
Dolphyin: A Combinatorial Algorithm for
Identifying 1-Dollo Phylogenies in Cancer
Daniel W. Feng #

Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign,
Urbana, IL, USA

Mohammed El-Kebir1 #Ñ

Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign,
Urbana, IL, USA
Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA

Abstract
Several recent cancer phylogeny inference methods have used the k-Dollo evolutionary model for
single-nucleotide variants. Specifically, in this problem one is given an m × n binary matrix B and
seeks a rooted tree T with m leaves that correspond to the m rows of B, and each node of T is
labeled by a binary state for each of the n characters subject to the restriction that each character
is gained at most once (0-to-1 transition) and subsequently lost at most k times (1-to-0 transitions).
The 1-Dollo variant, also known as the persistent perfect phylogeny where one is restricted to at most
k = 1 losses per character, has been studied extensively, but its hardness remains an open question.
Here, we prove that the 1-Dollo Linear Phylogeny (1DLP) problem, where we additionally
require the resulting 1-Dollo phylogeny T to be linear, is equivalent to verifying whether the input
matrix B adheres to the Consecutive Ones Property (C1P), which can be solved in polynomial
time. Due to the equivalence, several known NP-hardness results for relevant variants of C1P carry
over to 1DLP, including the minimization of false negatives (0-to-1 modifications to the input matrix
B) or the allowance of 2 gains and 2 losses. We furthermore show how we can recursively decompose
any, not necessarily linear, 1-Dollo phylogeny T into several 1-Dollo linear phylogenies, connected
by matching branching points. We extend this characterization to matrices B that admit 1-Dollo
phylogenies, giving necessary and sufficient conditions for the existence of a novel decomposition of B

into several submatrices and corresponding branching points. This decomposition forms the basis of
Dolphyin, a new exponential-time algorithm for inferring 1-Dollo phylogenies that efficiently leverages
the determination of linear 1-Dollo phylogenies as a subroutine. Dolphyin can also be applied to
input matrices B with false negatives. We demonstrate that Dolphyin is runtime-competitive with a
previous integer linear programming based algorithm SPhyR on simulated datasets. We additionally
analyze simulated datasets with false negative errors and find that in the median case, Dolphyin
infers 1-Dollo phylogenies with inferred error rates at or below the ground truth rate. Finally,
we apply Dolphyin to 99 acute myeloid leukemia single-cell sequencing datasets, finding that the
majority of the cancers can be explained by 1-Dollo phylogenies with false negative error rates in
line with the used sequencing technology.
Availability. Dolphyin is available at: https://github.com/elkebir-group/Dolphyin.
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1 Introduction

The clonal theory of cancer states that tumors are composed of heterogeneous clones, which
are groups of cells with similar genotypes. Clones arise from an evolutionary process during
which somatic mutations accumulate in cell populations [25]. By performing bulk or single-
cell sequencing on these clones’ DNA or RNA, scientists can identify common somatic
mutations such as single-nucleotide variants (SNVs), copy number aberrations (CNAs), or
structural variants (SVs). Then, algorithms attempt to infer phylogenies, which represent the
evolution of the tumor, from sequencing data for important downstream analysis and clinical
decision-making [30]. These phylogenetic inference algorithms utilize sequencing-technology
specific error characteristics and constraints on how these somatic mutations accumulate,
which constitute an evolutionary model specific to the somatic mutations of interest [29].

In this work, we focus on the presence or absence of SNVs in single-cell DNA sequencing
data. More precisely, we are given single-cell data in the form of a matrix B where each
row in the data is a taxon, representing a tumor cell, and each column is a single-nucleotide
variant (SNV), hereafter referred to as a character. The entries in the data matrix would
then be either 0 or 1, indicating the absence or presence of a mutation in a particular cell. We
wish to find a phylogeny, i.e. a rooted, node-labeled tree T whose leaves represent the extant
cells of the tumor, internal nodes represent ancestral tumor cells, and the root represents
a normal cell [25], that explains this data. We would then need to assume an evolutionary
model that constrains the phylogenies allowed on this data. Under the well-studied two-state
perfect phylogeny model [1, 15, 20], for example, no character can be lost once gained in
a path starting from the root of tree T . Detecting whether an assumed error-free binary
data matrix allows a phylogeny under the perfect phylogeny model is solvable in polynomial
time [1, 18].

However, the restrictiveness of the perfect phylogeny model of evolution has inspired
investigation into a wide range of more generalized and biologically-plausible models [4, 13].
Many analyses have operated under the flexible k-Dollo model of evolution, under which
any character may be gained exactly once but lost in the tumor’s evolution at most k

times [7,9,12,28]. This flexibility affords the incorporation of common biological events, such
as CNAs that may delete previously gained SNVs, and can thus be much more realistically
versatile in biological analysis. The ∞-Dollo phylogeny inference [11, 26] and tree size-
constrained versions of Dollo phylogeny inference [11] are known to be NP-hard. Additionally,
the problem variant for Dollo inference where the total number of losses summed over
all characters is minimized, rather than outright bounded per character, can be solved in
polynomial time when the resulting phylogeny is clade-constrained [9].

An important subcase of the k-Dollo problem is the k = 1 subcase or 1-Dollo problem,
also known as the persistent phylogeny problem (Figure 1). The 1-Dollo problem has been
extensively studied, using various problem statements, for over 20 years [17]. For example,
characterizations of the 1-Dollo problem have yielded an exact algorithm that solves the
1-Dollo problem in time polynomial to the number of taxa and exponential to the number of
characters [2]. Other work has also developed Integer Linear Programming (ILP) solutions to
the 1-Dollo problem and shown a connection between galled trees and 1-Dollo phylogenies [19].
Graph-based approaches, specifically the ability to manipulate colored graphs representative
of data matrices using sequenced and specific graph operations, have additionally yielded
polynomial-time algorithms for a restricted version of the 1-Dollo problem [3]. However, the
complexity of the general 1-Dollo problem remains an open question [3].
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Figure 1 Tumor phylogeny estimation from single-cell sequencing (SCS) data under the 1-Dollo,
or persistent phylogeny, model of evolution. Heterogeneous tumors are composed of distinct cellular
populations with distinct complements of somatic mutations, including single-nucleotide variants
(SNVs). During cancer progression, SNVs are frequently lost due to copy-number aberrations, but
rarely introduced more than once. Here, single-cell sequencing of a tumor yields an input matrix
B, whose m rows are taxa and n columns are SNVs. Under the 1-Dollo evolutionary model, each
SNV can only be gained once and lost once. Our goal is to infer a satisfying phylogeny T under this
model or demonstrate that one does not exist.

Separately, tumor phylogenies can either be linear – dash that is, phylogeny T has no
nontrivial branching points in which cell evolution diverges – dash or branching otherwise,
based on the tumor’s selective pressures. In this work, we define “branching points” to entail
internal nodes in T with more than one child that are also internal nodes. Many phylogenies
on real data, while branching, have exhibited a disproportionately small number of branching
points relative to the number of taxa [23, 28]. Such phylogenies plausibly arise when the
tumor microenvironment exerts severe enough selective pressure to limit branching to a few,
highly viable offshoot clones [10]. This observation motivates phylogenetic inference that
is specialized for finding linear or near-linear phylogenies. For example, machine learning
techniques have been used to determine if a tumor phylogeny is likely linear [27] and, in
previous work, we showed that determining the minimum number of changes from 0 to 1 in
a data matrix such that the altered matrix is then representative of even a linear perfect
phylogeny is NP-hard [31]. However, as far we are aware, determining 1-Dollo phylogenies
on data that are strictly linear has not yet been explicitly examined.

In this paper, our aims are first theoretical and second experimental. First, we draw an
equivalence between determining if a data matrix B admits a 1-Dollo linear phylogeny and
determining if B has the consecutive ones property, which is a known property verifiable
in polynomial time [16]. We use this theoretical characterization of matrices admitting
1-Dollo linear phylogenies to discuss natural problem variants, such as determining 1-Dollo
linear phylogenies with fixed character-state vectors for the root or terminating leaf, and
show that determining the minimal number of false negative entries in a sequencing data
input to allow such a phylogeny, contrastingly, is NP-hard. As a tree can be recursively
decomposed around its branching points, we then use this linear subcase of the 1-Dollo
problem to recursively characterize all matrices admitting any 1-Dollo phylogeny, regardless
of branching, with a series of necessary and sufficient conditions. Second, we develop a
combinatorial algorithm, Dolphyin (DOllo Linear PHYlogeny INference Method), that uses
this theoretical characterization to practically determine 1-Dollo phylogenies on sequencing
data. We show that Dolphyin, which relies on determining linear chains of taxa satisfying
the 1-Dollo model of evolution and then recursing on remaining taxa, is runtime-competitive
with SPhyR – dash an ILP-based method of inference for the k-Dollo problem. Additionally,
we adapt Dolphyin to probabilistically correct for false-negative errors in sequencing. We
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apply Dolphyin to simulated datasets with false-negative errors and show that Dolphyin
yields 1-Dollo phylogenies with inferred rates of error at or below the true rate of error.
Finally, we apply Dolphyin to 99 real datasets of acute myeloid leukemia (AML) single cell
sequencing data [23] and find that Dolphyin infers 1-Dollo phylogenies for 55 datasets with
false negative error rates consistent with the used sequencing technology.

2 Problem Statement

Suppose we have sequenced m cells of a tumor and identified n single-nucleotide variants
(SNVs). We are given a binary matrix B ∈ {0, 1}m×n, whose m rows or taxa correspond to
the sequenced cells and whose n columns or characters correspond to the SNVs. The tumor
cells share a common evolutionary history, represented by a rooted and node-labeled tree T .
Here, we require T to adhere to the k-Dollo evolutionary model [13], defined as follows.

▶ Definition 1. A rooted, node-labeled tree T is a k-Dollo phylogeny for an m × n binary
matrix B = [b1, . . . , bm]⊤ rooted at b0 = [b0,1, . . . , b0,n]⊤ provided

(i) each node v in T is labeled by a binary vector bT (v) = [b(v, 1), . . . , b(v, n)]⊤;
(ii) the root r of T is labeled by bT (r) = b0;
(iii) T has m leaves such that each taxon t ∈ [m] corresponds to exactly one leaf σT (t) = v

in T with parent u such that bT (v) = bT (u) = bt;
(iv) for each character c ∈ [n] where b0,c = 0, there is at most one gain edge (u, v) such that

bT (u, c) = 0 and bT (v, c) = 1, and at most k loss edges (u′, v′) such that bT (u′, c) = 1
and bT (v′, c) = 0;

(v) for each character c ∈ [n] where b0,c = 1, there is no gain edge and at most k loss edges.

We omit the subscript T from node labeling bT (v) and taxa mapping σT (t) if it is clear
from context that they apply to a particular tree T . In this paper, we restrict our attention
to the common case where at most k = 1 loss per character is allowed and, unless otherwise
stated, assume that the root must be labeled by all 0s, i.e. b(r) = b0 = 0. We call such trees
simply 1-Dollo phylogenies for B. Thus, we seek to solve the following problem.

▶ Problem 1 (1-Dollo Phylogeny (1DP)). Given binary matrix B ∈ {0, 1}m×n, build a
1-Dollo phylogeny T for B or show that one does not exist.

We note that the above problem is also known as the persistent phylogeny problem [2].
In addition to the above problem, we are also interested in the problem where T is required
to be a 1-Dollo linear phylogeny for B.

▶ Definition 2. A 1-Dollo phylogeny for a binary matrix B ∈ {0, 1} is linear if the removal
of the m leaves of T corresponding to the m taxa yields a chain graph.

▶ Problem 2 (1-Dollo Linear Phylogeny (1DLP)). Given binary matrix B ∈ {0, 1}m×n,
is there a 1-Dollo linear phylogeny T for B, and if so, build one.

3 Combinatorial Characterization

We characterize the solution spaces of both 1DP and 1DLP, starting with the more restrictive
problem, 1DLP, in Section 3.1. We then build on this result by discussing the complexity of
common problem variants to 1DLP. Finally, we demonstrate in Section 3.2 that solutions
to the 1DP problem can be recursively characterized in terms of itself and 1-Dollo linear
phylogenies. Due to space constraints, we delegate the proofs of all lemmas and theorems to
the supplement.
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To simplify the exposition, we introduce the following definition of a compact phylogeny
and lemma, stating that one can assume without loss of generality that all internal, non-root
nodes of solutions T must either correspond to observed taxa or are branching points, and
all internal edges must be either a gain or a loss edge for some character. Intuitively, any
internal, non-root nodes of a given 1-Dollo phylogeny T ′ that do not correspond to one of
these two cases can always be contracted to create a compact 1-Dollo phylogeny T .

▶ Definition 3. A 1-Dollo phylogeny T with root r for a matrix B ∈ {0, 1}m×n is compact if
(i) each internal node u ̸= r of T either corresponds to an observed taxon, i.e. u has a

leaf child v such that bT (u) = bT (v); or is a branching point, i.e. u has two distinct
outgoing edges (u, v1), (u, v2) such that bT (u) ̸= bT (v1) and bT (u) ̸= bT (v2); and

(ii) and every internal edge (u, v) is either a gain or loss edge for some character so that
bT (u) ̸= bT (v).

▶ Lemma 4. For each 1-Dollo phylogeny T for a matrix B there exists a unique compact
1-Dollo phylogeny T ′ for matrix B obtained from T .

3.1 1DLP and the Consecutive Ones Property
We show that the 1DLP problem is equivalent to determining whether the input binary
matrix B satisfies the consecutive ones property, which is defined as follows.

▶ Definition 5 (Ref. [16]). An m × n binary matrix B has the consecutive ones property
(C1P) if there exists a permutation π : [m] → [m] such that for each column c the 1s appear
consecutively when permuting the rows of B according to π.

To demonstrate this equivalence, we first propose the following construction of obtaining
a tree T from a matrix B that is C1P with permutation π, illustrated in Figure 2.

▶ Definition 6. The rooted, node-labeled tree T (B, π) resulting from a binary matrix B =
[b1, . . . , bm]⊤ that is C1P with permutation π : [m] → [m] has (i) a root node r = u0 labeled by
b(r) = 0, (ii) internal nodes u1, . . . , um and leaves v1, . . . , vm labeled by b(ut) = b(vt) = bπ(t)
for each taxon t ∈ [m], (iii) edges (ut−1, ut) and (ut, vt) for each taxon t ∈ [m] and taxon
leaf labeling σ(vt) = t for each taxon t ∈ [m].

This construction leads us to the main theorem of this section.

▶ Theorem 7. There exists a 1-Dollo linear phylogeny T for B if and only if B is C1P.

As determining whether any binary matrix B ∈ {0, 1}m×n is C1P including determining
the corresponding permutation π : [m] → [m] of rows is solvable in O(mn) time using PQ
trees [5], 1DLP is similarly solvable in O(mn) time.

▶ Corollary 8. 1DLP is solvable in O(mn) time.

3.1.1 Rooted and Terminating Variants of 1DLP
A natural generalization of 1DLP is the Rooted 1-Dollo Linear Phylogeny (R1DLP)
problem, where the root node r must be labeled by a given vector b0 ∈ {0, 1}n not necessarily
equal to 0.

▶ Problem 3 (Rooted 1-Dollo Linear Phylogeny (R1DLP)). Given binary matrix
B ∈ {0, 1}m×n and binary vector b0 ∈ {0, 1}n, is there a 1-Dollo linear phylogeny T for B

rooted at b0, and if so, build one.

WABI 2025
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Figure 2 (a) An example matrix B demonstrating that the 1DLP problem is equivalent to the
C1P problem. (b) Determining that B is C1P with permutation π : [m] → [m] yields permuted
matrix B′ such that the 1s are consecutive in each column. (c) This allows the construction of a
1-Dollo linear phylogeny T for B following Definition 6.

Clearly, the 1DLP problem is a special case of the 1RDLP problem where b0 = 0. In the
following, we show that the 1RDLP problem can also be solved in O(mn) time by extending
matrix B = [bt,c] as follows (Figure 3).

▶ Definition 9. The (m + 1) × (n + 1) binary matrix B′(B, b0) resulting from m × n binary
matrix B = [bt,c] and n-dimensional binary vector b0 = [b0,c] has entries b′

t,c equal to

b′
t,c =


bt,c, if t ∈ [m] and c ∈ [n],
1, if t ∈ [m] and c = n + 1,
b0,c, if t = m + 1 and c ∈ [n],
0, if t = m + 1 and c = n + 1.

(1)

▶ Lemma 10. There exists a 1-Dollo linear phylogeny T for B rooted at b0 if and only if
there exists a 1-Dollo linear phylogeny T ′ for B′(B, b0).

▶ Corollary 11. R1DLP is solvable in O(mn) time.

A second generalization of 1DLP is the Rooted, Terminated 1-Dollo Linear
Phylogeny (RT1DLP) problem where upon removal of the m leaves corresponding to
the m taxa of B the root node r is labeled by b0 and the sink node s is labeled by b∗
(Figure 3). More precisely, we have the following definition for such a constrained 1-Dollo
linear phylogeny.

▶ Definition 12. A 1-Dollo linear phylogeny T for B ∈ {0, 1}m×n rooted at b0 terminates
at b∗ if removing the leaves v1, . . . , vm corresponding to the m taxa yields a chain graph
terminating at node s such that b(s) = b∗.

▶ Problem 4 (Rooted, Terminated 1-Dollo Linear Phylogeny (RT1DLP)). Given
binary matrix B ∈ {0, 1}m×n and binary vectors b0, b∗ ∈ {0, 1}n, is there a 1-Dollo linear
phylogeny T for B rooted at b0 and terminating at b∗, and if so, build one.

Again, R1DLP (Problem 3) is a special case of RT1DLP where b∗ = 0 and 1DLP
(Problem 2) is a special case of RT1DLP where b0 = b∗ = 0. The 1RTDLP problem can
be solved in O(mn) time by a similar matrix extension to B as discussed regarding 1RDLP.
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with root vector r and terminating state s. (b) Modified matrix B′ derived from the transformation
described in Definition 13 on B, r, and s. (c) 1-Dollo linear phylogeny T ′ for B′, with corresponding
1-Dollo linear phylogeny T rooted at br and terminated at bt for matrix B.

▶ Definition 13. The (m + 2) × (n + 2) binary matrix B′(B, b0, b∗) resulting from m × n

binary matrix B = [bt,c] and n-dimensional binary vectors b0 = [b0,c] and b∗ = [b∗,c] has
entries b′

t,c equal to

b′
t,c =



b0,c, if t = m + 1 and c ∈ [n],
0, if t = m + 1 and c = n + 1,
1, if t = m + 1 and c = n + 2,
b∗,c, if t = m + 2 and c ∈ [n],
0, if t = m + 2 and c = n + 2.


1, if t = m + 2 and c = n + 1,
bt,c, if t ∈ [m] and c ∈ [n],
1, if t ∈ [m] and c = n + 1,
1, if t ∈ [m] and c = n + 2,

(2)

▶ Lemma 14. There exists a 1-Dollo linear phylogeny T for B rooted at b0 and terminating
at b∗ if and only if there exists a 1-Dollo linear phylogeny T ′ for B′(B, b0, b∗).

▶ Corollary 15. RT1DLP is solvable in O(mn) time.

3.1.2 Additional Variants of 1DLP
The direct equivalence from 1DLP to the Consecutive Ones Property allows several known
properties from the latter to apply to 1DLP. For example, allowing for false negatives, a
typical phenomenon in single-cell DNA sequencing due to allelic dropout [24], yields the
following problem.

▶ Problem 5 (Minimum Error 1-Dollo Linear Phylogeny (ME1DLP)). Given binary
matrix B ∈ {0, 1}m×n for m cells and n SNVs, determine the minimum number of 0 to 1
replacements in B such that the resulting matrix B′ has a 1-Dollo linear phylogeny T .

As the equivalent problem of determining the minimum number of 0-to-1 matrix modific-
ations of any binary matrix B to satisfy C1P is NP-hard [6], ME1DLP is also NP-hard.

▶ Corollary 16. ME1DLP is NP-hard.

In a similar vein, the 1DLP problem variant with at most two gains and at most two
losses per character is equivalent to the C1P generalization (2, ∞) observed in [8], which is
NP-hard.

▶ Corollary 17. Determining whether a binary matrix B ∈ {0, 1}m×n admits a 1-Dollo linear
phylogeny with at most two gains and at most two losses per character is NP-hard.

WABI 2025
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3.2 Recursive Characterization of 1DP
We begin by stating the rooted version of 1DP (Problem 1), which has no linear constraint.

▶ Problem 6 (Rooted 1-Dollo Phylogeny (R1DP)). Given binary matrix B ∈ {0, 1}m×n

and binary vector b0 ∈ {0, 1}n, construct a 1-Dollo phylogeny T for B rooted at b0 or
determine that one does not exist.

In this section we will show how a 1DP problem instance B ∈ {0, 1}m×n can be recursively
decomposed into smaller Rooted 1-Dollo Linear Phylogeny (R1DLP, Problem 3),
Rooted, Terminated 1-Dollo Linear Phylogeny (RT1DLP, Problem 4) and Rooted
1-Dollo Phylogeny (R1DP, Problem 6) instances on submatrices of B.

To that end, we introduce the notation B[X, C] to indicate the submatrix of B induced
by rows/taxa X ⊆ [m] and columns/characters C ⊆ [n]. Moreover, we define b ⊘ C to be
the restriction of binary vector b ∈ {0, 1}n to only characters C ⊆ [n]. For example, the
restriction of b = [0, 1, 1, 1, 1]⊤ to characters C = {1, 3} equals b ⊘ C = [0, 1]⊤. We use the
shorthand T ⊘ C to indicate that all node labels of T have been restricted to C, i.e. b(v) ⊘ C

for all nodes v of T .

3.2.1 Recursive Characterization of Rooted 1-Dollo Phylogenies
Like every tree structure, a 1-Dollo phylogeny T for a given binary matrix B can be recursively
characterized. Key to the characterization are branching points, which are internal nodes
with more than one non-leaf child. Let v∗ be the first branching point encountered by a tree
traversal on T starting from its root r labeled by b0. Let v∗ be labeled by b∗ and have ℓ > 1
non-leaf children. If no such node exists then T is simply a 1-Dollo linear phylogeny for B,
corresponding to the base case of the recurrence.

If there exists a branching point v∗ then, on the tree traversal from r to v∗, we encounter
a subset X0 ⊆ [m] of taxa as well as identify sets C+

0 , C−
0 ⊆ [n] of characters that were gained

or lost solely on this traversal, respectively. Note that a character first gained and then lost
on this traversal is present in both C+

0 and C−
0 . Also, note that C−

0 may not be a subset of
C+

0 ; for instance, there may be a character c that was previously gained such that b0,c = 1
that is subsequently lost prior to the branching point v∗, leading to c ̸∈ C+

0 and c ∈ C−
0 .

Let C0 = C−
0 ∪ C+

0 , and let v∗ be labeled by binary vector b∗. The encountered nodes on
the traversal from r to v∗ induce a subtree T0 such that its restriction T0 ⊘ C0 is precisely
a 1-Dollo linear phylogeny for submatrix B[X0, C0] rooted at b0 ⊘ C0 and terminating at
b∗ ⊘ C0. To characterize the remainder of the tree, observe that performing a traversal of
T starting at the i-th outgoing edge from v∗ yields a tree Ti composed of taxa Xi, gained
characters C+

i and lost characters C−
i . Let Ci = C−

i ∪ C+
i . Since decomposing a tree cannot

add new unique edges or nodes to the sum of its parts, we have that Ti ⊘ Ci is precisely a
1-Dollo phylogeny for submatrix B[Xi, Ci] rooted at b∗ ⊘ Ci.

▶ Lemma 18. For a given binary vector b0 ∈ {0, 1}n and 1-Dollo phylogeny T for matrix
B ∈ {0, 1}m×n, let T0 be the subtree of T obtained by traversing from the node v0 labeled
by b0 to a first branching point v∗ with label b∗, and let T1, . . . , Tℓ be the subtrees of T

obtained by traversing along each of the ℓ > 1 outgoing edges from v∗. Let C+
i , C−

i and Xi

be the gained characters, lost characters and observed taxa, respectively, in tree Ti where
i ∈ {0, . . . , ℓ}. Let Ci = C−

i ∪ C+
i for all i ∈ {0, . . . , ℓ}. Then, the following conditions hold.

(i) Sets C+
0 , . . . , C+

ℓ are pairwise disjoint, sets C−
0 , . . . , C−

ℓ are pairwise disjoint, and sets
C1, . . . , Cℓ are pairwise disjoint.
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(ii) Sets X0, . . . , Xℓ are pairwise disjoint, and X0 ∪ . . . ∪ Xℓ is the set of all taxa observed
in the subtree of T rooted at v0.

(iii) C+
i ⊆ [n] \ C−

0 for all i ∈ [ℓ].
(iv) Tree T0 ⊘ C0 is a 1-Dollo linear phylogeny for submatrix B0 = B[X0, C0] rooted at

b0 ⊘ C0 terminating at b∗ ⊘ C0.
(v) For each i ∈ [ℓ], tree Ti ⊘ Ci is a 1-Dollo phylogeny for submatrix Bi = B[Xi, Ci] rooted

at b∗ ⊘ Ci.

Thus, at each branching point v∗ of T with ℓ > 1 non-leaf children, we obtain a single
instance of Rooted, Terminated 1-Dollo Linear Phylogeny (RT1DLP, Problem 4)
and ℓ instances of Rooted 1-Dollo Phylogeny (R1DP, Problem 6). Each of these
ℓ instances can be further decomposed in a recursive fashion by identifying subsequent
branching points.

3.2.2 Recursive decomposition of matrix B

The above recursive decomposition of a given 1-Dollo phylogeny T for matrix B rooted
at some b0 yields trees T0, T1, . . . , Tℓ on submatrices B0, B1, . . . , Bℓ, respectively. As a
phylogeny T can be decomposed, therefore, matrix B can also be decomposed. However, it
is far less apparent how to do so without prior knowledge of the 1-Dollo phylogeny T on
B. Here, we describe how given B and b0, submatrices B0 = B[X0, C0], . . . , Bℓ = B[Xℓ, Cℓ]
can be inferred solely from the taxa set X0 ⊆ [m] and the two character sets C−

0 , C+
0 ⊆ [n].

We begin by noting how b0 and character sets C−
0 , C+

0 uniquely determine the label of a
potential branching point, since there is a unique path from the root to the branching point
containing gains C+

0 and losses C−
0 . To that end, we define the following function.

▶ Definition 19. Given binary vector b0 = [b0,1, . . . , b0,n]⊤ and characters C−, C+ ⊆ [n],
the n-dimensional binary vector b(b0, C+, C−) = [b1, . . . , bn]⊤ consists of entries

bc =


0, if c ∈ C−,
1, if c ∈ C+ \ C−,
b0,c, otherwise.

(3)

▶ Lemma 20. Let T be a 1-Dollo phylogeny for matrix B. For any node v0 labeled by b0
and descendant node v∗ labeled by b∗ it holds that b∗ = b(b0, C+, C−) where C+ and C−

are the characters that are gained and lost, respectively, on the path from v0 to v∗.

Knowledge of sets X0, C+
0 , and C−

0 immediately implies knowledge of B0 = B[X0, C0]
since C0 = C+

0 ∪ C−
0 . Additional knowledge of b0 allows us to infer the terminal label

b∗ ⊘ X0 = b(b0, C+
0 , C−

0 ) ⊘ X0 of RT1DLP instance (B0, b0 ⊘ X0, b∗ ⊘ X0).
Thus, our only nontrivial goal is to infer submatrices B1 = B[X1, C1], . . . , Bℓ = B[Xℓ, Cℓ]

defined by taxa X1, . . . , Xℓ and characters C1, . . . , Cℓ. We note that by the definition of a
1-Dollo phylogeny, only characters c ∈ [n] \ C−

0 can be potentially gained or lost after the
branching point labeled by b∗, and each such c can only be gained and potentially lost in
specifically one tree Ti. To detail whether any character c must be gained or lost in 1-Dollo
phylogeny Ti on some proposed matrix Bi, we provide the following definition.

▶ Definition 21. A character c ∈ [n] is variable w.r.t. an m × n matrix B = [bt,c] and
n-dimensional vector b = [bc] if there exists a taxon t ∈ [m] such that bt,c ̸= bc.

WABI 2025
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Our goal therefore translates into determining a partition {X1, . . . , Xℓ} of [m] \ X0 and
partition {C1, . . . , Cℓ} of characters C∗ = [n] \ C−

0 such that each character c ∈ C∗ is variable
w.r.t. at most one submatrix Bi and b∗ (where i ∈ [ℓ]). To that end, we define the following
matrix B̄(B, b∗, X0, C∗).

▶ Definition 22. The (m − |X0|) × |C∗| complement matrix B̄(B, b∗, X0, C∗) obtained from
m × n binary matrix B = [bt,c] and n-dimensional vector b∗ = [b∗,c] has entries

b̄t,c =
{

bt,c, if b∗,c = 0,
1 − bt,c, if b∗,c = 1,

(4)

where t ∈ [m] \ X0 and c ∈ C∗.

▶ Lemma 23. Let B̄i be a submatrix of B̄(B, b∗, X0, C∗) defined by characters Ci ⊆ C∗ and
taxa Xi ⊆ [m] \ X0 and let Bi = B[Xi, Ci]. Then, character c ∈ Ci is variable w.r.t. (Bi, b∗)
if and only if B̄i contains a 1 in column c.

Whether a character is variable with respect to vector b∗ and submatrix Bi thus cor-
responds to whether the character column in B̄i contains a 1. Since any character must
be variable in at most one submatrix, our goal now finally equates to inferring an block
diagonal matrix decomposition into block matrices B̄1 = B̄[X1, C1], . . . , B̄ℓ = B̄[Xℓ, Cℓ] of
B̄(B, b∗, X0, C∗), i.e.

B̄ =


B̄1 0 · · · 0
0 B̄2 · · · 0
...

...
. . .

...
0 0 · · · B̄ℓ

 . (5)

▶ Definition 24. Partition {X1, . . . , Xℓ} of taxa [m] \ X0 and partition {C1, . . . , Cℓ} of
characters C∗ are a block diagonal decomposition of B̄(B, b∗, X0, C∗) if, for every character
c ∈ Ci, there exists no t ∈ Xj for all j ̸= i such that b̄t,c = 1.

This can be trivially achieved in O(mn) time by the equivalent problem of, given a
bipartite graph’s adjacency matrix, determining its connected components. This equivalency
also demonstrates that the block diagonal matrix decomposition of maximum size for any
matrix is unique (excluding characters containing all values of 0 in B̄, which can be trivially
assigned to any Ci and have no restricting effect on determining a phylogeny). Thus, we
assume we always infer block diagonal matrix decompositions of maximum size. We finally
synthesize B0, matrix complement B̄(B, b∗, X0, C∗), and this block diagonal decomposition
to formalize a 1-Dollo matrix decomposition on B and b0 by X0, C+

0 , and C−
0 .

▶ Definition 25. Given binary matrix B ∈ {0, 1}m×n and binary vector b0, the 1-Dollo matrix
decomposition of B and b0 on X0, C+

0 , and C−
0 is defined as the set of submatrices {B0, B1,

. . . , Bℓ} such that B0 = B[X0, C+
0 ∪ C−

0 ], and B1 = B[X1, C1], . . . , Bℓ = B[Xℓ, Cℓ] are each
given by the block diagonal decomposition {X1, . . . , Xℓ} and {C1, . . . , Cℓ} of B̄(B, b∗, X0, C∗),
where b∗ = b(b0, C+

0 , C−
0 ) and C∗ = [n] \ C−

0 , with maximum size ℓ.

Therefore, given binary matrix B ∈ {0, 1}m×n and 1-Dollo phylogeny T for B rooted
at b0, we have established a 1-Dollo matrix decomposition of B and b0 on known sets
X0, C+

0 , and C−
0 that yields {B0, B1, . . . , Bℓ}. Of course, such a decomposition assumes

that the values of X0, C+
0 , and C−

0 are indeed correct; that is, that X0, C+
0 , and C−

0 are
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constructed according to the aforementioned recursive characterization of T established in
Section 3.2.1. Without knowledge of T , such values are not trivially known. We use the
following definition and lemma to establish a necessary condition to X0, C+

0 , and C−
0 being

constructed according to this recursive characterization of some T , essentially dictating that
every character lacking a gain or loss edge in T0 cannot be variable across the taxa in T0.

▶ Definition 26. Sets X0, C+
0 , C−

0 are in agreement with B ∈ {0, 1}m×n and b0 if all
characters c ∈ [n] \ (C+

0 ∪ C−
0 ) are not variable w.r.t submatrix B[X0, [n]] and vector b0.

We now arrive at the main theorem of this section, where we prove that this sole necessary
condition, in tandem with the 1-Dollo matrix decomposition of binary matrix B and binary
vector b0 by X0, C+

0 , C−
0 into {B0, B1, . . . , Bℓ}, is both necessary and sufficient to recursively

characterize all B for which there exists a 1-Dollo phylogeny T rooted at some b0. Intuitively,
we prove the forward direction by decomposing an existing 1-Dollo phylogeny T on B as shown
in Section 3.2.1, deriving X0, C+

0 , C−
0 directly. We then show that each subtree beneath the

first-encountered branching point of T corresponds to some matrix resulting from the 1-Dollo
matrix decomposition of B and b0 on these derived values. Conversely, we prove the reverse
direction by beginning from a 1-Dollo matrix decomposition on some existing X0, C−

0 , C+
0

and directly constructing T from phylogenies on the decomposition’s individual parts. As
an aide, we show an example 1-Dollo phylogeny’s recursive decomposition, paralleled by its
data matrix’s recursive 1-Dollo decomposition (Figure 4).

To precisely allow for the composition of phylogenies that each may be on distinct sets of
characters, we introduce the notation b ⊕ b0 which, given a vector b ∈ {0, 1}|C| restricted
to characters C ⊆ [n] and vector b0 ∈ {0, 1}n on all characters [n], re-expands b to include
all characters in [n] by supplementing missing characters with values from b0. For example,
given b = [0, 1]⊤ on characters C = {1, 3} and b0 = [0, 1, 0, 1, 1]⊤ on the full set {1, 2, 3, 4, 5}
of n = 5 characters, b ⊕ b0 yields [0, 1, 1, 1, 1]⊤. Then, the shorthand T ⊕ b0 indicates the
expansion of all node labels of phylogeny T , i.e. b(v) ⊕ b0 for all nodes v of T . We use this
notation to state the following theorem.

▶ Theorem 27. Given matrix B ∈ {0, 1}m×n and binary vector b0, there exists a 1-Dollo
phylogeny T for B rooted at b0 if and only if there exists some set X0 ⊆ [m] of taxa and sets
C−

0 , C+
0 ⊆ [n] of characters subject to the following conditions:

1. Sets X0, C+
0 , C−

0 are in agreement with B and b0.
2. For the 1-Dollo matrix decomposition of B and b0 on X0, C+

0 , C−
0 into submatrices

{B0 = B[X0, C0], . . . , Bℓ = B[Xℓ, Cℓ]}, there exists a 1-Dollo linear phylogeny T0 for B0
rooted at b0 ⊘ C0 and terminating on b∗ ⊘ C0 and 1-Dollo phylogenies T1, . . . , Tℓ for
B1, . . . , Bℓ rooted at b(b0, C+

0 , C−
0 ) ⊘ C1, . . . , b(b0, C+

0 , C−
0 ) ⊘ Cℓ, respectively.

4 Methods

We introduce Dolphyin (DOllo Linear PHYlogeny INference), a combinatorial algorithm that
uses the above, recursive, combinatorial characterization of rooted 1-Dollo phylogenies to solve
R1DP altogether. Given any binary matrix B and binary vector b0, Dolphyin determines a
1-Dollo phylogeny on B rooted at b0 by exhaustively searching over all possible values of
X0, C+

0 , C−
0 and determining a set of values such that (i) X0, C+

0 , C−
0 are in agreement with

B and b0 and (ii) given the 1-Dollo matrix decomposition of X0, C+
0 , C−

0 on B and b0 into
submatrices {B0, B1, . . . , Bℓ}, there exists a 1-Dollo linear phylogeny T0 on B0 rooted at b0
terminating on b∗ = b(b0, C−

0 , C+
0 ) and 1-Dollo phylogenies T1, . . . , Tℓ on B1, . . . , Bℓ each
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Figure 4 (a-i) An example 1-Dollo phylogeny T on (a-ii) matrix B, along with the decomposition
of T into (b-i) 1-Dollo linear phylogeny T0 and (c-i) 1-Dollo phylogenies T1 and T2. This recursive
characterization of T is allowed by the corresponding 1-Dollo matrix decomposition of B by (b-ii)
X0, C−

0 , C+
0 into B0 and (c-ii) Matrix complement B̄(B, b∗, X0, C∗) indicated in yellow, with bold

entries representing inverted columns, and B1 and B2. T0 is rooted at b0 = 0 and terminates at
b∗ = b(C−

0 , C+
0 ), and phylogenies T1 and T2 are rooted at b∗. Critically, T0, T1, and T2 split the

gain and loss edges for each character c ∈ [n] among themselves such that each character c has at
most one gain edge and one loss edge among all of T0, T1, and T2. The partition of gain and loss
edges are visualized by (d) a color-coding of B by green and red, respectively.

rooted at b∗. This 1-Dollo linear phylogeny T0 can be inferred in O(mn) time, and 1-Dollo
phylogenies T1, . . . , Tℓ are then inferred through recursive calls of Dolphyin on matrices
B1, . . . , Bℓ. Dolphyin then returns the 1-Dollo phylogeny T rooted at b0 on B as the tree
formed by the construction on T0, . . . , Tℓ described in Theorem 27. This same Theorem 27
shows that this entire procedure is necessary and sufficient to solve any instance of R1DP. As
an additional optimization, Dolphyin preprocesses all matrices by first removing all duplicate
columns and rows, as well as trivial columns that contain 0, 1, or m 1s.

4.1 Heuristically determining candidate values of X0, C+
0 , C−

0

The exhaustive search over X0, C+
0 , C−

0 as described above is necessary and sufficient to
determine any existing 1-Dollo phylogeny. However, such a brute-force search over these
sets can be computationally intensive, requiring roughly O(2m(2n)2) = O(2m+2n) time.
Additionally, in practical R1DP instances, the vast majority of possible values of X0, C+

0 ,
and C−

0 in agreement with B and b0 do not even yield a 1-Dollo linear phylogeny T0 on B0
rooted at b0 and terminating on b∗ = b(b0, C−

0 , C+
0 ).

Therefore, we enhance Dolphyin’s performance with a practical heuristic that, prior
to the fully exhaustive search, initially restricts the enumerated values of X0, C+

0 , C−
0 in

agreement with B and b0 to a subset of candidate values where such a T0 has already



D. W. Feng and M. El-Kebir 9:13

been pre-determined to exist. Specifically, heuristic FindLinearChains constructs a set
T0 of precomputed trees T0 with corresponding values X0, C+

0 , C−
0 such that for every

element [b0, T0, X0, C+
0 , C−

0 ] ∈ T0, T0 is guaranteed to be a 1-Dollo phylogeny rooted
at b0 and terminating on b∗ = b(b0, C−

0 , C+
0 ) on B0 = B[X0, C+

0 ∪ C−
0 ]. Intuitively,

FindLinearChains considers every taxon t ∈ [m] individually and, assuming that taxon t

is a branching point in T , attempt to pack as many taxa as possible into a linear phylogeny
beginning with 0 and ending with t. Formally, we construct a directed acyclic graph over
all taxa with source b0 such an edge between taxa exists if every character observed in bt

is not lost along the edge. Then, for every such path in this graph Gt beginning with b0,
we consider all taxa X0 in this path and check if such a 1-Dollo linear phylogeny indeed
exists on these taxa across all characters. Critically, we record this set of taxa X0, along
with T0, C+

0 , and C−
0 , if and only if a 1-Dollo linear phylogeny exists.

Even with the above heuristic, the worst-case running time of the initial recursive call in
Dolphyin remains O(2m+2n · mn), where the additional factor mn corresponds to checking
whether the 1-Dollo decomposition of B by X0, C+

0 , C−
0 yields a valid 1-Dollo linear phylogeny.

Thus, the overall worst-case running time of Dolphyin is Ω(mn2m+2n).

4.2 Adapting Dolphyin to false negatives in data
When examining simulated datasets with false negative errors or real data, we modified
Dolphyin to probabilistically employ error correction. Specifically, in every recursive call,
Dolphyin randomly considers p = 0.25 pairs of taxa with replacement and, if the normalized
Hamming distance over characters between both taxa is less than or equal to some value
0 ≤ e ≤ 1, alter any character seen in one taxon to be present in both taxa. For each
pair of taxa, one taxon was selected with uniform probability and the other was selected
with probability inversely proportional to each row’s prevalence in the dataset. To perform
analysis on any given dataset with errors, we initially let e = 0, which equates to no error
correction, and iteratively increased e by 0.2 until Dolphyin returned a solution within a 10
second time limit.

5 Results

Dolphyin, and its subsequent analysis and comparison to SPhyR, was implemented on an
Apple 2.3 GHz 8-Core Intel Core i9 Macbook Pro in C++11. Dolphyin is available at:
https://github.com/elkebir-group/Dolphyin with commit hash fbf400f used for the
experiments in this paper.

5.1 Results on simulated data
We first used Dolphyin to analyze 540 simulated matrices of errorless, single-cell sequencing
data with 1-Dollo ground truth phylogenies. These datasets had either m ∈ {25, 50, 100}
cells and n ∈ {25, 50, 100} SNVs, with 90 datasets per combination of m and n, and were
previously used to benchmark the ILP-based k-Dollo solver SPhyR (Figure 5a). Data was
generated using ms [21], and full details of data generation and the data itself accessible from
SPhyR’s initial publication [12]. Dolphyin found and returned errorless 1-Dollo phylogenies
for all 540 examined instances. We found that Dolphyin remained competitive with SPhyR
in the majority of test cases across all input sizes, with identical median running times of
0.019 seconds for both methods across all instances. While Dolphyin slightly outperformed
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Figure 5 (a) Dolphyin’s runtime on simulated, errorless datasets in comparison to that of
ILP-based method SPhyR [12]. (b) The false negative error rate of data inferred by Dolphyin on
simulated datasets randomly augmented with false negatives at a ground truth rate (red line) of 0.05.
(c) An example phylogeny returned by Dolphyin on a dataset with false negatives and m = n = 25
taxa and characters. Nodes are annotated by the number of taxa present; edges are annotated by
characters numbered 1 to 25. Loss edges are indicated by a minus sign.

SPhyR on the smaller input sizes (for 25 × 25 instances: 0.008 seconds for Dolphyin and
0.0115 seconds for SPhyR), SPhyR slightly outperformed Dolphyin on larger input sizes (for
100 × 100 instances: 0.122 seconds for Dolphyin and 0.0945 seconds for SPhyR).

To assay Dolphyin’s ability to infer 1-Dollo phylogenies on datasets containing false
negatives, we then augmented the 180 simulated datasets of sizes m ∈ {25, 50, 100}, n = 25
by flipping each 1 in these datasets to a 0 with a false-negative error rate of 0.05. We
chose to augment matrices of these sizes because the number of characters n = 25 was most
comparable to that of the real AML data we examined afterwards. Similarly, we chose an
error rate of 0.05 in simulations because of its similarity to the estimated median false negative
rate of 0.058 predicted under the Mission Bio Tapestri sequencing technology producing
real AML data (allelic dropout rate of 5.8%) [23]. Since Dolphyin’s false negative error
correction is inherently probabilistic, we analyzed each dataset with 1, 5, or 10 restarts of
Dolphyin. We report the lowest inferred false negative rate of all restarts (Figure 5b), which
corresponds to the 1-Dollo phylogeny best fitting the data. In the median case, Dolphyin
inferred phylogenies with a false negative rate at or below the ground truth rate used to
generate the data (m = 100; 1 restart: median rate of 0.0399, 5 restarts: median rate of
0.0301, 10 restarts: median rate of 0.0225). Predictably, we found that increasing the number
of restarts decreased the error rate of the best 1-Dollo phylogeny inferred. As an example, we
provide a 1-Dollo phylogeny returned by Dolphyin in the analysis of a dataset with m = 25
taxa and n = 25 characters (Figure 5c). While Dolphyin is based on the characterization of
1-Dollo linear phylogenies, it clearly determines 1-Dollo phylogenies with branching.

5.2 Results on AML data
Having used Dolphyin to analyze simulated datasets both with and without false-negative
sequencing errors, we then used Dolphyin to analyze 99 real sets of AML single-cell sequencing
data [23] processed in a previous work [31] with 5 restarts per dataset. Prior to analysis, we
removed all cells with unsequenced or unknown characters, yielding a mean of m = 5460
taxa, or cells, and n = 4.42 characters per dataset.

We show the error rates achieved on each dataset across all 5 restarts (Figure 6a),
demonstrating a moderate level of consistency in inferred error rates between restarts
(standard deviation between restarts, averaged over datasets of 0.0634). Taking the minimum
over all 5 restarts, Dolphyin inferred phylogenies on the majority (55) of datasets with
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Figure 6 (a) The inferred false negative rates for all 99 examined AML datasets over 5 restarts
per dataset, relative to the false negative rate expected of the sequencing technology (0.058, red
line) [23]. (b) Among all restarts, slightly over half (55) of the AML datasets yielded phylogenies
with a false negative rate lower than 0.06. (c) The phylogeny returned by Dolphyin on real dataset
AML 51 [23] with m = 7163 taxa and n = 6 characters. Nodes are annotated by the number of taxa
present; edges are annotated with characters, or SNVs. Loss edges are indicated by a minus sign.

an estimated false negative error rate at or below 0.06, approximately matching the false
negative rate experimentally estimated in the datas’ initial publication by Mission Bio
Tapestri sequencing (median allelic dropout rate of 5.8%) [23] (Figure 6b). We speculate that
for those datasets on which error rates much greater than 0.06 were inferred, there are three
possibilities. Firstly, false positives in the real data, while less likely than false negatives
(estimated false positive rate of 1% in initial work [23]), may be preventing Dolphyin from
finding phylogenies with realistic error rates. Secondly and thirdly, more than k = 1 losses
may be necessary to realistically explain these datasets, or simply more restarts of Dolphyin
may be required to locate a realistic solution.

Finally, as a precise example of the 1-Dollo phylogenies inferred by Dolphyin, we supply
the mutation-annotated phylogeny Dolphyin inferred on AML dataset 51 with size m = 7163,
n = 6 with a false negative error rate of 0.0639 (Figure 6c). Dolphyin inferred that AML
dataset 51 had a near-linear 1-Dollo phylogeny with a internal node of outdegree 3 furthest
from the root.

6 Conclusion

This work examines the problem of inferring a 1-Dollo, or persistent phylogeny on single-cell
sequencing DNA data for SNVs. We first examine the subcase in which our 1-Dollo phylogeny
must be linear, and we prove an equivalence between whether a binary data matrix B admits
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a 1-Dollo linear phylogeny and whether B has the known consecutive ones property, which
can be verified in polynomial time [16]. We also develop polynomial-time algorithms for
natural extensions of the 1-Dollo linear subcase, such as the cases when we restrict our
1-Dollo phylogeny to be rooted at and/or terminate at some states. Using the linear subcase,
we recursively characterize all binary matrices that admit a 1-Dollo phylogeny with a series
of conditions that are provably necessary and sufficient. Unfortunately, determining whether
a matrix B is 1-Dollo using this characterization takes exponential time, leaving the hardness
of the 1-Dollo phylogeny problem open. In addition, we show that the problem of minimizing
false negatives in data as to admit a 1-Dollo linear phylogeny is NP-hard.

We use these theoretical results to develop Dolphyin, a combinatorial algorithm that
infers 1-Dollo phylogenies from sequencing data. Dolphyin directly leverages our above
characterization of matrices admitting 1-Dollo phylogenies by identifying 1-Dollo linear
phylogenies on subsets of taxa and recursing on remaining taxa and characters. Dolphyin
also incorporates probabilistic error correction and thus can also be applied to data with false
negative sequencing errors. We use Dolphyin to first analyze errorless, simulated datasets
and show that Dolphyin is runtime competitive with SPhyR [12], a previous ILP-based
approach for inferring k-Dollo phylogenies. We then apply Dolphyin to simulated datasets
with false negative errors and demonstrate that Dolphyin, in the median case, infers 1-Dollo
phylogenies with an inferred error rate at or below the ground truth rate. We finally apply
Dolphyin to 99 real acute myeloid leukemia datasets [23] and find that Dolphyin infers
1-Dollo phylogenies on the majority of these datasets with an error rate at or below the
previously, experimentally-estimated false negative error rate specific to the sequencing
technology producing these datasets.

In future work, we may consider more advanced error correction schemes for more
widely applying Dolphyin to existing datasets. We may also attempt to extend a similar,
combinatorial and recursive framework to the k-Dollo model of evolution for k > 1, or
models of evolution with more than one gain. However, we note that even determining a
specifically linear and errorless phylogeny with two gains or losses, per character, is NP-
hard [8]. Additionally, while we may consider problem extensions such as determining a
maximal number of taxa or characters admitting 1-Dollo phylogenies in data, we note that
the equivalence of 1DLP to the consecutive ones property makes several natural formulations
NP-hard in even the linear and errorless cases [22]. Finally, while we argue that the first
recursive call of Dolphyin is O(2m+2nmn) in the worst case, we would like to derive a more
precise running time taking into account all recursive calls.

In summary, our work adds to the theoretical body of knowledge on the 1-Dollo, or
persistent phylogeny, model of evolution and provides a practical algorithm for inferring
phylogenies that leverages these theoretical results. We hope that this combinatorial approach
will aid advances in determining the complexity of 1-Dollo problems and their variants.
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A Proofs

Proof (Lemma 4). Let T be a 1-Dollo phylogeny for matrix B. Let U be the set of internal,
non-root nodes u of T that do not correspond to observed taxa nor are branching points
(Definition 3). If U is empty, then subsequently contracting all internal edges (u, v) such
that bT (u) = bT (v) yields the unique compact 1-Dollo phylogeny for matrix B obtained
from T . If U is non-empty, consider any node u ∈ U and let u′ be the parent of u (which
exists as u ̸= r). Since u is an internal node, we have that u does not correspond to a taxon
and that u is not a branching point. Therefore, u has exactly one child v. We obtain T ′
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(u′, v). Clearly, T ′ remains a 1-Dollo phylogeny for B. Removing all nodes in U (in any
order) and subsequently contracting all internal edges (u, v) such that bT (u) = bT (v) yields
the unique compact 1-Dollo phylogeny for matrix B obtained from T . ◀

Proof (Theorem 7). (⇒) Let T be a 1-Dollo linear phylogeny for matrix B ∈ {0, 1}m×n.
By Definition 1, we have that T has exactly m leaves v1, . . . , vm with incoming edges
(u1, v1), . . . , (um, vm) such that b1 = b(u1) = b(v1), . . . , bm = b(um) = b(vm). Moreover,
removal of these m leaves results in a linear, chain graph T ′, containing nodes u1, . . . , um

and root r. Performing a pre-order traversal of T ′ starting from r yields an ordering
uπ(1), . . . , uπ(m) of the nodes u1, . . . , um and therefore the m taxa of B. Note that by
Definition 1 each character is gained at most once, and if gained, lost at most once. Therefore,
for each character c ∈ [n], all taxa t ∈ [m] such that bt,c = 1 will appear consecutively in π.
Hence, B is C1P as certified by permutation π.

(⇐) Let B ∈ {0, 1}m×n be C1P. As such, there exists a permutation π : [m] → [m] such
that for each column c there exists at most one row t such that bπ(t−1),c = 0 and bπ(t),c = 1
and at most one row t′ such that bπ(t′−1),c = 1 and bπ(t′),c = 0. Let T be the tree obtained
from T (B, π) following Definition 6. We claim that T is a 1-Dollo phylogeny for B in line
with Definition 1. Clearly, each node v of T is labeled by a binary vector b(v) ∈ {0, 1}n

(condition (i)), the root r = u0 is labeled by b(r) = 0 (condition (ii)) and each taxon t ∈ [m]
corresponds to a unique leaf vt = σ(t) with parent ut such that b(vt) = b(ut) = bπ(t)
(condition (iii)). It remains to show that there is at most one gain edge and at most one
loss edge (condition (iv)) for each character c ∈ [n]. However, since the permutation π

details at most one interval of consecutive taxa for each character c, it follows that taxa in T

gain c through at most one gain edge and lose c through at most one subsequent loss edge.
Condition (v) is similar satisfied with the further specification that there is no gain edge for
any character c where b0,c = 1. Hence, T is a 1-Dollo phylogeny for B. ◀

Proof (Lemma 10). (⇒) Let T be a 1-Dollo linear phylogeny for matrix B rooted at b0.
Moreover let B′ = B′(B, b0) be the (m + 1) × (n + 1) matrix obtained from B and b0
following Definition 9. Given T , we will construct a 1-Dollo linear phylogeny T ′ for B′.
Specifically, we construct T ′ from T by re-rooting on an appended node r′ labeled by the
n-dimensional vector b(r′) = 0 and adding the edge (r′, r). We additionally add leaf v0
labeled by b0 and include the edge (r, v0). Then, we extend the n-dimensional binary vector
b(v) = [bv,1, . . . , bv,n]⊤ for each node v of T ′ with an additional entry bv,n+1 defined as

bv,n+1 =
{

0, if v ∈ {r, r′},
1, if v ̸∈ {r, r′}.

(6)

We claim that T ′ is a 1-Dollo linear phylogeny for B′. Clearly, T ′ is node-labeled and rooted
at 0. By virtue of the fact that T is a 1-Dollo linear phylogeny for matrix B ∈ {0, 1}m×n

rooted at b0, every character c ∈ [n] has at most one gain edge and one loss edge in T ′, and
every original taxon t ∈ [m] is present in T ′. Additionally, character c = n + 1 has at most
one gain edge outgoing from r and no loss edges, and the new taxon m + 1 correspond to
the leaf σ(m + 1) = vr. Finally, the construction of T ′ from T retains the linearity of T .

(⇐) Let T ′ be a 1-Dollo linear phylogeny for B′ such that T ′ is compact. Following
Theorem 7, let π : [m] → [m] be the permutation such that T (B, π) = T ′.

Since T ′ is linear, the root node r′ of T ′ must have at most one non-leaf child. If no
such node exists then B trivially has m = 0 taxa and the tree T ′ consisting of a single node
labeled by b0 is a 1-Dollo linear phylogeny for B rooted at b0.
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We now focus on the case where B has m > 0 taxa. Let r be the non-leaf child of the root
node r′ of T ′. Since b′

t,n+1 = 1 for all t ∈ [m] and b′
m+1,n+1 = 0, it must be the case that

either π(m+1) = 1 or π(m+1) = m+1. To see why observe that 1 < π(m+1) < m+1 would
imply that character n + 1 would has two gain edges within T ′, violating the definition of a
1-Dollo linear phylogeny. We may assume without loss of generality on T ′ that π(m + 1) = 1,
since if π(m + 1) = m + 1, then for the permutation π∗ such that π∗ reverses π, tree
T ∗ = T (B, π∗) would be a 1-Dollo linear phylogeny for B such that π∗(m+1) = 1. Therefore,
since π(m + 1) = 1, it must be the case that r is labeled by b0.

Given T ′, we will now construct a 1-Dollo linear phylogeny T for matrix B rooted at
b0. Let vr be the leaf of T ′ whose parent is r. Specifically, we define T as the subtree of
T ′ rooted at r that excludes the leaf vr. We relabel each node v of T omitting the n + 1th
entry of its original label bT ′(v).

Since T contains all gain and loss edges present in T ′ precisely excluding edges (r′, r) and
(r, vr), contains all taxa in T ′ precisely excluding leaf taxon vr, and has root label b0, we
have that T is a 1-Dollo linear phylogeny T for B rooted at b0. ◀

Proof (Lemma 14). (⇒) Let T be a 1-Dollo linear phylogeny for matrix B rooted at b0
and terminating at b∗. Moreover let B′ = B′(B, b0, b∗) be the (m + 2) × (n + 2) matrix
obtained from B, b0 and b∗ following Definition 13. Given T , we will construct a 1-Dollo
linear phylogeny T ′ for B′. Let r be the root of T . Since T is linear, removal of the m leaves
corresponding to the m taxa yields a directed chain graph. Let s be the sink node of this
graph. Specifically, we construct T ′ from T by re-rooting on an appended node r′ labeled by
the n-dimensional vector b(r′) = 0 and adding the edge (r′, r). We additionally add leaf v0
labeled by b0 and include the edge (r, v0). Next, we add a leaf s′ labeled by b∗ and include
the edge (s, s′). Then, we extend the n-dimensional binary vector b(v) = [bv,1, . . . , bv,n]⊤ for
each node v of T ′ with an two additional entries bv,n+1 and bv,n+2 defined as

bv,n+1 =
{

0, if v ∈ {r, r′},
1, if v ̸∈ {r, r′},

and bv,n+2 =
{

0, if v ∈ {r, s, s′},
1, if v ̸∈ {r, s, s′}

(7)

We claim that T ′ is a 1-Dollo linear phylogeny for B′. Clearly, T ′ is node-labeled and rooted
at 0. By virtue of the fact that T is a 1-Dollo linear phylogeny for matrix B ∈ {0, 1}m×n

rooted at b0, every character c ∈ [n] has at most one gain edge and one loss edge in T ′, and
every original taxon t ∈ [m] is present in T ′. Character c = n + 1 has at most one gain
edge outgoing from r and no loss edges, and the new taxon m + 1 corresponds to the leaf
σ(m + 1) = vr. Character c = n + 2 has at most one gain edge (r′, r) and at most one loss
edge incoming to s, and the new taxon m + 2 corresponds to the leaf σ(m + 2) = vs. Finally,
the construction of T ′ from T retains the linearity of T .

(⇐) Let T ′ be a 1-Dollo linear phylogeny for B′ such that T ′ is compact. Following
Theorem 7, let π : [m] → [m] be the permutation such that T (B, π) = T ′. Since T ′ is linear,
the root node r′ of T ′ must have at most one non-leaf child. If no such node exists then B

trivially has m = 0 taxa and the tree T ′ consisting of nodes {r, s} with edge (r, s) such that
r is labeled by b0 and s is labeled by b∗ is a 1-Dollo linear phylogeny for B rooted at b0
terminating at b∗.

We now focus on the case where B has m > 0 taxa. Let r be the non-leaf child of
the root node r′ of T ′, and let s be the sink node of the tree constructed by removing
all leaves from T ′. Since b′

t,n+1 = 1 for all t ∈ {1, 2, . . . , m, m + 2} and b′
m+1,n+1 = 0, it

must be the case that either π(m + 1) = 1 or π(m + 1) = m + 2. To see why observe that
1 < π(m + 1) < m + 2 would imply that character n + 1 would has two gain edges within T ′,
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violating the definition of a 1-Dollo linear phylogeny. By the same logic, since b′
t,n+2 = 1 for

all t ∈ {1, 2, . . . , m, m + 1} and b′
m+2,n+2 = 0, it must be the case that either π(m + 2) = 1

or π(m + 2) = m + 2. However, it is clear that π(m + 1) ̸= π(m + 2). Therefore, it must be
the case that either (i) π(m + 1) = 1 and π(m + 2) = m + 2, or (ii) π(m + 1) = m + 2 and
π(m + 2) = 1.

We may assume without loss of generality on T ′ that this first case holds, namely, that
π(m + 1) = 1 and π(m + 2) = m + 2. If π(m + 1) = m + 2 and π(m + 2) = 1, then for
the permutation π∗ such that π∗ reverses π, tree T ∗ = T (B, π∗) would be a 1-Dollo linear
phylogeny for B such that π∗(m + 1) = 1. Since π(m + 1) = 1 and π(m + 2) = m + 2, it
must be the case that r is labeled by b0 and s is labeled by b∗.

Given T ′, we will now construct a 1-Dollo linear phylogeny T for matrix B rooted at
b0. Let vr be the leaf of T ′ whose parent is r, and let s′ be the leaf of T ′ whose parent is s.
Specifically, we define T as the subtree of T ′ rooted at r that excludes the leaf vr and leaf s′.
We relabel each node v of T omitting the n + 1th and n + 2th entries of its original label
bT ′(v). ◀

Proof (Lemma 18). We will prove the above conditions in the order they were proposed.
(i) Since T itself is a 1-Dollo phylogeny and characters can thus only be gained and lost

once throughout all of T , it holds that C+
1 , . . . , C+

ℓ and C−
1 , . . . , C−

ℓ are each pairwise
disjoint. Additionally, sets C+

i and C−
j for all distinct i, j ∈ [ℓ] must be disjoint, since

no character c can be gained in one subtree and lost in another subtree rooted at the
same branching point v∗. Hence, C1, . . . , Cℓ must additionally be pairwise disjoint.

(ii) Sets X0, . . . , Xℓ are pairwise disjoint since, by definition, each taxon t ∈ [m] is observed
as a leaf exactly once in T , and these subsets are obtaining by a traversal on T .
Additionally, their union must comprise the set of all taxa in the subtree of T rooted at
v0, since X0 ∪ . . . ∪ Xℓ is simply a partition of all taxa rooted under v0.

(iii) It holds that C+
i ⊆ [n] \ C−

0 , since previously-lost characters C−
0 cannot be regained in

any Ti where i ∈ [ℓ].
(iv) By construction, T0 ⊘ C0 is a rooted, node-labeled tree. Since this tree is formed

precisely by the traversal from node v0 to the first encountered branching point v∗ of
T without traversing any children of v∗, T0 ⊘ C0 itself has no branching points and is
thus linear. Since T0 is rooted at b0, T0 ⊘ C0 must be rooted at b0 ⊘ C0.

(v) By construction, Ti ⊘ Ci is a rooted, node-labeled tree. Since Ti is formed precisely by
the traversal of T along the i-th outgoing edge from node v0 labeled by b0, Ti ⊘ Ci is
rooted at b0 ⊘ Ci. ◀

Proof (Lemma 20). This follows directly from Definition 1. ◀

Proof (Lemma 23). (⇒) Given binary matrices B̄i and Bi, consider some variable character
c ∈ Ci w.r.t. Bi and b0. Therefore, there is some taxon t ∈ Xi such that bt,c ̸= b0,c. We
distinguish two cases.
1. If b0,c = 0, then bt,c = 1. Thus, b̄t,c = 1 by Definition 22.
2. If b0,c = 1, then bt,c = 0. Thus, b̄t,c = 1 by Definition 22.

(⇐) Given binary matrices B̄i and Bi, consider some character c ∈ Ci such that Ci

contains a 1 in column c, that is, there is some taxon t ∈ Xi such that b̄t,c = 1. We distinguish
two cases.
1. If b0,c = 0, then bt,c = 1. Thus, b0,c ̸= bt,c, so c is variable w.r.t. Bi and b0.
2. If b0,c = 1, then bt,c = 0. Thus, b0,c ̸= bt,c, so c is variable w.r.t. Bi and b0. ◀

WABI 2025
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Proof (Theorem 27). (⇒) Consider a compact 1-Dollo phylogeny T for matrix B ∈
{0, 1}m×n rooted at b0. Let T0 be the subtree of T obtained by traversing from root
node v0 labeled by b0 to a first branching point v∗ with label b∗, and let C+

0 , C−
0 and X0

be the gained characters, lost characters and observed taxa, respectively, in tree T0. Since
every character not gained or lost in T0 can never change across the taxa in X0, sets X0,
C+

0 , C−
0 must be in agreement with B and b0. So Condition 1 holds.

Let {B0, B1, . . . , Bℓ} be the 1-Dollo matrix decomposition of B and b0 on X0, C+
0 , C−

0 .
By Lemma 18, then, the tree induced on T by taxa set X0 is a 1-Dollo linear phylogeny T0
for B0 rooted at b0 and terminating at b∗.

We must finally show that there exist 1-Dollo phylogenies T1, . . . , Tℓ, for B1, . . . , Bℓ,
respectively rooted at b∗ = b(b0, C−

0 , C+
0 ). However, consider the existing subtrees T1, . . . , Tℓ

of T obtained by traversing along each of the ℓ > 1 outgoing edges from v∗ indexed by
j ∈ [ℓ], and let let C+

j , C−
j and Xj be the gained characters, lost characters and observed

taxa, respectively, in each tree Tj . By Lemma 18, these trees are already exactly 1-Dollo
phylogenies for B[Xj , Cj ] rooted at b∗. So we will show that for every i ∈ [ℓ], there is some
value of j, with existing tree Tj , such that Bi = B[Xj , Cj ]. To do this, we will show outright
that {B1, . . . , Bℓ} = {B[X1, C1], . . . , B[Xℓ, Cℓ]}.

By Lemma 18, {C1, . . . , Cℓ} are a partition of characters C∗ = [n] \ C−
0 and {X0, . . . , Xℓ}

are a partition of taxa [m] \ X0. Since T is a 1-Dollo phylogeny for B, every character c ∈ Cj

is variable w.r.t. Bj and b∗ and not variable with respect to Bj′ and b∗ for j′ ∈ [ℓ] such
that j ̸= j′. So by Lemma 23 and the definition of a complement matrix, {X1, . . . , Xℓ} and
{C1, . . . , Cℓ} are precisely a block diagonal decomposition of B̄(B, b∗, X0, C∗).

Additionally, {X1, . . . , Xℓ} and {C1, . . . , Cℓ} must be such a block diagonal matrix de-
composition of maximum size. We will prove this by contradiction. If {X1, . . . , Xℓ} and
{C1, . . . , Cℓ} was not on maximum size, it would be the case that for some B[Xj , Cj ], that
there would exist two submatrices B[X ′

j , C ′
j ] and B[X ′′

j , C ′′
j ] such that X ′

j and X ′′
j partition

Xj , C ′
j and C ′′

j partition Cj , all characters c ∈ C ′
j were not variable w.r.t. B[X ′′

j , C ′′
j ] and

b∗, and all characters c ∈ C ′′
j were not variable w.r.t. B[X ′′

j , C ′
j ] and b∗. This implies that

there exists two subtrees T ′
j and T ′′

j of Tj such that T ′
j contains all taxa in X ′

j and all gain
or loss edges of C ′

j , T ′′
j contains all taxa in X ′′

j and all gain or loss edges of C ′′
j , and T ′

j and
T ′′

j are disjoint from each other. But then, this implies that edge (v∗, vj) in T from v∗ to the
root node vj of Ti is not a gain or loss edge for any character c ∈ [n]. Since T is compact,
this cannot be the case.

By the definition of a 1-Dollo decomposition, the sets of taxa and characters defining
B1, . . . , Bℓ also comprise a block diagonal decomposition of B̄(B, b∗, X0, C∗) of maximum
size. But the block diagonal matrix decomposition of maximum size for any matrix is unique,
so it must be true that {B1, . . . , Bℓ} = {B[X1, C1], . . . , B[Xℓ, Cℓ]}. So for every submatrix
Bi, there exists a 1-Dollo phylogeny Tj for Bi rooted at b∗. So Condition 2 holds.

(⇐) Given binary matrix B and binary vector b0, let there exist X0 ⊆ [m] and C−
0 , C+

0 ⊆
[n] such that (i) X0, C−

0 , and C+
0 are in agreement with B and b0 and (ii) the 1-Dollo matrix

decomposition of B and b0 on X0, C+
0 , C−

0 yields {B0 = B[X0, C0], B1 = B[X1, C1], . . . , Bℓ =
B[Xℓ, Cℓ]} such that there exists 1-Dollo linear phylogeny T0 for B0 rooted at b0 ⊘ C0 and
terminating on b∗ ⊘C0 and 1-Dollo phylogenies T1, . . . , Tℓ for B1, . . . , Bℓ, respectively, rooted
at b∗ ⊘ Ci for b∗ = b(b0, C−

0 , C+
0 ).

We will construct T . Let node v∗0 be the node of T0 labeled by b∗ ⊘ C0, and let v∗i for
all i ∈ [ℓ] be the root node of Ti labeled by b∗ ⊘ Ci. Then, add edge (v∗0, v∗i) for all i ∈ ℓ to
the composite of T0 ⊕ b0, T1 ⊕ b∗, . . . , Tℓ ⊕ b∗, and subsequently contract all such edges.
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Each node of T is clearly labeled, and the root of T is labeled by b0 = (b0 ⊘ X0) ⊕ b0,
so clearly T is rooted at b0. First, we prove that for every character c such that b0,c = 1,
there must be no gain edge on c in T . There is no gain edge for c in T prior to v∗, since
T0 has no gain edge for c by definition of rooted 1-Dollo linear phylogeny rooted at b0. To
demonstrate that there is no gain edge for c in T after v∗, we differentiate two cases:
1. b∗,c = 1. Then, for all i ∈ [ℓ], Ti has no gain edge for c by definition of rooted 1-Dollo

phylogeny rooted at b∗. So there is no gain edge for c in T after encountering v∗, either,
by construction of T .

2. b∗,c = 0. Then, it must be the case that c ∈ C−
0 . But since C+

i ⊆ [n] \ C−
0 , Ti has no

gain edge for c for all i ∈ [ℓ]. So there is no gain edge for c in T after encountering v∗,
either, by construction of T .

Second, we prove that for every character c such that b0,c = 1, there must be at most one
loss edge on c in T . To demonstrate that there is at most one loss edge for c in T after
encountering v∗, we differentiate two cases:
1. b∗,c = 1. Then, clearly c was not lost in T0. By the definition of a block diagonal

decomposition, we know that c must be variable w.r.t. Bi and b∗ for at most one value of
i ∈ [ℓ]. So there must be at most one loss edge in T1, . . . , Tℓ.

2. b∗,c = 0. Then, c must have been lost in T0. But since C+
i ⊆ [n] \ C−

0 , Ti has no gain
edge, and thus no loss edge, on c for all i ∈ [ℓ].

Third, we prove that for every character c such that b0,c = 0, there must be at most one gain
and at most one loss edge on c in T . We prove three statements that together demonstrate
this in full:
1. For any character c, there cannot be a gain edge in T0 and a gain edge in Ti for i ∈ [ℓ]. If

there was, then c ∈ C−
0 . But since C+

i ⊆ [n] \ C−
0 , so Ti, cannot have a gain edge, and

thus cannot have a loss edge, on c for all i ∈ [ℓ].
2. For any character c, there cannot be a loss edge in T0 and a loss edge in Ti for i ∈ [ℓ]. If

there was, then c ∈ C−
0 . But since C+

i ⊆ [n] \ C−
0 , Ti cannot have a gain edge, and thus

cannot have a loss edge, on c for all i ∈ [ℓ].
3. For any character c, there cannot be a gain edge in both Ti and Tj for distinct i, j ∈ [ℓ]

such that i ̸= j. This follows from the definition of a block matrix decomposition, since c

must be variable w.r.t. Bi and b∗ for at most one value of i ∈ [ℓ].

So T is a valid 1-Dollo phylogeny for B, and we are done. ◀
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