
Improved Algorithms for Bi-Partition Function
Computation
John D. Bridgers #

Division of Intramural Research, National Library of Medicine, Bethesda, MD, USA

Jan Hoinka #

Division of Intramural Research, National Library of Medicine, Bethesda, MD, USA

S. Cenk Sahinalp #

Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA

Salem Malikic1 #

Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA

Teresa M. Przytycka1 #

Division of Intramural Research, National Library of Medicine, Bethesda, MD, USA

Funda Ergun1 #

Department of Computer Science, Indiana University, Bloomington, IN, USA

Abstract
The evolutionary history of a tumor, inferred from single-cell sequencing data, is typically represented
as a tree in which each subtree corresponds to a clade of cells seeded by a specific set of mutations.
Traditional methods typically identify a single most likely tree for downstream analyses, such as
detecting driver mutations, studying mutation co-occurrence patterns and identifying common
evolutionary trajectories. However, the reliability of such inferred trees, particularly their topology,
clade composition, and mutational placements, often remains uncertain.

To quantify this uncertainty, the concept of a Bi-partition Function was recently introduced,
providing a probabilistic measure of how reliably a mutation seeds a given clade of cells. The single
available algorithm for estimating the Bi-partition Function relies on simplifying assumptions and
uses sampling for limited exploration of the tree-space.

In this paper, we introduce the first exact algorithm for computing the Bi-partition Function. Our
algorithm scales linearly with the number of mutations but exhibits super-exponential complexity
with respect to the number of cells. Despite this complexity, it establishes crucial ground truth values,
essential for accurately benchmarking and validating approximate methods. Additionally, we present
a GPU-accelerated version of the available sampling-based algorithm, significantly boosting the
computational performance through large-scale parallelization, enabling more accurate Bi-partition
Function estimates via deeper exploration of the tree spaces. We compare our methods on synthetic
datasets, demonstrating that especially when the number of mutations sufficiently exceed the number
of cells, our GPU-accelerated sampling algorithm closely approximates the exact ground truth
values.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Tumor Evolution, Bi-partition Function, Single-Cell Sequencing, Algorithms

Digital Object Identifier 10.4230/LIPIcs.WABI.2025.5

Supplementary Material Software (Source Code): https://github.com/john-db/bipartf-exact

Funding J.D.B., J.H., and T.M.P. were supported by the Division of Intramural Research (DIR)
of the National Library of Medicine (NLM), National Institutes of Health. S.C.S. and S.M. were
supported by the Intramural Research Program of the National Cancer Institute (NCI), National
Institutes of Health. F.E. was supported by NSF grant 2414736.

1 Joint last authors

© John D. Bridgers, Jan Hoinka, S. Cenk Sahinalp, Salem Malikic, Teresa M. Przytycka, and
Funda Ergun;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Algorithms for Bioinformatics (WABI 2025).
Editors: Broňa Brejová and Rob Patro; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:john.bridgers@nih.gov
https://orcid.org/0009-0000-6438-3125
mailto:jan.hoinka@nih.gov
https://orcid.org/0000-0002-0652-381X
mailto:cenk.sahinalp@nih.gov
mailto:salem.malikic@nih.gov
https://orcid.org/0000-0002-4215-5655
mailto:przytyck@nih.gov
https://orcid.org/0000-0002-6261-277X
mailto:fergun@iu.edu
https://doi.org/10.4230/LIPIcs.WABI.2025.5
https://github.com/john-db/bipartf-exact
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

5:2 Improved Algorithms for Bi-Partition Function Computation

Acknowledgements This research utilized the computational resources of the NIH Biowulf high
performance computing cluster (http://hpc.nih.gov).

1 Introduction

Tumor phylogenies offer invaluable insights into tumor evolution, clonal dynamics, metastatic
migration, and treatment resistance. Each path from the root of such a tree to its leaves
represents a distinct evolutionary trajectory, reflecting critical aspects of tumor development
and progression [13]. Typically, tumor phylogenies are inferred from mutations detected in
single-cell sequencing data, which are inherently noisy [4, 12, 18, 10, 14, 15, 6, 5, 17]. Therefore,
assessing the reliability of inferred tumor phylogenies – particularly their topological structures,
clade compositions, and mutation placements – is crucial before conducting downstream
analyses, such as identifying clonal versus subclonal drivers, mutation co-occurrences, and
shared evolutionary paths across tumor samples.

To rigorously address this need, the recently introduced concept of the Bi-partition
Function quantifies the probability that a specific set of mutations seeds a particular clade of
cells [11]. Given a genotype matrix with rows representing cells and columns representing
mutations, the Bi-partition Function for a mutation (column) ρ and a subset of cells (rows)
R represents the probability that precisely the cells in R harbor mutation ρ under the perfect
phylogeny model. Consequently, the Bi-partition Function serves as a powerful approach
to assess whether an inferred cell clade genuinely represents a biologically distinct group,
potentially associated with aggressive growth, immune evasion, or treatment resistance [7].

Currently, the only available method for estimating the Bi-partition Function relies
on sampling evolutionary scenarios from a restricted subset of possible trees of tumor
evolution [11]. Despite its theoretical guarantee of convergence to correct values in the
limit, this sampling-based algorithm inherently involves approximations and assumptions
aimed at computational tractability. However, the extent of its accuracy for finite datasets
remained unknown, primarily because exact values of the Bi-partition Function have not
been previously computable.

In this paper, we present the first exact algorithm for computing the Bi-partition Function
from an input genotype matrix. Our algorithm exhibits linear complexity relative to the
number of mutations but scales super-exponentially with the number of cells. While compu-
tationally intensive for large datasets, this algorithm provides a critical utility to benchmark
the accuracy and assess the limitations of approximate methods based on sampling.

Furthermore, we introduce a GPU-accelerated implementation of the existing sampling
algorithm [11], in which the scoring of evolutionary scenarios has been reformulated to allow
large scale parallelization. This acceleration significantly increases the number of scenarios
that can be evaluated within a given time limit and thus improves estimation accuracy,
reduces sampling noise, and facilitates a precise assessment of algorithmic approximations.

We compare our algorithms on simulated and real datasets to evaluate the performance
and accuracy of the sampling approach. Our results reveal that, particularly in datasets where
mutations sufficiently outnumber cells, our sampling approach provides accurate estimates of
the Bi-partition Function, validating its practical utility in tumor phylogeny evaluation.

2 Background, Motivation, and Our Problem

Since the concept of the Bi-partition Function for trees of tumor evolution was recently
introduced, we first provide some background and motivation. While we present some general
formulations in this section, the rigorous mathematical definitions and the details of the exact

http://hpc.nih.gov

J. D. Bridgers, J. Hoinka, S. C. Sahinalp, S. Malikic, T. M. Przytycka, and F. Ergun 5:3

computation algorithm are deferred to the next section. Before discussing the Bi-partition
Function, we provide an overview of how the evolutionary history of a tumor is represented
and inferred from single-cell sequencing data.

2.1 Representing the Evolutionary History of a Tumor
In this work, we assume that we are given the results of a single-cell sequencing experiment,
in which a set C = {C1, C2, . . . , Cn} of single cells was extracted from a tumor sample and
sequenced. Following the mutation calling step, we are given a set M = {M1, M2, . . . , Mm}
of somatic mutations, each reported to be present in at least one of the sequenced cells.

We also assume that the commonly used Infinite Sites Assumption (ISA) holds; i.e., each
mutation is acquired at most once during the course of tumor evolution, and, once it is
acquired in some cell, it never gets lost and is passed on to all of the cell’s descendants.

Under the ISA, the evolutionary history of the sequenced cells can be represented by a
tree in which each leaf represents exactly one of the sequenced cells – we will thus use the
terms “cell” and “leaf” interchangeably. The root of such a tree corresponds to a population
of normal cells, free of any somatic mutations. Each non-root internal node has at least two
children, and the edges correspond to (and are labeled by) mutations. For each mutation
placed on the edge connecting node v to its parent, we assume that the mutation is present
in cell v (if v is a leaf) or in all cells that are descendants of v (if v is an internal node).
In this work, we will refer to these trees as Cell Lineage Trees with Mutation assignment
(CLT-M). An example of a CLT-M is shown in Figure 1a.

(a)

M1 M2 M3 M4 M5 M6
C1 1 1 0 1 1 0
C2 0 1 0 1 0 0
C3 0 1 0 1 0 0
C4 0 0 1 1 0 0
C5 0 0 1 1 0 1

(b)

M1 M2 M3 M4 M5 M6
C1 1 0 0 1 1 1
C2 0 1 ? ? 0 0
C3 ? 1 0 1 0 0
C4 0 ? 1 0 0 0
C5 0 0 ? 1 0 1

(c)

Figure 1 (a) A cell lineage tree with mutation assignment (CLT-M) depicting the evolutionary
history of a tumor. (b) The ground truth genotype matrix corresponding to the tree in (a). (c) An
observed genotype matrix with false negatives (in blue), false positives (in red), and missing entries
(indicated by question marks).

WABI 2025

5:4 Improved Algorithms for Bi-Partition Function Computation

Given any node v of a CLT-M, we define the clade of v as the set of cells (leaves) of the
subtree rooted at v; by this definition a leaf is its own clade (i.e., a clade consisting of one
cell). We say that the mutations labeling the edge connecting v to its parent are seeding
mutations of the clade of v – thus, we say that mutations “correspond to,” or, equivalently,
“seed” a clade. For example, in the tree shown in Figure 1a, the set of cells {C1, C2, C3}
forms a clade seeded by mutation M2, while {C1} forms a clade seeded by M1 and M5.

Note that a set of mutations harbored by a cell (leaf) v in a CLT-M is the union of
mutation labels on the path from v to the root. As a result, a CLT-M defines a unique
Ground Truth Genotype matrix X, which is a binary matrix with n rows corresponding to
cells and m columns corresponding to mutations. In this matrix, Xij = 1 if mutation Mj is
present in cell Ci; otherwise Xij = 0. The ground truth genotype matrix corresponding to
the tree shown in Figure 1a is presented in Figure 1b.

Let Xρ denote the ρth column of X, representing mutation Mρ. Observe that Mρ seeds
the clade consisting of cells R ⊆ C if and only if Xiρ = 1 for all Ci ∈ R, and Xiρ = 0
otherwise. In other words, the ground truth matrix has 1s exactly at the rows corresponding
to the cells in R. We denote this as Xρ = R.

2.2 Tree Inference from Single-Cell Sequencing Data

While a CLT-M can be inferred from the ground truth genotype matrix X in polynomial
time [3], X is not known to us in practice. What we have instead is an observed matrix
I, given as the output of a single-cell sequencing experiment. I is an n ×m matrix with
entries from {0, 1, ?}, where 1 and 0 indicate the presence and absence of a mutation in
a cell respectively (as reported by the mutation calling), and “?” encodes missing entries,
indicating insufficient information to call the presence or absence of a mutation. An example
of the observed genotype matrix is shown in Figure 1c.

In addition to the missing entries, I typically has some incorrect (i.e., different from the
ground truth) entries, due to false positive and false negative mutation calls. Consequently,
it is likely that there is no CLT-M such that the presence pattern of mutations in cells as
implied by the CLT-M is the same as the those given by I. For simplicity, we say that there
does not exist any tree T such that I and T are consistent with each other.

Fortunately, one can succinctly and precisely characterize matrices that are consistent
with some CLT-M. Any binary (or ternary) matrix A containing a triplet of rows/cells (i, j, h)
and a pair of columns/mutations (a, b), in any order, such thatAia Aib

Aja Ajb

Aha Ahb

 =

0 1
1 0
1 1


is not consistent with any CLT-M under the ISA. Such a pair of mutations and triplet of
cells are called a conflict; we call matrices not containing any conflicts conflict-free matrices.
It is well known that any conflict-free matrix is consistent with some CLT-M [3].

Existing methods for reconstructing trees of tumor evolution, either implicitly (through a
search in the space of trees, [4, 8, 18]) or explicitly (through a direct search in the space
of matrices, [2, 10, 14, 1, 15]) convert some entries of I from 1 to 0 and from 0 to 1, and
set the missing entries to 0 or 1, in order to obtain a conflict-free binary matrix E (see [9]
for more details). The tree corresponding to E is then usually reported as the most likely
evolutionary history of the sequenced cells and used in the downstream biological analyses.

J. D. Bridgers, J. Hoinka, S. C. Sahinalp, S. Malikic, T. M. Przytycka, and F. Ergun 5:5

2.3 Looking inside Trees of Tumor Evolution
As discussed in the Introduction, the tree inferred from single-cell sequencing data, which
is not necessarily identical to the ground truth, features multiple clades, each with its own
seeding mutations and possibly distinct phenotypes. For example, cells in some clade may
have an increased proliferative advantage and higher aggressiveness compared to other cells,
suggesting that the mutations seeding that clade are potential drivers of this aggressive
behavior. However, the placement of some of these mutations may have low support in the
data and in the alternative, near-optimal trees, these mutations may not be seeding the clade
of interest. Therefore, before drawing major biological conclusions from inferred trees, it is
advisable to assess the confidence that a given mutation of interest is specific to a particular
clade. When this confidence is low, additional experimental validation is warranted.

The above observation has motivated us to introduce the Bi-partition Function for trees
of tumor evolution [11]. Given the observed genotype matrix and the noise probabilities,
one can draw conclusions regarding the likelihood of structures that make up the ground
truth tree: The Bi-partition Function is defined as the probability that, in the ground truth
tree a given mutation Mρ seeds a given clade R ⊆ C, effectively partitioning the cells into
two groups: R, arranged into a clade, which harbor mutation Mρ, and C \R, which do not.
This is equivalent to the ground truth matrix X satisfying Xρ = R, hence the Bi-partition
Function can be defined as the probability Pr [Xρ = R | X ∈ G], where G denotes the set of
all conflict-free matrices of size n×m. Note that

Pr [Xρ = R | X ∈ G] = Pr [Xρ = R ∧X ∈ G]
Pr [X ∈ G] .

To evaluate this equation, we need to add up the probabilities of all conflict-free matrices
of size n×m that have column ρ equal to R (the numerator) and divide by the sum of the
probabilities of all n×m conflict-free matrices (the denominator). The most straightforward
way of doing this is iterating through the space of such binary matrices, discarding those with
conflicts and focusing on those that are conflict-free. Since the number of distinct binary
matrices is 2nm, this approach is impractical, except for extremely small (n, m).

In this paper, we exploit the fact that all conflict free matrices correspond to some CLT-M
and derive an algorithm to compute the above sum. Our algorithm computes the Bi-partition
Function exactly for datasets containing a small number of cells (up to 8) and an arbitrary
number of mutations. While in most practical applications the number of sequenced cells
typically exceeds 8, it is common practice to pre-cluster cells into a small number of clusters
to reduce the impact of noise. The resulting tree is then inferred based on these clusters.
Therefore, our algorithm for exact computation of the Bi-partition Function remains relevant
and practically valuable in a wide range of real-world settings.

3 The Formal Problem Definition and Methods

In this section we first formally define the Bi-partition Function and then describe our method
for computing it.

3.1 Our Problem: the Bi-partition Function
As discussed above, in practice, we do not have direct access to the ground truth; rather,
we have observations regarding the presence of mutations in cells. Such observations can
be insufficient to make a call, or can be faulty with respect to a false positive rate α and

WABI 2025

5:6 Improved Algorithms for Bi-Partition Function Computation

false negative rate β. Recall that our input is given as an observed matrix I of dimensions
n×m with entries 0, 1, or “?”, with “?” denoting a missing entry where we were unable to
make a mutation call. With I (together with estimated false positive/negative probabilities)
as an input, the underlying ground truth can be expressed as a distribution P over n×m

binary matrices, with P represented as a matrix in [0, 1]n×m: A genotype matrix X drawn
from distribution P has a 1 in entry Xij with probability Pij , and 0 with probability 1−Pij ,
independently from all other entries. (See Section A.1 for how P is constructed.)

With the ground truth a distribution rather than a single matrix, we now discuss the
probability that a mutation ρ (shorthand for mutation Mρ) is confined to a particular set of
rows in a conflict-free matrix X chosen according to P . 2 Let G denote the set of conflict-free
genotype matrices of dimensions n×m. Our goal is to evaluate the Bi-partition Function,
now defined formally:

▶ Definition 1 (Bi-partition Function). Let X denote a genotype matrix drawn from distribution
P as described above. Given a set of cells (rows) R and a mutation (column label) ρ, the
Bi-partition Function is the probability that column ρ of X contains 1s in rows corresponding
to R, and 0s elsewhere, conditioned on X being conflict-free, i.e., Pr [Xρ = R | X ∈ G].

As already mentioned above, we have

Pr [Xρ = R | X ∈ G] = Pr [Xρ = R ∧X ∈ G]
Pr [X ∈ G] . (1)

Our Approach. Since it is too inefficient to enumerate genotype matrices3, we implicitly
map the very large space of genotype matrices to that of Cell Lineage Trees (see next section
for a formal definition) and evaluate the function in the latter, smaller space. Below, we
investigate how the two spaces relate to one another.

3.2 Cell Lineage Trees
In what follows, we will use the notion of a Cell Lineage Tree (CLT), which is a generalized
version of a CLT-M that we defined above: A CLT is a tree whose leaves represent a set C of
cells, where each internal non-root node has at least two children – simply a CLT-M without
edge (i.e., mutational) labels. Note that a CLT T can be turned into a number of different
CLT-Ms through different labelings of its edges.

In order to better understand CLTs and their relationship to genotype matrices, we
consider their components, clades, and classify them. We start with three types of special
clades that we name trivial clades: (i) the clade of any leaf v, which is v itself, (ii) the clade of
the root consisting of the entire set of cells, C, (iii) the empty clade with zero cells, assumed
by convention to be part of any CLT in order to account for mutations that are absent from
all cells.4 Note that trivial clades are all part of every CLT on a given set of cells.

All other clades are said to be nontrivial clades of the CLT. Note that the set of nontrivial
clades uniquely determine a CLT.

2 We require X to be conflict-free; otherwise it cannot be consistent with any CLT and thus cannot
correspond to the ground truth.

3 In practice, such enumeration is only possible for some small values of n and m. In fact, we have also
implemented the naive algorithm that enumerates all genotype matrices to compute the Bi-partition
Function and verified our algorithm against it on matrices consisting of 5 cells and 5 mutations.

4 While in the observed matrix, a given mutation is always reported as present in at least one cell, there
is a small probability that it is absent in all cells in the true (but unknown) evolutionary history.

J. D. Bridgers, J. Hoinka, S. C. Sahinalp, S. Malikic, T. M. Przytycka, and F. Ergun 5:7

3.2.1 Linking Genotype Matrices to CLTs
We now explore the relationship between a genotype matrix G and CLTs on the same cells.

Let G to be a genotype matrix on cells C = {C1, C2, . . . , Cn} and mutations M =
{M1, M2, . . . , Mm}, and Gi denote the ith column of G (we use this column notation
throughout the paper). Furthermore, let [k] denote {1, 2, . . . , k} for any positive integer k.
Let T be a CLT on cells (i.e., with leaves) C; recall that the edges of T are unlabeled. We
say a mutation Mi in G “corresponds” to T if the cells harboring Mi in G form a clade in T .

▶ Definition 2. G is consistent with a CLT T if every mutation in G corresponds to some
empty or non-empty clade of T . The set of all genotype matrices consistent with T is denoted
as CM(T) (CM stands for “consistent matrices”).

root

C4

C3

C2 C1

(a)

root

C4

C3 C2 C1

(b)

root

C4

C2

C3 C1

(c)

M1 M2 M3 M4 M5
C1 1 1 1 0 0
C2 1 1 1 1 0
C3 0 1 1 0 1
C4 0 0 1 0 0

(d)

M1 M2 M3 M4 M5
C1 0 1 1 0 0
C2 1 1 1 1 0
C3 0 1 1 0 1
C4 0 0 1 0 0

(e)

Figure 2 (a) - (c) Three distinct CLTs on a common leafset. The left and right CLTs are binary,
while the middle one is not (it can be obtained by removing clade {C1, C2} from the left CLT, or
clade {C1, C3} from the right CLT). (d) A conflict-free genotype matrix that is consistent only with
the left CLT – there is no edge where M1 may be placed in (b) or in (c) so it is present only in C1

and C2. In fact, the left CLT is the unique CLT yielded by this matrix. (e) A conflict-free genotype
matrix that is consistent with all three CLTs, however the unique tree yielded by it is the middle
tree.

Figure 2 demonstrates that the notion of consistency between genotype matrices and
CLTs is not sufficient to map conflict-free genotype matrices to CLTs as is desired for our
approach to computing the Bi-partition Function. The matrix in Figure 2e is consistent with
multiple CLTs, therefore we cannot use consistency to map it to a single CLT. This motivates
us to describe a more restricted relationship between genotype matrix G and a CLT T .

▶ Definition 3. A genotype matrix G yields a CLT T if G is consistent with T and every
nontrivial clade of T corresponds to a mutation in G. The set of all genotype matrices which
yield T is denoted as Y (T).

WABI 2025

5:8 Improved Algorithms for Bi-Partition Function Computation

This notion of matrices yielding trees allows us to map conflict-free genotype matrices to
CLTs since every conflict-free genotype matrix yields a unique CLT (see Section A.2 for a
proof). For example, the matrices in Figures 2d and 2e yield the CLTs in Figures 2a and 2b
respectively.

Observe that, in order to be consistent with or yield a CLT, G has to be conflict-free.

3.3 Evaluating the Bi-partition Function
We first provide a high-level description of how we evaluate the Bi-partition Function using
Equation (1), by separately computing the numerator and denominator.

In order to compute the numerator (resp. denominator), we enumerate every possible
CLT T on n nodes and compute the contribution of each such T to the numerator (resp.
denominator) of Equation (1), expressed as:

numerator_contribution(T, R, ρ) = Pr [Xρ = R ∧X ∈ Y (T)]
denominator_contribution(T) = Pr [X ∈ Y (T)] (2)

Since every conflict-free genotype matrix yields exactly one CLT, and every CLT is
yielded by some conflict-free matrix, the probability space of conflict-free matrices can
be partitioned by the CLTs that the matrices yield. Thus, we can simply add up the
numerator_contribution for each possible T in order obtain the numerator of Equation (1).
We can calculate the denominator similarly.

In order to enumerate all CLTs, we use a brute force algorithm that begins from the set
of leaves and creates all possible partitions of those into two sets, then three sets, and so on.
Each set in each partition is then partitioned recursively, terminating with singleton sets.
This effectively enumerates all unique sets of nontrivial clades, allowing us to enumerate all
CLTs.

3.3.1 Evaluating the Contribution of Each CLT T
We now show how each CLT T that we enumerate contributes to Equation (1).

Since a CLT is uniquely defined by its nontrivial clades, we represent T as the set of its
nontrivial clades (thus c is a nontrivial clade). As before, we treat column Xi of X as the set
of row indices where Xi has a 1.

Pr [X ∈ Y (T)] = Pr [X ∈ CM(T) ∧ ∀c ∈ T, ∃j ∈ [m] s.t. c = Xj]
= Pr[X ∈ CM(T)]− Pr [X ∈ CM(T) ∧ ∃c ∈ T s.t. ∀j ∈ [m] c ̸= Xj] , (3)

where

Pr [X ∈ CM(T) ∧ ∃c ∈ T, ∀j ∈ [m] s.t. c ̸= Xj]

= Pr
[∨

c∈T

(X ∈ CM(T) ∧ ∀j ∈ [m], c ̸= Xj)
]

= Pr
[∨

c∈T

X ∈ CM(T \ {c})
]

. (4)

Removing clade c from T collapses the edge between (u, v), where v is the root of clade c,
and u is the parent of v (see Figure 2b which is the result of removing the clade with nodes
C1, C2 from the tree in Figure 2a, or removing the clade with nodes C1, C3 from Figure 2c).

J. D. Bridgers, J. Hoinka, S. C. Sahinalp, S. Malikic, T. M. Przytycka, and F. Ergun 5:9

If S ⊆ T , then T \ S represents the result of removing every clade in S from T . Let P(T)
denote the powerset of T . By the inclusion-exclusion principle,

Pr
[∨

c∈T

X ∈ CM(T \ {c})
]

=
∑

S∈P(T)

Pr [X ∈ CM(T \ S)]× (−1)|S|+1

=
∑
c∈T

Pr[X ∈ CM(T \ {c})]

−
∑

c1,c2∈(T
2)

Pr[X ∈ CM(T \ {c1, c2})]

+
∑

c1,c2,c3∈(T
3)

Pr[X ∈ CM(T \ {c1, c2, c3})]

− · · ·
± Pr[X ∈ CM(∅)]. (5)

(CM(∅) is the set of matrices consistent with a tree that has no nontrivial clades, the star
tree.)

The probability that a matrix is consistent with a tree T can be computed easily.

Pr[X ∈ CM(T)] = Pr [∀j ∈ [m],∃c ∈ T s.t. Xj = c]

= Pr

 ∧
j∈[m]

∨
c∈T

Xj = c


=

∏
j∈[m]

Pr
[∨

c∈T

Xj = c

]
because mutations are independent

=
∏

j∈[m]

∑
c∈T

Pr [Xj = c] because events Xj = c are disjoint (6)

With some abuse of a standard notation, let X\{Xρ} represents the matrix resulting from
deleting column ρ from X. More precisely, X\{Xρ} = (X1, X2, X3, . . . , Xρ−1, Xρ+1, . . . , Xm).
Next, let Y ′(T) be the set of n×(m−1) binary matrices which yield T . We have three disjoint
cases when calculating numerator_contribution(T, R, ρ) = Pr [Xρ = R ∧X ∈ Y (T)].

Firstly, if R is not a clade of T , then the Pr [Xρ = R ∧X ∈ Y (T)] = 0 since X ∈ Y (T)
implies that every column of X appears as a clade of T , which is contradicted by Xρ being
equal to a clade not found in T .

Then, if R is a clade of T we have two sub-cases. If R is a trivial clade, then if Xρ = R,
column ρ does not impact whether or not X yields T since this is only determined by the
nontrivial clades which may have mutations assigned. Therefore, Xρ = R ∧ X ∈ Y (T)
if and only if Xρ = R ∧ X \ {Xρ} ∈ Y ′(T) since whether or not X ∈ Y (T) is entirely
determined by the other columns of the matrix (excluding column ρ). And since Xρ and
X \ {Xρ} are disjoint, Xρ = R and X \ {Xρ} ∈ Y ′(T) are independent events (since
entries of the matrix are independent). Therefore we have Pr [Xρ = R ∧X ∈ Y (T)] =
Pr [Xρ = R]× Pr [X \ {Xρ} ∈ Y ′(T)] when R is a trivial clade in T .

Finally, we have the case arising when R is a nontrivial clade of T . This case differs
slightly from the previous case because Xρ does contribute toward X yielding T . If the rest
of the matrix yields T (i.e., X \ {Xρ} ∈ Y ′(T)) then X yields T as in the previous case.

WABI 2025

5:10 Improved Algorithms for Bi-Partition Function Computation

However, since Xρ = R, if the rest of the matrix yields instead the tree containing every
nontrivial clade of T except for R (i.e., X \ {Xρ} ∈ Y ′(T \ {R})), then Xρ being equal to R

adds this clade to the tree yielded by the rest of the matrix, so the entire matrix yields T in
this case as well. Therefore when R is a nontrivial clade present in T we have:

Xρ = R ∧X ∈ Y (T)

⇔
(
Xρ = R ∧X \ {Xρ} ∈ Y ′(T \ {R})

)
∨

(
Xρ = R ∧X \ {Xρ} ∈ Y ′(T)

)
⇔ Xρ = R ∧

(
X \ {Xρ} ∈ Y ′(T \ {R}) ∨X \ {Xρ} ∈ Y ′(T)

)
Therefore:

Pr [Xρ = R ∧X ∈ Y (T)]

= Pr [Xρ = R]× (Pr [X \ {Xρ} ∈ Y ′(T \ {R})] + Pr [X \ {Xρ} ∈ Y ′(T)])

when R is a nontrivial clade of T .
Equations (3)–(6) show how to compute denominator_contribution(T), and from

these three cases it can be seen that the computation of numerator_contribution(T, R, ρ)
reduces to at most two computations of denominator_contribution(T).

3.3.2 Putting it All Together
We now consider the whole of Equation (1); let CLT (n) be the set of all CLTs with n leaves.
Recalling that the probability space of conflict-free matrices can be partitioned by which
CLTs the matrices yield, we have the following:

Pr [Xρ = R ∧X ∈ G] =
∑

T ∈CLT (n)

numerator_contribution(T, R, ρ)

Pr [X ∈ G] =
∑

T ∈CLT (n)

denominator_contribution(T) (7)

by the law of total probability. This allows us to compute both the numerator and denomi-
nator, and, thus, the value of the RHS of Equation (1).

Algorithm 1: Denominator Contribution and Algorithm 2: Numerator Contribution
compute the value that each T contributes to Equation (2). These contributions can be
combined according to Equation (7) in order to obtain the numerator and denominator of
Equation (1) (see Section A.3 for the algorithms). The overall time complexity of computation
of Bi-partition function values using our algorithm is O ((n!× 8n)×m) (see Section A.4 for
derivation).

3.4 GPU-Accelerated Implementation
We provide a new implementation for computing the probability that the ground truth
matrix is consistent with a given CLT (the quanity in Equation (6)). Since this calculation is
simply a product of sums it may be naturally represented using matrix and vector operations.
This allows us to take advantage of modern GPU’s capability to massively parallelize such
operations by stacking matrices on top of each other into tensors. We then replace the
probability calculation algorithm used in the existing sampling based approach for estimating
the Bi-partition Function with the GPU accelerated version.

J. D. Bridgers, J. Hoinka, S. C. Sahinalp, S. Malikic, T. M. Przytycka, and F. Ergun 5:11

4 Experimental Results

We evaluated our algorithms on synthetic datasets generated from simulated tumor progression
trees, systematically varying the number of cells, mutations, false-negative rates, and missing
entry rates, while keeping the false-positive rate fixed at 0.001.

First, we analyzed the runtime performance of our exact algorithm. Although the
theoretical runtime complexity is linear in m and super-exponential in n, empirical results
demonstrate a sublinear dependence on the number of mutations (Table 1), highlighting its
potential use for benchmarking purposes.

We then used our exact algorithm to evaluate the accuracy of our GPU-accelerated
sampling algorithm (Figures 3 and 4). As expected, the results clearly show accuracy im-
provements with increased sampling size. Importantly, the algorithm’s accuracy significantly
improves as the number of mutations increase. Additionally, the missing entry rate influences
accuracy more substantially than the false-negative rate, suggesting the relative robustness
of our sampling method to sequencing noise in contrast to coverage.

Finally, we assessed runtime improvements offered by our GPU-accelerated sampling
algorithm compared to the original sampling method (Figure 5) on real mouse melanoma cell
line data with 24 single cell derived sublines which were subjected to whole exome sequencing,
which was used to evaluate the original sampling algorithm [11]. Note that both the original
algorithm and the GPU-accelerated implementation are comprised of two major steps: tree
sampling and probability calculation. Given that the probability calculation step dominates
runtime in the original algorithm [11], we specifically evaluated the performance enhancement
in this step. Remarkably, our GPU-accelerated implementation was observed to process
approximately five orders of magnitude more trees within the same time frame, substantially
improving scalability and enabling analysis of larger and more realistic datasets.

5 Conclusion

In this study, we introduced the first exact algorithm for computing the Bi-partition Function,
a critical metric for assessing tumor phylogenies inferred from single-cell mutation data.
Additionally, we developed a GPU-accelerated implementation of the existing sampling-based
method for estimating the Bi-partition Function. Our evaluation using simulated datasets
demonstrated that the exact algorithm’s runtime scales super-polynomially with the number
of cells, yet sublinearly with the number of mutations, highlighting its practicality primarily
for smaller datasets or benchmarking purposes. On a real tumor cell line dataset, the
GPU-accelerated sampling algorithm showed significant runtime improvements compared
to the original implementation, making it suitable for larger, realistic inputs. As expected,
its accuracy increases notably with a higher number of sampled trees. Importantly, we
found that the accuracy improved substantially as the number of mutations in the simulated
phylogenies increased, whereas false negative and missing entry rates had comparatively
moderate impact.

WABI 2025

5:12 Improved Algorithms for Bi-Partition Function Computation

Table 1 Table of average runtimes (in seconds) of the exact algorithm on synthetic inputs of
varying size. Each row represents the number of cells (n = 5, 6, 7, or 8) while each column represents
the number of mutations (m = 8, 20, 50, 100, 500, or 1000) used in the simulations. Each entry of
the table presents the mean runtime of the exact algorithm across all mutations with 10 replicate
simulations (i.e., when m = 8 it is the mean of 80 runs of the algorithm, when m = 20 it is the
mean of 200 and so on). The runtime quickly blows up as n increases (as can be expected since the
runtime of the exact algorithm is super-exponential in n), however when n is fixed the algorithm
scales well as the number of mutations increase.

8 20 50 100 500 1000
5 0.19 0.20 0.22 0.22 0.27 0.70
6 4.18 4.00 4.17 4.50 7.11 12.17
7 92.50 90.25 100.10 102.02 133.26 341.11
8 3325.37 3332.92 3709.91 3493.59 4892.56 11526.86

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
=0

.2
5,

=0

.2
, s

am
pl

es
=1

00
0

BC
LT

-S
AM

PL
E

MAE = 9.56e-02

m=8

y = 1.13x + 0.02

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 4.37e-02

m=20

y = 0.98x + 0.01

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 7.32e-03

m=50

y = 1.00x + 0.00

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
=0

.2
5,

=0

.2
, s

am
pl

es
=1

00
00

BC
LT

-S
AM

PL
E

MAE = 9.17e-02

y = 1.06x + 0.03

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 3.84e-02

y = 1.01x + 0.00

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 2.42e-03

y = 1.00x + 0.00

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
=0

.2
5,

=0

.4
, s

am
pl

es
=1

00
0

BC
LT

-S
AM

PL
E

MAE = 1.07e-01

y = 1.21x + 0.03

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 6.34e-02

y = 0.96x + 0.02

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 4.33e-02

y = 0.96x + 0.02

0.0 0.2 0.4 0.6 0.8 1.0
CLT-EXACT

0.0

0.2

0.4

0.6

0.8

1.0

NA
=0

.2
5,

=0

.4
, s

am
pl

es
=1

00
00

BC
LT

-S
AM

PL
E

MAE = 1.05e-01

y = 1.28x + 0.01

0.0 0.2 0.4 0.6 0.8 1.0
CLT-EXACT

0.0

0.2

0.4

0.6

0.8

1.0
MAE = 6.20e-02

y = 0.95x + 0.02

0.0 0.2 0.4 0.6 0.8 1.0
CLT-EXACT

0.0

0.2

0.4

0.6

0.8

1.0
MAE = 2.60e-02

y = 0.97x + 0.01

Figure 3 Accuracy of our GPU-accelerated sampling algorithm (y-axis: BCLT-SAMPLE) com-
pared to the exact Bi-partition Function values obtained using our exact algorithm (x-axis: CLT-
EXACT) on synthetic datasets. Each dataset consists of n = 8 cells with mutation counts varying
across m = 8, 20, 50. The synthetic data was obtained with a simulated missing entry rate of 0.25 (in
contrast to 0.5 in Figure 4), and false negative rate varying between β = 0.2, 0.4. For each setting,
10 replicate simulations were performed. The accuracy of the sampling algorithm is evaluated
using 1, 000 and 10, 000 sampled trees per scenario. Each datapoint represents a comparison of the
sampling algorithm’s estimated Bi-partition Function for a specific mutation and its associated clade
(in the ground truth tree) against the exact calculation. Points closer to the diagonal line (y = x)
indicate higher accuracy. Each plot is annotated with mean absolute error (MAE) between the
values of CLT-EXACT and BCLT-SAMPLE as well as a line of regression.

J. D. Bridgers, J. Hoinka, S. C. Sahinalp, S. Malikic, T. M. Przytycka, and F. Ergun 5:13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
=0

.5
,

=0
.2

, s
am

pl
es

=1
00

0
BC

LT
-S

AM
PL

E

MAE = 9.81e-02

m=8

y = 1.13x + 0.04

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 4.90e-02

m=20

y = 0.97x + 0.01

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 1.91e-02

m=50

y = 0.99x + 0.00

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
=0

.5
,

=0
.2

, s
am

pl
es

=1
00

00
BC

LT
-S

AM
PL

E

MAE = 8.43e-02

y = 1.16x + 0.02

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 3.17e-02

y = 1.00x + 0.01

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 1.87e-02

y = 0.98x + 0.01

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
=0

.5
,

=0
.4

, s
am

pl
es

=1
00

0
BC

LT
-S

AM
PL

E

MAE = 8.52e-02

y = 1.60x + 0.03

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 4.44e-02

y = 1.08x + 0.00

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MAE = 3.70e-02

y = 0.94x + 0.02

0.0 0.2 0.4 0.6 0.8 1.0
CLT-EXACT

0.0

0.2

0.4

0.6

0.8

1.0

NA
=0

.5
,

=0
.4

, s
am

pl
es

=1
00

00
BC

LT
-S

AM
PL

E

MAE = 8.00e-02

y = 1.59x + 0.03

0.0 0.2 0.4 0.6 0.8 1.0
CLT-EXACT

0.0

0.2

0.4

0.6

0.8

1.0
MAE = 3.72e-02

y = 1.05x + 0.00

0.0 0.2 0.4 0.6 0.8 1.0
CLT-EXACT

0.0

0.2

0.4

0.6

0.8

1.0
MAE = 3.28e-02

y = 0.96x + 0.01

Figure 4 Accuracy of our GPU-accelerated sampling algorithm (y-axis: BCLT-SAMPLE) com-
pared to the exact Bi-partition Function values obtained using our exact algorithm (x-axis: CLT-
EXACT) on synthetic datasets. Each dataset consists of n = 8 cells with mutation counts varying
across m = 8, 20, 50. The synthetic data was obtained with a simulated missing entry rate of 0.5 (in
contrast to 0.25 in Figure 3), and false negative rate varying between β = 0.2, 0.4. For each setting,
10 replicate simulations were performed. The accuracy of the sampling algorithm is evaluated
using 1, 000 and 10, 000 sampled trees per scenario. Each datapoint represents a comparison of the
sampling algorithm’s estimated Bi-partition Function for a specific mutation and its associated clade
(in the ground truth tree) against the exact calculation. Points closer to the diagonal line (y = x)
indicate higher accuracy. Each plot is annotated with mean absolute error (MAE) between the
values of CLT-EXACT and BCLT-SAMPLE as well as a line of regression.

WABI 2025

5:14 Improved Algorithms for Bi-Partition Function Computation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Trees 1e6

10 5

10 3

10 1

101

103

W
al

l t
im

e
(s

ec
on

ds
, l

og
 sc

al
e)

 Python 500

 Python 100
 Python 50
 Python 25

CuPy (batch size 500)
NumPy

Figure 5 Wall clock runtime (seconds) of the GPU-accelerated tree scoring (CuPy) compared to
both the original sampling algorithm and the accelerated algorithm when run on CPU (NumPy)
on a real melanoma cell line dataset [11]. The x-axis represents the number of trees scored for the
blue and orange line (CuPy and Numpy). The red horizontal lines represent the time it took the
original sampling algorithm implemented using iterative statements in Python to score 25, 50, 100,
and 500 trees respectively. We see that the GPU-accelerated algorithm can score millions of trees
in time it took the original implementation to score just 25 trees. Both the NumPy and CuPy
implementations were allowed to run for 30 seconds.

J. D. Bridgers, J. Hoinka, S. C. Sahinalp, S. Malikic, T. M. Przytycka, and F. Ergun 5:15

References
1 Mohammadamin Edrisi, Hamim Zafar, and Luay Nakhleh. A Combinatorial Approach for

Single-cell Variant Detection via Phylogenetic Inference. In Katharina T. Huber and Dan
Gusfield, editors, 19th International Workshop on Algorithms in Bioinformatics (WABI
2019), volume 143 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–
22:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.WABI.2019.22.

2 Mohammed El-Kebir. SPhyR: tumor phylogeny estimation from single-cell sequencing data
under loss and error. Bioinformatics, 34(17):i671–i679, September 2018. doi:10.1093/
bioinformatics/bty589.

3 Dan Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21(1):19–
28, 1991. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230210104. doi:
10.1002/net.3230210104.

4 Katharina Jahn, Jack Kuipers, and Niko Beerenwinkel. Tree inference for single-cell data.
Genome Biology, 17(1), May 2016. doi:10.1186/s13059-016-0936-x.

5 Can Kızılkale, Farid Rashidi Mehrabadi, Erfan Sadeqi Azer, Eva Pérez-Guijarro, Ker-
rie L. Marie, Maxwell P. Lee, Chi-Ping Day, Glenn Merlino, Funda Ergün, Aydın Bu-
luç, S. Cenk Sahinalp, and Salem Malikić. Fast intratumor heterogeneity inference from
single-cell sequencing data. Nature Computational Science, 2(9):577–583, September 2022.
doi:10.1038/s43588-022-00298-x.

6 Alexey Kozlov, Joao M. Alves, Alexandros Stamatakis, and David Posada. CellPhy: accurate
and fast probabilistic inference of single-cell phylogenies from scDNA-seq data. Genome
Biology, 23(1), January 2022. doi:10.1186/s13059-021-02583-w.

7 Marco L. Leung, Alexander Davis, Ruli Gao, Anna Casasent, Yong Wang, Emi Sei, Eduardo
Vilar, Dipen Maru, Scott Kopetz, and Nicholas E. Navin. Single-cell DNA sequencing reveals a
late-dissemination model in metastatic colorectal cancer. Genome Research, 27(8):1287–1299,
May 2017. doi:10.1101/gr.209973.116.

8 Salem Malikic, Katharina Jahn, Jack Kuipers, S. Cenk Sahinalp, and Niko Beerenwinkel.
Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data.
Nature Communications, 10(1), June 2019. doi:10.1038/s41467-019-10737-5.

9 Salem Malikić, Farid Rashidi Mehrabadi, Erfan Sadeqi Azer, Mohammad Haghir Ebrahimabadi,
and Suleyman Cenk Sahinalp. Studying the History of Tumor Evolution from Single-Cell
Sequencing Data by Exploring the Space of Binary Matrices. Journal of Computational Biology,
July 2021. doi:10.1089/cmb.2020.0595.

10 Salem Malikic, Farid Rashidi Mehrabadi, Simone Ciccolella, Md. Khaledur Rahman, Camir
Ricketts, Ehsan Haghshenas, Daniel Seidman, Faraz Hach, Iman Hajirasouliha, and S. Cenk
Sahinalp. PhISCS: a combinatorial approach for subperfect tumor phylogeny reconstruction
via integrative use of single-cell and bulk sequencing data. Genome Research, 29(11):1860–1877,
October 2019. doi:10.1101/gr.234435.118.

11 Farid Rashidi Mehrabadi, Erfan Sadeqi Azer, John D Bridgers, Eva Pérez-Guijarro, Kerrie L
Marie, Howard H Yang, Charli Gruen, Chih Hao Wu, Welles Robinson, Huaitian Liu, et al. A
partition function algorithm to evaluate inferred subclonal structures in single-cell sequencing
data. In Research in Computational Molecular Biology: 29th International Conference,
RECOMB 2025, Seoul, South Korea, April 26–29, 2025, Proceedings, volume 15647 of Lecture
Notes in Computer Science, pages 409–413. Springer, 2025. doi:10.1007/978-3-031-90252-9.

12 Christopher A. Miller, Brian S. White, Nathan D. Dees, Malachi Griffith, John S. Welch, Obi L.
Griffith, Ravi Vij, Michael H. Tomasson, Timothy A. Graubert, Matthew J. Walter, Matthew J.
Ellis, William Schierding, John F. DiPersio, Timothy J. Ley, Elaine R. Mardis, Richard K.
Wilson, and Li Ding. SciClone: Inferring Clonal Architecture and Tracking the Spatial and
Temporal Patterns of Tumor Evolution. PLoS Computational Biology, 10(8):e1003665, August
2014. doi:10.1371/journal.pcbi.1003665.

WABI 2025

https://doi.org/10.4230/LIPIcs.WABI.2019.22
https://doi.org/10.4230/LIPIcs.WABI.2019.22
https://doi.org/10.1093/bioinformatics/bty589
https://doi.org/10.1093/bioinformatics/bty589
https://doi.org/10.1002/net.3230210104
https://doi.org/10.1002/net.3230210104
https://doi.org/10.1186/s13059-016-0936-x
https://doi.org/10.1038/s43588-022-00298-x
https://doi.org/10.1186/s13059-021-02583-w
https://doi.org/10.1101/gr.209973.116
https://doi.org/10.1038/s41467-019-10737-5
https://doi.org/10.1089/cmb.2020.0595
https://doi.org/10.1101/gr.234435.118
https://doi.org/10.1007/978-3-031-90252-9
https://doi.org/10.1371/journal.pcbi.1003665

5:16 Improved Algorithms for Bi-Partition Function Computation

13 Peter C. Nowell. The clonal evolution of tumor cell populations. Science, 194(4260):23–28,
October 1976. doi:10.1126/science.959840.

14 Erfan Sadeqi Azer, Farid Rashidi Mehrabadi, Salem Malikić, Xuan Cindy Li, Osnat Bartok,
Kevin Litchfield, Ronen Levy, Yardena Samuels, Alejandro A Schäffer, E Michael Gertz,
Chi-Ping Day, Eva Pérez-Guijarro, Kerrie Marie, Maxwell P Lee, Glenn Merlino, Funda Ergun,
and S Cenk Sahinalp. PhISCS-BnB: a fast branch and bound algorithm for the perfect tumor
phylogeny reconstruction problem. Bioinformatics, 36(Supplement_1):i169–i176, July 2020.
doi:10.1093/bioinformatics/btaa464.

15 Gryte Satas, Simone Zaccaria, Geoffrey Mon, and Benjamin J. Raphael. SCARLET: Single-Cell
Tumor Phylogeny Inference with Copy-Number Constrained Mutation Losses. Cell Systems,
10(4):323–332.e8, April 2020. doi:10.1016/j.cels.2020.04.001.

16 Jochen Singer, Jack Kuipers, Katharina Jahn, and Niko Beerenwinkel. Single-cell mutation
identification via phylogenetic inference. Nature Communications, 9(1), December 2018.
doi:10.1038/s41467-018-07627-7.

17 Leah L Weber, Chuanyi Zhang, Idoia Ochoa, and Mohammed El-Kebir. Phertilizer: Growing a
clonal tree from ultra-low coverage single-cell dna sequencing of tumors. PLoS Computational
Biology, 19(10):e1011544, 2023. doi:10.1371/JOURNAL.PCBI.1011544.

18 Yufeng Wu. Accurate and efficient cell lineage tree inference from noisy single cell data:
the maximum likelihood perfect phylogeny approach. Bioinformatics, August 2019. doi:
10.1093/bioinformatics/btz676.

A Appendix

A.1 Constructing Matrix P of Probabilities
Let α and β denote the false positive and false negative rates, respectively, of our single-cell
sequencing data. For a given ground truth matrix X, we have the following probabilities of
observing the entries in I:

Pr(Iij = 0 |Xij = 0) = (1− α) Pr(Iij = 0 |Xij = 1) = β

Pr(Iij = 1 |Xij = 0) = α Pr(Iij = 1 |Xij = 1) = (1− β).

Since we have access to I and not to the ground truth, we are interested in reconstructing X

from I. Consider an arbitrary Iij of matrix I where Iij = 1. Assuming that Xij is equally
likely to take values 0 or 1 before observing I, we can use Bayes’ rule to calculate Pij :

Pij = Pr[Xij = 1|Iij = 1]

= Pr[Iij = 1|Xij = 1]Pr[Xij = 1]
Pr[Iij = 1|Xij = 0]Pr[Xij = 0] + Pr[Iij = 1|Xi,j = 1]Pr[Xij = 1]

= 0.5 · Pr[Iij = 1|Xij = 1]
0.5 · Pr[Iij = 1|Xij = 0] + 0.5 · Pr[Iij = 1|Xij = 1]

= 1− β

α + 1− β
.

Similarly, when Iij = 0, we have Pij = Pr[Xij = 1|Iij = 0] = β
β+1−α . For missing entries,

that is when Iij =?, we assume that there is no informative prior on the true genotype state
Xij so we set Pr(Xij = 1 | Iij =?) = Pr(Xij = 0 | Iij =?) = 1

2 .
Note that there are other ways to obtain the matrix P from single-cell sequencing data,

which may, for example, incorporate read counts for each cell-mutation pair [18, 16]. Our
algorithms presented in this work are applicable to any such matrix P .

https://doi.org/10.1126/science.959840
https://doi.org/10.1093/bioinformatics/btaa464
https://doi.org/10.1016/j.cels.2020.04.001
https://doi.org/10.1038/s41467-018-07627-7
https://doi.org/10.1371/JOURNAL.PCBI.1011544
https://doi.org/10.1093/bioinformatics/btz676
https://doi.org/10.1093/bioinformatics/btz676

J. D. Bridgers, J. Hoinka, S. C. Sahinalp, S. Malikic, T. M. Przytycka, and F. Ergun 5:17

A.2 Proofs
▶ Lemma 4. The set of conflict-free n ×m genotype matrices G may be partitioned (i.e.,
assigned to mutually exclusive sets whose union is equal G) by which n leaf CLTs they yield.

Proof. To prove this we must show that (i) any conflict-free genotype matrix yields a CLT
and (ii) the CLT yielded by a matrix is unique. If we create sets of matrices Y (T) for each n

leaf CLT T that each contain the matrices which yield T , then (i) implies that the union of
these sets equals G and (ii) implies that these sets are mutually exclusive.

Let X ∈ G be a conflict-free genotype matrix. Recall that by the definition of conflict-free
matrices X is consistent with some CLT T . Now assign the mutations of X to the edges
of T such that every mutation is placed on the edge directed into the node (assuming that
CLTs are represented as a directed graph with the direction of edges pointing away from the
root) representing the most recent common ancestor of the leaves with that mutation (i.e.,
the node rooting the subtree containing the leaves with that mutation and no other leaves).
Now, consider the edges which are not directed into a leaf, or attached to the root. If each of
these edges has at least one mutation, then T is yielded by X. If not, contract each edge
which has no mutations. To contract edge e = (u → v), delete e and add edges directed
from u to each of the children of v. Once all the mutation-less edges have been contracted,
the result will be a CLT that is consistent with T and has all internal edges annotated with
mutations of X, therefore X yields T .

To show uniqueness, suppose that X yields two distinct CLTs T1 and T2. Since T1 ̸= T2
there is some nontrivial clade C in one that is not in the other. Without loss of generality,
suppose that C ∈ T1 and C ̸∈ T2. Since X yields T1, every nontrivial clade of T1 has some
mutation/column of X which is equivalent to it, therefore there exists i ∈ [m] such that
Xi = C. However, C ̸∈ T2, therefore there is no edge in T2 to which mutation Mi from X

may be assigned, therefore X is not consistent with T2. This is a contradiction since T2 is
yielded by X, and X yielding a tree implies that X is consistent with it. ◀

A.3 Algorithms

Algorithm 1: Denominator Contribution Algorithm to compute the contribution of T to the
denominator of Equation (1).

Input: Matrix P ∈ [0, 1]n×m from which X is drawn, CLT T (represented as a set of
nontrivial clades)
Output: Pr[X ∈ Y (T)]

1: p← 0
2: for S ∈ P(T) do
3: T ′ ← T \ S

4: p← p + (−1)|s|+1 × Pr[X ∈ CM(T ′)]
5: return p

A.4 Time Complexity
The number of CLTs with n leaves grows superexponentially in n; therefore, the runtime of
the algorithm does as well since we enumerate every CLT. However, the algorithm remains
linear in the number of mutations m. This enables us to compute the Bi-partition Function
as m grows provided that n remains small (we have taken n = 8 in our experiments with

WABI 2025

5:18 Improved Algorithms for Bi-Partition Function Computation

Algorithm 2: Numerator Contribution Algorithm to compute the contribution of T to the
numerator of Equation (1).

Input: Matrix P ∈ [0, 1]n×m from which X is drawn, CLT T (represented as a set of
nontrivial clades), clade R, mutation ρ

Output: Pr [Xρ = R ∧X ∈ Y (T)]
1: if R is a trivial clade then
2: p← Pr [X \ {Xρ} ∈ Y ′(T)]
3: else if R ∈ T then
4: p← Pr [X \ {Xρ} ∈ Y ′(T)] + Pr [X \ {Xρ} ∈ Y ′(T \ {R})]
5: else
6: p← 0
7: p← p× Pr [Xρ = R]
8: return p

average runtimes of less than an hour, even with 1,000 mutations). A trivial upper bound5

on the number of CLTs with n leaves is 2n−2(2n− 3)!! (where k!! is the double factorial of k,
or the product of the positive integers less than or equal to k with the same parity as k) since
every CLT can be created from some binary CLT, of which there are (2n−3)!!, by contracting
any subset of its n− 2 non-root internal nodes. Computing denominator_contribution(T)
for a single tree requires less than or equal to 2n−2 calls to the function which computes
the value from Equation (6) (since a CLT with n leaves can have no more than n − 2
nontrivial clades) which can be computed in O(nm) time, therefore the time complexity
of the exact algorithm is O

(
2n−2 × (2n− 3)!!× 2n−2 × nm

)
⊆ O ((n!× 8n)×m) (since

(2n− 3)!! < (2n− 2)!! = 2n−1 × (n− 1)!).

5 Exact values (and asymptotic behavior) of the number of CLTs with n leaves can be found in OEIS
entry A000311 (https://oeis.org/A000311).

https://oeis.org/A000311

	1 Introduction
	2 Background, Motivation, and Our Problem
	2.1 Representing the Evolutionary History of a Tumor
	2.2 Tree Inference from Single-Cell Sequencing Data
	2.3 Looking inside Trees of Tumor Evolution

	3 The Formal Problem Definition and Methods
	3.1 Our Problem: the Bi-partition Function
	3.2 Cell Lineage Trees
	3.2.1 Linking Genotype Matrices to CLTs

	3.3 Evaluating the Bi-partition Function
	3.3.1 Evaluating the Contribution of Each CLT T
	3.3.2 Putting it All Together

	3.4 GPU-Accelerated Implementation

	4 Experimental Results
	5 Conclusion
	A Appendix
	A.1 Constructing Matrix P of Probabilities
	A.2 Proofs
	A.3 Algorithms
	A.4 Time Complexity

