ),

UE ≜
∑
τ∈s

1 − qocc(τ) + βτ , where

βτ ≜ min


L∑

i=1
si ̸=τ

(1 − r)k−HD(si,τ)(r/3)HD(si,τ), qsep(τ)

 .

The difference between F(q) and LE (i.e.
∑

τ∈s qsep(τ) − qocc(τ)) is close to 0 when the
number of k-mers with overlapping occurrences is close to 0. On the other hand, the difference
between F(q) and UE (i.e.

∑
τ∈s βτ ) is never zero (except in corner cases). However, the

largest terms contributing to this difference are due to pairs of non-identical k-mers that
have a small Hamming distance to each other. Thus, the difference becomes small when the
number of “near-repeats” is small.

Next, we upper bound the variance.

▶ Theorem 2. We have that

Var[I] ≤ L0 − E[I] − (L0 − E[I])2 +
∑
τ∈s

∑
υ∈s
υ ̸=τ

qsep(τ,υ)

≤ UV ar,

where

UV ar =
∑
τ∈s

∑
υ ̸=τ

qsep({τ,υ}) +
{

L0 − UE − (L0 − UE)2 if L0 − UE ≥ 1/2;
1/4. otherwise.

WABI 2025
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Theorem 2 gives an upper bound on Var[I] in two forms. The first one is more precise
because it is a function of E[I]. However, since we are not able to compute E[I] exactly, the
second form allows us to plug in the upper bound on E[I] from Theorem 1.

Given the bounds on E[I] and Var[I], we are now able to bound the bias of q̂.

▶ Theorem 3. Let s be a sequence with at least one k-mer that occurs exactly once. The
bias of q̂ is E[q̂] − q where E[q̂] is bounded as

E[q̂] ≥ f(UE) − Var[I]
(

F ′′(f(UE))
2(F ′(f(LE)))3 + α

)
≥ f(UE) − UV ar

(
F ′′(f(UE))

2(F ′(f(LE)))3 + α

)
E[q̂] ≤ f(LE)

and where f ≜ F−1 and α = max{L0 − LE , UE} · maxx∈(0,1)

∣∣∣ 1
6

F ′′′(x)F ′(x)−3(F ′′(x))2

−(F ′(x))5

∣∣∣ .

The derivatives of F(q) have straightforward closed-form expressions, since F is a polyno-
mial in q. We do not have a closed-form solution for f , but it can be evaluated numerically
using Newton’s method. Thus, for any given sequence s, we can precompute the bounds of
our q̂ estimator bias for any value of q. Due to space limitations, we do not further elaborate
on the algorithm to compute the bounds in Theorem 3 or on its runtime analysis.

When the observed intersection is empty, there is a loss of signal and it becomes challenging
for any intersection-based estimator to differentiate the true substitution rate from 100%.
The following theorem gives an upper bound on the probability that the intersection is
empty, as a function of L, k, and r. In Section 6, we will show how it can be used to make a
conservative decision that the computed estimate is unreliable.

▶ Theorem 4. Let s be a string of length at least k. The probability that every interval of
length k in s[1..i + k − 1] has at least one substitution can be computed in Θ(ik) time with a
dynamic programming algorithm that takes as input only L, r, k (not s).

5 Proofs

This section contains the proofs of our theoretical results. In particular, we will prove
Theorems 1–3 from the previous section. The proof of Theorem 4 is left for the Appendix.
We start by proving a couple of preliminary facts that will be used in the proofs of these
theorems. First, we consider the probability of the event Eτ

i , which is straightforward to
derive.

▶ Lemma 5. For all τ , Pr[Eτ
i ] = (1 − r)k−HD(si,τ)(r/3)HD(si,τ).

Proof. In order for si to be equal to τ after the mutation process, exactly k − HD(si, τ)
positions must remain unmutated (which happens with probability (1 − r)k−d) and exactly
HD(si, τ) positions must mutate to the needed nucleotide (which happens with probability
(r/3)HD(si,τ)). ◀

Next, we will bound the probability that all the occurrences of a k-mer become mutated;
i.e. a k-mer does not survive the mutation process.

▶ Lemma 6. Let τ be a k-mer with occurrence locations denoted by p1 < . . . < pocc(τ). For
all 2 ≤ ℓ ≤ occ(τ),
1. Pr[¬Eτ

pℓ
| ∩ℓ−1

i=1 ¬Eτ
pi

] ≥ q, and
2. Pr[∩ℓ

i=1¬Eτ
pi

] ≥ qℓ.
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Proof. We drop τ from the notation since it remains constant throughout the proof. We first
prove the first statement of the lemma. Let us consider the intervals associated with Epℓ

and
Epℓ−1 , denoted by [pℓ, pℓ + k − 1] and [pℓ−1, pℓ−1 + k − 1], respectively. If these intervals are
disjoint, then we are done. Otherwise, the union of these intervals can be partitioned into
three regions: 1) the part of the interval of Epℓ−1 that does not intersect with the interval of
Epℓ

, 2) the intersection of the two intervals, and 3) the part of the interval of Epℓ
that does

not intersect with the interval of Epℓ−1 . We denote the lengths of these intervals as a, b, and
c, respectively, and we denote the event that no mutation occurs in the intervals as A, B,
and C, respectively. Let X = ∩ℓ−1

i=1¬Epi
, i.e. we need to calculate Pr[¬Epℓ

|X]. First, we
reduce the calculation to Pr[B|X] as follows:

Pr[Epℓ
|X] = Pr[B, C|X] = Pr[B|C, X] Pr[C|X] = Pr[B|X] Pr[C] = Pr[B|X](1 − r)c. (2)

Next, to calculate Pr[B|X], we proceed by conditioning on A:

Pr[B|X] = Pr[B|A, X] Pr[A|X] + Pr[B|¬A, X] Pr[¬A|X] ≤ Pr[B|A, X] + Pr[B|¬A, X].

First note that

A ∩ X =⇒ A ∩ ¬Epℓ−1 ⇐⇒ A ∩ (¬A ∪ ¬B) ⇐⇒ A ∩ ¬B =⇒ ¬B,

and so Pr[B|A, X] = 0. To bound Pr[B|¬A, X], consider all the intervals Epi
, for i < ℓ, that

intersect with B’s interval. Formally, let J = {i < ℓ | Epi intersects B’s interval}. Note that
all intervals indexed by J necessarily contain A’s interval. Therefore, the event ¬A implies
∩i∈J ¬Epi . We can now write

Pr[B|¬A, X] = Pr[B|¬A, ∩i∈J ¬Epi
] = Pr[B|¬A] = Pr[B] = (1 − r)b.

Therefore, Pr[B|X] ≤ (1 − r)b and plugging this bound into Equation (2), we get the first
statement of the lemma.

To prove the second statement of the lemma, we apply the chain rule together with the
first statement:

Pr[∩ℓ
i=1¬Epℓ

] = Pr[¬Ep1 ]
ℓ∏

i=2
Pr[¬Epi |¬Ep1 , · · · , ¬Epi−1 ] ≥ qℓ ◀

We can now prove Theorem 1:

Proof of Theorem 1. It suffices to prove that for every k-mer τ ∈ s, it holds that 1−qsep(τ) ≤
Pr

[
∪L

i=1Eτ
i

]
≤ 1 − qocc(τ) + βτ . For the lower bound, let J be a non-overlapping set of

occurrences of τ of size sep(τ). Then we have

Pr
[
∪L

i=1Eτ
i

]
≥ Pr [∪i:si=τ Eτ

i ] = 1 − Pr [∩i:si=τ ¬Eτ
i ] ≥ 1 − Pr [∩i∈J ¬Eτ

i ]

= 1 −
∏
i∈J

Pr[¬Eτ
i ] = 1 −

∏
i∈J

q = 1 − qsep(τ), (3)

where we use the independence of the events {¬Eτ
i } when they are non-overlapping. For the

upper bound, let A = ∪i:si=τ Eτ
i and let B = ∪i:si ̸=τ Eτ

i . Then, by Lemma 6,

Pr
[
∪L

i=1Ei

]
= Pr [A ∪ B] = Pr[A] + Pr[B ∩ ¬A] ≤ 1 − qocc(τ) + Pr[B ∩ ¬A]

To bound Pr[B ∩ ¬A] observe that Pr[B ∩ ¬A] ≤ min(Pr[B], Pr[¬A]), and by Lemma 5:

Pr[B] ≤
∑

i:si ̸=τ

Pr[Eτ
i ] =

∑
i:si ̸=τ

(1 − r)k

(
r

3(1 − r)

)HD(si,τ)
.

Moreover, by Equation (3), Pr[¬A] = 1 − Pr[A] ≤ qsep(τ) and the result follows. ◀

WABI 2025
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The proof of the variance bound is more straightforward:

Proof of Theorem 2. Since I is a sum of indicator random variables (i.e. I =
∑

τ∈s Eτ ),
we can write the variance as

Var[I] = (L0 − E[I]) − (L0 − E[I])2 +
∑
τ∈s

∑
υ∈s
υ ̸=τ

Pr[¬Eυ, ¬Eτ ];

for completeness we include a proof of this fact in the appendix (Lemma A.1).
Consider some τ ̸= υ and let J be a non-overlapping set of occurrences of {τ, υ}. Let

J τ ⊆ J be the positions where τ occurs and let J υ ⊆ J be the positions where υ occurs.
Then,

Pr[¬Eτ , ¬Eυ] ≤ Pr[∩i∈J τ ¬Eτ
i , ∩i∈J υ ¬Eυ

i ] =
∏

i∈J τ

Pr[¬Eτ
i ] ·

∏
i∈J υ

Pr[¬Eυ
i ] = qsep({τ,υ}).

This gives the first form of the upper bound on the variance. The UV ar upper bound is
derived from the fact that f(x) = x−x2 is monotonically increasing on [0, 1/2) and decreasing
on [1/2, ∞). Therefore, the maximum of 1/4 is achieved at x = 1/2. ◀

Proof of Theorem 3. In Lemma A.2 in the Appendix, we show that f is well-defined. We
will only consider f on the interval [F(1), F(0)]. Throughout the proof, we will rely on
the facts that 1) on the interval q ∈ [0, 1], F ′(q) < 0, F ′′(q) ≤ 0, F ′′′(q) ≤ 0; 2) for
y ∈ [F(1), F(0)], f ′(y) < 0 and f ′′(y) ≤ 0; 3) the first three derivatives of f can be expressed
in terms of f and the derivatives of F . These properties follow by basic calculus and are
stated formally in Lemma A.2. Recall that E[q̂] = E[f(I)]. To get the upper bound, we
use the fact that f is decreasing and concave. We apply Jensen’s inequality followed by
Theorem 1 to get that E[f(I)] ≤ f(E[I]) ≤ f(LE).

For the lower bound, since we cannot analytically derive f(I), we derive a reverse Jensen
inequality using the Taylor expansion of f around E[I]. Specifically, using the Lagrange
Remainder, we know that there exists some ξI between I and E[I] such that

f(I) = f(E[I]) + f ′(E[I])(I − E[I]) + 1
2f ′′(E[I])(I − E[I])2 + 1

6f ′′′(ξI)(I − E[I])3.

Since we are interested in the expected value of f(I), we take expectations on both sides:

E[f(I)] = f(E[I]) + 1
2f ′′(E[I])Var[I] + E[16f ′′′(ξI)(I − E[I])3].

We will bound the terms separately by writing E[f(I)] ≥ T1 + T2 − T3 · maxy∈[F (1),F (0)] T4
with T1 = f(E[I]), T2 = 1

2 f ′′(E[I])Var[I], T3 = E[|I −E[I]|3], and T4 = 1
6 |f ′′′(y)|. For the first

term, we use the fact that f is decreasing and apply Theorem 1 to get that f(E[I]) ≥ f(UE).
For the second term T2, we first plug in the second derivative of f and then apply monotonicity
properties together with Theorem 1 to get

T2 = −F ′′(f(E[I]))
2(F ′(f(E[I]))3 Var[I] ≥ −F ′′(f(UE))

2(F ′(f(LE)))3 Var[I].

For T3, we use the fact that I ≤ L0, which implies that |I − E[I]| ≤ max(L0 − E[I], E[I]),
and thus

T3 = E[|I − E[I]|(I − E[I])2] ≤ max(L0 − E[I], E[I])Var[I] ≤ max(L0 − LE , UE)Var[I].
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For T4,

max
y∈[F(1),F(0)]

T4 ≤ max
y∈[F(1),F(0)]

∣∣∣∣1
6

F ′′′(f(y))F ′(f(y)) − 3(F ′′(f(y)))2

−(F ′(f(y)))5

∣∣∣∣
≤ max

x∈[0,1]

∣∣∣∣1
6

F ′′′(x)F ′(x) − 3(F ′′(x))2

−(F ′(x))5

∣∣∣∣ ◀

6 Experimental results

In this section, we evaluate the empirical accuracy and robustness of our estimator, used by
itself or in combination with sketching.

6.1 Datasets
To evaluate our estimator, we use four sequences to capture various degrees of repetitiveness.
The sequences are extracted from the human T2T-CHM13v2.0 reference [19]. The sequences
and their coordinates are available at our reproducibility GitHub page [33]. Table 1 shows
properties of these sequences and Figure 1 shows their cumulative abundance histograms.
1. D-easy: This is an arbitrarily chosen substring from chr6, which had no unusual repeat

annotations. We set k = 20 for this sequence, which is similar to what was used in the
Mash paper [20]. Less than 1% of the k-mers are non-singletons.

2. D-med: This is the sequence of RBMY1A1, a chrY gene that is composed of ALUs,
SINEs, LINEs, simple repeats, and other repeat elements [Fig 2C in [21]]. We also use
k = 20 for this sequence. Approximately 3% of k-mers are non-singletons.

3. D-hard: This is a subsequence of RBMY1A that is annotated as a simple repeat by
Tandem Repeats Finder [4], containing 4.2 similar copies of a repeat unit of length 545nt.
We use k = 10, which is large enough to avoid spurious repeats in this short sequence
but small enough to capture its repetitive structure. More than 40% of the k-mers are
non-singletons.

4. D-hardest: This is a subsequence (100k long) of a region that is annotated as ‘Active
αSat HOR’ in the chr21 centromere. The location of the subsequence within the region
is arbitrary. Alpha satellite (αSat) DNA consists of 171-bp monomers arranged into
higher-order repeats, and is notoriously difficult to assemble or map to [17]. We use
k = 30 for this sequence, as a user dealing with such a sequence is likely to choose a
higher k value. Over 70% of the k-mers are non-singletons.

Table 1 Sequence properties of our four experimental datasets. A k-mer τ is overlapping if it
overlaps itself at least once in the sequence, i.e. sep(τ) < occ(τ).

Name Default k N. k-mers N. distinct N. of overlapping Biological
(L) k-mers (L0) k-mers significance

D-easy 20 100,000 98,786 15 arbitrary region
D-med 20 14,400 13,727 2 RBMYA1 gene
D-hard 10 2,264 1,199 0 simple repeat
D-hardest 30 100,000 3,987 0 centromere

Before proceeding with experiments, we assess the validity of the two approximations
made in the derivation of our estimator. The first approximation is ignoring the dependency
between overlapping occurrences of a k-mer. The k-mers where this happens, i.e. k-mers τ

where sep(τ) < occ(τ), contribute to inaccuracy. As shown in Table 1, this is exceedingly
rare. The second approximation is ignoring the possibility that a k-mer mutates to another

WABI 2025
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(a) D-easy. (b) D-med. (c) D-hard. (d) D-hardest.

Figure 1 Cumulative abundance histograms of our datasets. Each row labeled y shows the
percentage of k-mers which occur at least y times.

Number of k-mer Pairs (log scale)

(a) D-easy. (b) D-med. (c) D-hard. (d) D-hardest.

Figure 2 The distribution of all-vs-all k-mer Hamming distances. The theoretical Hamming
distance distributions between random k-mers are shown in the red curves.

k-mer in the spectrum. K-mer pairs in s that have a low Hamming distance will contribute
to the bias. Figure 2 shows the distribution of all-vs-all pairwise k-mer Hamming distances.
The D-hard and D-hardest datasets indeed have a large amount of “near-repeat” k-mers,
which should make these datasets challenging for our estimator.

6.2 Comparison of our estimator to the repeat-oblivious estimator
Figure 3 shows the performance on a range of substitution rates, r ∈ (0.1%, 33%). For
D-hard and D-hardest, our estimator has a high accuracy (within a few percent of the true
value), in the range of around r ∈ (0.1%, 24%). The robl estimator, on the other hand, has a
much smaller reliability range, e.g. r ∈ (10%, 24%) in D-hardest. For example, when the
substitution rate is r = 1.1%, the average of robl is 10.4%, while the average of r̂ is 1.1%. For
r > 24%, the observed intersection size was frequently 0; both estimators estimate r = 100%
at this point, making them unstable. For D-easy and D-med, the performance of robl is
nearly as good as our estimator, except at very low values of r (e.g. robl has a 230% relative
error at r = 0.1% on D-med).

Figure 4 evaluates the estimators on D-hardest while fixing r = 1% and varying k. For
k ≥ 690, both estimators become unstable (not shown in figure); similar to the case of
high substitution rates, the observed intersection size was frequently 0. For smaller k, our
estimator performed much better than robl, e.g. for k = 32, the average robl was 10%.

The relative performance of the two estimators can be explained algebraically. The robl
estimator is derived using the approximation that the probability that a k-mer τ from s

remains after substitutions as occ(τ)(1 − q). Our estimator uses the approximation that τ

remains as 1 − qocc(τ). For singleton k-mers, these probabilities are equal, but for repetitive
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sequences, the effect of occ(τ) > 1 cannot be neglected; therefore, robl gets progressively
worse as the datasets become more repetitive. Furthermore, occ(τ, s)(1 − q) > 1 − qocc(τ,s) on
q ∈ (0, 1). Consequently, robl tends to be higher than r̂. The difference between 1 − qocc(τ,s)

and occ(τ, s)(1 − q) increases as q decreases. Hence, the gap between robl and r̂ is larger for
smaller r and smaller k, as Figures 3 and 4 show. Finally, as q approaches 1, the probability
of an empty intersection becomes greater, leading all estimators to output 1. This explains
the pattern for large r in Figure 3d.

6.3 Combination with sketching
Sketching is a powerful technique that can make it possible to quickly compute all-pairs
estimates on large datasets [20]. Our estimator lends itself to being applied on the sketched
(rather than full) intersection, as follows. Given a threshold 0 < θ < 1, one can use a hash
function to uniformly map each k-mer to a real number in (0, 1). A FracMinHash sketch of a
sequence s is defined as the subset of the k-spectrum of s that hashes below θ [11]. In this
way, one can compute Iθ, the size of the intersection between the sketches of s and t.

Recall that our estimator is defined by finding the unique value r to solve Iobs =
L0 −

∑L
i=1 ai(1 − (1 − r)k)i, where Iobs is the size of the observed (non-sketched) intersection.

It is easy to show that the expected value of Iθ over the sketching process is θI. A natural
extension is then to find the unique value of r to solve Iθ

obs
θ = L0 −

∑L
i=1 ai(1 − (1 − r)k)i.

The only caveat is that in some rare cases for very low mutation rates, Iθ
obs
θ may exceed L0

and result in a lack of unique solution; in such cases, we hard code the estimator to return 0.
Figure 5a shows the accuracy of the resulting estimator on D-hardest, averaged over

the combined replicates of the substitution and sketching process. The sketching does not
introduce any systematic bias, but, as expected, increases the variance of our estimator. The
variance is larger for smaller θ values. These results indicate that our estimator can indeed
be applied to FracMinHashed sequences, with the threshold parameter θ controlling the
trade-off between sketch size and the estimator’s variance.

Figure 5b evaluates the isolated impact of the sketching process for a fixed string t,
which better reflects the typical user scenario. For each substitution rate r, we generate a
single mutated string t and compute the r̂ estimate based on the non-sketched intersection.
We then replicate the sketching procedure for s and t and compare the distribution of the
sketched estimator to the value of the non-sketched estimate (shown as red bar). The results
demonstrate that sketching can accelerate the estimation process, at the cost of introducing
controlled variance in the estimates.

6.4 Accuracy as a combined function of k and r

The accuracy of our estimator r̂ ultimately depends on an intricate interplay between k

and r. A smaller k increases the number of repeats, making estimation more challenging. On
the other hand, as r or k increases, the probability q = 1 − (1 − r)k increases, leading to a
higher chance of an empty intersection size and an unreliable estimator. To more thoroughly
explore the space of all values, Figure 6 evaluates the average relative absolute error, defined
as 1

n

∑n
i=1

|r̂i−r|
r , over a wide range of r and k. This combines our estimator’s empirical bias

and variance, indicating the parameter ranges at which our estimator is reliable.
We note that a user is usually able to choose k but not r. For r, they typically have

only a rough range on what it might be. For instance, substitution rates of more than 25%
are unlikely for biologically functional sequences. Therefore, choosing a k boils down to
choosing a column from the heatmap that is good for the desired r range. Figure 6 shows
that choosing a k in the range of 10 to 20 would work well for all of our datasets.

WABI 2025
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(a) D-easy. (b) D-med.

(c) D-hard.

(d) D-hardest.

Figure 3 Comparison of our estimator r̂ with robl. For each r value, we simulate the random
substitution process 100 times and show the box plot of the resulting estimates. For D-easy and
D-med, the y-axis shows the relative error. For D-hard and D-hardest, the y-axis shows the actual
estimator value instead, in order to reflect the bigger scale of the differences. For D-easy and D-med,
the plots follow the same pattern if they were to be extended rightwards up to r = 33%.
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Figure 4 Comparison of our estimator with robl on D-hardest. We fixed r = 1% and varied k.
For each k value, we simulate the random substitution process 100 times and show the box plot of
the resulting estimators.

(a) Mutation and sketching replicates. (b) Only sketching replicates.

Figure 5 Sketching-based estimation results on D-hardest. In panel (a), for each r, we replicate
the substitution process 100 times and, for each replicate, we replicate the sketching process 100
times. In panel (b), for each r, we generate one mutated string and replicate the sketching process
100 times.

6.5 Theoretical bounds on the bias

Theorem 3 gives theoretical bounds on the bias of q̂. To validate these bounds empirically,
we run simulations, using the same setup as in Figure 3. Figure 7 shows that the empirical
mean usually lies within the bias bounds, as the theory predicts. In cases where it does not,
the empirical variance is high, indicating that the empirical mean has not yet converged
to within the bounds. Furthermore, we see that the upper bound is nearly tight. This is
consistent with the fact that overlapping k-mers are rare (Table 1), implying that that F(q)
is approximately equal to our lower bound on the expected intersection size (i.e. LE).

The lower bound tracks the true value closely, except in the range of r ∈ (0, 10%) of
D-hardest. We believe this is primarily due to the looseness of the variance upper bound
UV ar in Theorem 2. When we plugged the observed empirical variance of I in place of UV ar

in Theorem 3, the lower bound curve no longer behaved abnormally in D-hardest (plot not
shown). Furthermore, when we additionally replaced both UE and LE with the observed
empirical mean of I, the bounds closely captured the empirical mean of q̂. These empirical

WABI 2025
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(a) D-easy. (b) D-med.

(c) D-hard. (d) D-hardest.

Figure 6 The accuracy of our estimator r̂ as a function of both k and r. Each cell shows the
average relative absolute error of 100 replicates, e.g. an error of 0.5 means that the estimate is off
by 50%. The errors are capped at 1.0, i.e. all errors greater than 1.0 are shown as 1.0.

results suggest that the estimator satisfies the approximation E[q̂] = E[F−1(I)] ≈ F−1(E[I]).
In other words, when we have looseness in the bias bounds, it is due to the looseness
of Theorems 1 and 2 rather than Theorem 3.

6.6 Identifying unstable parameters using Theorem 4

Figure 6 indicates that when k and r are large enough to lead to a high q, our estimator
becomes unstable. Our observations indicate that this happens because the intersection
becomes empty, resulting in r̂ = 100% regardless of the true mutation rate. This limitation is
anticipated and reflects a fundamental constraint shared by any intersection-based estimator.
Figure 7 does not reflect this limitation, because in such cases, the relative error is small
simply by virtue of q being close to q̂ = 1 (even though the estimate of r is not accurate).
We therefore looked for an alternative method to a priori determine, given a high value of k,
which values of high r make our estimator unstable.

We hypothesized that computing the probability of an empty intersection size a priori can
identify such unstable regions of the parameter space, without needing to do simulations as
for Figure 6. Though computing this probability is challenging in the general case, Theorem 4
gives an upper bound Pempty based on only L, k, and r. The upper bound is approximately
tight when not considering the effect of repeats. We therefore hypothesized that when Pempty
is high, our estimator becomes unstable.
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(a) D-easy. (b) D-med.

(c) D-hard. (d) D-hardest

Figure 7 Theoretical bounds on the bias of q̂. For each r, the box plot shows 100 replicates of
the substitution process. For the box plots, the y-axis shows the distribution of q̂i/q. For the lower
and upper bound curves, the y-axis corresponds to the ratio of the bound to the true q. The black
bars in the center of each box represent the mean, rather than the median.

Figure 8a plots Pempty against the accuracy of our estimator. As hypothesized, the
substitution rate at which our estimator starts to becomes unstable (around 24 − 28%)
coincides with a sharp increase in Pempty. To test this more thoroughly, we computed Pempty
for all values of k and r for which we evaluated D-hard in Figure 6c. Figure 8c shows that
there is a close correspondence between k and r values where our estimator’s relative error
is high and Pempty is high. These observations suggest that Pempty is a useful diagnostic
criterion for determining values of k, and r when r̂ may fail.

7 Conclusion

In this paper, we propose an estimator for the substitution rate between two sequences that
is robust in highly repetitive regions such as centromeres. Our experiments validated its
performance across a broad range of k and r values. We provide theoretical bounds on our
estimator’s bias (specifically on the bias of q̂), and show that it accurately captures the
estimator’s empirical mean in most scenarios.

For large values of k and r, i.e., when q is large, the intersection of the k-spectra tends to
be empty with high probability, which is a foreseeable limitation for all intersection-based
estimators. To address this, we introduce a heuristic criterion, Pempty, which depends only
on the number of k-mers L, the k-mer size k, and the substitution rate r. This criterion
allows us to heuristically identify parameter settings under which the estimator becomes
unstable.
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(a)

(b)

(c)

Figure 8 The usefulness of Pempty as a diagnostic criterion for when our estimator becomes
unstable. Panel (a) overlays the estimator values on D-hardest with Pempty values. Panel (b)
recapitulates the heatmap of Figure 6c, i.e. the estimator error on D-hard. Panel(c) shows the value
of Pempty for the length of D-hard and the same parameter values in (b).

We also showed how our estimator can be easily combined with FracMinHashing. Em-
pirical results show that sketching does not introduce systematic bias, albeit at the cost of
increased variance.

We do not perform a runtime analysis of our estimator because it completes in less
than a second on our data. The runtime of our estimator is the time it takes to solve an
equation numerically using Newton’s method. Since F(q) is a polynomial and the solution is
constrained to the interval [0, 1], Newton’s method converges in O(log log(1/ϵ)) iterations,
where ϵ is the target precision. Each iteration involves evaluating F and its derivative, which
takes time proportional to the number of non-zero ai terms. Except for esoteric corner cases,
the number of such terms is small in practice.

The immediate open problem is to tighten the theoretical bounds on the bias. Future
work could thus focus on deriving a tighter variance bound to strengthen the theoretical
characterization of E[q̂]. A bigger open question is how to derive confidence intervals. This is a
more challenging problem than bounding the bias because it requires a deeper understanding
of the estimator’s distribution.

Our estimator could potentially be extended to work on unassembled sequencing reads,
as opposed to assembled genomes. Our method does not rely on the k-mer multiplicities in
the intersection size, making it amenable to such a scenario. Still, one of the limitations of
our estimator is the need to know the abundance histogram of the source string. A tool like
GenomeScope [31] can estimate the abundance histogram from sequence data k-mer counts.
Alternatively, the user may choose to use an abundance histogram from a related genome,
as related genomes are likely to have similar abundance histograms. Fully adapting this
estimator to work with sequencing data remains an important future work.
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A Appendix: Missing Proofs

▶ Theorem 4. Let s be a string of length at least k. The probability that every interval of
length k in s[1..i + k − 1] has at least one substitution can be computed in Θ(ik) time with a
dynamic programming algorithm that takes as input only L, r, k (not s).

Proof. Let Mi be the event that every interval of length k in s[1 . . . i + k − 1] has at least
one substitution. We claim that the following recurrence holds, which automatically leads to
the dynamic programming algorithm of the desired time.

Pr[Mi] =


q if i = 1,

(1 − (1 − r)i−1)q + (1 − r)i−1(1 − (1 − r)k−i+1) if 1 < i ≤ k,∑k−1
j=0 Pr[Mi−1−j ]r(1 − r)j if i > k.

We will use k-span to denote an interval of length k in s. For the case that i = 1, Mi is
the probability that the first k-mer mutates, which is q. For 1 < i ≤ k, we do the following.
We denote A as the event that there is at least one substitution in s[1, i − 1], B as the event
that there is at least one substitution in s[i, k], and C as the event that there is at least one
substitution in s[k + 1, i + k − 1]. Then we have

Pr[Mi] = Pr[A] · Pr[Mi|A] + Pr[¬A] · Pr[Mi|¬A] (4)
= Pr[A] Pr[B, C] + Pr[¬A] Pr[B] (5)
= (1 − (1 − r)i−1)(1 − (1 − r)k) + (1 − r)i−1 · (1 − (1 − r)k−i+1) (6)

For the last case (i > k), let Lj be the event that j is the position of the rightmost
substitution in s[1, i + k − 1]. Observe that for j ̸= ℓ, Lj and Lℓ are mutually exclusive.
Furthermore, observe that the rightmost mutation position must be at least i, otherwise the
k-span starting at i is not mutated. Therefore, by the law of total probability, we have

Pr[Mi] =
i+k−1∑

j=1
Pr[Mi, Lj ] =

i+k−1∑
j=i

Pr[Mi, Lj ] (7)

Observe that if there is a substitution at position j, then all the k-spans beginning at positions
j − k + 1, . . . , i are mutated. Therefore, Pr[Mi, Lj ] = Pr[Mj−k, Lj ] = Pr[Mj−k] · Pr[Lj ].
Hence,

Pr[Mi] =
i+k−1∑

j=i

Pr[Mj−k] · Pr[Lj ] =
k−1∑
j=0

Pr[Mi−1−j ] Pr[Li+k−1−j ] (8)

=
k−1∑
j=0

Pr[Mi−1−j ] · r(1 − r)j (9)

◀
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▶ Lemma A.1. Let X be a sum of random variables X1, . . . , Xn, and let µ = E[X]. Then

Var[X] = n − µ − (n − µ)2 +
n∑

i=1

n∑
j ̸=i

Pr[Xi = 0, Xj = 0].

Proof.

Var[X] = E[X2] − µ2

=
∑

i

∑
j

Pr[Xi = 1, Xj = 1] − µ2

=
∑

i

∑
j

Pr[Xi = 1, Xj = 1] + Pr[Xi = 1, Xj = 0] − Pr[Xi = 1, Xj = 0]

− Pr[Xi = 0, Xj = 0] + Pr[Xi = 0, Xj = 0] − µ2

=
∑

i

∑
j

Pr[Xi = 1] − Pr[Xj = 0] + Pr[Xi = 0, Xj = 0] − µ2

= nµ − n(n − µ) +
∑

i

∑
j

Pr[Xi = 0, Xj = 0] − µ2

= −(n − µ)2 +
∑

i

∑
j

Pr[Xi = 0, Xj = 0]

= −(n − µ)2 + n − µ +
∑

i

∑
j ̸=i

Pr[Xi = 0, Xj = 0] ◀

▶ Lemma A.2. F(q) is invertible on [0, 1]. Moreover, if there exists at least one k-mer τ

with occ(τ) = 1, then, on the intervals q ∈ [0, 1] and y ∈ [F(1), F(0)], and letting f denote
the inverse of F , we have that

F ′(q) < 0, F ′′(q) ≤ 0, F ′′′(q) ≤ 0, (10)

f ′(y) = 1
F ′(f(y)) < 0 (11)

f ′′(y) = − F ′′(f(y))
(F ′(f(y)))3 ≤ 0. (12)

f ′′′(y) = F ′′′(f(y))F ′(f(y)) − 3(F ′′(f(y)))2

−(F ′(f(y)))5 (13)

Proof. Recall that ai is the number of k-mers that have i copies, and that F(q) ≜ L0 −∑L
i=1 aiq

i. Since all ai values are non-negative, all derivatives of F are non-positive on
q ∈ [0, 1]. Moreover, since we assume that a1 is strictly positive, the first derivative of F
is strictly negative on q ∈ [0, 1]. The derivatives of f can be expressed in terms of the
derivatives of F and f by applying the inverse function rule from basic calculus. ◀
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