Design of Worst-Case-Optimal Spaced Seeds

Jens Zentgraf =24

Algorithmic Bioinformatics, Department of Computer Science, Saarland University,
Saarbriicken, Germany

Saarbriicken Graduate School of Computer Science, Germany

Center for Bioinformatics Saar, Saarland Informatics Campus, Saarbriicken, Germany

Sven Rahmann &4

Algorithmic Bioinformatics, Department of Computer Science, Saarland University,
Saarbriicken, Germany

Center for Bioinformatics Saar, Saarland Informatics Campus, Saarbriicken, Germany

—— Abstract

Read mapping (and alignment) is a fundamental problem in biological sequence analysis. For speed
and computational efficiency, many popular read mappers tolerate only a few differences between
the read and the corresponding part of the reference genome, which leads to reference bias: Reads
with too many differences are not guaranteed to be mapped correctly or at all, because to even
consider a genomic position, a sufficiently long ezact match (seed) must exist.

While pangenomes and their graph-based representations provide one way to avoid reference bias
by enlarging the reference, we explore an orthogonal approach and consider stronger substitution-
tolerant primitives, namely spaced seeds or gapped k-mers. Given two integers k < w, one considers
k selected positions, described by a mask, from each length-w window in a sequence. In the existing
literature, masks with certain probabilistic guarantees have been designed for small values of k.

Here, for the first time, we take a combinatorial approach from a worst-case perspective. For any
mask, using integer linear programs, we find least favorable distributions of sequence changes in two
different senses: (1) minimizing the number of unchanged windows; (2) minimizing the number of
positions covered by unchanged windows. Then, among all masks or all symmetric masks of a given
shape (k,w), we find the set of best masks that maximize these minima. As a result, we obtain
robust masks, even for large numbers of changes.

We illustrate the properties of these masks by constructing a challenging set of reads that contain
many approximately equidistributed substitutions (but no indels) that many existing tools cannot
map, even though they are in principle easily mappable (apart from the large number of changes)
because they originate from selected non-repetitive regions of the human reference genome. We
observe that the majority of these reads can be mapped with a simple alignment-free approach using
chosen spaced masks, where seeding approaches based on contiguous k-mers fail.
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1 Introduction

Read mapping and alignment are fundamental problems in biological sequence analysis
required for many tasks in genomics and transcriptomics, like genome-wide variant calling,
transcript expression quantification, or species identification and quantification in metage-
nomics, to name just a few. There exist efficient methods (in terms of both memory and
running time) to map millions of reads against a reference genome, such as bwa-mem?2 [39],
bowtie2 [21], minimap2 [22, 23], strobealign [37], mapquik [9], BLEND [11] and many others.

Read mappers must balance efficiency against error-tolerance: Finding exact matches
between reads and reference is extremely efficient with existing index data structures,
and therefore error-tolerant index-based searches are reduced to exact searches of shorter
fragments, using the pigeonhole principle or combinatorial search schemes [35]. Allowing an
increasing number of differences (typically measured in terms of edit distance) between a
read and the reference typically requires time that increases exponentially with the number
of tolerated differences, because one has to evaluate many branching paths in an index data
structure [24, 36]. Thus, for efficiency, the default settings of popular read mappers allow
only a few errors, which leads to reference bias: Reads that differ too strongly from their best
match in the reference genome may not be mapped at all, and the corresponding genomic
variants may be missed during downstream variant calling steps [26].

One possible answer to the problem of reference bias has been the construction of
pangenomes that represent not only a single linear sequence, but a large collection of possible
genome sequences [6] of a species that can be compactly represented by a branching graph,
such that known sequence variants are included in the pangenome. Consequently, read
mapping algorithms and their underlying index data structures have been generalized to
enable mapping linear reads against graph reference genomes [13, 34, 28]. Because many of
the known variants are included in the reference, a small error threshold is now sufficient
where a larger one was required before to map the same set of reads.

An orthogonal approach against reference bias is to design index data structures with
built-in error tolerance. So far, this has proven easier for Hamming distance (substitutions
only) than for edit distance (substitutions, insertions and deletions), because of the variability
of the length of the match when indels are allowed. Spaced seeds, also called gapped k-mers,
have been proposed and used as substitution-tolerant primitives: One considers k specifically
selected positions, described by a mask, out of a larger window of w > k positions. After
their initial introduction by Burkhardt and Kérkkéiinen [4], many studies have shown the
superiority of spaced seeds (when used with appropriate masks) over standard k-mer seeds, e.g.
for genome alignment [12], for homology detection [2, 43], for metagenomic classification [5],
or for phylogenetic tree reconstruction [15]. In addition, these findings have spawned a large
body of literature concerning designing optimal masks for given k and w and various specific
objectives. In the following paragraphs, we attempt a brief (but necessarily incomplete)
summary of the existing seed (or mask) design literature.

Lossless setting. Many articles focus on the lossless setting, which is related to but different
from our focus, as will be explained below. In the lossless setting, the task is to find seeds
(masks) for given k and w, a fixed number of changes ¢, and a fixed sequence length n,
such that it can be guaranteed that we find an unchanged seed (a “hit”) in the sequence,
independently of the positioning of the ¢ changes among the n positions. The corresponding
decision problem (“Is there an arrangement of the ¢ changes such that there is no hit?”)
has been shown to be NP-complete [29]. Algorithmically, the computations are based on
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(exponential-time) dynamic programming algorithms over certain types of automata [3]. If
already the decision problem for a fixed mask is hard, then choosing a best mask with given
parameters, or a combination of masks, is certainly not easier, but asymptotic lower and
upper bounds on parameters of optimal masks (with other parameters being fixed) have been
obtained [10]. The problem becomes even more difficult and interesting when one considers
multiple masks at once [20]. Recent work in uses heuristics based on periodic patterns to
design very long masks that guarantee at least one hit [38]. As an alternative to hits, one
may instead (or additionally) consider positions covered by hits [4, 30] and optimize the
number of guaranteed covered positions.

Probabilistic setting and sensitivity of masks. In the probabilistic setting, one does not
specify a fixed number of changes, but uses a random model of changes over the sequence,
such a Bernoulli model: We compare two assumed homologous (or unrelated) sequences
without indels that may differ at each position with some probability, independently of
the other positions. A key computational task is to compute the probability distribution
of the random number of hits [1] and specifically the probability of at least one hit (the
sensitivity of the mask) vs. zero hits. These probabilities depend on the parameters of the
random model. Methods integrating over different parameter values [7] and even symbolic
approaches [31] have been developed. One may also design seeds to maximize sensitivity
contrast between a homology model (small change probability per position, high sensitivity
desired) and a background model (3/4 or similarly large change probability per position,
low sensitivity desired) [15]. It has also been shown that sensitivity/selectivity trade-offs
may be further improved by requiring a certain number of hits instead of a single hit [8].
Similarly to the decision problem in the lossless setting, computing the sensitivity of a mask
is NP-hard [25], and also (exponential-time) dynamic programming algorithms over certain
automata can be used to compute the sensitivity [19, 16, 27]. The search for high-sensitivity
masks either exhaustively enumerates all masks (for fixed k, w), or employs heuristics
[17, 18, 15], especially if multiple masks are considered at once. We note that many of the
computational results in the past were limited to small parameter values, i.e. k < 15, w < 22,
and short sequences of length n < 64.

Our contributions. Our approach is related to but different from the lossless setting and
considers a maximin optimization approach; we are not using a probabilistic model of
sequence similarity. We consider both the number of hits and hit-covered positions, as
already the initial work in this field [4] did, but we are able to produce results on longer
masks and sequences. We evaluate the quality of a single mask by its worst-case performance
(number of hits or covered positions) by considering the two combinatorial minimization
problems below, and then ask for the best mask(s) that maximize these minima.

MinHits For a given sequence length n (a typical short read, or part of a longer read) and
a given number c¢ of allowed sequence changes (substitutions), and a given spaced seed
pattern (mask), find the worst-case distribution of the ¢ changes that minimizes the
number of seed hits inside the sequence (formal definitions below).

MinCov Under the same assumptions, find the distribution of the ¢ changes that minimizes
the number of sequence positions covered by the hits. (This is an alternative notion of
“worst-case”.)

Solving the above two problems for a given mask yields its worst-case change distributions.

This means that the resulting number of hits (resp. covered positions) are guaranteed for
this mask for every distribution of ¢ changes across any sequence of length n. Of course, if
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the number of changes c¢ is chosen too large, the objective value for both problems is zero, so
there is a limited range of interest for parameter c¢. The more interesting problem, however,
is to find a “best” mask where these minima are maximal among a specified class of masks.

MaxMinHits Given a sequence length n, a number of changes ¢, and a set M of masks, find
the masks that maximize the MinHits objective among all masks in M.

MaxMinCov Under the same assumptions, find the masks that maximize the MinCov
objective in M.

We shall now define the necessary preliminaries and provide an example; then we give
formal definitions of the above problems. We solve them for practically relevant seed
parameters (k,w), sequence lengths n and numbers of changes c¢. As a result, we obtain
highly substitution-tolerant masks with guarantees that do not only hold with high probability
but always. We illustrate the properties of these masks on a specifically designed simulated
dataset of reads from the human genome.

2 Methods

We start by defining the necessary terms to work with spaced seeds; in particular, we define
masks of a given shape (k,w). Then, we introduce the optimization problems of computing
the worst-case set of change positions, and the problem of finding the best mask among all
masks of shape (k,w). These problems are formulated as integer linear programs (ILPs).

2.1 Definitions

Basics. We write [n] for the set of integers {0,...,n — 1}. Indexing of strings starts at 0,
80 5 = (80, -,5n-1) = (5¢)ie[n], Where the length of s is |s| = n.

We consistently use a single (reference) sequence s in this manuscript; however, multiple
sequences (e.g., chromosomes) are covered by concatenating them with separator characters $,
ignoring all (spaced) k-mers containing a separator, and translating between single sequence
positions and chromosome-position-pairs accordingly.

If s and t are strings of equal length |s| = |t| = n, then their Hamming distance dy(s,t)
is the number of indices i € [n] where s; # t,.

Masks of shape (k,w). Given two integers w > k > 2, a (k,w)-mask is a string p of
length w over the alphabet {#, _} that contains exactly k times the character # and w — k
times the character _. The positions marked # are called significant, and the positions
marked _ are called insignificant, jokers, “don’t care” positions, or spaces. We call k the
weight of the mask and w its width or window length. The pair (k,w) is called the shape
of the mask. A mask p may also be represented as the tuple s of significant positions:
k={j: 0<j<wand u; =#}.

We require that pg = pw—1 = #, because otherwise the mask could be shortened by

removing the insignificant characters at each end to obtain an equivalent smaller mask
w72)

(disregarding matches at sequence boundaries). With this constraint, there are ( Py

different masks of shape (k,w).

A mask p is symmetric if p = rev(u) := pp—1...p1po- We consider only symmetric
masks in this work because then we can work with canonical spaced k-mers, as the mask is
the same on both DNA strands. We also restrict ourselves to odd k to avoid any issues with
k-mers that are equal to their reverse complement. This, together with symmetry, implies
that w must also be odd. For symmetric masks with odd k& and w, we must have u,, = #
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Three examples with 3 changes in 27 positions:

...... ) AN T G RS CENN T G P D O SN
examples ####### i _##H__## #H_#_#_#_##
of #itHA#HH #H__#HH__## ##_#_#_#_## (hit1)
shifted #itHHR H##__H#HH__H## H#_#_#_#_## (hit2)
masks H#HHHH A HH__#HHH__H#HH ##_#_#_#_##

(all shifts overlap an X) (all shifts overlap an X) (2 hits exist)

Figure 1 Examples for weight £ = 7, ¢ = 3 changes and sequence length n = 27. For contiguous
7-mers (k = w = 7, mask #######, left), we can place CT = 3 changes at (0-based) positions
X = {6,13,20} to change all 7-mers. For mask ##__###__## (middle) with (k,w) = (7,11), we have
the same result with the same placement of changes. However, using the (7,11)-mask ##_#_#_#_##
(right), we tolerate C* = 3 changes and always guarantee at least 2 hits (unchanged spaced k-mers)
and at least 10 covered positions. The rightmost example shows one worst-case positioning of the
3 changes to minimize hits; it is not trivial to see this by eye, but is a result of the MinHits
optimization problem in Sec. 2.2.

for the middle position m = (w — 1)/2, and there are (((l::;’))//g) such masks. They can be

enumerated by enumerating all possible left halves and mirroring them to obtain the right
halves.

We write M(k,w) for the set of all mask tuples x (with significant ends) of shape (k, w)
and S(k,w) for the subset of all symmetric ones. For example, x = (0,2, 5,8,10) € §(5,11),
corresponding to u = #_#__#__#_#. For k = 25 and w = 37, we find |[M (k, w)| = 834451 800
and |S(k,w)| = 12376. It becomes clear that symmetry is a strong constraint.

x-mers of a sequence. Given a mask p of shape (k,w) with its corresponding offset
tuple xk and a string s of length n over an alphabet (e.g., the DNA or protein alphabet),
we obtain n — w + 1 spaced k-mers from s: The i-th spaced k-mer g;, for i € [n — w], is
obtained by concatenating the significant positions when the mask is applied at positions
i,...,i+w—10f s, ie., g; = (si+;)jex. We also say that each such string g; is a p-mer or
k-mer of s, depending on whether we are referring to the mask’s string representation p or
tuple representation «. In this sense, a (contiguous) k-mer of s isa k = (0,1,...,k — 1)-mer
of s.

Effects of sequence changes on k-mers. When we change a single character in a sequence s,
then up to k of the k-mers may be changed (less if the changed position is near either end of
the sequence). We say that the x-mer starting at position p € [n —w+ 1] (k-mer number p for
short) is changed or destroyed if any of the positions {p+ j : j € k} is changed. Otherwise,
the k-mer is unchanged or unaffected. An unaffected x-mer matches or hits the sequence.

We say that sequence position ¢ € [n] is covered (by an unaffected k-mer) if there exists
an unaffected k-mer starting at some position p < ¢ such that i = p + j for some j € k. In
other words, if the xk-mer starting at position p is unaffected, then all positions p + j for
7 € K are covered.

2.2 Optimization Problems

We introduce the different optimization problems that we consider in this work. For a given
mask x of shape (k,w) and given sequence length n, it asks how many changes C* = C*(k,n)
can be made at most in order to guarantee at least one unchanged x-mer (for all possible
placements of ¢ changes among n positions). Equivalently, we may find the smallest C'T such
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that Ct changes, placed strategically, change all k-mers; then C* = Ct — 1. Masks of the
same shape (k, w) may have different C*-values (Figure 1), but even masks with the same
(highest) C*-value can be further distinguished.

This leads to another optimization problem for a given mask x, sequence length n, and
number of allowed changes ¢ (where ¢ < C*(k,n)): Find a worst-case positioning of the
changes among the n sequence positions. There are two variants “MinHits” and “MinCov’
of the problem that respectively ask to place the changes to minimize

i

1. (MinHits) the number of (starting positions of) unaffected r-mers (“hits”);
2. (MinCov) the number of covered positions.
The corresponding decision problems, “does there exist a placement of ¢ changes such that
there are zero hits (equivalent to zero covered positions)?”, has been proven to be NP-
complete [29], but exact solutions can be obtained in practice by ILP solvers [14], as we
demonstrate below.

Given a shape (k,w), i.e., weight &k and window length w, we seek a (symmetric) mask
k of the given shape that mazimizes, among all such (symmetric) masks, the minimized
worst-case number of hits (MaxMinHits) or covered positions (MaxMinCov). These are
maximin problems, and the approach that we take to solve them is to solve MinHits and
MinCov exhaustively for all masks of the given shape, and then pick the best mask.

2.3 Integer Linear Program Formulations

We formulate the optimization problems MinHits and MinCov as integer linear programs
(ILPs). The used integer variables are binary, i.e., take only values in {0,1}. We introduce
the complete set of parameters and variables here, even though some of the problems use
only a subset. The given (constant) parameters are:
n: length of the sequence (typically n = 100, corresponding to the length of a short read);
c: number of allowed changes;
k: weight of the mask, number of significant positions, typically £ > 21 on a mammalian
genome;
w: window length, £k <w <n
k: k-tuple of offsets with 0 € k, w — 1 € k, satisfying the symmetry condition i € k <>
w—1—1€kK;
We use the following binary variables:
T = (¥;)ie[n), indicators of changed positions: z; = 1 if and only if sequence position i is
changed;
Y = (Yp)peln—w+1], indicators of (starting positions of) unchanged x-mers: y, = 1 if and
only if the x-mer starting at position p is unchanged (i.e., none of its significant positions
is changed),
2 = (2i)ie[n, indicators of covered positions: z; = 1 if and only if sequence position i is
covered by an unchanged k-mer.
As seen here, we use i € [n] for indexing sequence positions, p € [n — w + 1] for indexing
starting positions of x-mers; and j for an element of x.

2.3.1 TolChg: Tolerated number of changes for a mask

For a given n and &, we minimize the required number of changed positions CT = C(x, n)
to change all k-mers, i.e., at least one significant position of each x-mer coincides with a
changed position. The number of tolerated changes is then C*(k,n) = CT(x,n) — 1. We only
need the binary z-variables (see above). The following ILP computes C.
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Minimize Z x;, (1)
i€[n]

such that Z Tptj > 1 forallpen—w+1]. (2)
JER
2.3.2 MinHits

Assuming that a number of changes ¢ < C*(k,n) is specified, we compute the worst-case
distribution of these ¢ changes in a sequence of length n that minimizes the number of
unchanged k-mers. We need the binary z- and y-variables.

Minimize Z Yp (3)
pE[n—w+1]
such that Z x; =c, (4)
i€[n]
yPZIfopH forallpe n—w+1], (5)
JER
Yp <1 —xpyj forallpen—w+1], j€k. (6)

Here, Eq. (4) ensures that we use exactly ¢ changes, the group of inequalities (5) ensures that
yp = 1 if all positions of the k-mer starting at p are unchanged, and (6) conversely ensures
that y, = 0 if any position of that x-mer is changed. This last group of inequalities (6) is
unnecessary because we minimize the sum of y,, driving y, = 0 automatically whenever
possible.

2.3.3 MinCov

Again, for given ¢ < C*(k,n), we minimize the number of positions covered by unchanged
k-mers. A position is covered if it is contained in at least one unchanged k-mer. This ILP is
an extension of the MinHits formulation, additionally relating the z- to the y-variables, with
a different objective function. We thus need the x-, y- and z-variables.

Minimize Z Zi (7)

1€[n]
such that (4), (5), (6) hold, and additionally
Zpt+i = Yp forallpen—w+1], j€r, (8)
2 < Z Yi—j for all 7 € [TL] . (9)
jER, i—j>0

Inequalities (8) force the z-variables of all significant positions covered by an unaffected
k-mer to 1, whereas (9) forces the z-variables of positions not covered by any such k-mer
to zero. This last group of inequalities (9) is unnecessary because of the direction of the
objective function.

2.3.4 ILP Sizes

The ILPs presented here are of moderate size for typical values of n, ¢, k and w (Table 1).

Modern commercial solvers typically solve an instance for a given mask s within a few
seconds. The challenge, however, is the large number of (even symmetric) masks of shape
(k,w), as the ILPs have to be solved for each of the masks. Solution times and optimal masks
are given in the Results section.
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Table 1 Considered ILPs and their sizes (vars.: used variables, see text; obj.: objective function;
#: number of). The number of constraints counts only necessary constrains, without (6) for MinHits
and without (9) for MinCov.

ILP ‘ vars. obj. constraints ‘ F#variables  #constraints

TolChg | = (1) (2 n n—w+1

MinHits | z,y (3) (4), (5) n—w+1l n—w+2

MinCov | z,y,z2 (7) (4), (5), (6), (8) | 3n—w+1 (2k+1)(n—w+1)+1

3 Results

We first discuss several interesting masks for typical short reads of length n = 100 and their
properties in Section 3.1. These results are also useful for longer reads, as then they hold for
every substring of length 100. The Supplement contains tables with optimal masks for many
shapes (k,w) for n = 100 and various number of changes ¢ € {3,4,5,6,7}.

In Section 3.2, we provide information on the solving times of the ILPs from Section 2.3.

Section 3.3 describes how we designed sets of reads that are on the one hand easily
mappable to the telomere-to-telomere (t2t) reference genome [32], as the regions they map
to are non-repetitive, but on the other hand are hard to map because they contain 5 or
6 substitutions spread over the entire read. In Section 3.4, we evaluate how successfully
established read mappers and a simple alignment-free approach based on our masks can map
these reads back to the reference. These results should be understood as a proof-of-concept
for the usefulness of optimized masks, and not as claims that we have a better read mapper
than existing ones.

3.1 Examples of Optimal Masks

We point out a few examples of properties of contiguous vs. designed spaced masks with the
same value of k.

For n = 100 and (standard) 21-mers, placing 4 changes at (0-based) positions
(20,41, 62,83) affects all 21-mers, so the standard k-mer mask with £k = w = 21 (mask
D in Table 2) only tolerates C* = 3 changes. In contrast, the (k,w) = (21, 25)-shaped masks
E and F in Table 2, ##### #### ### #### #4888 and #4448 $HE4E_ S8E SHESE_##88 Doth
tolerate 4 changes and then guarantee at least 8 hits and a minimum of 44 covered positions
out of 100, for every distribution of 4 changes. It is noteworthy that the change distribution(s)
that achieve(s) the worst case of 8 hits may be very different from the distribution(s) that
achieve(s) 44 covered positions. In fact, one can show (with modified ILPs; not explained
here) that both of these masks, when we have only 8 hits, we have at least 60 covered
positions, and when we have only 44 covered positions, we have at least 20 hits. In any case,
every distribution of 4 changes gives at least 8 hits and 44 covered positions.

Better still, both masks E and F tolerate even 5 changes, with at least 3 hits and 33
covered positions. There is no mask with £ = 21 and 21 < w < 41 that guarantees more than
8 hits for 4 changes, but the (21, 33)-shaped mask G, ### _## _#__#_###_#_###_#__#_##_###
guarantees at least 55 covered positions but only 4 hits.

These examples illustrate the benefit of spaced seeds. Several other interesting masks are
collected in Table 2, which are also used for our computational experiments. Full tables of
optimal masks for different shapes (k,w) for ¢ € {3,4,5,6,7} changes on n = 100 positions
are included in the Supplement.
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Table 2 Contiguous k-mers vs. well performing masks. Each row shows a mask and its properties
for ¢ € {3,4,5} changes in n = 100 positions. The single-letter label A—Q is used to identify the
mask in other tables and figures. The masks D-G for £ = 21 are discussed in Sec. 3.1. The shape
(k,w) is given in addition to the mask for convenience; the remaining columns show MinHits (MH)
and MinCov (MC) optimal objective values for different values of c. Values of zero are highlighted
as 0; maximal known values for the given k (for any w) are highlighted in bold green.

(k,w) c=3 =14 c—5

shape  mask MH MC|MH MC|MH MC
A (19, 19) s 25 43 6 24 0 0
B (19,23) ####_##h_##h_$H4#_#44 21 68| 11 48| 6 42
C (19,23)  ###_#ht_$Heds_#4#_#ns 21 68| 11 48| 6 42
D (21, 21) HERHHHERFHHERBHHBRSHH 17 37 0 0 0 0
B (21,25) #####_##54_#44_HHE_HHHEE 13 65| 8 44| 3 33
F (21, 25) HERH_HEHHH_BHE_ HEHHH_BHHH 13 65 8 44 3 33
G (21, 33) HEH_HH_#__H_HHH_B_HHH_#__#H_##_HEH 15 63 4 55 2 31
H (23, 23) HEHBHHAHBAHBHHAHHAHBRHH 9 31 0 0 0 0
I (23,35) ##_sissh__#_##__#__#H#_#__#H#E_#HH 12 59 5 48| 2 34
T (23,37) ##sh__#_#_#_#__HEHEE__#_H_#_#__#HEHE 11 55| 4 45| 2 34
K (23,37) ###_###__#_#4%_#__#__#_#48_#__#H4_#4#% 12 58| 6 47| 2 34
L (25, 25) HESHHHEHFHH BB HHERBHHERSH 1 25 0 0 0 0
M (25, 35) HESHHHE__HHE__H_BHH_H__#HHH__HHHEHHS 9 55 4 42 0 0
N (25,37) #####_#_#_##_#4__##4__#4_#3_4_#_SH4s# 9 53| 4 45| 0 0
O (25, 37) HESHH_#_#_ BHHH__HHH__#HHH__#_#_ #HHHE 8 54 2 47 0 0
P (27, 27) HEHBHHAHBRHBHHAHBRHBRHRHHRH 0 0 0 0 0 0
Q  (27,39)  ##t_#i_#a__#_HHH_B_$HE_$__BHE_$HEE_$H 7 52| 2 42| 0 o0

3.2 ILP Solving Times

We used Gurobi 10.0.3 [14] to solve the ILPs from Table 1 on a AMD Ryzen 9 5950X 16-core
Processor with hyperthreading (32 logical threads) and 128 GB RAM (which is not needed).
Figure 2 shows an overview of solving times for all 1287 symmetric masks of shape (19, 29)
for ¢ = 5 changes and sequence length n = 100, and all 4368 symmetric masks of shape
(25, 35) for ¢ = 4 changes (none of these masks tolerates 5 changes) and n = 100. There are
a few observations to be made.

First, solving times are very fast (under half a second) for the MinHits problem and
reasonable (under 10 seconds) for the MinCov problem for the chosen parameters. Indeed,
the MinHits problem is considerably smaller (Table 1), easier and faster to solve than the
MinCov problem.

Second, the solving time depends on the optimal objective value. An objective value of
zero (there exists a change distribution for which all x-mers are changed) is found quickly. As
a tendency, the better the mask (i.e., the higher the MinHits or MinCov objective value), the

harder it is to find the corresponding worst-case change distribution or prove its optimality.

Third, unfortunately, increasing ¢ or n can have a drastic effect on solving times. This
should not be surprising: We are looking for the worst-case placement of ¢ changes among

n positions, for which there are (7) possibilities, where (120) ~4-10% and (lgo) ~ 75 -108.

c
While the time increase between 4 and 5 changes seems moderate in Fig. 2, solving for

much larger values of n and ¢ than provided in the Supplement is currently not feasible
in a comprehensive manner. For example, solving the ILPs for the best (19,29)-mask
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shape (19, 29) with 5 changes shape (25, 35) with 4 changes

055 10 035 | 50

Figure 2 Solving times (y-axis) of the MinCov and MinHits ILP with n = 100 for masks of shape
(19,29) with 5 changes (two left plots) and for masks for shape (25,35) with 4 changes (two right
plots). The x-axes show the distinct objective values of the MinHits and MinCov problems. Empty
boxplots (e.g. shape (19,29) with highest MinCov objective value 48) occur if too few masks have
this value to produce a meaningful boxplot.
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Figure 3 Fractions of positions in the t2t reference genome where strongly unique (blue), weakly
unique (orange) and non-unique (green, “multi”) x-mers start for selected masks from Table 2.

#Hd_#a#_#__#_###_#__#_###_### for n = 100 and ¢ = 5 (guaranteeing 5 hits or 48 covered
positions) takes 0.28 seconds for MinHits, and 9.03 seconds for MinCov. Doubling these to
n = 200 and ¢ = 10 increases the time to 41 seconds for MinHits (a factor of 146) and to
5200 seconds for MinCov (a factor of 576).

However, we may argue that using n = 100 (corresponding to a typical short read length)
is sufficient because then the guarantees hold for every substring of length 100 of longer reads,
and by the pigeonhole principle, if 50 changes are distributed over 1000 positions, there must
exist at least one length-100 substring with at most 5 changes. In general, ILP solving times
may depend on the decisions taken by the solver and may vary even for the same problem
(if randomization is used) and across problems of comparable size and difficulty, and also
change from version to version of the solver.

3.3 Creating Challenging Read Datasets

Clearly, established read mappers, such as bwa-mem?2 [39], minimap2 [22, 23], or more recent
developments like strobealign [37] work well in most settings; otherwise, they would not be
used. We acknowledge that the optimal masks presented in Table 2 and their thresholds are
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mostly a theoretical result and perhaps of limited practical value for production pipelines in
bioinformatics core facilities. Nonetheless, to investigate the case of highly diverse sequence
regions, we decided to create datasets that pose a challenge to seed-based mappers (including
our designed masks) because no long exact seeds exist.

We created two datasets, each of 5 million short reads of length n = 100, from the
autosomes of the t2t human reference genome [32]. The intervals of origin were chosen such
that the reads, when unchanged, are easy to map back to the genome, in the sense that
repetitive regions were excluded. Precisely, we ensured that all canonical k-mers of each
selected read for k = 27, are unique in the reference. In fact, we picked only regions where
each 27-mer is not only unique, but also does not have a Hamming distance 1 neighbor
elsewhere in the reference. Such k-mers have been called strongly unique [42]. Unique k-mers
that are not strongly unique are weakly unique. As a rule of thumb, for k > 23, a large
fraction of the k-mers in the t2t reference genome is strongly unique, and for k£ > 27, this
fraction saturates [42], which motivated our choice of k = 27.

Figure 3 contains statistics about how many positions in the t2t reference genome we
find a strongly unique, weakly unique or non-unique x-mer for selected masks from Table 2.
Clearly, k = 19 (A, B, C) does not yield many strongly unique x-mers, but still an overall
high fraction (over 60%) of unique x-mers. For k = 23 (I, J, K), we already have strongly
unique x-mers at over 60% of the genome positions, and a few more positions with weakly
unique k-mers. Increasing k to 25 (L, M, N, O) or to 27 (Q) only slightly increases the
fraction of strongly unique x-mers further; the fraction of non-unique (“multi”) xk-mers stays
more or less constant. We see that selecting reads from regions with only strongly unique
27-mers is not overly restrictive.

In the unchanged reads, any single contiguous 27-mer would be sufficient to reliably place
the read at the correct location in the reference genome. While the unmodified reads would
thus be trivial to map, we introduce a large number of changes (¢ = 5 or ¢ = 6) to obtain
the actual datasets.

In the first dataset, we introduced ¢ = 5 changes (A+T, C+G) into each read at
approximately equidistant positions. More precisely, for each read, we modified each of
the five 0-based positions (16,33,50,67,84) by a random offset uniformly chosen from
{-3,...,0,...,3}, and then complemented the base at the 5 obtained positions. In the
second dataset, we proceeded similarly, but with ¢ = 6 changes at randomly modified
positions obtained from (14,28, 43,57,72,86) with uniformly chosen random offsets between
—3 and +3.

Clearly, this mapping task is challenging for all of the approaches: Using 5 or 6 changes
makes it hard for the existing mappers to find a good seed, and none of our masks offers any

guarantees for 6 changes either: All MinHits and MinCov objective values are zero for ¢ = 6.

Note that some of our masks do offer guarantees for ¢ = 5.

3.4 Evaluation

To attempt to map the modified reads back to their interval of origin in the reference genome,
we used bwa-mem?2 v2.2.1 [39], minimap2 v2.26 [22, 23] and strobealign v0.11.0 [37] with
their default parameters. For these tools, a read was considered uniquely mapped if the
resulting BAM file contained a unique alignment; it was considered correctly mapped if that
unique alignment started at the correct position (with a tolerance of half the read length).

For our selection of masks from Table 2, we did not create a read mapper for spaced
k-mers within the scope of this work, but used a simple alignment-free approach. We created
a positional index, implemented as a multi-way bucketed Cuckoo hash table [40, 41] for each
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Figure 4 Fraction of correctly mapped reads from the challenge datasets with 5 or 6 introduced
changes (A: 5 changes; B: 6 changes; cf. Sec. 3.3). Mask labels refer to Table 2. Tool labels bwa,
mm?2 and strobe refer to the established tools bwa-mem2, minimap2 and strobealign.

mask, that for each unique canonical k-mer stores its unique location (chromosome and
position) and whether it is strongly (vs. weakly) unique. For non-unique s-mers, it stores
the special value non-unique.

To attempt to “map” a read with a mask, we query the genome position of each x-mer
in the read and, if unique, subtracted the relative position within the read, to obtain a
virtual start position of the read in the genome. We count (for at most 20 different candidate
starting positions) how many strongly and weakly unique k-mers indicate each candidate
position, and aggregate counts to the dominant position (highest count) inside an interval
of half the read length. The read is considered uniquely mapped if we find at least two
strongly unique or four unique x-mers at the dominant position, and that position is the only
remaining one with strong s-mers after aggregation. The read is correctly mapped if the
unique position is the correct one in the genome (with a tolerance of half the read length).

Figure 4 shows the fraction of correctly mapped reads for selected masks and each tool
for both datasets. The alignment tools bwa-mem?2 and minimap2 struggle particularly with
the dataset using 6 changes, because they often do not find a sufficiently long seed to initiate
alignment. For the dataset with 5 changes, bwa-mem?2 still performs relatively well. Both
minimap and strobealign suffer more because they do not examine all k-mers seeds but use a
minimizer-based sampling approach.

Masks representing contiguous k-mers (A: 19-mers, L: 25-mers) also perform extremely
badly because almost no unchanged 19-mer or 25-mer exists in these reads. While some
19-mers remain unchanged when only 5 changes are introduced (depending on the chosen
random offsets), 19-mers are not specific enough to uniquely place a read within the genome
using an alignment-free approach. Note that bwa2-mem also requires an exact match with a
minimum length of 19 to initiate further alignment. Since bwa-mem2 also considers non-
unique 19-mers and investigates up to 1000 positions, it is more successful than our simplistic
approach that only uses unique 19-mers. The change-tolerant spaced 19-mers (B, C) perform
much better than the contiguous 19-mer (A), but still not very well. The limiting factor here
is the unavailability of sufficiently many (strongly) unique spaced 19-mers (Fig. 3).

Our masks with & =23 (I, J, K) perform almost equally well for both 5 and 6 changes,
even though they guarantee only 2 hits for 5 changes and provide no hit guarantee for
6 changes. Because the change distribution is semi-random, we typically do not see the
masks’ worst-case distributions and therefore usually obtain the required strongly unique
k-mer hits even for 6 changes.



J. Zentgraf and S. Rahmann

The spaced 25-mer masks (M, N, O) and the spaced 27-mer mask (Q) do not give any
guarantees for 5 or 6 changes. Nonetheless, a large number of reads is placed correctly in
both cases, again because the semi-random placement of changes does with high probability
not correspond to the worst-case distribution.

In summary, we find that selected spaced masks with weight k = 23 or k = 25 are well
suited to map reads with high substitution rates (5%, 6%) back to the correct location
in genome, even in an alignment-free manner, whereas this task does not work well with
contiguous k-mers (even for smaller k), which are used as seeds for most established tools.
The low mapping rates of strobealign are surprising, but we note that it was designed mostly
with indel tolerance in mind. Of course, the practical significance of this evaluation is
limited: The datasets were designed to point out the difficulties of classical tools with certain
distributions of large numbers of substitutions. Nonetheless, it is noteworthy that by using
certain spaced masks as seeds instead of contiguous k-mers, one can achieve a high built-in
substitution tolerance in alignment-free methods.

3.5 Software and Data

With this article, we provide the following tools and data, further explained in the repository’s

README file':

1. a Python program that calls the Gurobi optimizer [14], for which a (free academic) license
is required for computing the worst-case change distributions of a mask or a set of masks
of the same shape,

2. a just-in-time compiled Python program to index the k-mers of a genome in FASTA format
(gapmap index), which is a modification of our spaced k-mer counter hackgap [41],

3. a just-in-time compiled Python program to map a FASTQ file of reads using a pre-
computed k-mer index (gapmap map).

We furthermore provide the following data:

4. a list of worst-case optimal masks for different shapes (k,w) and number of changes ¢ for
n = 100 in the Supplement,

5. our modified t2t reference genome (“analysis set”) consisting of the t2t genome [32], an
Epstein-Barr virus (EBV) sequence and a PhiX sequence,?,

6. the challenge datasets of Sec. 3.3 of 100-bp reads with 5 changes® and 6 changes®. The
FASTQ headers contain the true origins and the positions of the introduced changes.

4 Discussion and Conclusion

With this work, we open a new chapter in spaced seed design. Instead of considering the
probability or guarantee of at least one hit, we use a combinatorial approach and explicitly
compute the worst-case distribution of ¢ changes (substitutions) among n positions to
minimize the number of hits or the number of positions covered by hits. The integer linear
program formulations we use for this task are reasonably efficient for n = 100 and allow
exhaustive enumeration of all symmetric masks for a wide range of shapes (k, w); but they
show their limits for longer sequences: Already for n = 200, the solving times for a single

https://gitlab.com/rahmannlab/seed-optimization

https://kingsx.cs.uni-saarland.de/index.php/s/CcggyrNZWpFoZWj
https://kingsx.cs.uni-saarland.de/index.php/s/nHJbaAxi3ZGApEG
https://kingsx.cs.uni-saarland.de/index.php/s/mA9cXMYcgHsZXFb
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mask prohibit evaluating most shapes of interest. Further engineering, such as the inclusion
of starting and improvement heuristics, and exploitation of the regular constraint structure,
may lead to substantial performance improvements.

We focus on shapes (k, w) for which most x-mers in a mammalian genome can be expected
to be unique or even strongly unique with the idea that a few strongly unique x-mer matches
suffice to map a read to a specific position of the reference genome. As demonstrated,
this works in the human genome for k > 23, for which many strongly unique k-mers exist.
This is different from previous work that focused on small k, and used matching x-mers as
seeds to initiate alignments at potentially many different positions where the x-mer occurs.
The approach based on strongly unique x-mers can be orders of magnitude faster and at
the same time highly reliable, as shown by our challenge dataset. Thus, strongly unique
worst-case-optimal spaced seeds provide an orthogonal method against reference bias besides
graph genomes.

We found that good worst-case masks are rare, so we cannot expect to find a good mask
randomly. Also, which mask is optimal may differ for different values of ¢ (for the same k, w
and n). This suggests using a combination of several masks, which would also increase the
chance of seeing more strongly unique x-mers (across all used masks). The problem then
becomes finding an optimal combination of masks (perhaps even of different shapes). This
has already been considered within the probabilistic approach, but an exhaustive enumeration
of all combinations is not feasible, so heuristics have been proposed, which may be adapted
to worst-case mask design in the future.

A drawback of spaced seeds is their rigidness over their width w, i.e., they tolerate
substitutions, but not insertion- or deletion-type differences. There is a trade-off: A longer
width may lead to more hits or higher coverage, but also offers less tolerance against insertions
or deletions. While strobemers were developed with indel tolerance in mind, they did not
perform well in the adversarial setting considered here. From our point of view, it remains
a challenging open problem to define and design alternative general error-tolerant types of
seeds that provide worst-case guarantees instead of probabilistic guarantees.

There are other open questions as well: We are currently unable to predict the performance
of a mask (e.g., from substrings, motifs, etc.). It would be interesting to use machine learning
approaches to predict which masks have the potential to yield high MinHits or MinCov
values to avoid running all ILPs.
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