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Abstract
We initiate the study of Hamiltonian cycles up to symmetries of the underlying graph. Our focus
lies on the extremal case of Hamiltonian-transitive graphs, i.e., Hamiltonian graphs where, for every
pair of Hamiltonian cycles, there is a graph automorphism mapping one cycle to the other. This
generalizes the extensively studied uniquely Hamiltonian graphs. In this paper, we show that Cayley
graphs of abelian groups are not Hamiltonian-transitive (under some mild conditions and some
non-surprising exceptions), i.e., they contain at least two structurally different Hamiltonian cycles.
To show this, we reduce Hamiltonian-transitivity to properties of the prime factors of a Cartesian
product decomposition, which we believe is interesting in its own right. We complement our results
by constructing infinite families of regular Hamiltonian-transitive graphs and take a look at the
opposite extremal case by constructing a family with many different Hamiltonian cycles up to
symmetry.
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1 Introduction

Our work is motivated by a line of research studying the existence of Hamiltonian cycles in
graphs that fulfill some symmetry condition. One of the most intriguing open problems in
this area is the Lovász Conjecture [25]: It asserts that every vertex-transitive graph, apart
from five small counterexamples, contains a Hamiltonian cycle. Despite considerable efforts
over the last decades [5, 7, 23, 24, 26, 29, 28], this conjecture remains wide open. Another
prominent open problem in this area is Sheehan’s Conjecture [34]. Together with results
in [35, 36], its assertion is equivalent to the following: Cycles are the only regular graphs
that are uniquely Hamiltonian, i.e., contain precisely one Hamiltonian cycle. It was proven
in special cases [9, 13, 32, 33], but remains open in general.

One of the most important special cases for these conjectures is Cayley graphs [1, 7,
11, 30, 37]. While the Lovász conjecture for general Cayley graphs remains open, it is well
known to hold for abelian groups (e.g., follows from [4]). In fact, Cayley graphs of abelian
groups even “exceed it” in the sense that they are not uniquely Hamiltonian (except for
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15:2 Symmetry Classes of Hamiltonian Cycles

cycles) [32], i.e., they satisfy Sheehan’s conjecture. This raises the question of whether the
multiple Hamiltonian cycles only exist due to many symmetries of Cayley graphs. This is
the central question of this paper and we solve it under some mild conditions.

We study Hamiltonian cycles in finite simple graphs up to symmetry. More precisely, we
consider two Hamiltonian cycles of a graph G to be equivalent, if there is an automorphism
of G that maps one cycle to the other. Here we identify a cycle with its set of edges. The
focus of this paper lies on the extremal case of graphs that only contain a unique Hamiltonian
cycle up to symmetry. We introduce the following notion.

▶ Definition 1. A graph G is Hamiltonian-transitive if it is Hamiltonian and, for every pair
of Hamiltonian cycles, there is an automorphism of G that maps one cycle to the other. We
denote the class of all Hamiltonian-transitive graphs by H.

Note that every uniquely Hamiltonian graph is also Hamiltonian-transitive. The intuitive
difference is that we only distinguish Hamiltonian cycles that are structurally different, which
fits into a broader framework of studying combinatorial objects up to isomorphism/sym-
metry [21, 27]. For example, the complete graph is Hamiltonian-transitive, but not uniquely
Hamiltonian. This raises the question of to what extent Sheehan’s conjecture generalizes to
Hamiltonian transitivity.

We prove that a large family of Cayley graphs of abelian groups are not Hamiltonian-
transitive, i.e., that Sheehan’s conjecture for this family generalizes. The starting point for
this is studying product decompositions of graphs. More precisely, we study how Hamiltonian
transitivity behaves with respect to Cartesian products, which we believe is interesting
in its own right because it reduces Hamiltonian transitivity to properties of the prime
factors of a graph. Opposed to this, we give a simple construction for an infinite family
of d-regular Hamiltonian-transitive graphs for any d ≥ 2. Through the lens of Sheehan’s
conjecture, this highlights one of the key differences between uniquely Hamiltonian and
Hamiltonian-transitive graphs.

Our results

We characterize the Hamiltonian-transitive graphs within a large family of Cayley graphs of
abelian groups and Cartesian products.

Our main result is a full characterization of Hamiltonian-transitive Cayley graphs of
abelian groups of odd order. In this paper, all graphs are finite and simple, which means in
the context of Cayley graphs that we only consider finite groups with a generating set that is
closed under taking inverses and does not contain the identity element. In the following, we
denote by Kn and Cn the complete graph and the cycle on n vertices. For a graph G = (V, E),
we write |G| := |V | for its order.

▶ Theorem 2. Let G be the Cayley graph of an abelian group w.r.t. some inverse-closed
generating set and assume that n := |G| ≥ 3 is odd. Then G ∈ H if and only if G ∈ {Kn, Cn}.

For Cayley graphs of abelian groups of even order, we require somewhat different tech-
niques and rely on a mild non-redundancy assumption on the generating set. We obtain
the following characterization, where the notation G□H denotes the Cartesian product and
Kn,n denotes the complete bipartite graph in which both parts of the bipartition have size n.

▶ Theorem 3. Let G be the Cayley graph of an abelian group w.r.t. some inverse-closed gener-
ating set S and assume that n := |G| ≥ 4 is even. Moreover, assume that there is some s ∈ S

such that S \ {s, −s} is non-generating. Then G ∈ H if and only if G ∈ {Cn, C4 □K2, K4,4}
or G = Ck □K2 where k = n/2 is odd.
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A crucial ingredient for our proofs of Theorems 2 and 3 is the study of Cartesian products,
which are interesting in their own right. First, observe that the Cartesian product of two
Hamiltonian graphs is Hamiltonian again. We show that most non-prime graphs (graphs
decomposable into Cartesian products, formally defined in Section 2.1) have, due to their
symmetric structure, at least two structurally different Hamiltonian cycles.

▶ Theorem 4. Let G and H be Hamiltonian graphs.
If G and H are relatively prime, then G□H /∈ H.
If G is prime, then G□ n ∈ H if and only if n = 1 and G ∈ H.

To extend our study of Cartesian products, we also investigate the special case of products
with K2 and give a full characterization of the Hamiltonian-transitive ones (Theorem 8).

While these results give the impression that there are not many highly symmetric
Hamiltonian-transitive graphs, we complement our findings by giving constructions of regular
Hamiltonian-transitive graphs in Section 4. More precisely, we give a simple construction
of an infinite class of Hamiltonian-transitive d-regular graphs for every d ≥ 2 (Remark 30).
Further, we show that truncations of cubic graphs preserve Hamiltonian transitivity, providing
an interesting class of cubic 3-connected Hamiltonian-transitive graphs (Proposition 31).

These results focus on graphs with only one Hamiltonian cycle up to symmetry, and in
the final part of this paper, we touch on the opposite extremal case by studying graphs with
many Hamiltonian cycles up to symmetry. We provide a construction of graphs on n vertices
with 2Θ(n log(n)) symmetry classes of Hamiltonian cycles (Proposition 34), which matches a
trivial upper bound on the number of structurally different Hamiltonian cycles.

Related work

There is a vast amount of work studying uniquely Hamiltonian graphs and Sheehan’s
Conjecture. The arguably most important result for our work is that the conjecture was
proven for graphs with a large automorphism group in [32], including vertex-transitive
graphs, and in particular, Cayley graphs. Further research includes the degree sequences that
uniquely Hamiltonian graphs can have (see e.g., [2, 3, 10]) or verification of the conjecture
for special graph classes, such as claw-free graphs of order not divisible by 6 [9], claw-free
graphs of minimum degree at least 3 [33], and graphs of order up to 21 [13]. Bounds on the
number of distinct Hamiltonian cycles in regular Hamiltonian graphs were given in [20].

Uniquely Hamiltonian graphs as well as graphs with few Hamiltonian cycles have also
been investigated from a computational point of view. Algorithms to compute a second
Hamiltonian cycle in a graph were developed in [6]. An algorithm for the exhaustive generation
of graphs with precisely k Hamiltonian cycles is given in [13]. In [19], the authors consider
symmetry breaking for uniquely Hamiltonian graphs. In [12], the authors study the number
of Hamiltonian cycles in k-regular and (k, l)-regular graphs and disprove a lower bound on
the number of Hamiltonian cycles in k-regular graphs conjectured by Haythorpe [18].

Motivated by the application for Gray codes, there has recently been interest in finding
Hamiltonian cycles that are particularly symmetric in the sense that they can be rotated
by a graph automorphism. To this end, the Hamilton compression, a parameter measuring
the rotation symmetry of a Hamiltonian cycle, was introduced [14] and investigated across
various families of vertex-transitive graphs [22, 23]. While the Hamilton compression measures
the symmetries within a Hamiltonian cycle, we focus on the symmetries between different
Hamiltonian cycles. However, the Hamilton compression is the same for all Hamiltonian
cycles if the graph is Hamiltonian-transitive.

MFCS 2025
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Figure 1 Three Hamiltonian cycles of G□H. The first has 2(|H|−1)
vertical edges, while the second has 2(|H| − 1) + (|G| − 2)(|H| − 2)
vertical edges. In case G = H, the cycle on the left is C2 from the
construction of Lemma 6 and the one on the right is Ĉ2.
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Figure 2 The Hamilto-
nian cycle Cn of G□ n con-
structed from the Hamilto-
nian cycle Cn−1 of G□ n−1.

2 Cartesian products

Cartesian products provide a natural product decomposition of graphs, so that we begin
with studying how Hamiltonian transitivity behaves with respect to such a decomposition.

More formally, the Cartesian product of two graphs G and H, denoted by G□H, is
defined as the graph with vertex set V (G) × V (H) and two vertices (g, h) and (g′, h′) being
adjacent if and only if g = g′ and {h, h′} ∈ E(H), or h = h′ and {g, g′} ∈ E(G).

2.1 Cartesian products of Hamiltonian graphs
In this subsection, we focus on Hamiltonian-transitive Cartesian products of Hamiltonian
graphs. Here we rely on the assumption that the factors are Hamiltonian because this ensures
that their product is Hamiltonian. In particular, we assume that each factor has order at
least three. Finding conditions under which G□H is Hamiltonian for general graphs G

and H is an independent research direction and remains wide open.
Next, let us introduce some of the notation in the context of Cartesian products. A

non-trivial graph is called prime if it cannot be decomposed into a Cartesian product of
two non-trivial graphs. Every connected graph G has a unique decomposition

G = H□ r1
1 □ . . .□H□ rk

k (1)

for pairwise distinct prime graphs H1, . . . , Hk and r1, . . . , rk ∈ N (see [16, Chapter 6]),
where H□ ri

i denotes the Cartesian product of ri copies of Hi. In this case, we call the
graphs H1, . . . , Hk prime factors of G. Two graphs G and H are relatively prime, if they do
not share a prime factor.

With this, we can formulate the main result of this subsection.

▶ Theorem 4. Let G and H be Hamiltonian graphs.
If G and H are relatively prime, then G□H /∈ H.
If G is prime, then G□ n ∈ H if and only if n = 1 and G ∈ H.

We split the proof of Theorem 4 into two lemmata, beginning with the case that G and H

are relatively prime.1

▶ Lemma 5. Let G and H be Hamiltonian graphs. If G and H are relatively prime,
then G□H ̸∈ H.

1 All missing proofs (and full proofs for sketches) are deferred to the full version.
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Proof sketch. We consider the Hamiltonian cycle on the left of Figure 1 and show that
it cannot be mapped to the one in the middle, which is obtained by exchanging the roles
of G and H. For this, we show that every automorphism of G□H preserves the set of
vertical edges and the set of horizontal edges, using that the graphs are relatively prime. The
assertion then follows because the two cycles have a different number of vertical edges. ◀

After dealing with relatively prime graphs, the next step towards a classification is to
consider the Cartesian product of a prime graph with itself.

▶ Lemma 6. Let G be a Hamiltonian and prime graph. Then G□ n ̸∈ H for all n ≥ 2.

Proof. Note that vertices of G□ n are n-tuples of vertices of G and two vertices u and v

are adjacent if and only if they only differ in one component i and {ui, vi} is an edge of G.
Let Ei be the set of edges {u, v} of G□ n where u and v differ in their i-th component.
Then E1, . . . , En is a partition of the edges of G□ n. Since G is prime, every automorphism
of G□ n permutes the sets E1, . . . , En ([16, Theorem 6.10]), i.e., if e, e′ ∈ Ei and the
automorphism maps e to Ej , then e′ is also mapped to Ej .

Let k := |G|. First, we consider the case that k ≥ 4. Our strategy is as follows: We
inductively construct cycles Cn and Ĉn (for n ≥ 2) that cannot be mapped to each other.
For this, we also make use of the auxiliary statement that the constructed cycles fulfill
|E(Cn) ∩ Ei| ≥ 4 and |E(Ĉn) ∩ Ei| ≥ 4 for all i ∈ {1, . . . , n}, where by slight abuse of
notation, Ei is also w.r.t. n.

We start with the base case, i.e., n = 2. For simplicity, we call the edges in E1 and E2
vertical and horizontal edges, respectively. Let (g1, . . . , gk) be a Hamiltonian cycle of G.
From this cycle, we can construct the two Hamiltonian cycles C2 and Ĉ2 of G□ 2 depicted
on the left and right of Figure 1. Note that the constructions slightly change depending on
the parity of |G|, but the following arguments hold for both. For the sake of contradiction,
assume there is an automorphism φ ∈ Aut(G□G) mapping C2 to Ĉ2. Since every vertical
edge in Ĉ2 is preceded and followed by horizontal edges (here we use k ≥ 4), but all horizontal
edges in C2 are either preceded or followed by another horizontal edge, φ cannot swap the
sets E1 and E2, so it preserves each. But this leads to a contradiction because there are k − 1
consecutive vertical edges in C2, but not in Ĉ2. Also, note that both cycles contain at least
2(k − 1) ≥ 4 edges from E1 and from E2 so that this completes the base case.

For the induction step, let n ≥ 3. Let u, v and w be three consecutive vertices of Cn−1.
Let Cn be the cycle obtained from Cn−1 using u, v, and w as depicted in Figure 2. Note here
that the vertical edges in Figure 2 are precisely the edges in En. Analogously, construct Ĉn

from Ĉn−1 and three consecutive vertices û, v̂ and ŵ in Ĉn−1. Note that

|E(Cn) ∩ En| = 2(k − 1) ≥ 4. (2)

Further, since Cn contains k copies of the cycle Cn−1 with two edges removed and, by the
induction hypothesis, Cn−1 uses at least 4 edges from Ei, we have

|E(Cn) ∩ Ei| ≥ 2k ≥ 4. (3)

for all i ∈ {1, . . . , n − 1}. We obtain the equations (2) and (3) similarly for the cycle Ĉn.
It remains to prove that the cycles cannot be mapped to each other. Assume there
is an automorphism φn ∈ Aut(G□ n) mapping Cn to Ĉn. Using (2) and (3), we obtain
that |E(Cn)∩En| = 2(k −1) < 2k ≤ |E(Ĉn)∩Ei| for all i ̸= n, so that φ has to preserve the
set En. Thus, φn is of the form (φn−1, α) for some φn−1 ∈ Aut(G□ n−1) and α ∈ Aut(G).
Note that both cycles Cn and Ĉn contain precisely one path of edges in En of length k − 1,

MFCS 2025
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so that φ maps one to the other, i.e., the path ((v, g1), . . . , (v, gk)) in Cn is mapped to the
path ((v̂, g1), . . . , (v̂, gk)) in Ĉn. Hence, α either maps g1 to g1 or, in case α reverses the
order of the path, to gk. In both cases, φn−1 maps Cn−1 to Ĉn−1, which contradicts the
induction hypothesis. Therefore, Cn cannot be mapped to Ĉn by an automorphism. This
completes the proof of the Lemma in case k ≥ 4.

The case |G| = 3 can be proven by a similar analysis and is deferred to the full version. ◀

Now Theorem 4 follows immediately by combining Lemma 5 and Lemma 6. In case
a graph decomposes into a Cartesian product of Hamiltonian graphs, we can deduce the
following characterization of Hamiltonian-transitive graphs.

▶ Corollary 7. Let G be a graph with decomposition G = H□ r1
1 □ . . .□H□ rk

k for pairwise
distinct prime graphs H1, . . . , Hk. Assume that H1, . . . , Hk are Hamiltonian. Then G ∈ H if
and only if G = H1 ∈ H.

2.2 Cartesian products with K2

In the previous subsection, we assumed that all factors of the Cartesian product are Hamilto-
nian to ensure that the obtained graph is Hamiltonian as well. In this subsection, we extend
our study to Cartesian products with K2, which later turns out to be a crucial case for our
work on Cayley graphs. More precisely, we prove the following result.

▶ Theorem 8. Let G be a Hamiltonian graph. Then G□K2 ∈ H if and only if G = Ck

for k ≥ 3 odd or G = C4.

Throughout this section, we let V (G) := {v0, . . . , vk−1} such that (v0, . . . , vk−1) is a
Hamiltonian cycle of G. We denote the Cartesian product by taking an isomorphic copy
of G on vertices {u0, . . . , uk−1} and letting vi neighboring ui for all i ∈ {0, . . . , k − 1} (see
Figure 3). We call the subgraph induced by {v0, . . . , vk−1} the outer layer and the subgraph
induced by {u0, . . . , uk−1} the inner layer.

We split the proof of Theorem 8 into several lemmata. First, we show that, for G = Ck

with k odd, the Cartesian product G□K2 is indeed Hamiltonian-transitive.

▶ Lemma 9. Let k ≥ 3 be odd. Then Ck □K2 ∈ H.

Proof sketch. We argue that every Hamiltonian cycle contains precisely two edges leading
from one layer to the other and that these have to lie next to each other, i.e., that the
cycle depicted in the middle of Figure 3 is the only Hamiltonian cycle up to symmetry. To
prove this, note first that the number of edges leading from one layer to the other used by a
Hamiltonian cycle is even and at least two. We then prove that every Hamiltonian cycle uses
either two consecutive such edges or all of them. Since k is odd, the latter is not possible. ◀

In the next two lemmata, we argue that in all other cases (where |G| ≥ 5), the Cartesian
product G□K2 is not in H. The difficulty is that we cannot assume any non-adjacency
between vertices of G. More precisely, we will only use that Ck □K2 is a subgraph of G□K2
and that ui is non-adjacent to vj if i ̸= j. First, we settle the case when |G| is even.

▶ Lemma 10. Let G be Hamiltonian with k := |G| ≥ 6 even. Then G□K2 /∈ H.

Proof sketch. The key idea is to show that the Hamiltonian cycle on the left side in Figure 3
cannot be mapped to both, the cycle in the middle and the cycle on the right via a graph
automorphism. For this, we use that the Hamiltonian cycle on the left has the property that
every vertex is adjacent to precisely one of the two vertices at distance three in the cycle. ◀
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Figure 3 Illustration of the construction in Lemma 10.
The possible edges inside a layer are omitted. Every vertex in
the left Hamiltonian cycle is adjacent to precisely one of the
vertices at distance three in the cycle. It is impossible that v0

has this property in both, the cycle in the middle and on the
right. The cycle on the left only exists when |G| is even.

u0
u1u2

u3

u4

u5 u6
u7

u8
u3

v0

v1v2

v3

v4

v5 v6

v7

v8

Figure 4 Illustration of the con-
struction in Lemma 11. The cycle
uses the existence of one additional
edge inside a layer {u0, u5}. The
marked vertex u3 is not adjacent
to the vertices at distance 5 along
the cycle (v1 and v7).

Next, we conisder the case where |G| is odd but not a cycle. Note that we need a different
strategy here because the cycle we used in Lemma 10 (left side of Figure 3) only exists
when |G| is even.

▶ Lemma 11. Let G be Hamiltonian with |G| =: k odd and G ̸= Ck. Then G□K2 /∈ H.

Proof sketch. First, we show that, if G□K2 ∈ H, then G fulfills some symmetry conditions.
Then, we consider the cycle depicted in Figure 4 and use the symmetry conditions to show
that it cannot be mapped to the cycle in the middle of Figure 3. ◀

The only case that is left to settle for Theorem 8 is when |G| = 4. Note that there are
only 3 Hamiltonian graphs on 4 vertices and checking these (either by hand or computation),
we obtain that G = C4 is the only case where G□K2 ∈ H. Together with Lemmas 9, 10,
and 11, this completes the proof of Theorem 8.

3 Cayley graphs of abelian groups

In this section, we study Cayley graphs of abelian groups with the goal to find a characteriz-
ation of the Hamiltonian-transitive ones. Recall that it is in general open whether all Cayley
graphs of order ≥ 3 are Hamiltonian, but it is well known that this holds for abelian groups.
In this section, we extend this result and show that graphs in a large family of Cayley graphs
of abelian groups even contain multiple Hamiltonian cycles up to symmetry (Theorem 2 and
Theorem 3).

3.1 Preliminaries
In this subsection, we collect some preliminary notation and results. In the following, we
write all groups additively. Given a generating set S of an abelian group Γ, we write Cay(Γ, S)
for the Cayley graph of Γ with respect to S. As we restrict ourselves to undirected graphs
without loops, we always assume S to be closed under taking inverses and 0 /∈ S.

The following lemma follows immediately from the definition of Cayley graphs and
Cartesian products.

▶ Lemma 12. Let Γ1 and Γ2 be finite groups with generating sets S1 and S2, respectively.
For Γ = Γ1 × Γ2, we have Cay(Γ, S1 ∪ S2) ∼= Cay(Γ1, S1)□Cay(Γ2, S2).

MFCS 2025



15:8 Symmetry Classes of Hamiltonian Cycles

In the result above, Γ1 × Γ2 denotes the direct product of the two groups and, by
slight abuse of notation, when S1 is considered a subset of Γ, this actually refers to the
set {(s, 0) : s ∈ S1}, and analogously for S2.

A useful parameter in the context of Cayley graphs is the Hamilton compression, intro-
duced by Gregor et al. in [14]. A Hamiltonian cycle C = (v0, . . . , vn−1) of a graph G on n

vertices is called k-symmetric if k divides n and vi 7→ vi+n/k mod n is an automorphism of G.
We call this automorphism a rotation of C by n/k. Note that, if a cycle is k-symmetric, i.e.,
can be rotated by n/k, it can also be rotated by multiples of n/k as this corresponds to
repeatedly applying the induced automorphism. In particular, a k-symmetric cycle can be
rotated in both directions by n/k because a rotation by n/k in one direction corresponds to a
rotation by (k − 1)n/k in the other direction. The Hamilton compression of C is then defined
by κ(C) := max{k : C is k-symmetric}. For a Hamiltonian graph G, the Hamilton compres-
sion of G is defined by κ(G) := max{k : there is a k-symmetric Hamiltonian cycle of G}.
Note that, by definition, κ(G) divides n.

Since the Hamilton compression of a Hamiltonian cycle is preserved under applying
automorphisms, we immediately obtain the following result.

▶ Lemma 13. Let G be a graph. If G ∈ H, then all Hamiltonian cycles of G have the same
Hamilton compression.

The next result will be used to split Cayley graphs into Cartesian products.

▶ Lemma 14. Let Γ be an abelian group and p be a prime divisor of |Γ|. Let S be a generating
set of Γ such that the order of all elements in S is either a power of p or coprime to p.
Setting Sp := {s ∈ S : p | ord(s)} and S′

p := S \ Sp, we have Γ = ⟨Sp⟩ × ⟨S′
p⟩.

The following statement is a direct consequence of the proof of [14, Theorems 6.4 and 6.6].

▶ Lemma 15. Let G ∈ H and assume that G = Cay(Γ, S) for an abelian group Γ and a
generating set S.
1. Suppose that |Γ| is odd. If S contains an element of order pm for a prime p and m > 1,

then p divides κ(G).
2. If |Γ| is even, then κ(G) is even.

Last, many arguments that we use in this section only work for graphs that are not too
small. Therefore, the following result ensures that we do not have to take care of these cases.

▶ Lemma 16. Let G be the Cayley graph of an abelian group Γ with respect to an inverse-
closed generating set.

Assume that n := |Γ| ≤ 16. Then G ∈ H if and only if one of the following holds
G ∈ {Kn, Cn, C4 □K2},
G = Kk,k where k = n/2,
G = Ck □K2 where k = n/2 is odd.

Assume that Γ ∈ {Z3 × Z3 × Z3,Z9 × Z3}. Then G ∈ H if and only if G = K27.

We confirmed this lemma via exhaustive generation of all Cayley graphs using Sage. For
most of the graphs, we could easily find two Hamiltonian cycles which could not be mapped
onto one another. Further, we excluded some more graphs by counting all their Hamiltonian
cycles and comparing this number to the size of the automorphism group. For the remaining
graphs we check by brute-force if they are in H.
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3.2 Cyclic groups
In this section, we characterize Hamiltonian-transitive Cayley graphs of cyclic groups whose
generating set contains an element whose order equals the order of the group. This later
serves as a base for Cayley graphs of abelian groups.

▶ Theorem 17. Let Γ ∼= Zn and S be an inverse-closed generating set of Γ containing an
element of order n. Let G = Cay(Γ, S). Then, the following are equivalent:
1. G ∈ H,
2. every Hamiltonian cycle C in G has Hamilton compression κ(C) = n,
3. we have G ∈ {Kn, Cn} or n = 2m is even and G = Km,m.

Proof. We first show that (3) implies (1). Clearly, we have Kn, Cn ∈ H. To see that
also Km,m ∈ H, let A ⊔ B be the bipartition of Km,m and observe that every Hamiltonian
cycle of Km,m alternately uses a vertex of A and B. Since every combination of permutations
of A and B is an automorphism of Km,m, every Hamiltonian cycle can be mapped to every
other Hamiltonian cycle by an automorphism of Km,m.

For the remaining implications, let us first argue that we can assume 1 ∈ S: by assumption,
there exists an element x ∈ S of order n. Note that the group automorphism φ(kx) := k

induces an isomorphism between Cay(Γ, S) and Cay(Γ, φ(S)), so we can assume w.l.o.g.
that x = 1.

Next, we show that (1) implies (2). Consider the Hamiltonian cycle C = (0, 1, . . . , n − 1)
of G. Since, y 7→ y + 1 defines an automorphism of G, the cycle C can be rotated by 1 so
that the Hamilton compression of C is n. Since G ∈ H, by Lemma 13 every cycle of G has
Hamilton compression n.

It remains to show that (2) implies (3). Thus from now on, we assume that every
Hamiltonian cycle in G has Hamilton compression n and we aim to show that G is isomorphic
to Kn, Cn, or Km,m. If G ̸∼= Cn, we have k ∈ S for some 2 ≤ k < n − 1. Then we consider
the Hamiltonian cycle C ′ = (0, k, k + 1, k + 2, . . . , n − 1, k − 1, k − 2, . . . , 1) in G. Since C ′

has Hamilton compression n, rotating C ′ by any y ∈ N yields an automorphism of G. For
every y ∈ {1, . . . , min{k − 1, n − k − 1}}, this automorphism maps the edge {k − 1, k}
to {k − 1 − y, k + y}. The existence of this edge implies (k + y) − (k − 1 − y) = 2y + 1 ∈ S,
which shows that {1, 3, 5, . . . , min{2k − 1, 2(n − k) − 1}} ⊆ S.

We have shown that, for every k ∈ S, we have {1, 3, 5, . . . , min{2k − 1, 2(n − k) − 1}} ⊆ S.
Applying this repeatedly, we obtain that S contains all odd numbers up to n − 1. In
particular, if n is odd, we obtain that S = {1, . . . , n − 1} because S is inverse-closed. This
means that G ∼= Kn.

Now assume that n is even. In this case, we obtain that A := {1, 3, 5, . . . , n − 1} ⊆ S. If
equality holds, we have G ∼= Km,m. Otherwise, G is a supergraph of Km,m and S contains
an element 2l for some l < n

2 . We show that, for every l′ ≤ n
2 , we also have 2l′ ∈ S: Since S

contains all elements in A, note that every permutation of (0, 1, 2, . . . , n − 1), where every
second element is in A, is a Hamiltonian cycle of G. Let C ′ be the Hamiltonian cycle
obtained from (0, . . . , n − 1) by replacing 2l and 2l′. Rotating C ′ by n − 1 (i.e., by 1 in
the other direction) maps the edge {1, 2l + 1} to {0, 2l′}, and hence, 2l′ ∈ S. This shows
that S = Γ \ {0}, i.e., G ∼= Kn. ◀

3.3 Layer structure theorem
In this subsection, we investigate a general framework for graphs containing a grid-like
structure and having non-trivial Hamilton compression. As we explain later, Cayley graphs
of abelian groups fulfill these conditions and thus fall within the scope of this subsection.
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k

a1

a2

layer 0

layer 1

layer l − 1

Figure 5 Zigzag cycle for l = 7 odd and a = (3, 2). The filled vertices are the endpoints of the
described segment of length µ(C).

Note that despite the fact that Cartesian products do have a layer structure, they do not
necessarily have non-trivial Hamilton compression, so the results from this section cannot be
applied in that case.

We begin by formalizing the grid-like structure with which we work.

▶ Definition 18 (Layer structure). Let G be a graph and l ∈ N≥1. If there is a decomposition
V (G) = V1 ∪̇ . . . ∪̇ Vl such that

1. for i = 1, . . . , l − 1, G contains a perfect matching between Vi and Vi+1 that defines an
isomorphism between G[Vi] and G[Vi+1], and

2. the graph K := G[V1] ∼= . . . ∼= G[Vl] is Hamiltonian,
we say that G has K-l-layer structure. In this case, we call G[V1], . . . , G[Vl] the layers of G.

Note that, if G has K-l-layer structure, then G has a spanning subgraph isomorphic
to K □Pl. Given some ordering of the vertices of K (in the following usually given by a
Hamiltonian cycle of K), by vj,i we denote the i-th vertex in the j-th layer of G. Next, we
construct a class of Hamiltonian cycles that every graph with layer structure contains. Since
we will only use this construction for graphs of odd order (in particular, l will always be
odd), we restrict ourselves to this case. However, note that this construction can be easily
generalized to graphs of even order (but some of the steps later throughout the proofs cannot
be generalized for even order).

▶ Definition 19 (Zigzag cycle). Assume that G has K-l-layer structure with l ≥ 5 odd
and set k := |K|. Let CK = (v0, . . . , vk−1) be a Hamiltonian cycle of K. Given a tuple
a = (a1, a2, . . . , a(l−3)/2) ∈ {0, . . . , k − 2}(l−3)/2, we define the CK-a-zigzag cycle as the
Hamiltonian cycle illustrated in Figure 5. For a zigzag cycle C, we define µ(C) to be the
number of edges in the segment between v0,k−1 and vl−1,k−1 that contains vertex v1,0, i.e.,
the length of the segment consisting of the green, pink, and orange line segments in Figure 5.

The following lemma is a direct consequence of the definition and shows that, by suitably
choosing a, many desirable values for µ(C) for a zigzag cycle C can be achieved.
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▶ Lemma 20. Let G be a graph with K-l-layer structure, where l ≥ 5 is odd, let k := |K|,
and let C be the CK-a-zigzag cycle for some choice of CK and a. Then we have

µ(C) = 2k − 1 + 2
(l−3)/2∑

i=1
(ai + 1).

In particular, we obtain that µ(C) is odd. Even further, for any odd number µ∗ ∈ N
with 2k − 1 + (l − 3) ≤ µ∗ ≤ 2k − 1 + (l − 3)(k − 1), there is a choice for a such that
the CK-a-zigzag cycle C fulfills µ(C) = µ∗.

Now, we have all the prerequisites in place to prove the main result of this subsection.

▶ Theorem 21. Let G ∈ H be a graph of odd order that has K-l-layer structure and
let k := |K|. Assume that one of the following conditions holds
1. k, l ≥ 7 and κ(G) ≥ 5
2. k, l ≥ 5 and, for every prime p with p|n := |G|, we have p|κ(G).

Then K is isomorphic to Ck or Kk.

Proof. The strategy is to show that, for every Hamiltonian cycle CK of K, we have κ(CK) = k.
By [14, Section 1.4], this implies that K is the Cayley graph of a cyclic group and the
generating set contains an element of order k. The assertion then follows from Theorem 17.

Fix a Hamiltonian cycle CK of K. To prove that κ(CK) = k, we will make use of the
following claim.

▷ Claim 22. There is a choice for a such that the CK -a-zigzgag cycle C fulfills that µ(C) is
a multiple of α := n/κ(G).

The proof of this claim is deferred to the full version and we argue here why it implies the
Theorem. Since G ∈ H, every Hamiltonian cycle of G, in particular C, is κ(G)-symmetric.
Therefore, rotating C by a multiple of α defines an automorphism of G. Together with
Claim 22, this means that C can be rotated by µ(C) (in counter-clockwise direction in
Figure 5). This maps the first layer of G bijectively to the last, inducing an automorphism
of K. More precisely, v0,j is mapped to vl−1,j+1 mod k. The induced automorphism of K

then maps vj to vj+1 mod k, i.e., it rotates CK by 1. Therefore, κ(CK) = k. ◀

3.4 Cayley graphs of odd order
In this subsection, we prove our main result.

▶ Theorem 2. Let G be the Cayley graph of an abelian group w.r.t. some inverse-closed
generating set and assume that n := |G| ≥ 3 is odd. Then G ∈ H if and only if G ∈ {Kn, Cn}.

As a first step, let us argue that Cayley graphs of abelian groups have a natural layer
structure, which will allow us to use results from the previous subsection. For this, let Γ be
an abelian group with generating set S and G = Cay(Γ, S). Assume that |G| ≥ 3. Let S′ ⊆ S

such that ⟨S′⟩ ∩ S = S′ and |⟨S′⟩| ≥ 3. Then G has K-l-layer structure (Definition 18)
with K := Cay(∆, S′) and l is the index of ∆ := ⟨S′⟩, i.e., l := |Γ : ∆|:

To see this, note that the cosets of ∆, given by {γ + ∆ : γ ∈ Γ}, provide a partition
of the vertices of G into l sets. Since ⟨S′⟩ ∩ S = S′, for each of these sets, the induced
subgraph is G[γ + ∆] ∼= Cay(∆, S′) = K. Moreover, since K is the Cayley graph of an
abelian group on at least 3 vertices, it is Hamiltionian. Similarly, G′ := Cay(Γ/∆, S \ S′) is
the Cayley graph of an abelian group and therefore traceable, i.e., it contains a Hamiltonian
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path (γ1 +∆, . . . , γl +∆). This means that, for i ∈ {1, . . . , l−1}, there exists some si ∈ S \S′

such that si + γi + ∆ = γi+1 + ∆. Then the edges of G corresponding to si form a perfect
matching between γi + ∆ and γi+1 + ∆. Moreover, since x 7→ x + si is an automorphism
of G, the matching defines an isomorphism between γi + ∆ and γi+1 + ∆. Therefore, G has
K-l-layer structure as stated. We call such a layer structure group-induced.

In the next lemma, we make use of this structure and our results from the previous section.

▶ Lemma 23. Let Γ be an abelian group of odd order with generating set S. Suppose that
the Cayley graph G = Cay(Γ, S) is Hamiltonian-transitive and κ(G) > 1. Assume that G has
a group-induced K-l-layer structure with |K|, l ≥ 5. Then K is complete or a cycle.

Proof sketch. The key idea is to show that condition (2) in Theorem 21 is fulfilled, which
then immediately implies the assertion, i.e., it is only left to prove that, for every prime
number p that divides |G|, p also divides κ(G). For this, we distinguish two cases on the
prime factors of the order of elements in S. In one case, the assertion follows by Lemma 15.
In the other case, we use Lemma 14 to decompose Γ into a direct product, Lemma 12 to
decompose G into a Cartesian product and Lemma 5 to deduce that one factor is trivial. ◀

In the following two results, we build on Lemma 23 and further resolve the cases where K

is complete or a cycle.

▶ Lemma 24. Let Γ be an abelian group with generating set S. Suppose that the Cayley
graph G = Cay(Γ, S) is Hamiltonian-transitive and κ(G) > 1. Assume that G has a group-
induced K-l-layer structure where K is a complete graph with |K| ≥ 5. Then G is complete.

Proof sketch. First, we argue that, if two vertices of different layers are adjacent, then all
vertices of the layers are adjacent. For this, we construct a suitable Hamiltonian cycle and
rotate it using κ(G) > 1. Second, we argue that every pair of layers has adjacent vertices by
constructing structurally different Hamiltonian cycles if this is not the case. ◀

▶ Lemma 25. Let Γ be an abelian group of odd order with generating set S. Suppose that
the Cayley graph G = Cay(Γ, S) is Hamiltonian-transitive and κ(G) > 1. Assume that G has
a group-induced K-l-layer structure with k := |K| ≥ 5 and l ≥ 5. Then we have K ̸∼= Ck.

Proof sketch. For the sake of contradiction, assume that K is a cycle. Since κ(G) > 1, every
Hamiltonian cycle has a non-trivial rotation. By suitably choosing the parameter a of the
zigzag cycle (Definition 19), we obtain that this rotation maps two non-adjacent vertices in
the first layer to two adjacent vertices in different layers, which is a contradiction. ◀

The last step before concluding the main theorem is to settle the cases where |K| or l is
small.

▶ Lemma 26. Let Γ be an abelian group of odd order with generating set S. Suppose that
the Cayley graph G = Cay(Γ, S) is Hamiltonian-transitive and κ(G) > 1. Assume that, for
all s ∈ S, ord(s) < 5 or |Γ : ⟨s⟩| < 5. Then Γ = Zt

3 for t ≥ 4 or G is complete or a cycle.

Proof sketch. We distinguish three cases: either S contains a generator; or all elements in S

have order 3; or there exists s ∈ S with |Γ : ⟨s⟩| = 3. In the first case, the assertion follows
from Theorem 17. In the second case, Γ is a power of Z3 and we conclude with Lemma 16.
In the last case, we show that κ(G) is a multiple of three and rotating a suitable Hamiltonian
cycle by |G|/3 yields a contradiction. ◀

Now, we have all the tools at hand to prove Theorem 2.
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Proof of Theorem 2. First, assume that κ(G) = 1. By [14, Theorem 6.4], this implies
S = {sp1 , . . . , spr

} for pairwise distinct prime numbers p1, . . . , pr such that the element spi

has order pi for i = 1, . . . , r. By Lemmas 12 and 14, we obtain the Cartesian product
decomposition G = Cay(⟨sp1⟩, {sp1})□ . . .□Cay(⟨spr ⟩, {spr }). Theorem 4 then yields r = 1,
and thus G = Cp1 is a cycle.

From now on, assume κ(G) > 1. By Lemma 26, we obtain that Γ = Zt
3 for t ≥ 4;

or G is complete; or a cycle; or there exists s ∈ S of order at least 5 and |Γ : ⟨s⟩| ≥ 5.
In the second and third cases, there is nothing to do. In the first case, we can choose
s1, s2 ∈ S such that ∆ := ⟨S′⟩ := ⟨s1, s2⟩ has order 9 and |Γ : ∆| ≥ 9. Similarly, in the
last case, we can set S′ := {s}, so that ∆ = ⟨S′⟩ has order at least 5 and index at least 5.
Consider the K-l-layer structure given by S′ as described at the beginning of this section.
By Lemma 23, K = Cay(∆, S′) is a cycle or a complete graph. The first case is excluded by
Lemma 25. In the second, G is a complete graph by Lemma 24. ◀

3.5 Cayley graphs of even order
In the previous subsection, we studied Cayley graphs of odd order. For the even case, we
require somewhat different techniques and present them in this subsection. Our main result
for Cayley graphs of even order is the following, where we rely on a mild non-redundancy
condition on the generating set. However, we conjecture that the statement can be generalized
to all Cayley graphs of abelian groups (with the additional exceptions of Kn and Kn/2,n/2).

▶ Theorem 3. Let G be the Cayley graph of an abelian group w.r.t. some inverse-closed gener-
ating set S and assume that n := |G| ≥ 4 is even. Moreover, assume that there is some s ∈ S

such that S \ {s, −s} is non-generating. Then G ∈ H if and only if G ∈ {Cn, C4 □K2, K4,4}
or G = Ck □K2 where k = n/2 is odd.

We first prove Theorem 3 for the case l := |⟨S⟩/⟨S \ {±s}⟩| ≥ 4. Subsequently, the
cases l ∈ {2, 3} will be studied separately.

▶ Lemma 27. Let Γ be an abelian group of even order with generating set S

and G = Cay(Γ, S). Suppose that there exists an s ∈ S such that l = |Γ : ⟨S \ {±s}⟩| ≥ 4.

Then G ∈ H if and only if G = Cn or G = Cl □K2, where l is odd or l = 4.

Proof sketch. From Theorems 8 and 17, we already know that Cn, C4 □K2, and Cl □K2
for l odd are in H. For the other direction, assume G ∈ H. Let S′ := S \ {±s} and
K := Cay(⟨S′⟩, S′). The cases of |K| = 2 and |K| = 3 are dealt with separately. In
case |K| ≥ 4, the key idea is to use the group-induced K-l-layer structure and exploit
that only edges corresponding to s and −s connect different layers. Then we consider the
Hamiltonian cycles C and Ĉ of G as depicted on the left and in the middle of Figure 6. Next,
we show that every automorphism that maps C to Ĉ maps the green vertices a, b, c and d

in C to V2 ∪ Vl−1 in Ĉ. Then we exploit the distance and order of the vertices a, b, c and d

on the cycle C, as well as the fact that a and d are adjacent, to obtain a contradiction by
doing several case distinctions. ◀

In the next two lemmas, we settle the cases where l ∈ {2, 3}.

▶ Lemma 28. Let Γ be an abelian group with generating set S and let G = Cay(Γ, S).
Suppose that there exists an s ∈ S such that l = |Γ : ⟨S \ {±s}⟩| = 2. Then G ∈ H if and
only if G = K4,4 or G = Ck □K2, where k is odd or k = 4.
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Figure 6 Illustrations for the Hamiltonian cycles in the proof of Lemma 27. The left subfigure
depicts the cycle C, the middle one Ĉ in case |K| even, and the right one Ĉ for |K| odd. The vertical
edges in the middle of Ĉ are at columns ⌈|K|/2⌉ and ⌈|K|/2⌉ + 1.

▶ Lemma 29. Let Γ be an abelian group of even order with generating set S

and G = Cay(Γ, S). Suppose that there exists an s ∈ S such that l = |Γ : ⟨S \ {±s}⟩| = 3.

Then G /∈ H.

Proof sketch for Lemmas 28 and 29. We use that G has a group-induced K-l-layer struc-
ture (for l = 2, respectively l = 3) to construct Hamiltonian cycles of G from a Hamiltonian
cycle of K. The key idea in both cases is to use that κ(G) is even by Lemma 15. This means
that every Hamiltonian cycle of G can be rotated by k := |K| in the case l = 2, and by 3k/2
in the case l = 3.

In the case l = 3, we construct a Hamiltonian cycle of G where this rotation leads to a
contradiction. In the case l = 2, by suitably choosing Hamiltonian cycles of G, the rotation by
k induces symmetries of K. In addition, we use that the case of Cartesian products is already
settled in Theorem 8, so we can assume that G consists of two copies of K connected by two
disjoint matchings. Using the second matching and the symmetries of K, we then construct
Hamiltonian cycles of G that cannot be mapped to each other by an automorphism. ◀

Theorem 3 now follows immediately by combining Lemmas 27, 28, and 29.

4 Constructions of regular Hamiltonian-transitive graphs

In this section, we give two constructions for families of regular Hamiltonian-transitive graphs.
Somewhat in contrast to Section 2 and Section 3, this underlines that there are many regular
Hamiltonian-transitive graphs.

▶ Remark 30. For every d ≥ 2, there are infinitely many d-regular Hamiltonian-transitive
graphs in H: We construct such graphs as follows. For an arbitrary n ≥ 3, take Cn and n

disjoint copies of Kd+1. Remove one edge from each copy of Kd+1 and replace each vertex v

of Cn by a copy of Kd+1 such that the two incident edges to v are now incident to the two
vertices of degree d − 1. See Figure 7 for an illustration. This yields a d-regular Hamiltonian
graph. It is Hamiltonian-transitive because every Hamiltonian cycle uses all of the edges
of Cn and visits the vertices in each copy of Kd+1 in some arbitrary order. It is immediate
that this order can be permuted by applying an automorphism.

This is in strong contrast to uniquely Hamiltonian graphs, where it is known that no
uniquely Hamiltonian d-regular graphs exist for all odd values of d and all d > 22 [35, 36, 17],
and Sheehan’s Conjecture asserts that no such graphs exist for any d ≥ 3 [34].
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Kd+1
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Kd+1 Kd+1
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Figure 7 The construction of the graphs in Re-
mark 30 for n = 5. In each Kd+1 the removed edge
is indicated in red. On the right you can see the
construction for d = 3..

Figure 8 The truncation of K4 and the
cube. These provide further examples of cu-
bic vertex-transitive Hamiltonian-transitive
graphs besides the ones from Theorem 3.

Note that the constructed graphs in Remark 30 are not 3-connected and this forces certain
edges to be contained in every Hamiltonian cycle. Opposed to this, for cubic graphs, we
construct an infinite family of 3-connected Hamiltonian-transitive graphs. This shows that
there are many different cubic Hamiltonian-transitive graphs besides the odd prisms from
Theorem 3. In particular, this construction yields a family of Hamiltonian-transitive graphs
with an unbounded number of edge orbits. An edge orbit of a graph is an equivalence class
of edges under the action of Aut(G). More precisely, we show the following.

▶ Proposition 31. There exists a family of cubic 3-connected Hamiltonian-transitive graphs
with an unbounded number of edge orbits.

For this, we use the truncation of a cubic graph, which is a classical concept often used in
the literature (e.g., [8, 15, 31]). The truncation T(G) of a cubic graph G is the cubic graph
obtained by replacing each vertex v in G with a triangle and adding for each edge {u, v} of G

an edge between two vertices of the triangles corresponding to u and v. This is illustrated in
Figure 8. For a vertex v in G with neighbors {x, y, z}, we denote the corresponding vertices
in T(G) by {vx, vy, vz}. Note that the truncation of a 3-connected graph is again 3-connected.

Now we show that the truncation operation preserves Hamiltonian transitivity. Then
repeatedly applying it yields a family of Hamiltonian-transitive graphs.

▶ Lemma 32. If G is a cubic graph in H, then T(G) ∈ H.

Proof sketch. We show that every Hamiltonian cycle in T (G) arises from a Hamiltonian
cycle in G by mapping consecutive vertices (u, v, w) to (uv, vu, vx, vw, wv), where x is the third
neighbor of v in G. This construction is compatible with the extension of an automorphism φ

of G to an automorphism of T (G) mapping xy to φ(x)φ(y). ◀

In the next result, we argue that the truncation operation increases the number of edge
orbits. While this is well-known, we include the proof in the full version for self-containment.
For an edge e, we denote by ℓ(e) the length of the shortest cycle containing e. This clearly is
invariant under graph automorphisms.

▶ Lemma 33. Let k ≥ 3 and G be a cubic graph such that all edges e of G satisfy ℓ(e) = k.
Then the family {Tn(G)}n∈N has an unbounded number of edge orbits.

Now Proposition 31 follows from Lemma 32 and Lemma 33 applied to the base graph K4.
Repeatedly applying the truncation operation to other cubic Hamiltonian-transitive base
graphs, e.g., to odd prisms, yields even more families of graphs in H. This gives rise to an
even broader class of Hamiltonian-transitive cubic graphs.
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5 Graphs with many Hamiltonian cycles up to symmetry

In the previous sections, we studied which graphs have a unique Hamiltonian cycle up to
symmetry. More generally speaking, we investigated the number of Hamiltonian cycles of a
graph up to symmetry, with a focus on the special cases where this number is one. In this
section, we take a look at the other end of the spectrum, i.e., we consider graphs that have
as many Hamiltonian cycles up to symmetry as possible.

Let G be a graph with n vertices. Then, G has at most n!
2n many Hamiltonian cycles.

For complete graphs, this bound is tight. Thus, asymptotically the maximum number of
Hamiltonian cycles of a graph on n vertices is in Θ((n − 1)!) = 2Θ(n log(n)). We show that
there are graphs that asymptotically have this many Hamiltonian cycles even up to symmetry.

▶ Proposition 34. For every n ∈ N, there exists a graph on n vertices with 2Θ(n log n) many
Hamiltonian cycles up to symmetry.

Proof sketch. We consider the graphs Gn := Kn \ Cn and argue that Gn has at least
Ω((n − 4)!) = 2Ω(n log n) Hamiltonian cycles while the size of the automorphism group is
only | Aut(Kn \ Cn)| = | Aut(Cn)| = 2n. ◀

6 Conclusion and future work

In this paper, we initiated the study of the number of symmetry classes of Hamiltonian cycles
in a graph. We mainly focused on graphs with a unique Hamiltonian cycle up to symmetry.
We showed that this graph class contains d-regular graphs for every d ≥ 2 (Remark 30) and
broad families of 3-connected cubic graphs (Proposition 31).

Moreover, we studied Cartesian products and provided conditions on the factors for
the product to be Hamiltonian-transitive (Theorem 4). If one factor is K2 and the other
Hamiltonian, we gave a full characterization (Theorem 8).

Further, by explicitly constructing Hamiltonian cycles, we proved that most Cayley graphs
over abelian groups have more than one symmetry class of Hamiltonian cycles (Theorem 2,
Theorem 3). Based on these results, we conjecture the following.

▶ Conjecture 35. Let Γ be a finite abelian group with generating set S and let G = Cay(G, S).
Then G ∈ H if and only if G ∈ {C4 □K2, Cn, Kn, Kn,n, Ck □K2 : n, k ∈ N, k odd}.

Finally, we showed that there are graphs with asymptotically as many symmetry classes
of Hamiltonian cycles as possible (Proposition 34).

Overall, we believe that the enumeration and analysis of substructures in graphs up to
symmetry is an important topic that should be further pursued. For example, we suggest
the following research directions:

investigate Hamiltonian transitivity for further classes of graphs, for instance, further
Cayley graphs that are known to be Hamiltonian,
study the computational aspects of this problem, for instance, by developing algorithms
for enumerating Hamiltonian cycles up to symmetry,
explore analogous notions of transitivity for other substructures in graphs, such as perfect
matchings.
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