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Abstract
Imagine you are a computer scientist who enjoys attending conferences or workshops within the
year. Sadly, your travel budget is limited, so you must select a subset of events you can travel to.
When you are aware of all possible events and their costs at the beginning of the year, you can
select the subset of the possible events that maximizes your happiness and is within your budget.
On the other hand, if you are blind about the options, you will likely have a hard time when trying
to decide if you want to register somewhere or not, and will likely regret decisions you made in
the future. These scenarios can be modeled by knapsack variants, either by an offline or an online
problem. However, both scenarios are somewhat unrealistic: Usually, you will not know the exact
costs of each workshop at the beginning of the year. The online version, however, is too pessimistic,
as you might already know which options there are and how much they cost roughly. At some point,
you have to decide whether to register for some workshop, but then you are aware of the conference
fee and the flight and hotel prices.

We model this problem within the setting of online knapsack problems with estimates: in the
beginning, you receive a list of potential items with their estimated size as well as the accuracy
of the estimates. Then, the items are revealed one by one in an online fashion with their actual
size, and you need to decide whether to take one or not. In this article, we show a best-possible
algorithm for each estimate accuracy δ (i.e., when each actual item size can deviate by ±δ from the
announced size) for both the simple knapsack (also known as subset sum problem) and the simple
knapsack with removability.
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1 Introduction

In the Online (Simple) Knapsack problem, items are presented one after another to an
algorithm, which then has to decide on the spot whether to include the current item into the
knapsack of unit size, or not. In the classical setting, it is easy to see that this problem is
non-competitive: A tiny item can be presented at the beginning and an algorithm cannot
know whether it should pack this item (as it might be the only one) or reject it (as there
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12:2 Online Knapsack Problems with Estimates

might be an item of size 1 next, which the algorithm cannot pack when having packed the
tiny item). Therefore, the ratio between a solution of an online algorithm and an optimal
(offline) solution on the same instance (the so-called competitive ratio) can be arbitrarily
high.

Arguably, one can say that this counterexample is rather pathological, as the restriction
for deterministic, irrevocable decisions in a setting without any knowledge about the future
is harsh. So even though this (negative) example by Marchetti-Spaccamela and Versallis [29]
might seem demotivating for further research at first glance, it indeed has resulted in even
more attention to online knapsack problems and their variants. For example, by allowing
(limited) decisions to be revoked or delayed, or by relaxing the complete blindness of an
online algorithm, many of those modified settings aim to avoid pathological counterexamples
and therefore to model real-world knapsack applications more realistic. We will present some
of those variants in the following section. In several cases, a variant studied for knapsack
problems later turned out to be realistic for other online problems. For a more thorough
introduction to competitive analysis, we refer to the books by Borodin and El-Yaniv [13]
and by Komm [27].

When acting in a real-world setting, the assumption of complete blindness is as unrealistic
as the assumption of having correct information available: When navigating to some place,
one usually is not aware of every detail (e.g., a traffic jam that might occur) but still has some
information about the structure of the map and how long which routes roughly will take.
The details then get revealed when arriving at some street, and seeing how the situation is.
Or, when considering a packing problem such as bin packing or knapsack, one usually does
not know the exact sizes of all items that are in the instance - but by experience, one might
have a rough idea about, e.g., the items that need to be distributed into moving boxes for
a moving - even though one likely does not want to measure all of them before packing to
ensure that a packing is optimal in the end. Even if one has all the necessary information of
some problem measured and, in theory, could compute an optimal solution, the exact values
likely get lost when saving them on memory with limited size at the latest.

In a sense, the setting of online problems with estimates lies in between offline problems
with complete knowledge about the instance and classical online problems without any
information about the future.

For the online (simple) knapsack problem, we assume an algorithm is given a list of items
and their estimated size, together with a constant δ as the estimate accuracy. Each item
with its actual size then gets revealed one after another, like in the classical online knapsack
setting. Each item size can deviate by up to δ from their estimate. An algorithm then has to
decide about whether to pack an item or not:

In the case of irrevocable decisions, we show that no algorithm can achieve a competitive
ratio better than 1

min(p,q) , with

p = − 0.5
⌊k⌋

+

√
1

4⌊k⌋2 + 1 − 2δ

⌊k⌋
and q = 1 − 2δ − 1

⌈k⌉
, where k = 2

1 − 2δ
.

for all 0 < δ < 1
2 using three different instance constructions for different δ. For a δ ≥ 1

2 , we
show that the problem becomes uncompetitive. For δ < 1

2 , where competitive algorithms can
exist, we also present an algorithm that matches our lower bound and prove the tightness of
of the behavior.

In the second part of the article, we consider the online simple knapsack problem with
removability. Here an item, that was packed by an algorithm, can also be discarded at a later
point. This very classical online knapsack variant avoids the pathological counterexample
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mentioned earlier: the tiny item can be packed without concerns first, and just be replaced by
an item of size 1 if one is presented in the instance. This setting was found to be Φ-competitive
by Iwama and Taketomi [24], with Φ denoting the golden ratio. In this case, we show that
no algorithm can achieve a better competitive ratio than 3−2δ

2−2δ for all 0 < δ < 3
4 −

√
5

4 , and
also present an algorithm that achieves this ratio as a tight upper bound. For all δ ≥ 3

4 −
√

5
4 ,

it turns out that the estimates will not help any longer, therefore the best possible algorithm
is given by Iwama and Taketomi and achieves a competitive ratio of Φ.

Finally, we conclude with some final remarks and open questions that arose while working
in this knapsack setting.

1.1 Online Knapsack Problems
One way to deal with those artificial lower bounds is to allow an algorithm to fill a knapsack
in a way a classical knapsack algorithm is not allowed to do: A variant where the online
algorithm is allowed to overpack the knapsack slightly is called resource augmentation by
Iwama and Zhang [25]. Han and Makino [22] allowed a limited number of cuts, i.e. splitting
of items into two sub-items.

Another approach is to delay decisions for some time. We already mentioned a variant
introduced by Iwama and Taketomi, in which packed items could be removed (also called
preempted) from the knapsack, but not to be packed again [24]. Another variant allows an
algorithm to intermediately store items in a buffer of a certain size, as introduced by Han et
al. [21]. The recently introduced model of reservation costs allows an algorithm pay a fee to
delay a decision for an arbitrary amount of time [10, 16].

Other variants allow the knapsack to grow over time, as in Thielen, Tiedemann, and
Westphal [34], where a model in which the capacity of the knapsack increases step-wise over
a given number of periods is studied.

It is also possible to avoid artificial instances by restricting the instance classes as in
Zhou, Chakrabarty and Lukose [37], where they analyzed the online knapsack problem under
the assumption that the size of each item is much smaller than the knapsack capacity and
the ratio between the value and the weight of an item is bounded within a given range.

Further variations include randomization or an oracle to communicate information about
the instance via so-called advice bits as introduced by Böckenhauer et al. [11, 12].

One of the main criticisms of the advice model is that the existence of an almighty oracle
is not realistic in practice. One way to deal with this setting is the model of machine learned
advice, which has recently been called untrusted predictions or just predictions. Here an
algorithm is usually given a prediction on each piece of the input, which tells the algorithm
what to do with the piece of input. However, these predictions might be wrong and no bound
is given on the error. Therefore, the goal of an algorithm in this setting is to deal with
those possibly wrong hints, and ideally compute an optimal solution in case the predictions
are correct (consistency), but also performs as well as a regular online algorithm on the
problem when the predictions become arbitrarily bad (robustness) and ideally degrades with
increasing unreliability of the prediction (smoothness).

The classical prediction model has seen a big influx of results in the past few years, with
the model being applied to several different online problems, such as scheduling [28, 14, 7],
metric algorithms [3, 2], matching problems [17, 26], spanning tree problems [18, 9].

Im et al. [23] recently looked at the general knapsack problem, which they studied under a
model predicting the frequency of items of each size. Angelopoulos, Kamali, and Shadkami [1]
look at the online bin packing problem with predictions on the frequency of item sizes in
the instance. Boyar, Favrholdt, and Larsen [15] recently studied the online simple knapsack

MFCS 2025



12:4 Online Knapsack Problems with Estimates

problem with predictions, but working with predictions on the average size of the items
an optimal solution would pack. Xu and Zhang [35] recently studied the simple knapsack
problem in a learning-augmented setting, where they design algorithms that can learn and
use the error of prediction. Zeynali et al. [36] also studied influence of predictions with real
life data with which machine-learning tools have been learned.

Even though the prediction model feels aligned with the research in this work, the focus
lies on different aspects of inaccuracy: In the prediction setting, the measure of accuracy is
commonly defined by the number of correct and wrong hints. In the setting of this article, we
assume that the whole input might not be as announced, but still lies in some surrounding
of the announcement (which size defines the accuracy).

While we assume that an adversary can control both the predicted instance and the
actual distortion of the items, there is a related model of smoothed analysis, in which an
adversary can fix an instance, which is then subject to some random (commonly Gaussian)
distortion, or noise. This model of an adversary without complete control over its prepared
instance was first made popular when showing that the simplex algorithm runs in expected
polynomial time when its input is subjected to such random noise [33]. Since then, there
has been a large influx of results in this area for a wide range of problems, for example,
the 0/1 knapsack problem [8]. The model of smoothed analysis thus gives evidence that
the worst-case running time or worst-case approximation ratios often seem to suffer from
very specific and limited adversarial inputs which break down if even only a very slight
perturbation of the instance is given - just as our pathological counterexample for the online
simple knapsack.

Furthermore, our model is related to robust optimization: The robust knapsack problem
by Monaci, Pferschy and Serafini [30] is very similar in that it also allows for an uncertain
input with a multiplicative factor, but the authors look at offline algorithms that see the
complete permuted instance at once and are compared to the performance of a non-perturbed
instance.

1.2 Online Problems with Estimates
The setting of online problems with estimates, where first a rough idea of the instance is
given, and then the actual values gets revealed in an online manner, is rather new in online
computation.

Azar et al. considered a scheduling variant where the size of a job presented upon its
revelation might not be given exactly [4]. Here, they studied algorithms for the scenario where
the accuracy of the estimate is known to the algorithm, as well as the scenario where this is
not the case [5]. These results later got extended to a setting with multiple machines [6].
While in these cases (as in our article) the estimates are given adversarially, Scully et al. [31]
analyzed a setting where the actual durations of each job were picked randomly instead.
Azar et al. also speak of problems with predictions within their works.

To avoid confusion with the previously mentioned model of predictions, which usually
refers to a setting where suggestions are given which might be wrong, we name this specific
type of prediction estimate in the context of this work.

As packing problems are natural for a setting with estimated item sizes, we see that the
knapsack setting with multiplicative accuracy behaves differently than the additive setting
[20]: For example, while also not achieving a competitive ratio better than 2 even for very
small δ, in the multiplicative setting an algorithm can achieve this ratio even up to a δ = 1

7 .
Furthermore, the divergence did not start at 1

2 but at 1. This different behavior is mainly
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caused by the fact that in the multiplicative setting, an adversary cannot present an item
with the size of 0 when the given estimate allowed also allowed to present the item as a
non-zero item.

Apart from scheduling and packing problems, situations where the details are only revealed
over time can also occur on graph problems. For the traveling salesman/graph exploration
problem, it was shown that no algorithm can achieve a competitive ratio better than the
estimate accuracy when the algorithm is aware of the graph structure with the estimated
edge weights in the beginning, and the exact values are only revealed in a graph-exploration
manner [19].

1.3 Formal Definition
To avoid confusion, we start with a formal definition of the problems we investigate and of
the competitive ratio in the version that is referred to for the results. In this article, notation
will be slightly abused by using xi for both the label of an item and the size of the same
item, as its meaning is also clear in the given context.

▶ Definition 1 (The Online Simple Knapsack with Item Size Estimates Problem).
Given an estimate accuracy δ ≥ 0, an instance of the Online Simple Knapsack with Item Size
Estimate consists of a series of items I = (x1, . . . , xn), where each item is a real number
in [0, 1]. At the beginning, the accuracy δ is announced as well as the item size estimates
P = (x′

1, . . . , x′
n), such that for each i ∈ {1, . . . , n}, x′

i − δ ≤ xi ≤ x′
i + δ. At each step

i ∈ {1, . . . , n}, the actual item size xi of the request sequence gets revealed. An algorithm
then has the option to either pack the item in an initially empty knapsack K, if it fits or to
reject the item:

Pack If
∑

xk∈K xk + xi ≤ 1, set K := K ∪ xi .
Reject Do nothing.

The Online Simple Knapsack with Item Size Estimates problem is then for an
algorithm ALG to minimize the competitive ratio between the size of his packing, compared to
the optimal solution in the same instance.

The online simple knapsack with removability and item size estimates can be defined
analogously:

▶ Definition 2 (The Online Simple Knapsack with Removability and Item Size
Estimates Problem). Given an estimate accuracy δ ≥ 0, an instance of the Online Simple
Knapsack with Removability and Item Size Estimate consists of a series of items I =
(x1, . . . , xn), where each item is a real number in [0, 1]. At the beginning, the accuracy
δ is announced as well as the item size estimates P = (x′

1, . . . , x′
n), such that for each

i ∈ {1, . . . , n}, x′
i − δ ≤ xi ≤ x′

i + δ. At each step i ∈ {1, . . . , n}, the actual item size xi of
the request sequence gets revealed. An algorithm then has the option to remove a subset of
items from the initially empty knapsack K, and then to either pack the current item into K,
if it fits, or to reject the item:

Remove Discard S ⊆ K from the knapsack, set K := K − S.
Pack If

∑
xk∈K xk + xi ≤ 1, set K := K ∪ xi .

Reject Do nothing.

The Online Simple Knapsack with Removability and Item Size Estimates
problem is then for an algorithm ALG to minimize the competitive ratio between the size of
his packing, compared to the optimal solution in the same instance.

MFCS 2025
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Figure 1 Competitive ratio in the absolute error model, depending on δ.

Online algorithms are generally analyzed using competitive analysis, as introduced by
Sleator and Tarjan [32]. Simply speaking, it compares the solution quality of an online
algorithm to the solution of an optimal offline algorithm in the same instance. As the
knapsack problems are maximization problems, the following definition is suitable:

▶ Definition 3. The (strict) competitive ratio of an online algorithm A is the highest ratio of
any request sequence S between the gain of A on S and the gain of an algorithm OPT solving
the problem optimally on the same request S,

CR(A) = sup
S

{
gainOPT(S)
gainA(S)

}
.

In other settings, a non-strict variant of the competitive ratio is commonly used as well,
where an additional constant k is allowed when comparing the solution quality of an online
algorithm to the offline solution. Furthermore, a similar variant can also used to define the
competitive ratio for minimization problems.

2 Online Simple Knapsack

In this section, we first show that the competitive ratio of the online simple knaspack problem
with item size estimates is not less than 2 for any δ > 0 and monotonously rises until it gets
unbounded for any algorithm for δ ≥ 0.5.

Afterwards, we provide an algorithm that matches the competitive ratio of the lower
bound.

We will see that the competitive ratio for all 0 < δ < 1
2 is given by 1

min(p,q) , where

p = − 0.5
⌊k⌋

+

√
1

4⌊k⌋2 + 1 − 2δ

⌊k⌋
and q = 1 − 2δ − 1

⌈k⌉
, where k = 2

1 − 2δ
. (1)

This ratio is visualized in Figure 1.
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Note that p is the positive solution of the following equation.⌊
2

1 − 2δ

⌋
· p

1 − p − 2δ
= 1

p
(2)

The following inequalities, which hold for 0 ≤ δ ≤ 0.5, will turn out to be useful:

1 − p − 2δ ≤ p and 1 − q − 2δ =
⌈

2
1 − 2δ

⌉−1
≤ q (3)

2.1 Lower Bounds
The following two lower bounds combined are best possible for all values of δ up to 1

2 . Both
functions have jumps induced by rounding effects and dominate one another periodically. See
Equation (1) for the definition of p and q. In the end, we note that for δ ≥ 1

2 , no constant
competitive online algorithm can exist.

While the construction for the first bound is slightly more involved, it defines a bound
for the whole range of δ for 0 < δ < 1

2 . The second bound, as defined in Theorem 5, however
only works starting from δ ≥ 1

6 . For values smaller than 1
6 , a different construction as in

Theorem 6 is necessary.
The crucial case in the following proof is Case 1.2, where the knapsack of the optimal

solution can be forced by a clever algorithm not to be completely filled.

▶ Theorem 4. For every 0 < δ < 0.5, there exists no algorithm solving the Oske problem
with a competitive ratio better than 1

p .

Proof. Let 0 < ε < min(p, δ) such that 1/ε ∈ N, and let k =
⌊

2
1−2δ

⌋
. Let us consider

an arbitrary algorithm for the Oske problem. The following instance is announce as a
prediction:

P =

 ε,︸︷︷︸
1/ε many

1
2 ,︸︷︷︸

k many

1 − p − δ


We do a full case distinction on the possible behaviors of the algorithm. The first item is
presented as ε.

Case 1: The algorithm packs ε. The subsequent 1/ε − 1 items are presented as 0. The
next item is revealed with size p. This is possible as p+ δ ≥ 1/2, which follows from Equation
(3).

Case 1.1: The algorithm packs p. All remaining items are presented as 1 − p, which the
algorithm can not pack due to the ε-item. As we have seen, it is possible that an item which
was announced of size 1/2 can be presented as p; therefore presenting those items as 1 − p is
possible as well due to the symmetry of the deviation.

An optimal solution can pack both, p and its counterpart, while the algorithm has packed
p and an item of size ε. The competitive ratio is then 1/p for ε converging to 0.

Case 1.2: The algorithm rejects p. The subsequent k − 1 items will be presented as p if
the algorithm continues to reject them. If an algorithm should pack any of these items, we
can use the same argumentation as in Case 1.1.

MFCS 2025
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Should the algorithm reject all k items of size p, the last item is presented as 1 − p − 2δ.
The optimal solution consists of all k items of size p, whereas the algorithm only has the
item of size ε and the last item of size 1 − 2δ − p in its knapsack. Since 1 − p − 2δ ≤ p by
Equation (3) and kp/(1 − p − 2δ) = 1/p by Equation (2) is valid, the competitive ratio is at
least 1/p for ε converging to 0.

Case 2: The algorithm rejects ε. The subsequent 1/ε − 1 items will be presented as ε if
the algorithm continues to reject them. If the algorithm should pack any of these items, the
remaining items are presented as 0 and we use the same argumentation as in Case 1.

Should the algorithm reject all 1/ε − 1 items of size ε, the subsequent k items will be
presented as p + ε. If such an item is packed, the argumentation is the same as in case 1.1,
just with the difference that the optimal solution contains the ε-items with a total size of 1.

If no such item is packed, the last item is presented of size 1−2δ−p ≤ p (see Equation (3)).
The optimal solution packs the full knapsack using items of size ε. Again, the competitive
ratio is at least 1

p . ◀

The following theorem gives a better bound than Theorem 4 when q < p happens. Note
that q > p is true for 1

6 < δ < 1
24 (9 − 2

√
3) ≈ 0.23 and the relation 3

16 ∈ [ 1
6 , 0.23] holds.

Consequently, after Theorem 5, it remains to inspect the lower q-bound for δ < 1/6.

▶ Theorem 5. For every 3
16 < δ < 0.5, there exists no algorithm solving the Oske problem

with a competitive ratio better than 1
q .

Proof. Let δ ≤ ε > 0 such that 1/ε ∈ N, let k =
⌈

2
1−2δ

⌉
, and recall that q = 1 − 2δ − 1/k.

Let us consider an arbitrary algorithm for the Oske problem. The following prediction is
announced to the algorithm:

P =

 ε,︸︷︷︸
1/ε many

δ,︸︷︷︸
k many

q + δ


We do a case distinction on the potential behaviors of the algorithm. The first item is
presented as ε.

Case 1: The algorithm packs ε. The subsequent 1/ε − 1 items are presented as 0. The
next presented item is of size 1/k. This is possible if 2δ ≥ q since Equation (3) yields q ≥ 1/k.
The former holds for δ ≥ 3/16.

Case 1.1: The algorithm packs 1/k. The remaining k − 1 items are presented as 0, with
the last item presented as 1 − 1/k = q + 2δ. An optimal solution can pack both 1/k and its
counterpart, while the algorithm has packed 1/k and an item of size ε. The competitive ratio
is then k for ε converging to 0 which yields the wished ratio by k ≥ 1/q tanks to Equation
(3).

Case 1.2: The algorithm rejects 1/k. The subsequent k − 1 items will be presented as 1/k,
with the last item presented as q, if the algorithm continues to reject them. If an algorithm
should pack any of these items, we can use the same argumentation as in Case 1.1.

The optimal solution consists of all k items of size 1/k, which add up to exactly 1, whereas
the algorithm only has the item of size ε and the last item q in its knapsack. The competitive
ratio is again at least 1/q for ε converging to 0.
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Case 2: The algorithm rejects ε. The subsequent 1/ε − 1 items will be presented as ε as
long as they get rejected. If an algorithm packs any of these items, we can use the same
argumentation as in Case 1.

Should the algorithm reject all 1/ε − 1 items of size ε, the subsequent k items will be
presented as 0. The last item is presented as q which directly yields the competitive ratio of
1/q. Here an optimal solution consists of a full knapsack with ε items. ◀

The crucial issue of Theorem 5 for small δ are the items of announced size δ, where
an adversary must be able to present them as a 0 or as 1

3 for all δ < 1
6 . As this is not

possible, we need to handle the setting δ < 1
6 as a special case. In particular, q > p for

0 < δ < 1
12 (4 −

√
6) ≈ 0.129 is true, and since 1/12 < 0.129 holds, starting with delta at

1/12 is no limitation.

▶ Theorem 6. For every 1
12 < δ < 1

6 , there exists no algorithm solving the Oske problem
with a competitive ratio better than 1

q .

Proof. We define a = 1
3 − 2δ, and let ε > 0 be arbitrary such that 1/ε ∈ N and a/ε ∈ N

holds. Let us consider an arbitrary algorithm for the Oske problem. The algorithm receives
the following prediction:

P =

 ε,︸︷︷︸
1/ε many

1
3 + δ︸ ︷︷ ︸

3 many


We do a similar full case distinction on the possible behaviors of the algorithm, like in

Theorem 4 and Theorem 5. The first item is presented as ε, but this time we stop presenting
ε-items when the algorithm has packed exactly an amount of y between a and a + ε.
Case 1: The algorithm packs an amount of y with ε-items. The subsequent ε-items are
presented as 0. The next item is presented of size 1/3.
Case 1.1: The algorithm packs 1/3. The remaining 2 items are presented as 2

3 −a = 1
3 +2δ.

An optimal solution can pack 1/3 together with one large item and several ε-items such that
it achieves a packing of at least 1−ε, while the algorithm has packed 1/3 and some ε-items of
total size less than a+ε. The competitive ratio is then (2/3−2δ)−1 = (1−1/3−2δ)−1 = 1/q

for ε converging to 0 which yields the wished competitive ratio.
Case 1.2: The algorithm rejects 1/3. The subsequent 2 items will be presented as 1/3
until one gets accepted. If an algorithm accepts one of the first two items, we can use the
same argumentation as in Case 1.1.

Otherwise, the algorithm accepts the last 1/3-item or none of them. The optimal solution
consists of all 3 items of size 1/3, which add up to exactly 1, whereas the algorithm again
has only the ε-items of total size a + ε and at most the last 1/3 item in its knapsack. The
calculation of the competitive ratio is analogous to case 1.1.
Case 2: The algorithm do not pack at least y > a with ε-items. We presented all the
ε-items as ε and we know after these items that the algorithm got at most y ≤ a in the
knapsack.

Next, we start to reveal 1/3 + (a − y) + ε items. This is possible because of the relation
1
3 + ε ≤ 1

3 + (a − y) + ε ≤ 1
3 + a + ε = 2

3 − 2δ + ε ≤ 1
3 + 2δ for δ >

1
12 .

Should the algorithm pick one of these 3 items, we are in the same setting as in case 1.1, but
with an optimal solution consisting of just ε-items. ◀

MFCS 2025
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As the construction of Theorem 5 cannot work for small δ, it is also worth noting that
the construction of Theorem 6 is not working for larger δ. This is mainly because the items
which are announced with size 1

3 + δ must be presented of size 1
3 at least. Even if the 3

would be replaced with some k, it would allow an algorithm to pack multiple of those items
without a chance of an adversary to hinder him.

Finally, we see that the case δ ≥ 0.5 can be handled using a standard construction by
Marchetti-Spaccamela and Vercellis [29], thus no algorithm can achieve a bounded competitive
ratio here.

▶ Theorem 7. For every δ ≥ 0.5, there exists no algorithm solving the Oske problem with a
constant competitive ratio.

Proof. Consider an arbitrary algorithm and the prediction P = (0.5, 0.5). The first item
arrives as ε > 0. If the algorithm rejects it, the second item arrives as 0. Otherwise, the
second item arrives as 1 − ε/2 so the algorithm cannot pack it, whereas the optimum solution
can. This construction shows that no algorithm can be competitive. ◀

2.2 Upper Bounds
We start this section with a simple algorithm, that either takes the largest announced item
or packs the knapsack in a greedy way.

Algorithm 1 2
1−2δ

-competitive Algorithm for 0 < δ < 1
2 .

if b is the largest announced item and b ≥ 0.5 then
Pack only b. END

else
Greedily pack items. END

It turns out that this algorithm already matches the lower bound for all accuracies δ of
the form 1

2 − 1
k for integers k ≥ 3.

▶ Theorem 8. Given a fixed δ with 0 < δ < 1
2 , Algorithm 1 solves the Oske problem with a

competitive ratio of at most 2
1−2δ .

Proof. Assume that there exists an announced item of size at least 0.5. Then the algorithm
waits for it, packs it, and achieves a gain of 0.5 − δ, which gives us the claimed bound.

Thus, assume that such an item does not exists but that there exists an item that the
algorithm cannot fit into its knapsack when packing greedily. This item can be at most of
actual size 0.5+δ, meaning our gap due to not packing this item is at most 1−(0.5+δ) = 0.5−δ,
which again gives us our wanted bound. ◀

In the rest of this section, we will present a more refined algorithm and prove that
it matches the lower bounds of Theorems 4 and 5. Let us fix an instance (P, δ), where
0 < δ < 0.5 holds, and P = (x′

1, . . . , x′
n) are the announced item sizes of the Oske problem.

As in Definition 1, if x is an item, then x′ denotes its announced size. Let c = 1/ min(p, q)
and c = 1/c, see Equation (1) for the definition of p and q.

It is easy to see that the algorithm achieves the desired competitive ratio in many
instances.

▶ Lemma 9. If the largest announced size is not in (1 − c − δ, c + δ), then Algorithm 2
achieves the competitive ratio of at least c.
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Algorithm 2 c-competitive algorithm for 0 < δ < 0.5.

1: if there is an item x such that x′ ≥ c + δ then
2: Pack only x. END.
3: if all items have announced size ≤ 1 − c − δ then
4: Pack greedily. END.
5: Let xl be the last item such that x′

l ∈ (1 − c − δ, c + δ).
6: greedy := false.
7: while there is a next item y in the queue do
8: if y = xl then
9: greedy := true

10: Let m be the size of already packed items.
11: if greedy then
12: Pack y if it fits into the knapsack.
13: else if m ∈ [c − (x′

l − δ), 1 − (x′
l + δ)] or y + m ∈ (1 − (x′

l + δ), c) then
14: Skip y.
15: else
16: Pack y if it fits into the knapsack.

0 1µ ν1 − 1
c − 2δ 1

c

tiny small medium large

Figure 2 Range of item sizes. Forbidden ranges of item sizes to be packed are marked in red.

Proof. First, suppose there is an item x of announced size at least c + δ. In this case, x is
the only item packed, see line 2. Since x ≥ c is true, the competitive ratio is ensured.

Second, suppose that all items have announced size at most 1 − c − δ. In this case, we
pack greedily, see line 4. Let x be the first item that cannot be packed by the algorithm; if x

does not exist, we have found the optimal solution. Otherwise, x ≤ 1 − c holds, which means
that we have packed more than c and the competitive ratio is also ensured. ◀

For the rest of the section, suppose that the largest announced item is in (1 − c − δ, c + δ),
and let xl be the last announced item such that x′

l ∈ (1 − c − δ, c + δ). In this case, the
algorithm can guarantee a packing of at least c for most instances. To see this, we classify
each item y as either tiny, small, medium or large depending on the actual size of y and the
sum of the already packed items when y arrives. We use the substitutions µ := c − (x′

l − δ)
and ν := 1 − (x′

l + δ). To give an overview of the variables and relations we provide Figure 2.

▶ Definition 10. Let y be an item and let m be the sum of the already packed items when y

arrives.
We say that an item y is tiny if y + m ∈ [0, µ), small if y + m ∈ [µ, ν], medium if

y + m ∈ (ν, c), and large otherwise.

Observe that before xl arrives, medium items are skipped by the algorithm, see line 13.
The case when a small or large item arrives is handled by the following lemma.

▶ Lemma 11. If a small or large item y arrives before xl, then Algorithm 2 reaches a packing
of c.
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Proof. Let y be the first small or large item that arrives and let m be the size of the packing
when y arrives. Since medium items are skipped, only tiny items were packed before y, which
means m < µ.

First, suppose that y is small. In this case, y is packed and after that, the knapsacks
packing is of size in [µ, ν], which means that no item is packed until xl arrives because the
condition on line 13 is satisfied. Observe that when xl arrives, the algorithm tries to pack
it. Note that m + y + xl ≤ m + (ν − m) + (x′

l + δ) = 1, which means that xl fits into the
knapsack when it arrives. Now observe that after xl is packed, the knapsack has size at least
m + y + xl ≥ m + (µ − m) + (x′

l − δ) = c, as required.
Second, suppose that y is large. Note that y < c + 2δ since otherwise we would be in the

case handled by Lemma 9.
Now observe that m + y ≤ µ + (c + 2δ) = 2c − x′

l + 3δ ≤ 2c − (1 − δ − c) + 3δ =
3c + 4δ − 1 ≤ 3q + 4δ − 1, where the last inequality follows from c = min(p, q). Now we
expand the definition of q, see Equation (1):

3q + 4δ − 1 = 4δ − 1 + 3(1 − 2δ − 1
⌈ 2

1−2δ ⌉
) = 2 − 2δ − 3

⌈ 2
1−2δ ⌉

≤ 2 − 2δ − (1 − 2δ) = 1

Hence, y fits into the knapsack. By Definition 10, y + m ≥ c is valid, as required.
In both cases, the algorithm packs y and can guarantee a packing of at least c. ◀

Recall that the instance of Oske we are solving is (P, δ). The following lemma says that
we can assume that xl is the last item.

▶ Lemma 12. Let P ′ be the prefix of P ending with xl and suppose that Algorithm 2 achieves
a competitive ratio of at most c on (P ′, δ). Then, it also achieves a competitive ratio of at
most c on (P, δ).

Proof. If all items after xl are packed, then the competitive ratio can only decrease. Suppose
that an item x comes after xl and is not packed. By choice of xl, we know that x′ ≤ 1 − c − δ,
which means that x ≤ 1 − c. Hence, the algorithm has packed more than c, and the
competitive ratio is at most c. ◀

By Lemma 11 and 12, we may assume that xl is the last item and all other items are
either tiny or medium. We split the analysis into two cases depending on whether at most
⌊ 2

1−2δ ⌋ non-tiny items are packed in an optimal solution.

▶ Lemma 13. Assume there are no small or large items, and xl is the last item. If there is
an optimal solution packing at most k :=

⌊
2

1−2δ

⌋
non-tiny items, then Algorithm 2 achieves

a competitive ratio of at most 1
p .

Proof. Recall that the algorithm packs exactly the tiny items and xl, which means we may
assume that there are no tiny items (their presence would decrease the competitive ratio).
Since xl ≥ 1 − c − 2δ holds due to the choice of xl, we may assume xl = 1 − c − 2δ without
decreasing the ratio. By Equation (3), 1 − c − 2δ ≤ c is valid, since c = min(p, q) is defined.
Hence, each item is of size at most c and the ratio is at most kc

1−c−2δ . By Equation (2), we
have

kc

1 − c − 2δ
≤ kp

1 − p − 2δ
= 1

p
.

Hence, the algorithm achieves a competitive ratio of 1
p . This matches the lower bound given

by Theorem 4 for the case p ≤ q. ◀
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For the other case, we can guarantee that the knapsack is filled with at least 1
q .

▶ Lemma 14. Assume there are no small or large items, and xl is the last item. If there is
an optimal solution packing at least k :=

⌈
2

1−2δ

⌉
non-tiny items, then Algorithm 2 achieves a

competitive ratio of at most 1
q .

Proof. Since at least k non-tiny items are packed by an optimal solution, there is a non-tiny
item of size at most 1/k. First, suppose that there is a medium item y ̸= xl such that
y ≤ 1/k. Let m be the size of the packed items immediately before y arrives. Since y is
medium, we have 1/k + m ≥ y + m > ν. Hence, after xl is packed, the algorithm has packed

m + xl ≥ (ν − 1/k) + (x′
l − δ) = 1 − (x′

l + δ) − 1/k + x′
l − δ = 1 − 2δ − 1/k = q,

which implies a competitive ratio of at most 1/q.
The remaining case is y > 1/k for each medium item y ̸= xl and xl ≤ 1/k. Observe that

x′
l ≤ 1/k + δ = 1 − (1 − 2δ − 1/k) − δ = 1 − q − δ ≤ 1 − c − δ,

which is a contradiction since x′
l > 1−c−δ. Hence, this case cannot occur, and the algorithm

achieves a competitive ratio of at most 1
q . ◀

With the previous observations, the following theorem immediately follows.

▶ Theorem 15. For every δ ∈ (0, 1
2 ), Algorithm 2 achieves a competitive ratio of 1

min(p,q) .

3 Online Simple Knapsack with Removability

In this section, the algorithm is allowed to discard previously packed items. We consider not
only additive estimate accuracy but will later also note that multiplicative accuracy behaves
very similarly.

3.1 Lower Bounds
▶ Theorem 16. For every δ ∈ (0, 3

4 −
√

5
4 ], there exists no algorithm solving the Oske problem

with removability and item size estimate with a competitive ratio better than 1/x, where

x = 2 − 2δ

3 − 2δ

Proof. Let ε > 0 be small enough so that x + 2ε ≤ x + δ and 1 − x − ε ≥ 1 − x + ε − δ. An
arbitrary algorithm is given the following prediction:

(1 − x, x + ε, x, 1 − x + ε − δ) .

The first two items presented are 1 − x and x + ε. The algorithm can pack either of these
items but not both.

Case 1: The algorithm packs x + ε. The third item is presented as x and the last
one as 1 − x + ε. Since x > 0.5, the algorithm can pack at most one item from the set
{x, x + ε, 1 − x + ε} and its best choice is keeping x + ε, whereas an optimal solution is to
pack x and 1 − x. Hence, the competitive ratio goes to 1/x as ε goes to 0.

Case 2: The algorithm packs 1 − x. The next item is presented as x + 2ε. Now the
algorithm either keeps 1 − x or discards it and packs x + 2ε.
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Case 2.1: The algorithm packs x + 2ε. The final item is presented as 1 − x − ε. Since
x + 2ε ≥ 1 − x − ε, the algorithm can pack at most x + 2ε, whereas the optimal solution
packs the full knapsack by taking x + ε and 1 − x − ε. Hence, the competitive ratio goes to
1/x as ε goes to 0.
Case 2.2: The algorithm keeps 1 − x. The final item is presented as small as possible and
presented as y := 1 − x − 2δ + ε. Now the algorithm can pack at most 1 − x + y whereas the
optimal solution packs x + 2ε + y. Hence, the competitive ration goes to (1 − x + y)/(x + y)
as ε goes to 0. By definition of x, we see that also, in this case, the algorithm cannot achieve
a better competitive ratio than 1

x = c. ◀

Note that the construction of Theorem 16 will yield a bound of Φ for δ = 3
4 −

√
5

4 , which
can also be achieved without estimates as in Iwama and Taketomi [24].

▶ Theorem 17. For all δ > 3
4 −

√
5

4 , no algorithm for the online simple knapsack problem
with removability and estimates can achieve a competitive ratio of less than Φ.

3.2 Upper Bounds
In this section, we will present an algorithm that matches the lower bound of the previous
part. Again, define x = 2−2δ

3−2δ . We call items of size at most 1 − x small items, items of size
strictly between 1 − x and x medium items, and items of size at least x large items.

Algorithm 3 for Online Knapsack with Removability and Estimates.

1: Let xl be the last item such that x′
l > 1 − x − δ.

2: while there is an item y in the queue do
3: if at least x has been packed then END.
4: if y is large then Remove everything. Pack y. END.
5: if y is small then Pack y if it fits.
6: if y is medium then
7: if no medium item is packed then
8: Pack* y.
9: else

10: Let z be the medium item packed.
11: if y + z ≤ 1 then Remove everything but z. Pack y. END.
12: else if y < z or y = xl > z then Remove z. Pack* y.
13: else Ignore y.
* If it is not possible to pack y on lines 8 or 12, we keep removing small items until it becomes
possible.

Note that once two medium items are packed, Algorithm 3 terminates, see line 11. Hence,
line 10 is well defined as at most one medium item can be packed at that point.

Now we prove that Algorithm 3 matches the lower bound of Theorem 16.

▶ Theorem 18. Algorithm 3 achieves a competitive ratio at least 1/x for δ ≤ 3
4 −

√
5

4 .

Proof. First, suppose that y is the first large item in the instance. Observe that the algorithm
packs y on line 4 and terminates. Since y ≥ x, a competitive ratio of at least 1/x is achieved.
From now on, suppose that there are no large items.

Second, suppose that there are two medium items y1 and y2 such that y1 + y2 ≤ 1.
Observe that until xl arrives, if there is only one medium item packed, then it is the smallest
medium item that has arrived so far (see line 12). Hence, there is an iteration of the while
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loop in which the condition on line 11 is satisfied, i.e., two medium items are packed and the
algorithm terminates. Since 2(1 − x) > x holds for δ > 0, the algorithm has again packed at
least x as required. From now on, suppose that no two medium items fit together, no matter
their position in the instance.

Third, suppose there is a small item a that is not part of the knapsack at the end,
i.e., a was ignored on line 5 or removed on line 8 or 12 before packing y. Let m be the
value in the knapsack at the end of the iteration in which a is discarded, and observe that
m + a > 1 (otherwise a would be packed, resp. not removed). Since a ≤ 1 − x, we have
m > 1 − a ≥ 1 − (1 − x) = x. Hence, the algorithm has packed at least x (and terminates
in the next iteration, see line 3). From now on, we may assume that the algorithm packs
all small items. In particular, if there is at most one medium item, the algorithm finds the
optimal solution. Hence, assume that there are at least two medium items.

Observe that by definition of xl, there are no medium items after xl. Hence, when xl

arrives, there is a medium item y in the knapsack. Let s be the size of all small items except
for xl (note that xl is small or medium). Assume xl is small, i.e., the algorithm packs at
least xl + (1 − x) + s. Since no two medium items fit together, an optimal solution packs
at most xl + x + s. Observe that xl ≥ 1 − x − δ − δ, as it was announced with size at least
1 − x − δ. Hence the competitive ratio is at most:

xl + x + s

xl + (1 − x) + s
≤ x + 1 − x − 2δ

1 − x + 1 − x − 2δ
= 1

x
as desired.

Finally, suppose that xl is medium. Observe that the algorithm packs max(y, xl)+s > 0.5+s,
as y and xl combined exceed 1. Since no two medium items fit together, an optimal solution
packs at most x + s. Hence, the competitive ratio is at most x/0.5 < 1/x as desired. ◀

Again, if δ ≤ 3
4 −

√
5

4 , an optimal algorithm does not need to consider the estimates given.

▶ Theorem 19. For all δ > 0, there is an algorithm that achieves a competitive ratio of Φ
for the online simple knapsack problem with removability and estimates [24].

3.3 Multiplicative Estimate Accuracy
While the previous research was dedicated to additive estimate accuracy, it turned out that
the results easily translate to the multiplicative model (as studied in [20]) with removability.
This is not surprising, as the estimate accuracy is only needed for one item at the end in
both the lower and the upper bounds, which has a medium size.

Therefore, it is possible to use an analogous lower bound construction and upper bound
algorithm for the multiplicative case when the aimed competitive ratio is changed accordingly.
In the multiplicative setting, x, which is defined as 2−2δ

3−2δ in the additive setting, can be
redefined to x =

√
δ2+10δ+9+δ−3

4δ , achiving a competitive ratio of 1
x then. As in the additive

case, both bounds are tight until they reach Φ where the estimates become worthless due to
the bound of Φ without estimates.

4 Final Remarks and Open Problems

In this article, we were able to provide tight bounds for all values of δ for both, the additive
estimate accuracy for the online simple knapsack with irrevocable decisions, and for the
variant with the option to remove items.
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In comparison to the setting of the online simple knapsack with estimates and a multiplic-
ative accuracy factor as already covered [20], it turned out that additive errors are relatively
harder to deal with for an algorithm, in particular for the case without removability. This
mainly follows from the fact that, in the additive setting, an adversary can announce items
and decide later, when presenting them, if they should be presented as 0 or not. As already
the pathological counterexample from the beginning has trouble dealing with such items, it
is not surprising that our lower bound constructions consist of multiple tiny items that might
turn out to be 0. In the multiplicative model however such constructions are not possible.

The additive and multiplicative model with removability are much more closely connected
to each other, which aligns with our observation about the crucial role of the potentially
0-items: As in the removability setting all small items can be packed without concerns, those
items turn out to support an online algorithm in its goal of achieving a low competitive ratio.

As the variant of online knapsack with estimates can be motivated easily by practical
applications, other variants can be motivated by real-world scenarios as well. Therefore,
given some practical problems, it would not be surprising if they could be modeled best with
a combination of the estimate model with another knapsack variant.

For example, in the advice setting an algorithm is allowed to ask a limited amount of
questions that will be answered truthfully. When you are given the list of estimates, you
might again realize that there are just details missing which hinder you from significantly
improving your solution quality. Therefore, you might decide to measure a few objects more
precisely, as you realize that they can turn out to be crucial.

Connections are also conceivable when additionally allowing to delay some decisions for
reservation costs, to exceed the capacity of the knapsack, or to use randomized algorithms.
Furthermore, so far we assume that the estimates are correct, e.g., all items are actually close
to their estimate. It would be interesting to analyze the behavior in the setting of online
algorithms with predictions when the estimates can turn out to be wrong at least partly.

Another approach could be to make an own accuracy δi available for each item xi, instead
of just measuring the maximum distortion as we investigated so far.

Finally it would be interesting to extend the setting with estimates to the general knapsack
problem. Here several variants are thinkable, for example, which part of the input is predicted,
e.g., the size, the weight, or the density of the items.
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