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Abstract
Error correction of long reads is an important initial step in genome assembly workflows. For
organisms with ploidy greater than one, it is important to preserve haplotype-specific variation
during read correction. This challenge has driven the development of several haplotype-aware
correction methods. However, existing methods are based on either ad-hoc heuristics or deep
learning approaches. In this paper, we introduce a rigorous formulation for this problem. Our
approach builds on the minimum error correction framework used in reference-based haplotype
phasing. We prove that the proposed formulation for error correction of reads in de novo context,
i.e., without using a reference genome, is NP-hard. To make our exact algorithm scale to large
datasets, we introduce practical heuristics. Experiments using PacBio HiFi sequencing datasets from
human and plant genomes show that our approach achieves accuracy comparable to state-of-the-art
methods. The software is freely available at https://github.com/at-cg/HALE.
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1 Introduction

Recent improvements in long-read sequencing technologies in terms of read length and
accuracy have led to a paradigm shift in the quality of genome assemblies [14]. Currently,
Oxford Nanopore Technology (ONT) long reads have error rates between 1% and 5%, while
Pacific Biosciences (PacBio) reads have lower error rates below 0.5% [8]. Error correction is
important for distinguishing haplotypes and repeats during genome assembly [20]. The key
challenge is that the sequencing error rates in long reads often exceed the variance between
repetitive genomic regions that we want to separate.

It is possible to correct sequencing errors by leveraging redundancy in sequencing data
because each base in the genome is sampled by multiple reads during whole-genome se-
quencing [23]. One simple approach is to consider all-vs-all overlaps among reads, and
subsequently correct each read by doing a majority vote among the bases of reads that
overlap it. Unfortunately, this direct strategy leads to a loss of haplotype-specific and
repeat-specific variation. As an example, if two genomic regions of a haploid genome differ
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at only a few positions, then their corresponding reads may overlap with each other. The
majority vote strategy in such cases would eliminate the true biological differences. This
issue becomes even more pronounced in diploid and polyploid genomes. In humans, the two
haplotypes are approximately 99.9% identical. As a result, reads from different haplotypes
overlap frequently. Complicating matters even further, both sequencing errors and biological
variations are unevenly distributed across the genome. Certain regions of a genome, such as
homopolymers, have high error rates [11].

Long-read assemblers that support diploid genome assembly [1, 2, 3, 13] incorporate
haplotype-aware error correction as a mandatory step in their pipelines. More recently,
dedicated tools for error correction [10, 18] have also been developed. Most algorithms
begin by computing all-vs-all overlaps between reads. For instance, given a target read
to be corrected, Hifiasm [2] considers the alignments of overlapping reads to that target
read. It uses heuristics to identify heterozygous loci in the target read. Subsequently, it
discards those overlapping reads that do not match the target read at all the heterozygous
loci. Herro [18] is a dedicated error correction tool that uses a supervised learning model
composed of convolutional blocks and a transformer encoder. PECAT [13] uses a heuristic
scoring strategy based on partial-order alignment graph [6] for each read to be corrected.
DeChat [10] also adopts a heuristic-driven method, performing an initial pre-correction using
a de Bruijn graph, followed by a variant-aware multiple sequence alignment strategy adapted
from Hifiasm.

In this work, we introduce a rigorous mathematical formulation of the haplotype-aware
error correction problem. For each target read, we define a combinatorial optimization
problem aimed at selecting reads that originate from the same haplotype and genomic region.
An accurate selection of such reads enables a direct consensus-based correction using these
reads. We prove that this optimization problem is NP-hard via a reduction from the Max-Cut
problem. Despite its hardness, we show that it can be practically solved for human genome
datasets using a combination of simple heuristics and brute-force search. We implemented
our approach in a tool named HALE (Haplotype-aware Long-read Error correction) and
evaluated its performance on PacBio HiFi datasets from human and plant genomes. HALE
matches the accuracy of state-of-the-art deep learning and heuristic-based methods while
offering a more straightforward and theoretically grounded approach.

2 Preliminaries

Our proposed formulation (defined later in Section 3) is partly inspired by the Hypercube
2-segmentation (H2S) problem that was originally introduced by Kleinberg, Papadimitriou
and Raghavan in 1998 for bi-clustering [5]. The problem statement is as follows.

H2S Problem. Given a set of n vectors x1, x2, . . . , xn in {0, 1}d, one needs to select two
centers c1 and c2 in {0, 1}d maximizing

n∑
1

max
(
agree(c1, xi), agree(c2, xi)

)
where function agree(x, y) counts on how many coordinates vectors x and y agree (which is
also d minus the Hamming distance between x and y).

Another way to interpret the above problem is that we seek to partition n input vectors
into two clusters such that the number of bit flips needed to make all the vectors agree within
each cluster is minimum. H2S problem is known to be NP-hard [4].
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A generalization of the above problem, where each vector can have one or more consecutive
wildcard symbols at both ends, is commonly used in the context of reference-guided haplotype
phasing [9, 15]. This generalized version of the problem is also referred to as the minimum
error correction (MEC) problem. Solving the MEC problem is useful to determine the
variants that are co-located on the same (maternal or paternal) haplotype. The MEC-based
approach assumes the availability of a reference genome because each input vector is derived
from an alignment of a read to the reference genome.

For de novo assembly, we cannot assume the availability of a reference genome. However,
we assume the availability of a collection of overlaps between reads, which is a common
first step in most long-read assemblers [12]. An overlap either implies (i) a sufficiently long
approximate match between the suffix of a read and the prefix of another read or (ii) an
approximate match of an entire read to a substring of another read. The overlaps identified
using approximate string matching algorithms would comprise both true overlaps and false
overlaps. The false overlaps arise from repetitive sequences within or across haplotypes.
Accordingly, when considering a target read alongside its overlapping reads, we may have
one, two, or even multiple “read clusters”, each corresponding to different haplotypes or
genomic loci.

3 Problem Formulation

Our input is a multiple sequence alignment (MSA) between a substring of a target read
and overlapping substrings from other reads (see Figure 1 for an illustration). We defer the
details of how these MSAs are constructed to Section 5. Suppose that the MSA comprises
n + 1 vectors in {A, T, C, G, −}d, where n is the number of overlapping substrings and d is
the length of the MSA. We denote the vector in the MSA that represents the substring of the
target read as t, and the set of all other vectors representing the overlapping substrings as S.

Some vectors in S represent true overlaps. They may differ from vector t due to sequencing
errors in the reads. The remaining vectors differ from t due to both sequencing errors and
haplotype-specific or repeat-specific variations. Accurately identifying the true overlaps is
crucial for error correction, as it enables the use of a simple majority-vote strategy within
the true overlaps. To achieve this, we introduce the following parsimony-based formulation
aimed at selecting k vectors from S that, along with vector t, maximize a clustering score.

▶ Problem 1. Given a vector t in {A, T, C, G, −}d, a set S of n vectors in {A, T, C, G, −}d,
and a positive integer k ≤ n, compute a subset S′ ⊆ S of cardinality k and a center c in
{A, T, C, G, −}d such that

∑
x∈S′∪{t} agree(c, x) is maximum.

We make a few remarks on this problem formulation. First, note that the symbol “−” is
not given any special treatment and is processed like any other character. Second, vector
c in the solution satisfies c[i] = majority ({x[i] | x ∈ S′}) for all 1 ≤ i ≤ d, where ties are
broken arbitrarily. Accordingly, c can be trivially computed once S′ is known. After solving
Problem 1, vector c will be interpreted as the corrected version of vector t. Third, k is a
user-defined parameter in Problem 1. Its value should depend on the sequencing coverage.
One can approximately set k to the largest value such that every genomic interval of length
d is sequenced at least k times with high probability.

Our problem formulation differs fundamentally from reference-guided haplotype phasing,
e.g., WhatsHap [15]. Traditional reference-guided phasing aims to reconstruct two haplotypes
by partitioning reads into two clusters. This clustering is disjoint and exhaustive, i.e., every
read is assigned to exactly one of the two clusters. In contrast, we focus on identifying a
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- CCGA -T ACCA G
T CCAA -T ACCA C
T CCGA -T GCCA C
- CCGA -C ATCA G
- CAGA -T ACCA G
T CCGA -T GCCA C
- CCGA GT ACCA G

- ACGA CT ACAG A
A CCAA CT ACAG C
A CCGA CT GCAG C
- CCGA CT A-AG A
- CAGA CT ACAG A
A CCGA -T GCAG C
- CCGA CT ACAG A

- CCGA GT ACCA G - CCGA CT ACAG A

Target read

Multiple sequence alignment
Overlapping reads

Figure 1 A toy example of the MSA input to our problem. MSA is computed between a substring
of the target read and substrings of other overlapping reads. The target read is highlighted in red.
Only those overlapping substrings are included in the MSA that have an end-to-end alignment with
the substring of the target read (shown in dark grey). The above example has the target read split
into four windows. In our implementation (discussed later), separate MSAs are generated for each
window of the target read.

subset of reads that corresponds to the haplotype and genomic region of the target read.
The proposed formulation is more compatible with the de novo setting where the number of
read clusters can vary.

4 Hardness Result

▶ Theorem 2. Problem 1 is NP-hard.

Our proof technique is inspired by the technique used by Feige [4] to prove the hardness
of the H2S problem. However, several arguments differ in our proof because we seek only
one cluster in Problem 1 whereas the H2S problem seeks two clusters. Rather than proving
the hardness of Problem 1 directly, we consider a related problem that slightly generalizes it.

▶ Problem 3. Given a set S of n vectors in {−1, 1}d and a positive integer k ≤ n, compute
a subset S′ ⊆ S of cardinality at least k that maximizes the ℓ1 norm of the vector sum, i.e.∥∥∑

x∈S′ x
∥∥

1.

In the Appendix (Lemma 7), we argue that Theorem 2 follows if Problem 3 is NP-hard.
Our reduction to prove the hardness of Problem 3 uses Hadamard codes. A Hadamard code
HM of dimension M is a collection of M vectors in {−1, 1}M such that every two vectors are
orthogonal. There are well-known polynomial-time algorithms to construct HM recursively
when M is a power of two [19]. Therefore, we assume that M is a power of two. In the
following lemma, we restate a useful property of Hadamard codes from [4].

▶ Lemma 4. Consider an arbitrary set of distinct vectors from the Hadamard code HM .
The ℓ1 norm of their sum is at most M3/2.
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Figure 2 (Left) A directed graph. (Right) The resulting set of vectors when M = 4. The

Hadamard codes are shown in pink. There are M |V | vectors, each of dimension M |E|.

▶ Lemma 5. Problem 3 is NP-hard.

Proof. We reduce from the MAX-CUT problem. In the MAX-CUT problem, one is given an
undirected graph, say G(V, E), and is asked to find a subset V1 of vertices that maximises
the number of edges between V1 and its complement V \ V1.

We will convert G into an instance of Problem 3. Let us assign an arbitrary orientation
to each edge of G. We will assume an integer parameter M (we will later find an appropriate
value of M which is polynomial in the size of the graph).

We build a set S comprising n = M |V | vectors of dimension d = M |E|. For every vertex
vi of G, we introduce M vectors vi,1, . . . , vi,M each of length M |E| (see Figure 2 for an
illustration). Each vector is divided into |E| blocks of length M each. In each of the n

vectors, in every block Be associated with an edge e:
1. If vi is head of edge e, then all entries of Be are +1.
2. If vi is tail of edge e, then all entries of Be are −1.
3. If vi is not incident with edge e, then the entries of Be in vector vi,j (for 1 ≤ j ≤ M) are

the jth vector of Hadamard code HM .

Lastly, we set the parameter k = M(|V |/2).

Yes instances. Suppose that G(V, E) admits an optimal solution (V1, V2) having c edges
between V1 and V2. WLOG, we can assume that |V1| ≥ |V2|, and hence |V1| ≥ |V |/2.
Consider one (possibly sub-optimal) solution to the instance of Problem 3 that selects all
M |V1| vectors from S that correspond to vertices in V1. Let us denote the set of these M |V1|
vectors as X.

A lower bound on the ℓ1 norm of the vector sum, i.e.,
∥∥∑

x∈X x
∥∥

1, can be obtained as
follows. Recall that each vector in X has |E| blocks. Consider a block associated with
an edge e that is in the cut. There is exactly one endpoint of this edge in X, and all the
M vectors corresponding to this endpoint (vertex) are monochromatic blocks of length M ,
which together contribute a total of M2 to the ℓ1 norm. This can be partially offset by other
blocks. But the block of each vertex not incident with e can offset at most M3/2 of the ℓ1
norm (using Lemma 4). For an edge e, there are |V | − 2 vertices not incident with e. This
makes the total contribution of the blocks corresponding to edge e to the ℓ1 norm at least
M2 − (|V | − 2)M3/2. As there are c edges in the cut, the value of this solution is at least
c(M2 − (|V | − 2)M3/2). (The value is actually higher because the blocks associated with the
edges not in the cut also contribute to the ℓ1 norm, but we ignore this further tightening of
the bound.)
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No instances. Suppose that G(V, E) admits an optimal solution with < c edges in the cut.
Consider an arbitrary subset of vectors from S with cardinality at least k. Call this subset
of vectors X1. This selection corresponds to a fractional partition (V1, V2) of G where the
extent to which vertex vi is in partition V1 is equal to the fraction of its vectors in X1. Let
zi denote this extent for vector vi. Similarly, let 1 − zi be the extent to which the vertex vi

is in partition V2. For an edge e = (vi, vj), the extent to which it is cut is ye = |zi − zj |.
For an arbitrary edge e, the monochromatic blocks associated with its two endpoints

together contribute M2ye to the ℓ1 norm of X1. The blocks associated with vertices that are
not endpoints of e, each contribute at most M3/2 towards the ℓ1 norm of X. Summing up over
all edges and all blocks, the value of any solution is at most

∑
e

(
M2ye + (|V | − 2)M3/2) =

M2∑
e ye +(|V |−2)|E|M3/2. Further,

∑
e ye ≤ c−1. This is because it is possible to change

a fractional cut into an integer cut which is at least as large (see Lemma 13 in Appendix).

Summary. If we subtract the upper bound for no instances from the lower bound for yes
instances, it follows that the yes instance leads to an higher value than the no instance if

c
(

M2 − (|V | − 2)M3/2
)

−
(

M2(c − 1) + (|V | − 2)|E|M3/2
)

> 0

or M2 > M3/2 [(|V | − 2)(c + |E|)]

Taking M > 4|E|2|V |2 suffices. ◀

5 Algorithm and Implementation

This section outlines the details of our error-correction algorithm, HALE. Since computing
exact MSA and solving Problem 1 are both NP-hard, we incorporated heuristics in our
implementation. At the preprocessing stage, we use Minimap2 [7] to compute overlaps among
all reads. Thus, for each read, we have a set of its pairwise alignments with other reads. We
perform error correction of each read independently. In the following, we refer to the read
being corrected as target read.

Step 1: Constructing multiple sequence alignments

To construct MSAs, we adapted code from the Herro software [18]. We briefly summarize the
approach here. Herro employs the well-known star alignment heuristic, where the target read
is assumed to be the “center of the star”. The MSA is constructed progressively, i.e., adding
each overlapping read to the MSA one by one using its precomputed pairwise alignment with
the target read. For further details on the star alignment heuristic, see [17].

Once the full MSA is constructed, it is divided into contiguous, non-overlapping windows
of fixed length w (Figure 1). Each window represents an MSA of a substring of the target read
and its overlapping substrings. Henceforth, each windowed MSA is processed independently.
Within each window, alignments from overlapping reads which do not fully span the window
are ignored (Figure 1). We use the same window length w = 4096 as Herro.

If there are less than two alignments from overlapping reads in a window, which can happen
occasionally in regions with low coverage, then Herro chops and removes the corresponding
substring of the target read instead of leaving it uncorrected. We do the same in HALE. Note
that this procedure may split the target read. The rationale is that the uncorrected portions
of a read may negatively affect the quality of genome assembly, hence they are removed.
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Step 2: Sampling overlaps based on sequence identity

The count of overlapping substrings within a window is influenced by the sequencing coverage
of the loci linked to the target read and how repetitive those regions are within the genome. To
maintain computational efficiency of next steps, we retain only top-n overlapping substrings
in each MSA. Preference is given to those overlapping substrings that have higher sequence
identity1 with the target read. If fewer than n overlaps are available, we retain all. In HALE,
the default value of parameter n is set to 20.

Step 3: Sampling informative alignment columns

Following the approach of Herro [18] and Hifiasm [2], we identify informative alignment
columns in the MSA. A column is considered informative if at least two distinct characters
from the set {A, T, C, G, −} occur in that column with a minimum frequency of 3. See
Figure 3 for an illustration. Only a small fraction of alignment columns are informative in
practice. Informative columns typically indicate either biological variation among the aligned
substrings or systematic sequencing errors, e.g., homopolymer indel errors. In contrast,
non-informative columns are those where alignments largely agree. These columns have
limited value for identifying true overlaps in Problem 1. Thus, we remove all non-informative
columns from the MSA and use the modified MSA as input to Problem 1.

Informative columns

Multiple

sequence

alignment

The most frequent character in a column
Other characters in a column

2nd most frequent character in a column

Figure 3 Informative columns in a multiple sequence alignment. In each column of the
above MSA, blue boxes represent the most frequent character from {A, T, C, G, −} in that column.
The green boxes represent the second most frequent character in a column. The pink boxes represent
any other character that is neither the most nor the second most frequent. Based on the definition
of informative columns, four out of six columns in the above example are informative.

1 Given a pairwise alignment of two sequences, sequence identity is defined as the number of matching
bases over the number of alignment columns.
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Step 4: Solving Problem 1

A polynomial-time algorithm is unlikely for Problem 1 because we have established its
hardness in Section 4. We use a direct brute-force approach to find an exact solution. In the
MSA input to Problem 1, we have a vector t in {A, T, C, G, −}d (representing a subsequence
of target read) along with n other vectors in {A, T, C, G, −}d (from the overlapping reads).
Here, d denotes the number of columns in a given MSA. We solve Problem 1 by exhaustively
evaluating all

(
n
k

)
possible ways of selecting a subset of k vectors from the total of n. For a

given selection of k vectors, an optimal value of the cluster center c at the ith coordinate
is the character that occurs most frequently at that position among the k vectors and the
target vector t. Although the runtime of this algorithm is O

((
n
k

)
× kd

)
, this brute-force

solution is still practical due to the reduction in the size of MSA at Steps 2 and 3.
The default value of parameter k in HALE is set to n/3. This choice is based on our

empirical observation that at least one-third of the overlapping substrings typically originate
from the same haplotype as the target read (assuming ploidy ≤ 2). Choosing an appropriate
value for k involves a trade-off: a significantly larger k can lead to the selection of reads with
false overlaps, while a much smaller k leads to an insufficient number of reads to reliably
compute a consensus.

We introduce an additional optimization. Note that Problem 1 treats all MSA columns
with equal importance. To further improve the quality of results, we solve a weighted version
of Problem 1 defined below. Suppose that weight function W assigns a non-negative weight
W (i) to each column i ∈ {1, 2, . . . , d} and function match(α, β) returns 1 if characters α and
β match, and 0 otherwise.

▶ Problem 6. Given a vector t in {A, T, C, G, −}d, a set S of n vectors in {A, T, C, G, −}d,
and a positive integer k ≤ n, compute a subset S′ ⊆ S of cardinality k and a center c in
{A, T, C, G, −}d such that

∑
i∈{1,2,..,d} W (i)

(∑
x∈S′∪{t} match(c[i], x[i])

)
is maximum.

Our motivation to introduce the weights is as follows. A majority of errors in long
reads are insertions and deletions, especially in homopolymers regions [11]. Accordingly,
informative columns where the most frequent and the second most frequent characters are
from {A, T, C, G} are likely to represent true biological variation. We assign a weight 1 to
such columns. In contrast, other informative columns where either the most frequent or
the second most frequent character is “−” may correspond to either true indel variation
or sequencing artifacts. We assign a weight 1/10 to these columns. The choice of this
parameter was based on our empirical observations. Developing a more principled approach
for determining the weight parameters is left for future work.

Step 5: Correcting the target read

Recall that before sampling alignment columns in the MSA (Step 3), we had a substring
of the target read aligned with overlapping substrings from other reads, forming an MSA
of length w, where w is the window length parameter. The alignment of the substring
from the target read corresponds to a vector in {A, T, C, G, −}w. We update this vector as
follows. For each non-informative column, where biological variation is not expected, we
replace the character with the most frequent character in that column, which is equivalent
to taking a majority vote. In all informative columns, we use the the optimal cluster center
c, as determined by solving Problem 1, to update the characters. Finally, we generate the
corrected version of the target read substring by removing any gap symbols (“−”) from the
updated vector.
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6 Results

We evaluated the performance of HALE using publicly-available PacBio HiFi sequencing
datasets. The commands and software versions to reproduce the results below are available
in Appendix Tables 3 and 4. The HALE source code is accessible at https://github.com/
at-cg/HALE.

Datasets

We utilized two sequencing datasets, one from a diploid HG002 human sample2, and the other
from a haploid Col-0 Arabidopsis thaliana sample3. Following the benchmarking approach
used in Herro, we restricted our evaluation to reads that are at least 10 kbp in length. Reads
shorter than 10 kbp were removed.

To reduce runtime of the experiments involving the human dataset, we sampled reads
from chromosome 9 of the HG002 genome. Chromosome 9 contains a high abundance of
satellite DNA sequences (long arrays of tandem repeats) which makes it one of the more
challenging chromosomes to assemble [14]. To isolate reads from chromosome 9, we aligned all
reads to HG002v1.1 assembly4 (GCA_018852605.3, GCA_018852615.3) and retained those
reads whose primary alignments mapped to either the paternal or maternal haplotype of
chromosome 9. To evaluate the impact of sequencing coverage on error correction performance,
we created two versions of HG002 and A. thaliana datasets, one with 40× coverage and the
other with 60× coverage by randomly sampling reads.

Evaluated algorithms

We compared HALE against two state-of-the-art read correction tools, Herro [18] and
Hifiasm [2]. Herro is a deep learning method that was primarily developed for correcting
nanopore sequencing reads. Since a pretrained model for HiFi reads is not available in Herro,
we used its existing model trained on Oxford Nanopore (R10) data. We assumed that the
ONT-trained model generalizes to HiFi reads because HiFi reads are relatively more accurate
and exhibit fewer systematic errors.

In addition to these baseline methods, we also compared HALE with two simplified
correction methods. As a reminder, HALE performs a majority vote on non-informative
alignment columns while using a more sophisticated technique based on solving Problem 1
in the informative alignment columns (Section 5). The naive methods employ the same
heuristics described in Section 5, but bypass solving Problem 1 (Step 4).

In the first naive approach (Naive-1), a majority vote is performed across all alignment
columns, including informative ones, during Step 5. In the second naive approach (Naive-2),
the original values in the aligned target read are preserved at informative columns, while
a majority vote is applied only to non-informative columns. This comparison allows us to
isolate the benefit of solving Problem 1 as an optimization step in HALE.

2 https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/scratch/HG002/sequencing/
hifirevio/

3 https://ngdc.cncb.ac.cn/gsa/browse/CRA004538/CRR302668
4 https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/HG002/assemblies/hg002v1.1.

fasta.gz
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Evaluation metrics

For real sequencing datasets, there is no ground truth available on the errors made by the
sequencing instrument. Thus, for both HG002 and A. thaliana datasets, we rely on high-
quality references on which the reads can be mapped. For HG002 datasets, we use HG002v1.1
assembly (GCA_018852605.3, GCA_018852615.3) released by the Telomere-to-telomere
consortium. For A. thaliana datasets, we use a high-quality assembly5 from [21].

To evaluate read correction performance, we aligned raw reads as well as reads corrected
by different methods to their respective references using Minimap2. If a read aligns to multiple
regions, then only its primary alignment was considered. We used BamConcordance [22]
to examine the alignments. BamConcordance generates an empirical log-scaled measure of
base error probabilities (Q-concordance) for each read. The formula used for calculating Q-
concordance is −10 log10(1− identity), where identity refers to the sequence identity observed
in the read alignment. As an example, Q-concordance 20 corresponds to a sequence identity
of 99%, indicating that 1% of the bases are erroneous. In addition to the Q-concordance
statistics, we also report the percentage of reads containing at least x mismatch (similarly, x

indel) errors, for x ∈ {1, 2, 3}, before and after correction.
As noted earlier in Section 5, the approach used in HALE and Herro discards a segment

of a read if it cannot be reliably corrected due to insufficient overlapping read support. For a
fair comparison, we evaluated only those reads that were fully corrected (i.e., not chopped) by
all methods. Without this, HALE and Herro would have an unfair advantage over Hifiasm.

Error correction performance

We show a comparison of the accuracy of raw reads and those corrected by HALE, Herro,
and Hifiasm, respectively, in Figure 4a. We achieved comparable accuracy as Herro and
Hifiasm. All three correction methods led to more than a 10-fold improvement in read
accuracy relative to the raw, uncorrected reads.

Next, we separately assessed mismatch and indel errors in the corrected reads. In
Figure 4b, we highlight that the fraction of HG002 chr9 reads with one or more mismatch
errors significantly drops after error correction. This result suggests that all three methods
are effective in preserving biological variations in the reads. At 40× sequencing depth,
HALE exhibits a marginally higher percentage of reads containing at least x mismatch errors
(x ∈ 1, 2, 3) compared to Herro and Hifiasm. However, this difference diminishes at 60×
depth. We also tested HALE using reads from HG002 chromosomes 13 and 18, observing a
consistent trend (Appendix Figure 6).

In the case of A. thaliana dataset, which is a haploid genome sample, HALE is again
comparable to the best performing method (Figures 4d, 4e). Herro lags slightly behind
HALE and Hifiasm here, possibly because its model was trained using a diploid sample and
nanopore reads [18].

We also manually checked and visualized a few reads in IGV [16] where HALE failed to
correct one or more errors. In some cases, we found that uneven sequencing coverage in some
genomic regions resulted in MSA windows where fewer than k true overlaps were present.
As a result, our algorithm, constrained by the fixed cutoff of k, selected substrings from false
overlaps for correction.

5 https://ngdc.cncb.ac.cn/gwh/Assembly/21820/show

https://ngdc.cncb.ac.cn/gwh/Assembly/21820/show
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a

b c

d e

Figure 4 Accuracy of reads from chr9 HG002 and A. thaliana sequencing datasets at 40× and
60× coverage. The plots compare the accuracy of raw reads with those corrected by HALE, Herro,
and Hifiasm. Table 1 in Appendix shows the exact values plotted in Figures 4b - 4e.
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Comparison with naive algorithms

Solving Problem 1 (Section 3) is an important component of HALE as it enables us to
preserve the haplotype-specific variation in reads. We compared HALE with two simplified
versions of our algorithm, Naive-1 and Naive-2, respectively, which omit this optimization
step.

Comparison with Naive-1. On both HG002 and A. thaliana datasets, the Naive-1 algorithm
achieves Q-concordance scores comparable to HALE (Figure 5a). These results, especially
on HG002 diploid datasets, surprised us initially. Recall that the Naive-1 algorithm applies
the majority vote on all alignment columns, irrespective of whether they are informative
or not. We further assessed the mismatch and indel error statistics. We show that HALE
provides a significant improvement over the Naive-1 algorithm in correcting mismatch errors
(Figure 5b). This confirms that a direct consensus approach eliminates haplotype variation,
whereas our optimization based on solving Problem 1 helps to preserve them.

Despite this significant advantage in mismatch statistics, the Q-concordance scores in
Figure 5a do not reflect a proportionate gain. This is because indel errors are the dominant
error type in HiFi reads. As shown in Figure 5c, HALE performs comparably to Naive-1
when it comes to correcting indel errors.

Using the haploid A. thaliana dataset, the results are as expected. Naive-1 algorithm
performs on par with HALE in terms of correcting mismatch errors (Figure 5d), and even
slightly surpasses HALE when it comes to correcting indel errors (5e). A direct consensus-
based approach works well on haploid datasets.

Comparison with Naive-2. We see a drop in the Q-concordance scores using the Naive-2
algorithm in both HG002 and A. thaliana datasets. This is because the Naive-2 algorithm
makes no modification in a target read on informative alignment columns. In practice, a
small fraction of informative alignment columns are classified as informative due to multiple
sequencing errors occurring at the same coordinate of the target read and its overlapping
reads. In such a case, Naive-2 will leave the erroneous base of the target read uncorrected.
As a result, we see a much larger number of indel errors in Naive-2 (Figures 5c, 5e).

Runtime comparison

Runtime comparisons between HALE, Herro, and Hifiasm are challenging for two main
reasons. First, Hifiasm uses its own custom all-vs-all read overlapping algorithm that is
tightly integrated inside its code, whereas HALE and Herro use an external tool, Minimap2 [7].
Second, Herro leverages GPU acceleration, whereas both HALE and Hifiasm run on CPUs.
In the following, we report the wall-clock runtimes of all-vs-all read overlapping and error
correction steps for HALE and Herro. For Hifiasm, we report the total end-to-end assembly
time. We report the results using chr9 HG002 60× dataset.

Minimap2 used 26 minutes to compute all-vs-all overlaps using 64 CPU threads. HALE
used 9 minutes for error correction using the same number of threads. In comparison, Herro
required 10 minutes on a server with four NVIDIA A100 GPUs. Hifiasm completed the full
assembly in 16 minutes using 64 CPU threads, with approximately 90% of that time spent on
read overlapping and error correction steps. Based on these results, we conclude that HALE
is computationally more efficient than Herro. Hifiasm is the fastest overall due to its highly
optimized read overlapping implementation. As all-vs-all overlap computation is a runtime
bottleneck while using HALE, using a faster read overlapper would reduce the runtime.
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a

b c

d e

Figure 5 Accuracy of reads from chr9 HG002 and A. thaliana sequencing datasets at 40× and
60× coverage. The plots compare the accuracy of raw reads with those corrected by HALE, Naive-1,
and Naive-2 algorithms. Table 2 in Appendix shows the exact values plotted in Figures 5b - 5e.
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7 Discussion

Genome assembly tools often require a significant software engineering effort and rely
heavily on heuristics that are often undocumented. It is important to investigate alternative
algorithms that are grounded in solid theoretical principles. Error correction is one of the
critical steps in genome assembly, especially in the context of diploid genomes, polyploid
genomes, and metagenomes.

In this work, we proposed the first rigorous formulation for haplotype-aware error cor-
rection of long reads. The formulation is partly inspired from the bi-clustering formulation
introduced in [5]. An extension of the same optimization framework is also used in reference-
guided haplotype phasing tools such as WhatsHap [15]. Our proposed formulation is designed
to identify true overlaps of a read from a given set of overlaps. Considering that the problem is
NP-hard, we also discussed practical heuristics to make our algorithm scalable. We showcased
the effectiveness of our algorithm using publicly available long-read datasets from a haploid A.
thaliana genome and a diploid human genome. We showed that HALE achieves accuracy on
par with state-of-the-art tools, including Herro (a deep learning-based method) and Hifiasm
(which relies on intricate heuristics). Lastly, we isolated the benefit of using Problem 1
(Section 3) by comparing HALE with the other simplified versions of our algorithm.

A number of improvements are possible to the proposed optimization framework as well
as our implementation. One limitation of our formulation is that we independently process
windows of an MSA (Figure 1) rather than processing the entire MSA at once. This can
be problematic when a window is particularly noisy or lacks sufficient haplotype-specific
variation, making it difficult to select the correct subset of overlapping reads. Future work
could explore alternative formulations that exploit the full length of long reads. Another
limitation is our reliance on parameters such as k (count of overlapping reads to be selected)
and the MSA window length. In this work, we primarily relied on our empirical observations
to set these parameters. Developing either parameter-free approaches or a principled way
to select these parameters which generalizes across haploid, diploid, and polyploid genomes
would be an important next step.

Regarding the implementation of heuristics in HALE, the use of superior all-vs-all read
aligners and MSA heuristics may further enhance read accuracy. Furthermore, it may
be possible to improve the selection of informative alignment columns in an MSA such
that a larger fraction of informative columns correspond to biological variation rather than
sequencing errors. For example, indel variation in homopolymer regions is more likely to be
a sequencing error than a biological variation [3].

HALE is theoretically promising, it is not yet a practical replacement for existing state-
of-the-art tools. In future, we hope to continue improving HALE. We also hope to extend its
applicability to nanopore sequencing reads, which have higher error rates than HiFi reads.
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Appendix

A Hardness Result: Supplementary

▶ Lemma 7. The NP-hardness of Problem 3 implies NP-hardness of Problem 1

Proof. Our proof uses a chain of arguments. We begin by defining Problem 8, a simplified
version of Problem 1 where we have a single term in the objective function and a binary
alphabet. Next, we introduce Problem 9, a modified version of Problem 3. To prove the
lemma, we first prove Claim 10 to show that Problem 9 is NP-hard, then Claim 11 to establish
polynomial-time equivalence between Problem 9 and Problem 8. Finally we complete the
proof by proving Claim 12.

▶ Problem 8. Given a set S of n vectors in {0, 1}d and a positive integer k ≤ n, compute
a subset S′ ⊆ S of cardinality k and a center c in {0, 1}d such that

∑
x∈S′ agree(c, x) is

maximum.

▶ Problem 9. Given a set S of n vectors in {−1, 1}d and a positive integer k ≤ n, compute a
subset S′ ⊆ S of cardinality k that maximizes the ℓ1 norm of the vector sum, i.e.

∥∥∑
x∈S′ x

∥∥
1.

▷ Claim 10. The NP-hardness of Problem 3 (Lemma 5) implies the NP-hardness of
Problem 9.

Proof. Problem 9 differs slightly from Problem 3 because we seek a subset of size exactly k

in Problem 9, whereas we seek a subset of size at least k in Problem 3. We prove Claim 10
using a simple polynomial-time reduction from Problem 3 to Problem 9. Given an instance
of Problem 3 with S = {x1, . . . , xn} and parameter k = α, we construct n − α + 1 instances
for Problem 9 using the same set of vectors S and parameter k = α + i, for all 0 ≤ i ≤ n − α.
The maximum of the solution over all instances of Problem 9 is the solution to Problem 3.

◁

▷ Claim 11. Problems 8 and 9 are polynomial-time equivalent problems.

Proof. We consider a solution set of vectors S′ ⊆ {0, 1}d for Problem 8. Observe that
the vector c must satisfy c[i] = majority ({x[i] | x ∈ S′}), where ties are broken arbitrarily.
Let ϕ : {0, 1} → {−1, 1} be the coordinate-wise transformation defined by ϕ(0) = 1 and
ϕ(1) = −1. For any vector x ∈ {0, 1}d, let x̂ = ϕ(x) denote its image in {−1, 1}d. Let
Ŝ′ ⊆ {−1, 1}d be the set of vectors S′ with ϕ applied to each vector. The objective function
of Problem 8 can be written as∑

x∈S′

agree(x, c) =
∑
x̂∈Ŝ′

1
2

(
d +

d∑
i=1

x̂[i] · ĉ[i]
)

= 1
2

kd +
d∑

i=1

∑
x̂∈Ŝ′

x̂[i] · ĉ[i]

 = 1
2

kd +

∥∥∥∥∥∥
∑
x̂∈Ŝ′

x̂

∥∥∥∥∥∥
1

 .

Thus, maximizing the objective function of Problem 8 is equivalent to maximising
∥∥∑

x̂∈Ŝ′ x̂
∥∥

1.
Given a solution to Problem 8, i.e., a vector c ∈ {0, 1}d and subset of vectors S′ ⊆ {0, 1}d

that maximizes
∑

x∈S′ agree(x, c), we obtain a solution for Problem 9 by applying ϕ(·)
component-wise to every vector in S′, creating the set Ŝ′ ⊆ {−1, 1}d. By our earlier
argument,

∥∥∑
x̂∈Ŝ′ x̂

∥∥
1 is maximised. Conversely, given a solution for Problem 9 of the form

Ŝ′ ⊆ {−1, 1}d, we apply ϕ−1 to every vector in Ŝ′ to obtain a solution S′ ⊆ {0, 1}d for
Problem 8. The center vector c is obtained by taking a majority over each coordinate, and
the objective function of Problem 8 (sum of agreement with c) is maximized. ◁
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▷ Claim 12. The NP-hardness of Problem 8 implies the NP-hardness of Problem 1.

Proof. We prove this by polynomial-time reduction from Problem 8 to Problem 1 defined on
alphabet Σ = {0, 1} (since this can be bijectively mapped to {A, T}). Given an instance of
Problem 8 with set S = {x1, . . . , xn} and parameter k = α, construct n instances of Problem
1 where the ith instance (ti, Si, k = α − 1) is constructed by considering xi as the target
vector ti, set Si = S \ xi, and parameter k = α − 1. The maximum value solution of all n

instances of Problem 1 is the solution to Problem 8. ◁

◀

▶ Lemma 13. Given a fractional solution to the Max-Cut problem, there exists a rounding
procedure that transforms it into an integral solution which is at least as large as that of the
fractional solution.

Proof. Let zi ∈ [0, 1] be the given fractional assignment of vertex vi, for i ∈ [1, |V |]. The
extent to which an edge (vi, vj) is cut is given by |zi − zj |. Accordingly, the cut size of
the given fractional partitioning is given by

∑
(i,j)∈E |zi − zj |. Next, consider the following

procedure to convert fractional assignment of vertices into an integral assignment. Let t be a
threshold chosen uniformly at random from the interval [0, 1]. Assign vertex vi to partition
V1 if zi > t and assign it to partition V2 otherwise. For any edge (vi, vj) ∈ E, the probability
that it is cut is given by |zi − zj | because this occurs precisely when zi ≤ t < zj . Hence, the
expected value of the cut size of our integral solution is

∑
(vi,vj)∈E |zi − zj |, which is equal

to the cut size of the fractional cut. This expectation guarantees the existence of at least
one threshold t∗ ∈ [0, 1] for which the corresponding integral solution has value at least as
large as the given fractional solution. Finally, observe that it suffices to check at only |V | + 2
candidate values for t: namely, at each zi ∈ {z1, z2, . . . , z|V |}, as well as the endpoints 0 and
1. This is because the objective remains constant between any two consecutive values in
the sorted sequence z1 < z2 < . . . < z|V |. Therefore, an optimal value t∗ can be found in
polynomial time by checking the solution at only these |V | + 2 points. ◀

▶ Remark. Lemma 13 was stated directly without a proof in [4].
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B Additional Results

a

b c

d e

Figure 6 Accuracy of sequencing reads from HG002 chromosomes 18 and 13, at 40× and 60×
coverage. The plots compare the accuracy of raw reads with those corrected by HALE, Herro, and
Hifiasm.
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Table 1 The exact values plotted in Figures 4b - 4e.

Dataset Error type # Errors Percentage of reads
Raw HALE Herro Hifiasm

HG002 chr9 40x

Mismatch
>0 31.3 3.7 1.6 1.3
>1 22.7 1.9 0.7 0.6
>2 17.6 1.4 0.6 0.6

Indel
>0 95.6 22.6 14.9 9.7
>1 85.8 4.9 3.1 2.5
>2 74.9 1.6 1.1 1.3

HG002 chr9 60x

Mismatch
>0 33.4 1.9 1.2 1.0
>1 24.3 0.5 0.2 0.1
>2 19.1 0.3 0.0 0.0

Indel
>0 96.0 23.1 13.2 7.9
>1 86.9 5.1 2.7 2.0
>2 76.3 1.3 0.6 0.7

A. thaliana 40x

Mismatch
>0 39.0 0.2 2.3 0.1
>1 27.5 0.1 0.8 0.0
>2 21.5 0.1 0.1 0.0

Indel
>0 97.4 11.5 18.3 5.4
>1 91.5 1.7 3.0 0.5
>2 84.3 0.4 0.6 0.1

A. thaliana 60x

Mismatch
>0 39.0 0.2 1.9 0.2
>1 27.5 0.1 0.6 0.1
>2 21.6 0.1 0.1 0.0

Indel
>0 97.4 12.3 22.7 3.9
>1 91.5 1.8 4.5 0.4
>2 84.3 0.4 0.9 0.1

Table 2 The exact values plotted in Figures 5b - 5e.

Dataset Error type # Errors Percentage of reads
Raw HALE Naive-1 Naive-2

HG002 chr9 40x

Mismatch
>0 31.3 3.8 22.3 7.8
>1 22.7 2.0 13.9 4.0
>2 17.6 1.5 10.2 1.9

Indel
>0 95.6 23.1 29.0 76.0
>1 85.8 5.0 11.6 44.7
>2 74.9 1.8 5.5 22.8

HG002 chr9 60x

Mismatch
>0 33.4 1.8 8.9 5.7
>1 24.3 0.7 3.5 2.7
>2 19.1 0.4 2.0 0.9

Indel
>0 96.0 23.5 16.3 72.4
>1 86.9 5.1 4.8 41.3
>2 76.3 1.6 2.0 20.0

A. thaliana 40x

Mismatch
>0 39.0 0.2 0.3 3.7
>1 27.5 0.1 0.1 1.6
>2 21.5 0.1 0.1 0.4

Indel
>0 97.4 11.4 6.7 68.8
>1 91.4 1.8 1.0 40.2
>2 84.3 0.5 0.4 21.9

A. thaliana 60x

Mismatch
>0 39.0 0.2 0.2 3.3
>1 27.5 0.1 0.1 1.4
>2 21.6 0.1 0.1 0.3

Indel
>0 97.4 12.2 5.3 71.8
>1 91.4 1.8 0.8 40.7
>2 84.3 0.4 0.3 21.0
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C Software Versions and Commands

Table 3 Versions of software used in our experiments.

Tool Version
SeqKit 2.5.1
Minimap2 2.26-r1175
Samtools 1.20
Hifiasm 0.25.0-r726
HALE 1.0.0
HERRO Commit: 204d29e
Bamconcordance Commit: dded267

Table 4 Commands used to run various tools.

Step Command
Samtools (extract chr9
reads)

samtools view -b hg002_hifi_reads.bam chr9_MATERNAL chr9_PATERNAL
| samtools fastq - > chr9_hg002_hifi_reads.fastq

SeqKit (read sampling) seqkit sample -p <proportion> <input_fastq> -o <output_fastq>
All-vs-all overlap minimap2 -K8g -cx ava-ont -k25 -w17 -e200 -r150 -m2500 -z200 -f

0.005 -t 64 –dual=yes <reads> <reads>
HERRO inference ./herro inference –read-alns <directory_alignment_batches> -t 8 -d

0,1,2,3 -m model_R10_v0.1.pt -b 64 <fastq.gz_input> <fasta_output>
Hifiasm ./hifiasm -t 64 -o output_prefix.asm –write-paf –write-ec temp

<fastq.gz_input>
HALE ./hale inference –read-alns <directory_alignment_batches> -m

"hale" -t 64 <fastq.gz_input> <fasta_output>
Naive-1 ./hale inference –read-alns <directory_alignment_batches> -m

"consensus" -t 64 <fastq.gz_input> <fasta_output>
Naive-2 ./hale inference –read-alns <directory_alignment_batches> -m "pih"

-t 64 <fastq.gz_input> <fasta_output>
Mapping reads to refer-
ence

minimap2 -ax map-hifi –eqx -t 64 –secondary=no <reference>
<fasta_input> | samtools view -@ 64 -S -b | samtools sort -@ 64
-o <bam_output> && samtools index -@ 256 <bam_output>

BamConcordance
(Using bam output
from mapping step)

hg002-ccs/concordance/bamConcordance <fasta_input> <bam_output>
<csv_output>
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