Sequence Similarity Estimation by Random
Subsequence Sketching

Ke Chen &
Department of Computer Science and Engineering, School of Electronic Engineering and
Computer Science, The Pennsylvania State University, University Park, PA, USA

Vinamratha Pattar =
Department of Computer Science and Engineering, Amrita School of Computing,
Amrita Vishwa Vidyapeetham, Bengaluru, India

Mingfu Shao =4

Department of Computer Science and Engineering, School of Electronic Engineering and
Computer Science, The Pennsylvania State University, University Park, PA, USA

Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA

—— Abstract

Sequence similarity estimation is essential for many bioinformatics tasks, including functional
annotation, phylogenetic analysis, and overlap graph construction. Alignment-free methods aim to
solve large-scale sequence similarity estimation by mapping sequences to more easily comparable
features that can approximate edit distances efficiently. Substrings or k-mers, as the dominant
choice of features, face an unavoidable compromise between sensitivity and specificity when selecting
the proper k-value. Recently, subsequence-based features have shown improved performance, but
they are computationally demanding, and determining the ideal subsequence length remains an
intricate art. In this work, we introduce SubseqSketch, a novel alignment-free scheme that maps a
sequence to an integer vector, where the entries correspond to dynamic, rather than fixed, lengths of
random subsequences. The cosine similarity between these vectors exhibits a strong correlation with
the edit similarity between the original sequences. Through experiments on benchmark datasets,
we demonstrate that SubseqSketch is both efficient and effective across various alignment-free
tasks, including nearest neighbor search and phylogenetic clustering. A C++ implementation of
SubseqSketch is openly available at https://github.com/Shao-Group/SubseqSketch.

2012 ACM Subject Classification Applied computing — Bioinformatics; Applied computing —
Computational biology

Keywords and phrases Alignment-free sequence comparison, Phylogenetic clustering, Nearest neigh-
bor search, Edit distance embedding

Digital Object Identifier 10.4230/LIPIcs.WABI.2025.7

Supplementary Material Software (Source Code): https://github.com/Shao-Group/SubseqSketch
archived at swh:1:dir:£35cb6681ac30e42c9b965b61d26831aa56590c2

Funding This work is supported by the US National Science Foundation (DBI-2019797 to M.S.)
and the US National Institutes of Health (ROIHG011065 to M.S.).

1 Introduction

Estimating the similarity between biological sequences is a fundamental task in bioinformatics,
underpinning a wide range of applications including homology detection, gene annotation, and
phylogenetic analysis. Traditionally, sequence similarity has been assessed with alignment-
based methods, which attempt to find an optimal correspondence between characters from
two or more sequences. While providing the most accurate results, these methods often suffer
from high computational cost, especially when applied to large and divergent datasets.

© Ke Chen, Vinamratha Pattar, and Mingfu Shao;

licensed under Creative Commons License CC-BY 4.0
25th International Conference on Algorithms for Bioinformatics (WABI 2025).
Editors: Brona Brejova and Rob Patro; Article No. 7; pp. 7:1-7:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kxc5915@psu.edu
https://orcid.org/0000-0001-5470-6621
mailto:pattar.vinamratha@gmail.com
https://orcid.org/0009-0008-6991-8668
mailto:mxs2589@psu.edu
https://sites.psu.edu/mxs2589/
https://orcid.org/0000-0001-6112-5139
https://github.com/Shao-Group/SubseqSketch
https://doi.org/10.4230/LIPIcs.WABI.2025.7
https://github.com/Shao-Group/SubseqSketch
https://archive.softwareheritage.org/swh:1:dir:f35cb6681ac30e42c9b965b61d26831aa56590c2;origin=https://github.com/Shao-Group/SubseqSketch;visit=swh:1:snp:f52ef56d39b4abbc19363421526b949019e2601e;anchor=swh:1:rev:4f07603d4e9c366847a5759c7cf4008fe8fa273b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

7:2

Sequence Similarity Estimation by Random Subsequence Sketching

Sketching-based methods have been developed to address this limitation. A sketch
summarizes a long sequence into a small set of representative fingerprints that can be rapidly
compared in place of the original sequences for similarity estimation. Together with its
variants, the most widely used sketching method is MinHash (MH) [2]. In its simplest form,
MH utilizes a hash function that maps each k-mer of a sequence to a number and only
keeps the k-mer with the minimum hash value as the representative of that sequence. It
is easy to see that the probability for two sequences to be represented by the same k-mer
is proportional to the Jaccard similarity of the two sequences (viewed as sets of k-mers),
namely, the number of shared k-mers between the sequences normalized by the total number
of distinct k-mers among them. Hence, by repeatedly choosing min-k-mers with different
hash functions and keeping track of the number of occurrences that the picked k-mers match
between the two sequences, the Jaccard similarity can be estimated. In this process, the
list of all representative k-mers of a sequence is called the MH sketch of this sequence. Two
MH sketches are compared by the Hamming similarity — number of identical k-mers at the
same indices. Order Min Hash (OMH) [20] extends this idea by estimating the weighted
Jaccard similarity. Instead of picking one representative k-mer at a time, each entry of an
OMH sketch is generated by picking several k-mers and putting them together following the
original order in the sequence. OMH has been proved to be a locality-sensitive hashing family
for the edit distance. A more comprehensive review of sketching algorithms for genomic
data can be found in [22]. Note that both MH and OMH can be considered substring-based
sketching methods because they pick substrings as the representatives. They therefore face
the commonly observed difficulty in choosing a proper k: larger k is desirable to eliminate
spurious matches but there are very few shared long k-mers even between closely related
sequences.

To address this fundamental limitation of k-mers, several recent works [15, 12, 14]
have advocated for the use of unrestricted subsequences instead. Subsequences relax the
requirement that matching base pairs must be consecutive, allowing them to naturally tolerate
gaps in the underlying — often unknown and computationally expensive — true alignment
between sequences. This enables the identification of longer and hence more reliable matches,
which in turn enhances the accuracy of downstream tasks. To fully leverage the benefits
of subsequences, one must overcome a key algorithmic challenge: unlike the linear number
of k-mers in a sequence, the number of subsequences grows exponentially, making MH-like
strategies that rely on enumerating all candidates impractical. In this work, we seek to
exploit structural properties of subsequences to overcome this computational barrier. To this
end, we develop SubseqSketch, an efficient sketching method that summarizes long sequences
into compact, subsequence-based features that are highly correlated with edit similarities.
Through experiments on typical downstream applications, including nearest neighbor search
and phylogenetic clustering, we demonstrate that SubseqSketch is both efficient and effective.

1.1 Related work

Recently, a sketching method named LexicHash [9] proposes to compare sketches based on
the length of their common prefixes, rather than relying on fully matched k-mers. This
has the effect of sketching with k-mers for all lengths k& up to a predefined maximum value.
However, LexicHash still suffers from the common issue of k-mer-based methods, namely,
a small number of edits can destroy all long k-mer matches between two similar sequences.
Furthermore, LexicHash is designed for the task of overlap detection, rather than estimating
the similarity between two sequences. In particular, the authors define the LexicHash
similarity score between two sequences as the length of the longest matching prefix among

K. Chen, V. Pattar, and M. Shao

their sketches. Hence, a score k only indicates that the two sequences share a common k-mer,
which may be effective for detecting overlapping reads, but appears to be insufficient for
edit similarity estimation (see Figure 4). In their follow-up work LexicMap [26], the authors
design a sequence alignment tool that uses the identified common k-mers as seeds, effectively
employing LexicHash as a seeding method rather than a sketching method. See Section 4 for
further discussion of the differences between sketching and seeding.

To the best of our knowledge, the only existing subsequence-based sketching method is
Tensor Slide Sketch (TSS) [12]. Instead of picking k-mers from the input sequence, TSS aims
at producing a sketch by counting the occurrences of all subsequences. Since there is an
exponential number of them, TSS has to group subsequences in a smart way to facilitate
counting. However, to make it efficient, TSS is restricted to count all short subsequences,
which limits its capacity in distinguishing similar and dissimilar sequences.

A closely related line of research focuses on embedding edit distance into metric spaces.
Most notably, the CGK embedding [4] maps sequences into Hamming space with bounded
distortion and, when combined with locality-sensitive hashing techniques, has been applied
to various bioinformatics tasks, including edit similarity joins [29] and overlap detection [27].
However, CGK maps a sequence of length n to one of length 3n, making it unsuitable as an
efficient sketching method, where the goal is to reduce representation size. To take advantage
of the structure of the underlying data, machine learning methods have been developed
that learn embeddings outperforming CGK in downstream applications [5], despite lacking
its theoretical guarantees. These approaches, however, require training data with known
edit distances, limiting their applicability to tasks involving long sequences, such as genome

phylogeny.

2 SubseqSketch

The idea of SubseqSketch is to identify long common subsequences between input sequences
through random sampling. Computing the sketch of a sequence s can be figuratively thought
of as answering a survey in which each question asks whether s contains a randomly selected
sequence as a subsequence. By comparing the answers of two sequences, their similarity can
be estimated. For a concrete example, according to Figure 3, if length-100 sequences (over
the DNA alphabet ¥ = {A, C, G, T}) are taking our survey, we can choose a query sequence
to have length 25 and expect half of the answers to be “yes”. Furthermore, a matching “yes”
answer for a pair of sequences suggests a (partial) alignment between them that involves
at least a quarter of their bases. We note that this idea does not work well with substrings
(k-mers): As the number of k-mers in a sequence is negligible compared to the number
of length-k subsequences, the chance of successfully finding a reasonably sized common
substring by random sampling is low, even between highly similar sequences. Continuing the
previous example, if we were to ask whether an 8-mer is a substring, the vast majority of
sequences would respond “no”; on the other hand, querying with 3- or 4-mers yields more
balanced responses, but a matching “yes” answer carries little information due to the short
length of the common substring. In both cases, we can only expect to get a very weak, if
functional at all, classifier for distinguishing between similar and dissimilar sequences.

While sampling long subsequences is beneficial for similarity estimation, it becomes
computationally expensive on long inputs. In the following section, we introduce the
concept of tokenization to effectively generalize the above strategy to genome-scale sequences.
Combined with the idea of an “enhanced survey”, where binary yes/no questions are upgraded
to integer-scale queries, we present the full-fledged SubseqSketch as an effective and efficient
sketching method.

7:3

WABI 2025

7:4

Sequence Similarity Estimation by Random Subsequence Sketching

2.1 Tokenized subsequence

)

A sequence z of length kt over an alphabet ¥ can be viewed as a sequence of k “tokens’
each of which is a string of length t. We say x is a tokenized subsequence of a length-n
sequence s if there is a list of indices 1 < i < iy < -+ < i < n—t+1 such that the length-¢
substring of s starting at 7; matches the j-th token of x. Note that when ¢ = 1, a tokenized
subsequence is a regular subsequence; it is not necessarily the case when ¢t > 1, as the tokens
are allowed to overlap, see Figure 1 for an example.

s: CTACCCGATTCTAGTAAAA
z: CT CC GA AT AG TA

Figure 1 An example of a tokenized subsequence = of a sequence s, where t = 2 and k = 6. The
appearance of each token of x is underlined in s. Observe that x is not a regular subsequence of s.

2.2 Construction of SubseqSketch

To construct SubseqSketch for input sequences, we first generate a list L of random sequences
of length kt each, where k and t are predefined parameters. We call L the list of testing
sequences. Two SubseqSketches are comparable only if they were generated with the same
list L; in this sense, L serves as shared randomness in the sketching process, analogous to
the shared random ordering of k-mers in MH sketches. Given an input sequence s and a
testing sequence ¢ in L, SubseqSketch determines the maximum number of prefix tokens in ¢
that form a tokenized subsequence of s. The resulting vector consists of |L| integers, one
for each testing sequence. This vector is the sketch of s, denoted as SubseqSketch(s). See
Figure 2 for an illustration.

st CTACCCGATTCTAGTAAAA
. SubseqSketch(s)
L:CTCCGAATAGTA —6 1 0 4

CCCGTT
CC GG TA TA GC CG

TG AA AC GC CC CG
GA TC CT GTCA AA

Figure 2 An illustration of SubseqSketch construction with ¢ = 2, k = 6, and |L| = 5. For each
testing sequence in L, the maximum number of its prefix tokens that form a tokenized subsequence
of s are colored. Their matching tokens in s are underlined.

A straightforward linear scan computes the |L| sketch entries in O(|L||s|) time. This
worst-case time complexity can be improved by preprocessing the input sequence s to build an
index that facilitates rapid lookup for the occurrence of the next token of a testing sequence.
For example, for token size ¢ = 1, we can build an automaton on s in O(|s||X|) time and
space. In the automaton, each character s; stores |X| pointers. The pointer corresponding to
¢ € ¥ points to the next appearance of ¢ after s; (or null if no ¢ exists after s;). Then for a
testing sequence ¢, we can simply follow the pointers according to the characters of ¢, until
either a null pointer is encountered or ¢ is exhausted. This takes O(]¢]) time for each testing
sequence so the total sketching time is O(]s||X| + |¢]|L])-

For larger token size, a similar idea can be applied: we can preprocess s to build a lookup
table of size |X|* where each entry records the occurring positions of that token on s, either
in a sorted array or some other data structures that supports quick search. Each testing

K. Chen, V. Pattar, and M. Shao

sequence can then be processed by following this lookup table until all tokens are used or the
end of a position array is reached. This allows each integer in the sketch to be computed in
O(klog |s|) time, instead of a O(]s|) linear search. We provide this preprocessing approach
as an option in our implementation. However, through experiments we found that the linear
search std::string::find provided in the standard C++ library is almost always faster. The
overhead of preprocessing may only be justified for a large number of very long testing
sequences with a small token size, which is not a recommended setting for our sketching
algorithm (see Section 2.4).

2.3 Choice of similarity function

The SubseqSketch of a sequence s provides a highly informative representation of s. To build
intuition, consider two sequences s and t. If both sketches show large numbers at the same
index, then s and ¢t must share a long tokenized subsequence and are hence likely similar in
terms of the edit distance. Conversely, if one sketch has a large value while the other has a
small value at the same index, it suggests that the sequences are likely dissimilar.

As with other sketching methods, a similarity measure over the sketches is required to
translate the above intuition into a quantitative score that accurately reflects the true simi-
larity between input sequences. Methods that compare sketches for equality at corresponding
indices, such as MH and OMH, naturally employ Hamming similarity, which counts the
number of matching entries between sketches. SubseqSketch, on the other hand, generates
integer-valued vectors, enabling the use of a wide range of well-established distance/sim-
ilarity metrics. We empirically evaluate a list of metrics using the data from Section 3.1.
SubseqSketches are first computed, after which similarity scores are calculated using various
metrics. The Pearson correlations between these scores and the ground truth edit similarities
are reported in Table 1.

Table 1 The Pearson correlations between edit similarities and sketch similarity scores using
various metrics.

Metric Pearson correlation
Canberra 0.920
Bray-Curtis 0.919
Correlation 0.919
Cosine 0.918
Hamming 0.914
Manhattan 0.913
Squared Euclidean 0.901
Jaccard 0.881
Euclidean 0.857
Minkowski 0.809
Chebyshev 0.306

As shown in the table, cosine similarity is among the most effective metrics for producing
estimates that are strongly correlated with the true edit similarity. According to its definition,

SubseqSketch(a) - SubseqSketch(b)
|SubseqSketch(a)||, ||SubsegSketch(b) ||,

7:5

WABI 2025

7:6

Sequence Similarity Estimation by Random Subsequence Sketching

where - denotes the vector dot product, pairwise cosine similarities between two sketching
matrices can be computed using a single matrix multiplication (assuming the rows are
normalized), which is highly optimized in modern hardware and numerical libraries. We
therefore adopt cosine similarity between SubseqSketches in our implementation for its
effectiveness and computational efficiency.

2.4 Choice of parameters

SubseqSketch has three parameters: the token size ¢, the number of tokens k in each testing
sequence, and the size |L| of the testing list. The parameter |L| controls the size of the
sketches. In particular, a SubseqSketch takes |L|log k bits space to store. As with other
sketching methods, increasing the sketch size improves estimation accuracy but comes at the
cost of greater time and storage requirements. In the experimental sections, we compare the
sketching methods at the same sketch size.

The parameters t and k are related. In the resulting sketches, each entry is an integer
between 0 and k. If ¢ is too large (for example, close to the input length n), most entries
would be 0; on the other hand, if both ¢ and k are small, most entries would reach the
maximum possible value at k, regardless of the input sequence s. Neither case is desirable
as the sketches cannot provide a strong distinction between similar and dissimilar input
sequences. Note that we can always choose a large k to ensure that few, if any, sketch entries
reach the maximum value. However, this increases the sketch file size, as each entry requires
log k bits — an ineflicient use of space if most entries are significantly smaller than k.

We now try to derive an optimal choice of k for t = 1. In a recent paper [8], the authors
motivated their sequence sampling method with an interesting puzzle (paraphrased): is the
number of DNA 5-mers containing the substring ACGT the same as that for the substring
AAAA? Astute readers will immediately answer “no” because it is impossible for a 5-mer
to both start and end with ACGT — taking the union of the two disjoint groups gives the
correct number — which is not the case for AAAA whose symmetry would cause the same
strategy to double-count the 5-mer AAAAA.

As a curious extension, the same question can be asked, replacing substring with sub-
sequence, namely, we do not require the containment to be consecutive. This seemingly
more complicated version turns out to have a counterintuitively nicer answer: the number of
n-mers containing a given k-mer as a subsequence is a function of n and &, independent of
the choice of the k-mer. Consider a length-k sequence x, we count the number of length-n
sequences s whose subsequence 1 < 47 < iy < -+ < i < n is . To avoid over-counting,
we only count s if (i1,...,4x) is the first occurrence of in s. It means the characters in s
before 4; cannot be x1, leaving them |X| — 1 choices each. The same holds for regions in
between 7; and ¢;41, and finally all characters after i, are free to be anything in . This
leads to (|2| — 1)%~*|%|"~% choices. Note that the expression only depends on iy, (i.e., any
combination of iy, ...4_1 yields the same number), so we can group the terms and sum over
choices of i; to get the answer

- ip —1 ix—k|y|n—i
S| — 1) RS,

ikZ:k(kl)u - g

We emphasize that the above calculation is independent of the chosen sequence z. An
example is shown in Figure 3. Given the length n of the input sequences, we can use this
formula to find a k such that at most a small threshold fraction (e.g., 0.01) of the sketch
entries reach the maximum value k. For the example in Figure 3 where n = 100, k£ = 36
would suffice.

K. Chen, V. Pattar, and M. Shao

10{ ©cececcceccesse,, ® subsequence
° substring
0.8 °

0.6 -

0.41

probability in a random 100-mer

0.21 (]

)
0.0 ®ec00cococcccccee

0 10 20 30 40 50
length

Figure 3 For a k-mer z over an alphabet of size 4, the fraction of 100-mers that contain x as
its subsequence (in blue) or substring (in orange). The horizontal axis represents k, the length of
x. The blue dots are exact values computed according to the derived formula; they are the same
regardless of the choice of z. The plots for substrings are empirical estimates; note that these can
vary significantly across different k-mers, as indicated by the orange error bars for k£ up to 8.

For larger t, the derivation is not as neat. We can view a regular sequence s over the
alphabet ¥ as a tokenized sequence over the alphabet ¥ and apply the above formula. But
unlike adjacent characters in the original sequence, consecutive tokens with an overlap of
length ¢t — 1 are not independent, causing the formula to significantly overestimate. Since
using a small k& makes the sketching faster to compute and smaller to store, with an exception
in Table 3, we fix k = 15 in the following experiments (namely, each entry in the sketch fits
in 4 bits) and aim to choose ¢ to ensure the sketching entries are neither too small nor maxed
out. Table 2 provides empirical recommendations for ¢ across common input sizes n.

Table 2 Empirical recommendations for parameter t.

n 102 10® 10* 10° 10° 107 10® 10°
t 2 6 9 12 15 19 22 25

2.5 Sample subsequences from input

Using randomly generated testing sequences is the best one can do in a data-oblivious
setting, while better performance can usually be achieved if we can afford to adjust the
sketches according to the input data. One idea to introduce data dependency is to sample
subsequences from the input to form the testing list. This is particularly suitable when the
input comprises a small number of sequences — for example, when estimating phylogenetic
distances among a group of closely related genomes, as shown in Section 3.3. On the other
hand, if the sketches are used to build an index of a large database of sequences to handle
queries, it may not be practical to re-sketch the entire database with a new testing list for

77

WABI 2025

7:8

Sequence Similarity Estimation by Random Subsequence Sketching

each query. In this situation, we simply use the data-oblivious version with a fixed list of
randomly generated testing sequences and demonstrate in Sections 3.1 and 3.2 that it already
achieves good performance.

3 Experiments

In this section, we first show a strong correlation between the cosine similarity of SubseqS-
ketches with the edit similarity between simulated pairs of sequences. Then the sketch quality
of SubseqSketch is tested on two sequence comparison tasks, the nearest neighbor search and
phylogeny reconstruction. In each task, we compare SubseqSketch with competing methods
on both simulated sequences and published benchmark datasets. For a fair comparison, each
method is set to produce sketches of (roughly) the same size. A grid search is performed for
each competing method to find the best parameters. Details are reported in each subsection.

3.1 Correlation between sketch similarity and edit similarity

To directly compare the sketch similarity against the desired but much more expensive to
compute edit similarity, we generate 100,000 random DNA sequences of length 1,000. Each
sequence is randomly mutated (an insertion, deletion, or substitution) for a random number
of rounds up to 1,000 to produce a pairing sequence. For each pair, we compute their exact
edit similarity, as well as sketch similarities for SubseqSketch, MinHash (MH), Order Min
Hash (OMH), Tensor Slide Sketch (TSS) and LexicHash (LH). For each sketching method
the Pearson correlation between the exact edit similarity and the sketch similarity over the
100,000 pairs of sequences is reported. MH, OMH, and TSS use the implementation of [12].
LH uses the implementation of [9].

Figure 4 shows the scatter plots of all the pairs under different sketching methods. Observe
that SubseqSketch achieves the best Pearson correlation. Both MH and OMH are good
estimators for sequences with high edit similarities but struggle to distinguish dissimilar
sequences with edit similarity between 0.5 and 0.8. The TSS and LH similarities show a
visually more linear relationship with the edit similarity and consequently exhibit higher
Pearson correlations than MH and OMH. But they both suffer from extremely large variance,
especially for dissimilar sequences, which makes it difficult to interpret their estimation in
practical applications. SubseqSketch strikes a balance between the ability to estimate the
full range of edit similarity and the estimation variance.

As with other sketching methods, the variance of SubseqSketch can be reduced by using
a larger sketch. For all the experiments, we measure the size of a sketch as the number of
entries in it (sometimes called its dimension), and all methods are configured to produce the
same number of entries (except for TSS, which we follow the suggestion in [12] even though it
produces a larger sketch). However, in real applications, the actual space needed to store the
sketches is a more relevant measure. Recall that each entry of SubseqSketch can be stored in
4 bits (ref. Section 2.4) which is four times smaller than an entry of MH (16 bits for k = 8),
six times smaller than OMH (24 bits for £ = 6 and ¢ = 2), and eight times smaller than
TSS and LH (32-bit float/int). Thus, given a fixed amount of disk space, SubseqSketch can
utilize more testing sequences than the number of k-mers MH or OMH can select, thereby
achieving a similar or better variance. In the experiments, we do not exploit this practical
advantage, opting instead to use the same number of sketch entries across all methods.

K. Chen, V. Pattar, and M. Shao

r e+ MHO0.827 ~ e« OMHDO0.726
1.0 1.0
g,O.S g,O.S
= =
o Kol
£ £
@ @
- 0.6 - 0.6
£ £
o o
< <
1l)
T o4 T o4
N N
‘© ‘©
£ £
£ £
o o
€0.2 o €0.2
o
0.0 0.0
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
normalized edit similarity normalized edit similarity
r e+ TS50.896 r e« LHO.886
1.0 1.0 .
o e eesemmmmey
o o e e———— .
R e
o e mememe—
0.8 0.8 . em e ca———— ¢
2 Zz e
= =
& & o - e ——
£ £ o oo mme—
@ @
_COS _COG . ----u- "
£ £ .
o o
4 4 e
- - come .
© 0.4 o 0.4 . .
N N .
‘© ‘©
£ £
£ £
o o Ld
€0.2 €0.2
—_—
—_—
Dy o
0.0 . 0.0 ——ee weum ¢ o
05 06 07 08 0.9 1.0 05 06 07 038 0.9 1.0
normalized edit similarity normalized edit similarity

r e SubseqSketch 0.918
1.0

o o o
S o 3

normalized sketch similarity

o
N

0.0
05 0.6 0.7 0.8 0.9 10
normalized edit similarity

Figure 4 Correlation between normalized sketch similarities and normalized edit similarity on
length n = 1000 sequences. The horizontal axis represents the normalized edit similarity which
is computed as one minus the edit distance divided by sequence length. The vertical axis shows
the sketch similarities which are normalized to the range [0,1]. The legend marks the name of the
method and the Pearson correlation. All methods use sketch size 1000. Through parameter grid
search, MH is configured to use k-mer size 8; OMH uses k-mer size 6 and ¢ = 2; TSS uses t = 2,
dimension 32, window size 0.1n = 100, stride size 0.01n = 10, as suggested in [12]. LexicHash uses
kmax = 32. SubseqSketch uses token size 6.

3.2 Nearest neighbor search

The task of nearest neighbor search involves finding the top-7" most similar sequences for a
query among a large database. It has numerous applications in bioinformatics, including
metagenomic classification and gene function prediction. Because computing the exact edit

7:9

WABI 2025

7:10

Sequence Similarity Estimation by Random Subsequence Sketching

distance between the query and every sequence in the database is computationally prohibitive,
a common approach is to embed database sequences into a well-studied metric space where
efficient nearest neighbor indexing is readily available (for example, the hierarchical navigable
small world index [18]). The query is embedded in the same space, and the nearest neighbors
identified by the index serve as approximations to the true nearest neighbors under edit
distance. Given the high correlation between SubseqSketch and edit distance, we demonstrate
in this section that it can serve as an embedding method and yields improved nearest neighbor
search performance.

In this experiment, we restrict our comparison to CNN-ED [5], a deep convolutional neural
network model for sequence embedding that has been shown to outperform non-machine
learning approaches such as CGK embedding [4]. For evaluation purpose, the CNN-ED
pipeline splits an input dataset into three disjoint sets: a training set with 1,000 sequences,
a query set with 1,000 sequences, and a base set containing the remaining sequences. It
computes pairwise edit distances among the training set to generate training labels. After
the model is trained, it generates embeddings for all sequences in the query and base set.
All-vs-all embedding distances as well as the ground-truth edit distances between the query set
and the base set are then computed so that the top-7" neighbors identified by the embedding
can be compared with the top-T" neighbors according to the edit distance. Following this
pipeline, we apply SubseqSketch to all sequences in the query and base set, and report top-1'
neighbors using the all-vs-all sketch distances. It is worth noting that, unlike in practical
applications, indexing is omitted in this experiment to enable a direct comparison of the
embedding/sketching quality, independent of variations in index accuracy.

We show results on two widely used datasets GEN50kS and GEN20KL from [29] which are
also benchmarked in the CNN-ED paper. The GEN50kS dataset contains 50,000 sequences
with an average length 5,000. The GEN20kL dataset contains 20,000 sequences with an
average length 20, 000.

In Figure 5 and Figure 6, we plot the commonly used recall-item curves for both
SubseqSketch and CNN-ED. For a figure labeled top-T', the T nearest neighbors of a query in
the base set according to the edit distances are considered true neighbors. The horizontal axis
represents the number of neighbors (items) each method is allowed to report (according to
their respective sketch/embedding distances) and the vertical axis marks the fraction of true
neighbors being reported (recall). The CNN-ED pipeline presents full-range results — from
reporting a single item to reporting all items — which, while not practical for typical use cases
(where only the top-T neighbors are retrieved), allows for plotting complete performance
curves.

The CNN-ED results are obtained by the implementation of [5], which we trained for 50
epochs following the reported hyperparameters in the original paper. For a fair comparison,
SubseqSketch is configured to produce vectors of the same length as the reported embedding
dimensions of CNN-ED. Observe that SubseqSketch consistently outperforms CNN-ED by a
large margin. This is a surprising result. It is commonly believed (which is often, though
not always, justified) that machine learning models can outperform traditional algorithmic
methods because the models can learn data-dependent features that the data-oblivious
algorithms cannot take advantage of. In [5], the CGK embedding [4] was shown to produce
a worse result than CNN-ED on this task, even though it is an edit distance embedding with
theoretical guarantees. Our result here demonstrates that there is a gap between theoretical
bounds and practical performance which warrants further investigation. In particular, we
conjecture that SubseqSketch can also provide some guarantees on the distortion as a
randomized embedding function for the edit distance, though a theoretical proof seems
difficult.

K. Chen, V. Pattar, and M. Shao

1.0

0.8

7

0.6 1

recall
o
®
&

recall

0.80 0.41

Top-1 0.2
—8— SubseqSketch

CNN-ED

Top-10
—8— SubseqSketch
CNN-ED

102 10° 104

item (log scale)

102 103 104 10t

item (log scale)

Figure 5 Recall-item curves of different methods on the GEN50kS dataset. All methods output
vectors of dimension 200. SubseqSketch uses token size 6. Left: ground truth is the top-1 nearest
neighbor by edit distance. Right: ground truth contains the top-10 nearest neighbors by edit
distance.

1.04 1.04

0.9
0.8

0.6 1

o
Q3
recall

0.44

0.21
0.5 Top-1
—8— SubseqSketch

CNN-ED

Top-10
—8— SubseqSketch
CNN-ED

0.0

10? 104

item (log scale)

102 10° 104

item (log scale)

10° 10t

Figure 6 Recall-item curves of different methods on the GEN20kL dataset. All methods output
vectors of dimension 128. SubseqSketch uses token size 7. Left: ground truth is the top-1 nearest
neighbor by edit distance. Right: ground truth contains the top-10 nearest neighbors by edit
distance.

3.3 Phylogeny reconstruction

Phylogeny reconstruction is another task commonly used to evaluate the performance of
sketching methods. Given a set of biologically related genomes, the goal is to build a
phylogeny on them based on pairwise similarities/distances estimated by the sketches. The
result can then be compared with a ground truth tree constructed from some biological model
or multiple sequence alignment. We test on two datasets for this task: one is a simulation
of a simple mutation model similar to that used in [20]; the other is a set of 29 assembled
E. coli genome sequences collected in [28].

The simulation aims to model both point mutations and mobile genomic elements,
commonly found in bacterial genome rearrangements, known as insertion sequences (IS). The
simulated sequences form a perfect binary tree. The root of the tree is a random sequence of
length 10, 000; it is considered as the 0-th generation genome. To obtain the i-th generation,
each sequence in the (i — 1)-th generation produces two children genomes by independent
and random point mutations with mutation rate 0.01%. Then a random IS of length 500 is

7:11

WABI 2025

7:12

Sequence Similarity Estimation by Random Subsequence Sketching

inserted at a random position for each newly generated i-th generation genomes. Note that
the IS is shared among all sequences in the same generation, but the inserting positions can
be different. See Figure 7 for an illustration. Although simple and somewhat unrealistic, this
model produces a solid ground truth phylogeny and allows us to investigate the effectiveness
of different sketching methods to recover the mixed history of point mutations and large
insertion events.

generation 0 (10k bp)

generation 1

generation 2

generation 3

generation 4

//’/1/1111‘(,&‘51011 rate 0.01%
4 1S A)

Figure 7 An illustration of the simulated phylogeny. In the zoomed-in view at the bottom, the
top segment represents a sequence from the 3-rd generation. Its two children in the 4-th generation
are obtained by random point mutations represented by colored dots. The blue segment represents
the common IS inserted into each sequence in the 4-th generation.

Each method computes a pairwise distance matrix for all sequences in each generation. The
matrices are used to build the phylogenies with the neighbor-joining algorithm implemented
in the biotite package [13]. The normalized Robinson-Foulds (nRF) distances between the
constructed trees and the ground truth tree are then calculated with the ETE toolkit [10].
The nRF distance measures the dissimilarity of branching patterns between two trees and
ignores branch lengths. A value of 0 means the two phylogenies have the identical tree
topology, whereas a value of 1 indicates the two trees are maximally dissimilar.

Figure 8 shows the nRF distances achieved by each method on progressively larger inputs
from the simulated dataset. The horizontal label i means all the 2¢ sequences from the i-th
generation are used as input sequences. Not surprisingly, pairwise edit distance (ED) most
accurately captures the mutation history, at the cost of significantly longer computation time
(see Figure 9). Among the sketching methods, SubseqSketch constructs the best phylogeny
for generation 6 and larger inputs. Furthermore, the nRF distances obtained by SubseqSketch
exhibits a strong correlation with those achieved by the exact edit distances, indicating it can
be used as a faithful approximation of the expensive edit calculation. In contrast, although
MH and OMH produce trees with smaller nRF distances for the smaller input sets, they
both show some inverse relation with the nRF using edit distances (e.g., from generation 3 to
4, the nRF distances of trees constructed by edit distance increased, but the nRF distances
for MH decreased; similarly from generation 4 to 5 for OMH). LH is omitted from this
experiment because its implementation choice for boundary handling tends to assign the
maximum similarity score to pairs sharing a short matching suffix (see the line at normalized
similarity score 1 in Figure 4). While this may be appropriate for the overlap detection task
that LH is designed for, it hinders accurate phylogeny reconstruction on our datasets.

We also plot the running time of each sketching method in Figure 9 to demonstrate the
efficiency of SubseqSketch. As expected, all the sketching methods are much faster than
computing the all-vs-all exact edit distances. Among them, SubseqSketch is consistently
the fastest, regardless of the number of input sequences. More specifically, SubseqSketch
achieves a 6x speedup compared to the second fastest method (MH).

K. Chen, V. Pattar, and M. Shao

— Hmm ED s MH s OMH mm 7SS I SubseqSketch

nRF distance from the ground truth tree

generation

Figure 8 Normalized RF distances achieved by each method on the simulated dataset. A lower
nRF distance indicates the constructed phylogeny is more similar to the ground truth tree. All
methods use sketch size 256. Through parameter grid search, MH is configured to use k-mer size 8;
OMH uses k-mer size 6 and ¢ = 2; TSS uses t = 4, dimension 16, window size 1,000, and stride size
100. SubseqSketch uses token size 5.

— I ED s MH s OMH 7SS Bmm SubseqSketch

172623

1044

—
o
©

Time in seconds
=
o
D

.ﬂ
<

generation

Figure 9 Time spent by each method in seconds (log scale). All experiments run on a server with
an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz. Edit distance is computed with the Levenshtein
Python C extension module. MH, OMH, and TSS are computed using the implementation of [12].

For testing on a real dataset, 29 assembled E. coli genome sequences are obtained from the
AFproject [30], a benchmark project for alignment-free sequence analysis tools. It provides a
web interface where the phylogenies can be computed from the uploaded distance matrices.
The nRF distances are then reported by comparing the resulting trees against a ground
truth tree built from multiple sequence alignment. It also provides the normalized Quartet
Distance (nQD) as an additional measure for topological disagreement.

Results on this E. coli dataset are summarized in Table 3. On the AFproject website,
nearly 100 tools (include different configurations for the same tool) are ranked based on the
nRF distance. SubseqSketch is ranked 7th and there are 12 tools that achieve smaller nRF
distances due to ties. It is worth pointing out that the higher ranked ones are tools designed
specifically for the task of phylogeny reconstruction, which are often based on some sketching
method but also apply biological and algorithmic heuristics to adjust the sketch distance
matrix. Since SubseqSketch is a sketching method rather than a complete tool for phylogeny,
here we aim to evaluate the sketch quality without those adjustments. With the unadjusted
distance matrices, SubseqSketch constructs the best phylogeny (closest to the ground truth)
among MH, OMH, and TSS.

7:13

WABI 2025

7:14

Sequence Similarity Estimation by Random Subsequence Sketching

In this task, since there are only 29 genomes, we can afford to sample the testing sequences
from the input to further improve the quality of SubseqSketch. Because the inputs are all
closely related, this sampling strategy also enables us to use a much larger token size ¢t = 40
to achieve an even better result than the recommended ¢t = 15. From Table 3, it is evident
that setting ¢ = 40 significantly improves accuracy.

Table 3 Phylogeny reconstruction results on 29 E. coli genomes. The RF, nRF, and nQD
distances all measure topological disagreement between the reconstructed tree and the ground truth
tree. A lower value indicates a more accurate reconstruction of the phylogeny. The Rank is based on
the nRF distances among many tools tested by the AFproject. All methods use sketch size 10, 000.
Through parameter grid search, MH is configured to use k-mer size 10 (in fact, multiple values
of k between 10 and 30 all yield the same nRF distance, but & = 10 is slightly better on nQD);
OMH uses k-mer size 22 and ¢ = 3; TSS uses t = 5, dimension 100, window size 500, 000, stride size
100,000. The parameters used by SubseqSketch are marked in parentheses.

Method RF nRF nQD Rank
MH 30 0.58 0.3307 13
OMH 30 0.58 0.3645 13
TSS 40 0.77 0.4806 17

SubseqSketch (¢t = 15,k = 128) 22 042 0.1377 9
SubseqSketch (t = 40,k = 32) 18 0.35 0.1679 7

4 Discussion

We presented SubseqSketch, a subsequence-based sketching method that is both effective
and efficient at sequence similarity estimation. Comparing to the widely used MH, OMH,
TSS, and LH sketches, SubseqSketch requires smaller space, is faster to compute, and
achieves a stronger correlation with the edit similarity. It delivers strong performance in two
alignment-free tasks: nearest neighbor search and phylogeny reconstruction. In particular,
it outperforms a machine learning edit distance embedding model by a large margin which
suggests our method indeed captures critical features of the sequences being sketched.

A large body of work that we intentionally excluded from our experiments consists of
seeding-based methods. The simplest seeds are k-mers, representing fixed-length consecutive
exact matches in the sequences. More advanced k-mer selection schemes exist, such as
minimizer [25, 19], syncmer [6] and k-min-mer [7]. Seeds sampled from subsequences,
either with limited patterns such as spaced seed [3, 16] and strobemer [23, 17, 24], or fully
unrestricted such as SubseqHash [15, 14], have been shown to deliver better performance
but are usually more expensive to compute. While both sketching and seeding utilize some
common techniques, for example, the minimizer seeds are obtained by applying MH [2] on
each window, they differ significantly in their goals, representations and usage. Seeding
methods aim to identify local regions of similarity between sequences, providing fine-grained
information about where and how sequences resemble each other. This often comes at
the cost of increased memory footprint and computational overhead. Specifically, seeding
methods typically extract seeds from a relatively small sliding window over a longer input
sequence. By generating one or more seeds from each overlapping window!, the number of

1 There also exist seeding schemes without a window guarantee, such as syncmer [6].

K. Chen, V. Pattar, and M. Shao

seeds for a sequence of length n is usually ©(n). In contrast, sketching methods prioritize
efficiency by transforming sequences into compact, low-dimensional representations that
enable fast, global similarity estimation. For example, an E. coli genome with several million
base pairs is condensed to a length 10,000 vector by each sketching method in the above
experiment. Unlike seeds, which are often used temporarily during computation and then
discarded, sketches are typically stored and reused, serving as compact indices in databases
containing vast numbers of sequences.

There are numerous interesting directions that call for further investigations. From the
theoretical perspective, a deeper understanding of SubseqSketch, and subsequence-based
features in general, can be beneficial for better algorithmic designs as well as guiding
practical applications. For example, recent work [1] has shown that pattern matching with
gaps, a problem closely related to finding tokenized subsequences, can be solved in strongly
subquadratic time, making it a promising variant for improving SubseqSketch. Many methods
compared in the experiments come with theoretical guarantees: MH is an unbiased estimator
for the Jaccard similarity; OMH is a locality-sensitive hashing (LSH) family for the edit
distance; and CGK is an embedding for the edit distance with a quadratic distortion. Given
the superior performance of SubseqSketch against these methods, it is natural to consider
what bounds can be proved on it. More specifically, we are curious if SubseqSketch is an
LSH, and if so, does it offer better hash collision probabilities? Or is it an embedding with
provable small distortion for the edit distance? In that case, study the relation between its

parameters and the achieved distortion can help to make informed decisions in practical use.

On the application side, there are several potential approaches to enhance SubseqSketch.

For example, Mash [21] is a popular tool for genome distance estimation. It is based on MH
whose estimation does not exhibit the strongest correlation with edit distance. However, by
applying a simple Poisson model to adjust the MH score [21], Mash produces a distance that
closely approximates the mutation rate on real datasets. Since SubseqSketch starts with a
more accurate estimation, it is reasonable to believe that similar techniques can be applied
to further improve its performance.

A related question concerns the similarity function used by SubseqSketch. The cosine
similarity was chosen for its effectiveness and simplicity. While it matches our intuition that
sketches of similar sequences should have near identical corresponding entries and therefore
should be roughly pointing to the same direction in the sketch vector space, the cosine
similarity explicitly ignores the magnitude of the vectors. In the extreme case, a sketch full
of 1’s is considered to have the maximum similarity with another sketch full of 10’s. This
greatly diverges from the designed meaning of the SubseqSketch entries — the first sequence
barely contains any testing sequences whereas the second contains large portions of each
testing sequence — they must be very different! Exploring different similarity functions that
can better incorporate the expected interpretation of the entries can therefore potentially
make SubseqSketch more accurate.

Yet another observation is that SubseqSketch is sensitive for globally well-aligned sequences
but can struggle with ones that only share meaningful local alignments. For example, we
cannot expect a genome comprising millions of base pairs to produce a SubseqSketch similar
to that of a 100-base-pair short read. Other sketching methods such as MH also suffer from
these situations and special variants such as FracMinHash [11] are designed to handle them
differently. As another example, in building overlap graphs for genome assembly, one needs
to identify overlapping pairs of sequences that contain additional unaligned prefixes and
suffixes. Suppose that the tail of sequence a overlaps with the head of sequence b. Since
SubseqSketch tests for subsequences from left to right and stops immediately when the next

7:15

WABI 2025

7:16

Sequence Similarity Estimation by Random Subsequence Sketching

token cannot be found, the sketches will be disproportionally skewed: because b does not
have the beginning part of a, testing sequences fully live inside a can produce 0’s for b, even
if b contains long suffixes of them. We hope to see diverse adaptations of SubseqSketch
designed to address these various challenges.

—— References

1

10

11

12

13

Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan. Longest Common Substring
with Gaps and Related Problems. In Timothy Chan, Johannes Fischer, John Iacono, and
Grzegorz Herman, editors, 32nd Annual European Symposium on Algorithms (ESA 2024),
volume 308 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1-16:18,
Dagstuhl, Germany, 2024. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/
LIPIcs.ESA.2024.16.

Andrei Z Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21-29.
IEEE, 1997. doi:10.1109/SEQUEN. 1997 .666900.

Andrea Califano and Isidore Rigoutsos. FLASH: A fast look-up algorithm for string homology.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’93),
pages 353-359. IEEE, 1993. doi:10.1109/CVPR.1993.341106.

Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucky. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Daniel Wichs and
Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 712-725. ACM,
2016. doi:10.1145/2897518.2897577.

Xinyan Dai, Xiao Yan, Kaiwen Zhou, Yuxuan Wang, Han Yang, and James Cheng. Con-
volutional embedding for edit distance. In Proceedings of the 43rd international ACM SI-
GIR conference on Research and Development in information retrieval, pages 599-608, 2020.
doi:10.1145/3397271.3401045.

Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-mers in
biological sequences. PeerJ, 9:e10805, 2021. doi:10.7717/peerj.10805.

Barig Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de Bruijn graphs: Whole-
genome assembly of long reads in minutes on a personal computer. Cell Systems, 12(10):958-968,
2021. doi:10.1016/j.cels.2021.08.009.

Martin C Frith, Jim Shaw, and John L Spouge. How to optimally sample a sequence for rapid
analysis. Bioinformatics, 39(2):btad057, 2023. doi:10.1093/bioinformatics/btad057.
Grant Greenberg, Aditya Narayan Ravi, and Ilan Shomorony. Lexichash: sequence similarity
estimation via lexicographic comparison of hashes. Bioinformatics, 39(11):btad652, October
2023. doi:10.1093/bioinformatics/btad652.

Jaime Huerta-Cepas, Francois Serra, and Peer Bork. Ete 3: Reconstruction, analysis, and vi-
sualization of phylogenomic data. Molecular Biology and Evolution, 33(6):1635-1638, February
2016. doi:10.1093/molbev/msw046.

Luiz Irber, Phillip T Brooks, Taylor Reiter, N Tessa Pierce-Ward, Mahmudur Rahman Hera,
David Koslicki, and C Titus Brown. Lightweight compositional analysis of metagenomes
with fracminhash and minimum metagenome covers. bioRziv, pages 2022-01, 2022. doi:
10.1101/2022.01.11.475838.

Amir Joudaki, Gunnar Ratsch, and André Kahles. Fast alignment-free similarity estimation
by tensor sketching. bioRxiv, 2020. doi:10.1101/2020.11.13.381814.

Patrick Kunzmann, Tom David Miiller, Maximilian Greil, Jan Hendrik Krumbach, Ja-
cob Marcel Anter, Daniel Bauer, Faisal Islam, and Kay Hamacher. Biotite: new tools
for a versatile python bioinformatics library. BMC' bioinformatics, 24(1):236, 2023. doi:
10.1186/s12859-023-05345-6.

https://doi.org/10.4230/LIPIcs.ESA.2024.16
https://doi.org/10.4230/LIPIcs.ESA.2024.16
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/CVPR.1993.341106
https://doi.org/10.1145/2897518.2897577
https://doi.org/10.1145/3397271.3401045
https://doi.org/10.7717/peerj.10805
https://doi.org/10.1016/j.cels.2021.08.009
https://doi.org/10.1093/bioinformatics/btad057
https://doi.org/10.1093/bioinformatics/btad652
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1101/2020.11.13.381814
https://doi.org/10.1186/s12859-023-05345-6
https://doi.org/10.1186/s12859-023-05345-6

K. Chen, V. Pattar, and M. Shao

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Xijang Li, Ke Chen, and Mingfu Shao. Efficient seeding for error-prone sequences with
subseqghash2. bioRziv, pages 2024—-05, 2024. doi:10.1101/2024.05.30.596711.

Xiang Li, Qian Shi, Ke Chen, and Mingfu Shao. Seeding with minimized subsequence.
Bioinformatics, 39(Supplement_ 1):i232-i241, June 2023. doi:10.1093/bioinformatics/
btad218.

Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homology search.
Bioinformatics, 18(3):440-445, 2002. doi:10.1093/bioinformatics/18.3.440.

Benjamin Dominik Maier and Kristoffer Sahlin. Entropy predicts sensitivity of pseudorandom
seeds. Genome Research, 33(7):1162-1174, 2023. doi:10.1101/gr.277645.123.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEFE transactions on pattern analysis
and machine intelligence, 42(4):824-836, 2018. doi:10.1109/TPAMI.2018.2889473.
Guillaume Margais, Dan DeBlasio, and Carl Kingsford. Asymptotically optimal minimizers
schemes. Bioinformatics, 34(13):113-i22, 2018. doi:10.1093/bioinformatics/bty258.
Guillaume Marcais, Dan DeBlasio, Prashant Pandey, and Carl Kingsford. Locality-sensitive
hashing for the edit distance. Bioinformatics, 35(14):1127-i135, 2019. doi:10.1093/
bioinformatics/btz354.

Brian D Ondov, Todd J Treangen, Pall Melsted, Adam B Mallonee, Nicholas H Bergman,
Sergey Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation
using minhash. Genome biology, 17:1-14, 2016. doi:10.1186/s13059-016-0997-x.

Will PM Rowe. When the levee breaks: a practical guide to sketching algorithms for processing
the flood of genomic data. Genome Biology, 20:1-12, 2019. doi:10.1186/s13059-019-1809-x.
Kristoffer Sahlin. Effective sequence similarity detection with strobemers. Genome Research,
31(11):2080-2094, 2021. doi:10.1101/gr.275648.121.

Kristoffer Sahlin. Strobealign: flexible seed size enables ultra-fast and accurate read alignment.
Genome Biology, 23(1):1-27, 2022. doi:10.1186/s13059-022-02831-7.

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for
document fingerprinting. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors,
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
(SIGMOD/PODS’03), pages 76-85. ACM, 2003. doi:10.1145/872757.872770.

Wei Shen and Zamin Igbal. Lexicmap: efficient sequence alignment against millions of
prokaryotic genomes. bioRxiv, pages 2024-08, 2024. doi:10.1101/2024.08.30.610459.

Yan Song, Haixu Tang, Haoyu Zhang, and Qin Zhang. Overlap detection on long, error-
prone sequencing reads via smooth g-gram. Bioinformatics, 36(19):4838-4845, 2020. doi:
10.1093/bioinformatics/btaa252.

Huiguang Yi and Li Jin. Co-phylog: an assembly-free phylogenomic approach for closely related
organisms. Nucleic Acids Research, 41(7):e75-€75, January 2013. doi:10.1093/nar/gkt003.
Haoyu Zhang and Qin Zhang. Embedjoin: Efficient edit similarity joins via embeddings. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining, pages 585-594, 2017. doi:10.1145/3097983.3098003.

Andrzej Zielezinski, Hani Z Girgis, Guillaume Bernard, Chris-Andre Leimeister, Kujin Tang,
Thomas Dencker, Anna Katharina Lau, Sophie Rohling, Jae Jin Choi, Michael S Waterman,
et al. Benchmarking of alignment-free sequence comparison methods. Genome biology, 20:1-18,
2019. doi:10.1186/s13059-019-1755-7.

7:17

WABI 2025

https://doi.org/10.1101/2024.05.30.596711
https://doi.org/10.1093/bioinformatics/btad218
https://doi.org/10.1093/bioinformatics/btad218
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1101/gr.277645.123
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1093/bioinformatics/bty258
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-019-1809-x
https://doi.org/10.1101/gr.275648.121
https://doi.org/10.1186/s13059-022-02831-7
https://doi.org/10.1145/872757.872770
https://doi.org/10.1101/2024.08.30.610459
https://doi.org/10.1093/bioinformatics/btaa252
https://doi.org/10.1093/bioinformatics/btaa252
https://doi.org/10.1093/nar/gkt003
https://doi.org/10.1145/3097983.3098003
https://doi.org/10.1186/s13059-019-1755-7

	1 Introduction
	1.1 Related work

	2 SubseqSketch
	2.1 Tokenized subsequence
	2.2 Construction of SubseqSketch
	2.3 Choice of similarity function
	2.4 Choice of parameters
	2.5 Sample subsequences from input

	3 Experiments
	3.1 Correlation between sketch similarity and edit similarity
	3.2 Nearest neighbor search
	3.3 Phylogeny reconstruction

	4 Discussion

