
Linear-Space Subquadratic-Time String Alignment
Algorithm for Arbitrary Scoring Matrices
Ryosuke Yamano #

Division of Medical Data Informatics, Human Genome Center, Institute of Medical Science,
The University of Tokyo, Japan
Department of Computer Science, Graduate School of Information Science and Technology,
The University of Tokyo, Japan

Tetsuo Shibuya #

Division of Medical Data Informatics, Human Genome Center, Institute of Medical Science,
The University of Tokyo, Japan

Abstract
Theoretically, the fastest algorithm by Crochemore et al. for computing the alignment of two given
strings of size n over a constant alphabet takes O(n2/ log n) time. The algorithm uses Lempel–Ziv
parsing to divide the dynamic programming matrix into blocks and utilizes the repetitive structure.
It is the only previously known subquadratic-time algorithm that can handle scoring matrices of
arbitrary weights. However, this algorithm takes O(n2/ log n) space, and reducing the space while
preserving the time complexity has been an open problem for more than 20 years. We present a
solution to this issue by achieving an O(n) space algorithm that maintains O(n2/ log n) time. The
classical refinement by Hirschberg reduces the space complexity of the textbook O(n2) algorithm
to O(n) while preserving the quadratic time. However, applying this technique to the algorithm
of Crochemore et al. has been considered challenging because their method requires O(n2/ log n)
space even when computing only the alignment score. Our modification enables the application
of Hirschberg’s refinement, allowing traceback computation in O(n) space while preserving the
O(n2/ log n) overall time complexity. Our algorithm can be applied to both global and local string
alignment problems.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases String alignment, dynamic programming, linear space algorithms

Digital Object Identifier 10.4230/LIPIcs.WABI.2025.21

Funding This work was supported by MEXT KAKENHI Grant Numbers 21H05052, 23H03345, and
23K18501.

1 Introduction

The technical breakthrough of DNA sequencing represented by next-generation sequencers
allows for the analysis of large-scale genomes, which has opened new computational challenges.
Because the problem size could potentially be large, only space-efficient algorithms could be
applicable. Specifically, designing a time-efficient algorithm under the constraint of linear
space complexity becomes a crucial challenge.

Aligning two biosequences to compute their similarity is a common problem in bioinfor-
matics. Detecting highly similar regions is fundamental in many scenarios, such as mapping
DNA references and examining protein structures.

Given two strings of length n each over an alphabet Σ, finding an alignment maximizing
the total score of all its insertions, deletions, matches, and substitutions whose scores are
defined by a given scoring matrix δ is called the global string alignment problem [11]. The
textbook dynamic programming solution solves it in O(n2) time [5]. This algorithm can be
implemented with O(n) space if only the optimal alignment value is needed by keeping only

© Ryosuke Yamano and Tetsuo Shibuya;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Algorithms for Bioinformatics (WABI 2025).
Editors: Broňa Brejová and Rob Patro; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ryoyamano15@g.ecc.u-tokyo.ac.jp
https://orcid.org/0009-0002-1683-5179
mailto:tshibuya@hgc.jp
https://orcid.org/0000-0003-1514-5766
https://doi.org/10.4230/LIPIcs.WABI.2025.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

21:2 Linear-Space Subquadratic-Time String Alignment Algorithm

the alive rows. This feature enables the application of the classical refinement by Hirschberg
to compute traceback in the same O(n2) time and O(n) space [7]. The local version of the
string alignment problem, which is finding the maximum alignment value over all pairs of
substrings of the given two strings, can be solved in the same time and space complexity [12].
We can compute the traceback of local alignments by reducing the problem to the traceback
of global alignments [8] [2].

One of the results of fine-grained complexity states that there are no O(n2−ϵ) time
algorithms for any constant ϵ > 0 assuming the Strong Exponential Time Hypothesis [1].
While strongly subquadratic algorithms are improbable, subpolynomial improvements over
the textbook algorithm are known.

Masek and Peterson [10] proposed a global alignment algorithm taking O(n2/ log n)
time, assuming that the alphabet is constant and the weights of the score matrix are all
rational numbers. It is based on the “Four Russians” algorithm, which divides the dynamic
programming table into uniform-sized blocks and uses table lookup.

Crochemore et al. [3] proposed an O(n2/ log n) time algorithm for both global and
local alignment problems, assuming a constant alphabet. They applied a variable-sized
block partition using Lempel-Ziv factorization and achieved speedup by only computing the
borders of the blocks. It does not require the precomputation of lookup tables; therefore,
their algorithm is general enough to support real number weights, which differs from the
algorithm of Masek and Paterson. This was an important generalization because scoring
weights tend to be real numbers. For example, the two major scoring matrices, PAM [4] and
BLOSUM [6], are computed as log-odds ratios, which could be irrational. To the best of
our knowledge, their algorithm is the only previously known subquadratic global and local
alignment algorithm that can handle arbitrary scoring matrices.

However, their algorithm takes O(n2/ log n) space for arbitrary weights and O(n2/ log2 n)
space for rational weights, even when only the optimal alignment value is needed. Their
paper concluded by explicitly posing an open problem: reducing the space requirement of
their algorithm while preserving the subquadratic time complexity. A major challenge arises
from the fact that data associated with each variable-sized partitioned block may be accessed
at any time, as the algorithm recursively depends on previous blocks to compute the weights
of paths within the block. Since we need to keep all the data, it has been believed that space
reduction is challenging.

More than two decades later, we have finally resolved this fundamental theoretical question
by reducing the space complexity to linear while retaining the same subquadratic time bound.
Obtaining a linear space algorithm to compute the optimal alignment value enables the
application of Hirschberg’s refinement to compute the traceback with the same time and
space complexity. This is the first string alignment algorithm that simultaneously achieves
subquadratic time and linear space under arbitrary scoring matrices, representing a major
step forward in the theory of space-efficient algorithms.

1.1 Our contributions
We assume a constant alphabet.

We propose a novel algorithm based on the algorithm of Crochemore et al. that computes
the optimal global alignment value in O(n2/ log n) time and O(n) space.
By applying Hirschberg’s refinement to our algorithm mentioned above, we obtain an
algorithm computing the optimal global alignment trace in the same time and space
complexity. We prove that the overall O(n2/ log n) time complexity holds by solving the
recurrence relation.

R. Yamano and T. Shibuya 21:3

With some modifications, we show that the described algorithms can be applied to compute
the optimal local alignment value and trace in the same time and space complexity.

For simplicity, we discussed the case when the given strings have the same length n. In the
case comparing strings of size m and n, the time complexity will be O(mn/ log min{m, n}),
whereas the space complexity will be O(m + n).

1.2 Overview of our technique
Our approach begins by partitioning each input string of length n into

√
n blocks, each of

size
√

n. We then apply a slightly generalized version of the algorithm by Crochemore et al.
to compute the alignment between corresponding block pairs. Since each such comparison
takes O((

√
n)2/ log

√
n) = O(n/ log n) time and space, comparing a single block pair fits

within linear space.
To compute the full alignment, we iteratively process the boundary rows between blocks.

As there are (
√

n)2 = n block pairs to compare, the total time complexity remains O(n2/ log n).
However, at any point, we only need to store a single active row and compute one block
comparison at a time, both of which require O(n) space. Therefore, the overall space
complexity is reduced to O(n).

2 Preliminaries

For a string T of length n, the i-th character of T is denoted as T [i]. For indices 1 ≤ i, j ≤ n,
T [i..j] denotes the substring T [i]T [i + 1] . . . T [j] if i ≤ j and the empty string otherwise. We
omit the indices when i = 1 or j = n, so T [..j] = T [1..j] and T [i..] = T [i..n]. A string P is a
prefix of T when there exists 1 ≤ j ≤ n such that P = T [..j], and a suffix of T when there
exists 1 ≤ i ≤ n such that P = T [i..]. We denote the reversed string of T as T rev. ci denotes
the string repeating c for i times. The concatenation of strings A and B is denoted as AB.
Similarly, the concatenation of a character c and a string S is cS, and the concatenation of a
string S and a character c is Sc.

2.1 Problem definitions
We follow the standard global alignment model described by Gusfield [5], which we briefly
summarize below for completeness.

▶ Definition 1 (Alignment). Given strings A and B over the alphabet Σ /∈ ϵ, a (global)
alignment is a pair of strings (A′, B′) over the extended alphabet Σ ∪ {ϵ} such that

A′ and B′ are of equal length,
A′ is obtained from A by inserting zero or more spaces (ϵ),
B′ is obtained from B by inserting zero or more spaces,
no position simultaneously contains a space in A′ and B′.

Let l denote the equal length of A′ and B′. Given a scoring matrix δ : ((Σ∪{ϵ})2 \(ϵ, ϵ))→ R,
the alignment value is defined as

∑l
i=1 δ(A′[i], B′[i]).

An alignment represents a specific edit transformation (see Figure 1).

▶ Definition 2 (The global alignment problem). Given two strings A, B, and the scoring
matrix δ, the optimal global alignment value is the maximum value of the alignment value
over all alignments. It is also called similarity. The specific alignment maximizing the
alignment value is the optimal global alignment trace.

WABI 2025

21:4 Linear-Space Subquadratic-Time String Alignment Algorithm

𝛿 𝜖 a c g t

𝜖 −1 −1 −1 −1

a −1 1 −1 −1 −1

c −1 −1 1 −1 −1

g −1 −1 −1 1 −1

t −1 −1 −1 −1 1

𝐴′ c t a c g a 𝜖 g a

𝐵′ 𝜖 a a c g a c g a

edit D R M M M M I M M

𝛿 −1 −1 1 1 1 1 −1 1 1

Figure 1 Example of the optimal global alignment when comparing A = ctacgaga and B =
aacgacga with the scoring matrix δ. I, D, R, and M denote insertion, deletion, replacement, and
match, respectively. The similarity is 3.

a a a a

a

a

a

c c

c

c

g g

g

g

t

(0, 0) (0, n)

(n, 0) (n, n)

Figure 2 The alignment graph for strings A = ctacgaga and B = aacgacga with the scoring
matrix δ shown in Figure 1. Edges in bold are assigned a weight of 1, while the remaining edges are
assigned a weight of -1. The vertical edges correspond to the edit operation deletion, the horizontal
edges correspond to insertion, and the diagonal edges correspond to replacement or match. The red
path shows the optimal global alignment trace.

It might be the case that the whole two strings are not highly similar, but they have
specific regions that are highly similar. In this case, the goal is to find such a pair of areas.
It is called the local alignment, which we formally describe next.

▶ Definition 3 (The local alignment problem). Given two strings A, B, and the scoring matrix
δ, the optimal local alignment value is the maximum similarity over all pairs of substrings
from A and B. The optimal local alignment trace is the specific alignment of the pair of
substrings that achieves the optimal local alignment value.

▶ Example 4. In the case shown in Figure 1, we take the substring “acgaga” from A and
“acgacga” from B to obtain the optimal local alignment value 5.

2.2 The alignment graph
Given strings A and B, the alignment graph is a grid graph that has (|A|+ 1)× (|B|+ 1)
nodes, each labeled as (i, j) (0 ≤ i ≤ |A|, 0 ≤ j ≤ |B|). It contains weighted directed edges
from each node (i, j) to each node (i, j + 1), (i + 1, j), and (i + 1, j + 1), whose weights are
δ(ϵ, B[j + 1]), δ(A[i + 1], ϵ), and δ(A[i + 1], B[j + 1]) respectively (see Figure 2).

2.3 The classical dynamic programming solution
The alignment problem can be regarded as computing the heaviest path in an alignment
graph, which can be solved in quadratic time using dynamic programming [5] [12].

R. Yamano and T. Shibuya 21:5

The global alignment problem. We define V (i, j) as the similarity of A[..i] and B[..j].
V (i, j) is the optimal path weight from node (0, 0) to node (i, j) in the alignment graph. The
following recurrence holds.

V (i, j) = max{V (i, j − 1) + δ(ϵ, B[j]), V (i− 1, j) + δ(A[i], ϵ),
V (i− 1, j − 1) + δ(A[i], B[j])} (1)

The local alignment problem. Given indices i and j, we define L(i, j) as the maximum
similarity over all pairs of suffixes of A[..i] and B[..j]. The following recurrence holds.

L(i, j) = max{0, L(i, j − 1) + δ(ϵ, B[j]), L(i− 1, j) + δ(A[i], ϵ),
L(i− 1, j − 1) + δ(A[i], B[j])} (2)

Note that we have a lower bound of 0 because we can take two empty suffixes. L(i, j) is
the optimal path weight that starts from any node and ends at node (i, j) in the alignment
graph. The maximum value of L(i, j) over all indices is the optimal local alignment value.

2.4 Hirschberg’s refinement
Hirschberg’s refinement is a divide-and-conquer technique that computes the longest common
subsequence (LCS) in linear space [7]. However, it can also be used to compute the optimal
global alignment trace [2] [8]. It uses an algorithm that computes the last row of the dynamic
programming matrix V shown in the recurrence relation (1) as a subroutine to find an optimal
division point. The technique can be regarded as gaining an algorithm that computes the
traceback from an algorithm that computes only the score. They showed that the quadratic
time and linear space bound of the subroutine can also be applied to the whole algorithm
computing traceback, which can be summarized as follows.

▶ Theorem 5 (Hirschberg’s refinement [7]). If there is an algorithm that computes V (|A|, i)
for 1 ≤ i ≤ |B|, which is the last row of the dynamic programming matrix, in O(|A||B|) time
and O(|A| + |B|) space, we gain an algorithm that computes the optimal global alignment
trace of string A and B in the same O(|A||B|) time and O(|A|+ |B|) space.

2.5 Subquadratic string alignment algorithm by Crochemore et al.
Assuming a constant alphabet, Crochemore et al. [3] proposed an algorithm computing global
and local alignments in O(n2/ log n) time and space, where n is the length of the two input
strings. Their algorithm first partitions the given strings using LZ78 parsing [13]. LZ78
parses the input string into phrases, each consisting of the longest previously seen matching
phrase followed by one extra character. For example, the string “aacgacg” will be divided
into four phrases: “a”, “ac”, “g”, and “acg”. Since each phrase is distinct, the number of
LZ78 parsed phrases is upper bounded by O(n/ log n) [9].

LZ78 parsing of the input strings induces the partition of the alignment graph into
variable-sized blocks. We denote these blocks as LZ78 blocks. The key idea of their algorithm
is that they only compute the dynamic programming cells on the borders of the LZ78 blocks.
Since there are O(n/ log n) borders of length n, the total length is O(n2/ log n).

For each LZ78 block, they propagate the path weights from the top and left borders to
the bottom and right borders, which they call “I/O propagation”. They manage to propagate
the path weights of the borders for each LZ78 block in linear time proportional to the length
of the borders using a data structure whose size is O(n2/ log n). It can be constructed in the
same O(n2/ log n) time. See Section 3 from the original paper [3] for further details. This
can be summarized in the following theorem.

WABI 2025

21:6 Linear-Space Subquadratic-Time String Alignment Algorithm

▶ Theorem 6 (I/O propagation of LZ78 blocks [3]). We are given the alignment graph
comparing two strings of size n. For each LZ78 block, assuming that the optimal path weights
from a fixed starting point to its top and left borders are known, the optimal path weights
to its bottom and right borders can be computed in time linear in the border length, using a
data structure of size O(n2/ log n). This data structure size is linear in the total size of all
borders.

By iteratively applying Theorem 6 to compute the path weights from node (0, 0) to
the borders of all LZ78 blocks, one obtains an O(n2/ log n) time and space algorithm for
computing the optimal global alignment value.

When computing the optimal local alignment value, we need to compute the value L

shown in the recurrence relation (2), where the starting point of the optimal path can be
updated. The authors also managed to compute this in the same time and space by adding
data structures that contain paths that start inside the LZ78 block. Additionally, without
increasing the time and space complexities, the authors managed to compute and store the
weights of optimal paths that start at each position in the top and left border and end inside
the LZ78 block, as well as the optimal path that starts and ends within the block.

▶ Theorem 7 (Local version of Theorem 6 [3]). We are given the alignment graph comparing
two strings of size n. For each LZ78 block, assume that the optimal path weights from the
best starting point for each border position to its top and left borders are known. The optimal
path weights to its bottom and right borders, each from their respective best starting point,
and the maximum weight among all optimal paths terminating at internal positions within
the block can all be computed in time linear in the border length, using a data structure of
size O(n2/ log n). The size of this data structure is linear in the total size of all borders.

By iteratively applying Theorem 7 to propagate the value L along the borders and
compute the maximum L across all LZ78 blocks, one obtains an O(n2/ log n) time and space
algorithm for computing the optimal local alignment value.

3 Computing the optimal global alignment value

We first partition the input strings into segments of size
√

n, which induces a uniform-sized
partition of the alignment graph into blocks of size

√
n×
√

n. We will denote these blocks as
segment blocks to distinguish them from LZ78 blocks. Suppose there is an algorithm that
takes the path weights to the top and left borders of a segment block as input and returns
the path weight to its bottom and right borders in O(n/ log n) time and space. We define
this algorithm as Segment Block Global I/O Propagation in Definition 8. In that case, we
can iteratively compute the borders of all segment blocks in a left-to-right, top-to-bottom
order in O(n2/ log n) time since there are

√
n×
√

n = n segment blocks. The point is that
we can free the internal space used for computing each segment block. We only need to keep
the borders of a single active row of the segment blocks, which takes O(n) space. Figure 3
illustrates the border update. With the O(n/ log n) space usage for each computation of the
segment block, the space complexity is reduced to O(n). We formalize this in Theorem 9.

▶ Definition 8 (Segment Block Global I/O Propagation). Given a segment block of size√
n×
√

n and the optimal path weights from the possibly external node (0, 0) to its top and
left borders, compute the optimal path weight from node (0, 0) to its bottom and right borders.

Figure 4 illustrates Segment Block Global I/O Propagation. It propagates the value V

shown in the recurrence relation (1).

R. Yamano and T. Shibuya 21:7

Algorithm 1 Computing the optimal global alignment value.

Function GlobalScore(A, B):
Row[1]← 0 /* Keep a single active row */
for i← 1 to n do

Row[i + 1]← Row[i] + δ(ϵ, B[i])
end
d← ⌊

√
n⌋ /* Partition the alignment graph to d× d segment blocks */

colStart← 1
for i← 1 to d do

colEnd← colStart + ⌊n/d⌋
if i ≤ (n mod d) then

colEnd← colEnd + 1
end
Col[1]← Row[1]
for i← colStart + 1 to colEnd do

Col[i− colStart + 1]← Col[i− colStart] + δ(A[i− 1], ϵ)
end
rowStart← 1
for j ← 1 to d do

rowEnd← rowStart + ⌊n/d⌋
if j ≤ (n mod d) then

rowEnd← rowEnd + 1
end
bottom, right ← SegBlockIO(top = Row[rowStart..rowEnd], left = Col)
NextRow[rowStart..rowEnd]← bottom
Col← right
rowStart← rowEnd

end
colStart← colEnd
Row← NextRow

end
return Row

end

▶ Theorem 9. An O(n/ log n) time and space algorithm for Segment Block Global I/O
Propagation implies an O(n2/ log n) time and O(n) space algorithm computing the optimal
global alignment value.

The pseudo code is shown in Algorithm 1. SegBlockIO denotes the Segment Block Global
I/O Propagation, taking the path weights to the top and left borders as input, and returning
the path weights to the bottom and right borders. We denote the function returning the last
row of the alignment graph as GlobalScore. The optimal global alignment value is the last
element of the row.

We now show that an O(n/ log n) time and space algorithm for Segment Block Global
I/O Propagation can be obtained by applying Theorem 6.

▶ Theorem 10. There is an O(n/ log n) time and space algorithm for Segment Block Global
I/O Propagation.

WABI 2025

21:8 Linear-Space Subquadratic-Time String Alignment Algorithm

Live
Border

Figure 3 Computing the bottom and right borders of the gray segment block to update the live
borders expressed as bold lines.

Input Output

Figure 4 Illustration of Segment Block Global I/O Propagation. Here, it takes the path weights
to the top and left borders of the gray segment block, and returns the path weights to its bottom
and right borders. The computation is done by computing the borders of the LZ78 blocks inside the
segment block, which are expressed as dotted lines.

Proof. The segment block is a subgraph of the alignment graph that compares two substrings
of size

√
n. We first parse these two substrings using LZ78 parsing to induce the partition of

the segment block into variable-sized LZ78 blocks. We then iteratively apply Theorem 6 to
compute the borders of all LZ78 blocks in a left-to-right, top-to-bottom order. The total size
of all borders is O(

√
n

2
/ log

√
n) = O(n/ log n), and the time and space usage are linear in

this size. Therefore, the entire algorithm runs in O(n/ log n) time and space. ◀

The algorithm for Segment Block Global I/O Propagation differs from the original
algorithm of Crochemore et al. in that it can compute path weights from nodes that may
lie outside the current block. This constitutes a slight generalization while using the same
subroutine for propagating the borders of LZ78 blocks.

From Theorem 9 and Theorem 10, we gain the following theorem.

▶ Theorem 11. Given two input strings of size n, the optimal global alignment value can be
computed in O(n2/ log n) time and O(n) space.

We discussed the case where the input strings have the same length n. When the
input strings have lengths m and n, then we partition both strings to segments of size√

min{m, n}, which induces the partition of the alignment graph into segment blocks of size√
min{m, n} ×

√
min{m, n}, and we can apply the same argument. This will lead to the

time complexity of O(mn/ log min{m, n}), and the space complexity of O(m + n).

4 Optimal global alignment trace recovery

Since our GlobalScore algorithm computes the last row of the dynamic programming matrix,
we can use it as a subroutine for computing the optimal division point in Hirschberg’s
refinement, which immediately leads to an algorithm computing the optimal global alignment
trace. The pseudo code is shown in Algorithm 2. Recall that the alignment is represented as a
pair of space-inserted strings, as defined in Definition 1. The value V V1(t) corresponds to the

R. Yamano and T. Shibuya 21:9

Algorithm 2 Computing the optimal global alignment trace.

Function GlobalTrace(A, B):
if |B| = 0 then /* Solve trivial problem */

return (A, ϵ|A|)
else if |A| = 1 then/* Solve trivial problem (brute force) */

v ← max1≤j≤|B|{δ(A[1], B[j])− δ(ϵ, B[j])}
i← argmax1≤j≤|B|{δ(A[1], B[j])− δ(ϵ, B[j])}
if v ≥ δ(A[1], ϵ) then

return (ϵi−1Aϵ|B|−i, B)
else

return (Aϵ|B|, ϵB)
end

else /* Find the optimal division point and solve recursively */
i← ⌊|A|/2⌋
V V1 ← GlobalScore(A[..i], B)
V V2 ← GlobalScore((A[i + 1..])rev, Brev)
M ← max0≤j≤|B|{V V1(j) + V V2(|B| − j)}
k ← minj such that V V1(j) + V V2(|B| − j) = M

(C1, C2)← GlobalTrace(A[..i], B[..k])
(D1, D2)← GlobalTrace(A[i + 1..], B[k + 1..])
return (C1D1, C2D2)

end
end

optimal path weight from node (0, 0) to node (⌊|A|/2⌋, t), and the value V V2(t) corresponds
to the optimal path weight from node (|A|, |B|) to node (⌊|A|/2⌋, t) in the alignment graph
where 0 ≤ t ≤ |B|.

We denote our algorithm computing the global alignment trace as GlobalTrace. Since
our GlobalScore’s space usage is linear, we can apply Theorem 5 to obtain the linear space
complexity of GlobalTrace. The problem remaining here is whether the subquadratic time
complexity holds, which we prove next.

▶ Theorem 12. Given input strings of size |A| = m and |B| = n, the time complexity of
GlobalTrace is O(mn/ log min{m, n}).

Proof. We denote the time bounds of GlobalScore and GlobalTrace as GS(m, n) and GT (m, n),
respectively. We aim to prove that GT (m, n) is upper bounded by O(mn/ log min{m, n}).
For simplicity, we assume m and n are both powers of two. This assumption does not affect
the asymptotic time complexity for general m and n, since any string of length L can be
padded to the smallest power of two that is at most 2L, which only introduces a constant
factor into the running time. The time bound will be linear when the size of either input
string is constant; therefore, constants c1, c2 exist such that the following holds.

GT (m, n) ≤ c1(m + n) + c2 (in case min{m, n} = O(1)). (3)

Since GlobalScore’s time complexity is O(mn/ log min{m, n}), constants c3, c4 exist such that
the following inequality holds.

GS(m, n) ≤ c3mn/ log min{m, n}+ c4. (4)

WABI 2025

21:10 Linear-Space Subquadratic-Time String Alignment Algorithm

GlobalTrace consists of two GlobalScore calls, the linear search of the optimal division point,
and two recursive calls of itself. The linear search is proportional to the length of string B;
thus, constants c5, c6 that time bound it by c5n + c6 exist. To summarize, GT (m, n) will be
upper bounded by the following.

GT (m, n) ≤ 2GS(m/2, n) + (c5n + c6) + max
0≤nl≤n

{GT (m/2, nl) + GT (m/2, n− nl)}. (5)

Constants α ≥ 4 and 0 < β < 1 exist such that the following inequality holds (for example,
we can take α = 32 and β = 0.99).

3
4mn/ log min{m/2, n/2} ≤ βmn/ log min{m, n} (in case min{m, n} > α). (6)

We will show that the following inequality holds for all m, n by induction on m, where we
define constants d1 = 1

1−β (c1 + c2 + 2c3 + 2c4 + c5 + c6) ≥ c1 and d2 = c1 + c2 ≥ c2.

GT (m, n) ≤ d1mn/ log min{m, n}+ d2. (7)

The induction hypothesis (7) holds for the base case m ≤ α from inequality (3). Since
inequality (3) holds for min{m, n} ≤ α, we will only consider the case min{m, n} > α

hereafter. Now we assume that the induction hypothesis (7) holds for all m′ < m on m > α.
From inequality (4), the following inequality holds.

2GS(m/2, n) ≤ c3mn/ log min{m/2, n}+ 2c4

≤ 2c3mn/ log min{m, n}+ 2c4. (8)

The following inequality holds from the induction hypothesis (7) and inequality (6).

max
0≤nl≤n

{GT (m/2, nl) + GT (m/2, n− nl)}

= max
0≤nl≤n/2

{GT (m/2, nl) + GT (m/2, n− nl)}

≤ GT (m/2, n/2) + GT (m/2, n)

≤ 1
4d1mn/ log min{m/2, n/2}+ 1

2d1mn/ log min{m/2, n}+ 2d2

≤ 3
4d1mn/ log min{m/2, n/2}+ 2d2

≤ βd1mn/ log min{m, n}+ 2d2. (9)

From inequalities (5) (8) (9), the following inequality holds.

GT (m, n) ≤ (βd1 + 2c3)mn/ log min{m, n}+ (c5n + d2 + 2c4 + c6) + d2

≤ (βd1 + d2 + 2c3 + 2c4 + c5 + c6)mn/ log min{m, n}+ d2. (10)

Since we let d1 = 1
1−β (c1 + c2 + 2c3 + 2c4 + c5 + c6) and d2 = c1 + c2, the following holds.

βd1 + d2 + 2c3 + 2c4 + c5 + c6 ≤ d1. (11)

Therefore, we obtain the induction hypothesis (7) for the current m, and the induction step
is proved. ◀

Now that we have shown that GlobalTrace computes the global alignment trace in
subquadratic time and linear space, we gain the following theorem.

▶ Theorem 13. Given two input strings of size m and n, the optimal global alignment trace
can be computed in O(mn/ log min{m, n}) time and O(m + n) space.

R. Yamano and T. Shibuya 21:11

5 Computing the optimal local alignment value

We follow the same framework we introduced for computing the optimal global alignment
value. Specifically, we first partition the input strings into segments of size

√
n, inducing

a uniform-sized partitioning of the alignment graph into segment blocks of size
√

n×
√

n.
The key difference here is that, instead of using Segment Block Global I/O Propagation
to propagate the value V as defined in recurrence (1), we use Segment Block Local I/O
Propagation, defined next, to propagate the value L defined in recurrence (2).

▶ Definition 14 (Segment Block Local I/O Propagation). Given a segment block of size√
n×
√

n, the optimal path weights from the best starting point for each border position to
its top and left borders are provided as input. Using this information, compute the optimal
path weights to the bottom and right borders, each from their respective best starting point,
and the maximum weight among all optimal paths that end at internal positions within the
segment block.

Segment Block Local I/O Propagation runs in O(n/ log n) time and space, identical to
that of Segment Block Global I/O Propagation.

▶ Theorem 15. There is an O(n/ log n) time and space algorithm for Segment Block Local
I/O Propagation.

Proof. We begin by partitioning the segment block into variable-sized LZ78 blocks, as was
done in Segment Block Global I/O Propagation, and then iteratively apply Theorem 7 to
compute the borders of all LZ78 blocks in a left-to-right, top-to-bottom order. The optimal
path weight ending inside each LZ78 block is also returned. The total size of all borders is
O(n/ log n), and the procedure runs in linear time and space with respect to this size. Since
there are O((

√
n/ log

√
n)2) = O(n/ log2 n) LZ78 blocks in a segment block, the maximum

path weight among them can be computed in additional O(n/ log2 n) time using only constant
additional memory. Therefore, the overall time and space complexity is O(n/ log n). ◀

We iteratively apply Segment Block Local I/O Propagation to compute the borders of
all segment blocks in a left-to-right, top-to-bottom order. Since there are

√
n ×
√

n = n

segment blocks, the procedure runs in O(n2/ log n) time. Again, we only need to keep the
borders of a single active row of the segment blocks, whose size is O(n). Segment Block Local
I/O Propagation also returns the optimal path weight ending inside each segment block.
Since there are n segment blocks, the maximum among them, which is the optimal local
alignment value, can be computed in additional O(n) time using additional constant memory.
With O(n/ log n) internal space usage for each call of Segment Block Local I/O Propagation,
the overall time complexity is O(n2/ log n) while the space complexity is reduced to O(n).
Therefore, we obtain the following theorem.

▶ Theorem 16. Given two input strings of size n, the optimal local alignment value can be
computed in O(n2/ log n) time and O(n) space.

When the input strings have lengths m and n, then we partition both strings into segments
of size

√
min{m, n} and apply the same argument, which leads to an O(mn/ log min{m, n})

time and O(m + n) space algorithm.

WABI 2025

21:12 Linear-Space Subquadratic-Time String Alignment Algorithm

6 Optimal local alignment trace recovery

We reduce the problem of optimal local alignment trace recovery to that of optimal global
alignment trace recovery. When viewed as the problem of finding the optimal path in the
alignment graph, the key difference from global alignment is that any node may serve as a
start or end point. If the starting node (ibegin, jbegin) and the ending node (iend, jend) of the
optimal path can be identified, the problem reduces to a global alignment problem between
A[ibegin..iend] and B[jbegin..jend].

The ending node (iend, jend) is the position that maximizes the value L defined in the
recurrence relation (2). Using Theorem 7, the maximum L inside each LZ78 block can be
computed. To obtain the position, we need to add some data structures. Instead of storing
only the value, we store it together with the corresponding position. Whenever we update
the value with a larger candidate, we also update the associated position accordingly.

▶ Theorem 17 (Extension of Theorem 7 to compute the maximizing position). In addition to
Theorem 7, we can extend the result to also compute the position of the endpoint within each
LZ78 block that maximizes the path weight, which corresponds to the index maximizing L

within the block, with the same time and space complexity.

Proof. We augment some of the internal data structures used in the original algorithm of
Crochemore et al. with position information. To compute the weights of paths that terminate
inside the LZ78 block, they introduce a vector E, which stores the optimal path weights
starting at each node on the top and left borders and ending inside the block, and a scalar C,
which stores the optimal path weight that both starts and ends within the block. By adding
the weight of a path from outside the block (toward the top and left borders) to each entry
in E, the algorithm considers all possible paths originating outside the block. Taking the
maximum of these, along with C, yields the maximum path weight that ends within the
block. For further details, see Section 6 of the original paper [3].

We modify the vector E and scalar C so that each stores not only the path weight but
also the corresponding endpoint position. The additional memory required is the same as the
size of E and C; thus, the space complexity remains unchanged. Whenever the maximum
path weight ending within the block is updated, we also update the corresponding endpoint
position, using the additional position information. Since the position is updated together
with the value, this does not increase the time complexity. ◀

We can apply Theorem 17 to compute (iend, jend).

▶ Theorem 18. Given two strings of size n, the index (i, j) maximizing the value L(i, j)
defined in recurrence (2) can be computed in O(n2/ log n) time and O(n) space.

Proof. We follow the same framework we used when computing the optimal local alignment
value. We first partition the input strings into segments of size

√
n, which induces the

uniform-sized partition of the alignment graph into segment blocks of size
√

n ×
√

n. We
keep the borders of the single active row of segment blocks, which can be done in O(n)
space. For each segment block, we partition the corresponding substrings of length

√
n using

LZ78 parsing to induce a variable-sized partition into LZ78 blocks. We iteratively apply
Theorem 17 to compute the borders of the LZ78 blocks while computing the maximum path
weight and ending position that ends inside each LZ78 block. We can keep the best path
weight and ending position among all LZ78 blocks using additional constant memory. The
best position can be computed together with the optimal local alignment value, so the overall
time and space complexity remain the same. ◀

R. Yamano and T. Shibuya 21:13

(��������� ��������)

(������������� ������������)

(��������� ��������)

Figure 5 Illustration of computing the ending node (iend, jend) and the starting node (ibegin, jbegin)
of the optimal local alignment path. The node (iend, jend) is obtained by computing the index
maximizing the value L comparing the full strings A and B, while the node (ibegin, jbegin) is obtained
by computing the index maximizing the value V comparing the reversed prefixes (A[..iend])rev and
(B[..jend])rev.

The starting node (ibegin, jbegin) can be identified as the index (i, j) that maximizes the
similarity between the reversed substrings (A[i..iend])rev and (B[j..jend])rev, as illustrated in
Figure 5. This corresponds to the index that maximizes the value V defined in recurrence (1),
where we compare (A[..iend])rev and (B[..jend])rev instead of the original strings A and B.
Therefore, the following theorem can be applied to identify (ibegin, jbegin).

▶ Theorem 19. Given two strings of size n, the index (i, j) maximizing the value V (i, j)
defined in recurrence (1) can be computed in O(n2/ log n) time and O(n) space.

Proof. When computing local alignments, it is necessary to track the starting points of the
alignment paths. Crochemore et al. introduced a vector S, which stores the optimal path
weights that end at each node on the bottom and right borders and start inside the LZ78
block, and a scalar C, which stores the optimal path weight that both starts and ends inside
the block. They enable updating the starting points by taking the maximum between the
weight of a path that starts outside the block and the weights stored in S and C. For further
details, see Section 6 of the original paper [3].

In our case, however, we can eliminate the need for S and C, and simply omit the update
of starting points, since the starting point is fixed. All other parts of the computation remain
unchanged from Theorem 18. By keeping track of the maximum ending point, we obtain the
index maximizing V instead of L in the same time and space complexity. ◀

Now we can reduce the problem of optimal local alignment trace recovery to that of
optimal global alignment trace recovery.

▶ Theorem 20. Given two strings A and B of size n, the optimal local alignment trace can
be computed in O(n2/ log n) time and O(n) space.

Proof. First, we use Theorem 18 for the original strings A and B to identify the ending node
(iend, jend). Next, we use Theorem 19 for reversed prefixes (A[..iend])rev and (B[..jend])rev

to identify the starting node (ibegin, jbegin). Finally, we compute the optimal global align-
ment trace between the substrings A[ibegin..iend] and B[jbegin..jend] by Theorem 13, which
corresponds to the optimal local alignment trace between A and B. All three procedures are
performed in the same O(n2/ log n) time and O(n) space. ◀

As in the previous sections, when the input strings have lengths m and n, the time
complexity is O(mn/ log min{m, n}) and the space complexity is O(m + n).

WABI 2025

21:14 Linear-Space Subquadratic-Time String Alignment Algorithm

7 Conclusion

We proposed an algorithm based on the algorithm by Crochemore et al. to obtain a linear
space and subquadratic time algorithm for global and local alignment problems that can
handle arbitrary scoring matrices, assuming that the given strings are over a constant
alphabet. We partitioned the strings into segments of size

√
n before the partition based on

LZ78 parsing to enable the deletion of the internal data structure for blocks that are no longer
referenced to obtain the space reduction. Additionally, we used Hirschberg’s refinement to
recover the traceback in the same time and space complexity.

References
1 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic

time (unless seth is false). In Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, STOC ’15, pages 51–58, New York, NY, USA, 2015. Association for
Computing Machinery. doi:10.1145/2746539.2746612.

2 KUN-MAO CHAO, ROSS C. HARDISON, and WEBB MILLER. Recent developments in
linear-space alignment methods: A survey. Journal of Computational Biology, 1(4):271–291,
1994. PMID: 8790471. doi:10.1089/cmb.1994.1.271.

3 Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. A subquadratic sequence
alignment algorithm for unrestricted scoring matrices. SIAM Journal on Computing, 32(6):1654–
1673, 2003. doi:10.1137/S0097539702402007.

4 Margaret Dayhoff, R Schwartz, and B Orcutt. 22 a model of evolutionary change in proteins.
Atlas of protein sequence and structure, 5:345–352, 1978.

5 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

6 S Henikoff and J G Henikoff. Amino acid substitution matrices from protein blocks. Proceedings
of the National Academy of Sciences, 89(22):10915–10919, 1992. doi:10.1073/pnas.89.22.
10915.

7 D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Commun. ACM, 18(6):341–343, June 1975. doi:10.1145/360825.360861.

8 Xiaoqiu Huang and Webb Miller. A time-efficient, linear-space local similarity algorithm.
Advances in Applied Mathematics, 12(3):337–357, 1991. doi:10.1016/0196-8858(91)90017-D.

9 A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on Information
Theory, 22(1):75–81, 1976. doi:10.1109/TIT.1976.1055501.

10 William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/0022-0000(80)
90002-1.

11 Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970. doi:10.1016/0022-2836(70)90057-4.

12 T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. Journal
of Molecular Biology, 147(1):195–197, 1981. doi:10.1016/0022-2836(81)90087-5.

13 J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, 1978. doi:10.1109/TIT.1978.1055934.

https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1089/cmb.1994.1.271
https://doi.org/10.1137/S0097539702402007
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1145/360825.360861
https://doi.org/10.1016/0196-8858(91)90017-D
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1109/TIT.1978.1055934

	1 Introduction
	1.1 Our contributions
	1.2 Overview of our technique

	2 Preliminaries
	2.1 Problem definitions
	2.2 The alignment graph
	2.3 The classical dynamic programming solution
	2.4 Hirschberg’s refinement
	2.5 Subquadratic string alignment algorithm by Crochemore et al.

	3 Computing the optimal global alignment value
	4 Optimal global alignment trace recovery
	5 Computing the optimal local alignment value
	6 Optimal local alignment trace recovery
	7 Conclusion

