Sensitivity and Query Complexity Under
Uncertainty

Deepu Benson =24
Institute of Science and Technology, Chinmaya Vishwa Vidyapeeth, Ernakulam, India

Balagopal Komarath =24

Department of Computer Science and Engineering, IIT Gandhinagar, Gujarat, India

Nikhil Mande S &

Department of Computer Science, University of Liverpool, UK

Sai Soumya Nalli =4
Microsoft Research India, Bangalore, India

Jayalal Sarma 24
Department of Computer Science and Engineering, IIT Madras, Chennai, India

Karteek Sreenivasaiah G4
Department of Computer Science, University of Liverpool, UK

—— Abstract

In this paper, we study the query complexity of Boolean functions in the presence of uncertainty,
motivated by parallel computation with an unlimited number of processors where inputs are allowed
to be unknown. We allow each query to produce three results: zero, one, or unknown. The output
could also be: zero, one, or unknown, with the constraint that we should output “unknown” only
when we cannot determine the answer from the revealed input bits. Such an extension of a Boolean
function is called its hazard-free extension.

We prove an analogue of Huang’s celebrated sensitivity theorem [Annals of Mathematics, 2019]
in our model of query complexity with uncertainty.

We show that the deterministic query complexity of the hazard-free extension of a Boolean
function is at most quadratic in its randomized query complexity and quartic in its quantum
query complexity, improving upon the best-known bounds in the Boolean world.

We exhibit an exponential gap between the smallest depth (size) of decision trees computing a
Boolean function, and those computing its hazard-free extension.

We present general methods to convert decision trees for Boolean functions to those for their
hazard-free counterparts, and show optimality of this construction. We also parameterize this
result by the maximum number of unknown values in the input.

We show lower bounds on size complexity of decision trees for hazard-free extensions of Boolean
functions in terms of the number of prime implicants and prime implicates of the underlying
Boolean function.

2012 ACM Subject Classification Theory of computation — Oracles and decision trees

Keywords and phrases CREW-PRAM, query complexity, decision trees, sensitivity, hazard-free
extensions

Digital Object Identifier 10.4230/LIPIcs. MFCS.2025.17

Related Version This paper merges and extends results from [18] and [5].
Full Version: https://arxiv.org/abs/2507.00148 [4]

Funding Deepu Benson: Funded by SERB SRG Project SRG/2021/001339.

© Deepu Benson, Balagopal Komarath, Nikhil Mande, Sai Soumya Nalli, Jayalal Sarma, and Karteek
5v Sreenivasaiah;
licensed under Creative Commons License CC-BY 4.0
50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Pawel Gawrychowski, Filip Mazowiecki, and Michal Skrzypczak; Article No. 17; pp. 17:1-17:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:bensondeepu@gmail.com
https://scholar.google.com/citations?user=TBN2UBEAAAAJ&hl=en
https://orcid.org/0000-0002-5393-1162
mailto:bkomarath@rbgo.in
https://bkomarath.rbgo.in/
https://orcid.org/0009-0008-3007-6280
mailto:nikhil.mande@liverpool.ac.uk
https://mande-nikhil.github.io/
https://orcid.org/0000-0002-9520-7340
mailto:saisoumya7208@gmail.com
https://sai-soumya-nalli.github.io/
https://orcid.org/0009-0000-0678-9450
mailto:jayalal@cse.iitm.ac.in
https://www.cse.iitm.ac.in/~jayalal/
https://orcid.org/0000-0002-4819-5711
mailto:karteek.sreenivasaiah@liverpool.ac.uk
https://www.liverpool.ac.uk/people/karteek-sreenivasaiah
https://orcid.org/0000-0001-7396-3383
https://doi.org/10.4230/LIPIcs.MFCS.2025.17
https://arxiv.org/abs/2507.00148
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

17:2

Sensitivity and Query Complexity Under Uncertainty

1 Introduction

A single-tape Turing Machine needs at least n steps in the worst case to compute any n-bit
function that depends on all of its inputs. One way to achieve faster computation is to
use multiple processors in parallel. Parallel computation is modeled using Parallel Random
Access Machines (PRAM), originally defined by Fortune and Wyllie [10], in which there are
multiple processors and multiple memory cells shared among all processors. In a single time
step, each processor can read a fixed number of memory cells, execute one instruction, and
write to a fixed number of memory cells. In the real world, access to shared memory has to
be mediated using some mechanism to avoid read-write conflicts. A popular mechanism to
achieve this is called Concurrent-Read Ezclusive-Write (CREW) in which concurrent reads
of the same memory cell are allowed, but each cell can only be written to by at most one
processor in a single time step. An algorithm that violates this restriction is invalid.

A fundamental problem in such a model of computation is to determine the number of
processors and the amount of time required for computing Boolean functions. A Boolean
function f:{0,1}" ~ {0,1} is pre-determined! and the input bits are presented in shared
memory locations. The processors have to write the output bit f(z) to a designated shared
memory location. For example, consider the Boolean disjunction (logical OR) of all input
bits which outputs 1 if and only if there is at least one 1 among the inputs. There is a simple
divide-and-conquer algorithm to compute the OR of n input bits in O(logn) time using n
processors that exploits the fact that OR is associative and distributive. This is essentially a
CREW-PRAM algorithm to compute the OR, of n bits in O(log(n))-time. Note that each of
the processors in the above algorithm computes a trivial function at each step namely the
OR of two bits. Can we do better if we are allowed to use more complex computations at
each step?

Cook and Dwork [7], and Cook, Dwork, and Reischuk [8] answer this question by showing
that any CREW-PRAM algorithm that computes the logical OR of n-bits needs Q(log(n))-
time, irrespective of the functions computed by the processors at each step. The reason their
lower bound is independent of the functions allowed at each processor is because their lower
bound really applies to the number accesses made to the shared memory. If we only care
about analyzing the number of memory accesses by an algorithm running on an all-powerful
processor, a neat way to think of the computation at each processor is to model it as a
two-player interactive game: a querier who is all-powerful and an oracle. They want to
compute a Boolean function f : {0,1}™ — {0, 1} known beforehand, on an input = € {0,1}".
However, the input x is only known to the oracle. The only interaction allowed is where the
querier asks a query i € [n], and the oracle can reply with x;. The query complexity of f
is defined as the the maximum number of queries required to find the answer, where the
maximum is taken over all . The querier’s aim is to minimize the number of queries required
to determine the value of the function in the worst-case. This is exactly the computation
model studied in an exciting area of computer science simply called “query complexity”.

The technique used in [7] and [8] involves defining a measure that is equivalent to what
is now commonly known as sensitivity of a Boolean function, denoted s(f). More precisely,
they show that the time needed by CREW-PRAM algorithms, irrespective of the instruction
set, to compute a Boolean function is asymptotically lower bounded by the logarithm of the
sensitivity of the function.

! The number of input bits is fixed, making this model non-uniform.

D. Benson, B. Komarath, N. Mande, S.S. Nalli, J. Sarma, and K. Sreenivasaiah

Table 1 Kleene’s three valued logic “K3”.

AlO u 1T V|0 u 1
010 0 O 0O([0 u 1 =0 u 1
u |0 u u u|lu u 1 1 u O
1/0 v 1 1|1 1 1

The question whether a function can be computed in time at most the logarithm of the
function’s sensitivity, thereby characterizing the CREW-PRAM time complexity in terms
of sensitivity, remained open. Nisan [20] introduced a generalization of sensitivity called
block-sensitivity, denoted bs(f), which is lower bounded by sensitivity, and proved that
CREW-PRAM time complexity is asymptotically the same as the logarithm of the block
sensitivity of a function. Nisan further related decision tree depth complexity, denoted D(f) to
block-sensitivity providing another characterization for CREW-PRAM time complexity as the
logarithm of decision tree depth. However, the block-sensitivity of a function can be potentially
much higher than its sensitivity, as shown by Rubinstein [22] with an explicit function that
witnesses a quadratic gap between these two measures. After research spanning almost
three decades which saw extensive study of relationships between the above parameters and
various other parameters (see, for example, [1] and the references therein), such as certificate
complexity (denoted cc(f)) and degree (denoted deg(f)), Huang [13], in a breakthrough
result, proved that sensitivity and block-sensitivity are polynomially related. This is the
celebrated sensitivity theorem:

» Theorem 1 (Sensitivity theorem for Boolean functions [13]). For all Boolean functions

F:{0,13" = {0,1}, bs(f) = O(s(f)*).

By earlier results [20, 21, 3], Huang’s result implies that the measures of sensitivity,
block sensitivity, certificate complexity, degree, approximate degree, deterministic/random-
ized/quantum query complexity are all polynomially equivalent for Boolean functions. This
strong connection makes the study of query complexity essentially equivalent to studying the
time complexity of CREW-PRAMs. Thus henceforth, we shall predominantly use terminology
from query complexity, and also express our results in the context of query complexity.

In this work, we initiate a systematic study to understand the effect of allowing uncertainty
among the inputs in the setting of CREW-PRAM. Allowing uncertainty in this setting is
easier to understand in the equivalent query model: When an input bit is queried by the
querier, the oracle can reply with “uncertain”. If it is possible for the function value to be
determined in the presence of such uncertainties, then we would like the querier to output
such a value. In what follows, we make the setting more formal.

To model uncertainty we use a classic three-valued logic, namely Kleene’s strong logic of
indeterminacy [17], usually denoted K3. The logic K3 has three truth values 0, 1, and u. The
behaviour of the third value u with respect to the basic Boolean primitives — conjunction
(A), disjunction (V), and negation (—) — are given in Table 1.

The logic K3 has been used in several other contexts where there is a need to represent
and work with unknowns and hence has found several important wide-ranging applications
in computer science. For instance, in relational database theory, SQL implements K3 and
uses u to represent a NULL value [19]. Perhaps the oldest use of K3 is in modeling hazards
that occur in real-world combinational circuits. Recently there have been a series of results
studying constructions and complexity of hazard-free circuits [14, 15, 16]. Here u was used
to represent metastability, or an unstable voltage, that can resolve to 0 or 1 at a later time.

17:3

MFCS 2025

17:4

Sensitivity and Query Complexity Under Uncertainty

One way to interpret the basic binary operations V, A, and — in K3 is as follows: for a bit
b € {0,1}, if the value of the function is guaranteed to be b regardless of all {0, 1}-settings
to the u-variables, then the output is b. Otherwise, the output is u. This interpretation
generalizes in a nice way to n-variate Boolean functions. In literature, this extension is
typically called the hazard-free extension of f (see, for instance, [14]), and is an important
concept studied in circuits and switching network theory since the 1950s. The interested
reader can refer to [14], and the references therein, for history and applications of this
particular way of extending f to K3. We define this extension formally below.

For a string = € {0,u, 1}", define the resolutions of z as follows:

Res(x) :={y € {0,1}" : y; = x; Vi € [n] with z; € {0,1}}.

That is, Res(x) denotes the set of all strings in {0,1}"™ that are consistent with the {0, 1}-
valued bits of x. The hazard-free extension of a Boolean function is defined as follows:

» Definition 2 (Hazard-free Extensions). For a Boolean function f : {0,1}" — {0, 1}, we define
its hazard-free extension f :{0,u,1}™ — {0,u, 1} as follows. For an inputy € {0,u,1}™,

~ b if f(y) =0b for all y € Res(x)

fly) =

u otherwise

To understand the motivation behind this definition, consider the instability partial order
defined on {0, u, 1} by the relations u < 0 and u < 1. The elements 0 and 1 are incomparable.
This partial order captures the intuition that u is less certain than 0 and 1. This partial
order can be extended naturally to elements of {0,u, 1}" as ¢ < y iff z; <y, forall 1 <i < n.
A function f’: {0,u,1}" — {0,u, 1} is natural if for all z,y € {0,u, 1}"™ such that x <y, we
have f'(z) < f'(y) and f/(2) € {0,1} when z € {0, 1}". Intuitively, this property says that
the function cannot produce a less certain output on a more certain input and if there is no
uncertainty in the input, there should be no uncertainty in the output. A natural function
f’ extends a Boolean function f if f/(z) = f(z) for all z € {0,1}". There could be many
natural functions that extend a Boolean function. Consider two natural functions f’ and
f” that extend f. We say f' < f” if f/(z) < f”(x) for all x € {0,u,1}"™. This says that
the output of f” is at least as certain as the output of f’. An alternative definition for the
hazard-free extension of a function f is as follows: it is the unique function f such that
f < ffor all natural functions f’ that extends f. That is, the hazard-free extension of a
Boolean function is the best we could hope to compute in the presence of uncertainties in
the inputs to f.

We note here that even though we use the term “hazard-free”; there is a fundamental
difference between our model of computation and the ones studied in results such as [14, 15, 16].
For hazard-free circuits, the value u represents an unstable voltage, and the gates in a circuit
are fundamentally unable to detect it. That is, there is no circuit that can output 1 when
input is u and 0 otherwise. However, in our setting, the value u is simply another symbol
just like 0 or 1. So we can indeed detect/read a u value. The restriction that we have to
compute the hazard-free extension is a semantic one in this paper, whereas Boolean circuits
can only compute natural functions. In other words, we are interested in query complexity
of hazard-free extensions of Boolean functions per se, and we have no notion of metastability
in our computation model.

There is a rich body of work on the query complexity of Boolean functions that has
established best-possible polynomial relationships among various models such as deterministic,
randomized, and quantum models of query complexity, and their interplay with analytical

D. Benson, B. Komarath, N. Mande, S.S. Nalli, J. Sarma, and K. Sreenivasaiah

measures such as block sensitivity and certificate complexity (see, for example, [1] and
the references therein). We study these relationships in the presence of uncertainty, in
particular for hazard-free extensions of Boolean functions. A main goal is to characterize
query complexity (equivalently CREW-PRAM time complexity) of hazard-free extensions of
Boolean functions using these parameters.

1.1 Our Results

In this subsection, we discuss the results presented in this paper. The organization of the
paper follows the structure of this subsection.

1.1.1 Sensitivity Theorem in the Presence of Uncertainty

We prove the sensitivity theorem for Boolean functions in the presence of uncertainties. We
define analogues of query complexity, sensitivity, block sensitivity, and certificate complexity
called u-query complexity (denoted D,(f)), u-sensitivity (denoted s,(f)), u-block sensitivity
(denoted bsy,(f)), and u-certificate complexity (denoted cc,(f)), respectively. We show that
analogues of Cook, Dwork, and Reischuk’s [8] lower bound and Nisan’s [20] upper bound
hold in the presence of uncertainties by adapting their proofs suitably (See the full version [4]
for details). Therefore, we can now focus on proving that these parameters are polynomially
equivalent in the presence of uncertainties. Huang’s proof of the sensitivity theorem for
Boolean functions crucially uses the parameter called the degree of a Boolean function. It is
unclear how to define an analogue of degree in our setting. However, it turns out that a more

classical parameter, the maximum of prime implicant size and prime implicate size, suffices.

Our proof of the sensitivity theorem in the presence of uncertainty is much simpler and
more straightforward than the proof of the sensitivity theorem in the classical setting. It
raises the question of whether we can find a simpler proof of the classical sensitivity theorem
by generalizing our proof to handle an arbitrary upper bound on the number of uncertain
values in the input. Note that the classical setting assumes that this number is 0 and we
prove the sensitivity theorem by assuming that this number is n, the number of inputs.

Recall that a literal is an input variable or its negation. An implicant (implicate) of a
Boolean function f is a subset S of all literals such that f is 1 (is 0) on any input that has
all literals in S set to 1 (set to O respectively). A prime implicant (prime implicate) is an
implicant (implicate) such that no proper subset of it is an implicant (implicate respectively),
i.e., the implicant (implicate) is minimal (w.r.t. set inclusion). The size of a prime implicant
or prime implicate is the size of the set. Prime implicants and prime implicates of a Boolean
function are widely studied in electronic circuit design and Boolean function analysis.

» Theorem 3 (Sensitivity theorem for hazard-free extensions of Boolean functions). Let f :
{0,1}™ — {0,1} be a Boolean function and let ki and ko be the sizes of a largest prime
implicant and prime implicate of f. Then, the parameters s,(f), bsy(f), Du(f), ccu(f), and
max {ky, ka} are linearly equivalent.

We note here that while Huang [13] showed bs(f) = O(s(f)*) for all Boolean f, our result
shows that, in the presence of uncertainty block sensitivity and sensitivity are in fact linearly
related to each other.

1.1.2 Relationships

Clearly, the query complexity of the hazard-free extension of a Boolean function f cannot
be smaller than that of f itself. Can the query complexity of the hazard-free extension of
a Boolean function be much more than the query complexity of the function itself? For

17:5

MFCS 2025

17:6

Sensitivity and Query Complexity Under Uncertainty

monotone functions, we show that the answer is no. In fact, this also holds for randomized
query complexity (denoted by R(f) and R,(f)) and quantum query complexity (denoted by

Q(f) and Qu(f))-

» Lemma 4. Let f:{0,1}" — {0,1} be a monotone Boolean function. Then we have

Du(f) = ©(D(f)) and Ry(f) = O(R(f)) and Qu(f) = O(Q(/))-

A natural question to ask is whether the model we are considering is non-degenerate. In
other words, do all hazard-free extensions of Boolean functions have large query complexity?
Using Lemma 4, we can show that there are functions that are easy to compute even in the
presence of uncertainties. The following monotone variant of the MUX function (defined
below) by Wegener [24] is sufficient.

» Definition 5 ([24]). For an even integer n > 0, define mMUX,,, as follows: The function

mMUX,, is defined on n+ (7:;2) (which is ©(2™ /\/n)) variables, where the latter (7;}2) variables

are indexed by all n-bit strings of Hamming weight exactly n/2. For (z,y) € {0, 1}"+("72),
define

0 |z| <n/2
mMUX,, (z,y) =41 |z| >n/2

Y. otherwise.

It is easy to see that this function is monotone and has a query complexity of n 4+ 1. We
also exhibit a non-monotone, non-degenerate n-variate function such that its hazard-free
extension has O(logn) query complexity (see full version [4] for the details).

For general functions, we show that uncertainty can blow-up query complexity exponen-
tially. The Boolean function MUX,, : {0,1}"*2" — {0,1} defined by

MUX;, (50,515 - -+ 5 Sn—15 (T(bo,.. b 1))b:€40,1}) = (0, s8m 1)

is a function on n + 2" inputs that depends on all its inputs and has query complexity of
n + 1. The inputs s; are called the selector bits and the inputs z; are called data bits. It
is easy to show that any function that depends on all its IV input bits must have at least
logarithmic (in N) query complexity. Therefore, MUX,, is one of the easiest functions to
compute in the query complexity model. We prove that its hazard-free extension is one of
the hardest functions in the query complexity model.

» Theorem 6.
D,(MUX,) = 2" + n and R,(MUX,,) = ©(2") and Q,(MUX,,) = @(2”/2)

We also show the following relationships between deterministic, randomized, and quantum
query complexities of hazard-free extensions of Boolean functions.

» Theorem 7. For f:{0,1}" — {0,1}, we have

Du(f) = O(Ru(£)?) and Dy(f) = O(Qu(f)*").

We remark here that the deterministic-randomized relationship above is better than the
best-known cubic relationship in the Boolean world, while the quartic deterministic-quantum
separation above matches the best-known separation in the Boolean world (see [1]). The key

D. Benson, B. Komarath, N. Mande, S.S. Nalli, J. Sarma, and K. Sreenivasaiah

reason we are able to obtain better relationships is because we show that sensitivity, block
sensitivity, and certificate complexity are all linearly related in the presence of uncertainty
(Theorem 3). This is not the case in the classical Boolean setting. Regarding best possible sep-
arations: while a linear relationship between deterministic and randomized query complexities
in the presence of uncertainty remains open, a quadratic deterministic-quantum separation
follows from Theorem 6 (or from the OR function, which has maximal deterministic query
complexity, but Grover’s search algorithm [12] offers a quadratic quantum speedup).

It is natural to model query algorithms using decision trees. A decision tree represents
the strategy of the querier using a tree structure. The internal nodes of the tree are labeled
by input variables and has two outgoing edges labeled 0 and 1. Computation starts at the
root and queries the variable labeling the current node. Then, the outgoing edge labeled by
the answer is taken to reach the next node. The leaves of the tree are labeled with 0 or 1
and represent the answer determined by the querier. A decision tree is said to compute a
Boolean function f if the querier can correctly answer the value of f for every possible input
by following the decision tree from root to a leaf. The depth of the decision tree represents
the worst-case time. The depth of a smallest depth decision tree that computes f is called
the decision tree depth complexity of f, and it is the same as deterministic query complexity

of f.

1.1.3 Decision Tree Size

Decision trees have played an important role in machine learning. The size of a decision
tree is an important measure as large decision trees often suffer from over-fitting. It has
been long-known that functions that admit small-size decision trees are efficiently PAC
learnable [9]. Moreover, the class of decision trees of large size is not efficiently PAC-learnable
as their VC-dimension is directly proportional to their size. Various ideas to prune decision
trees and reduce their size while maintaining reasonable empirical error (error on the training
set) are used in practice. For a detailed treatment of the role of decision tree size in learning,
the interested reader may refer to [23, Chapter 18]. We denote the decision tree size of a
function f by size(f) and the decision tree size of its hazard-free extension by size,(f). We
show that for the MUX function despite the exponential blow-up in depth from Theorem 6,
the size blow-up is only polynomial.

» Theorem 8. 24" < size,(MUX,,) < 47! — 37,

In contrast, we show that there are functions for which the size blow-up is exponential. In
particular, the AND,, function has linear-size Boolean decision trees. However, its hazard-free
extension needs exponential-size decision trees.

» Theorem 9. size,(AND,,) = 2"F! — 1.

We also show that there are hazard-free extensions of Boolean functions that require
trees of size (2 ((n73) (27:‘/33)) (see full version [4] for the details). Notice that a ternary tree
of depth n can have at most 3™ leaves. This lower bound is only smaller than this worst-case
by a polynomial factor.

We also show how to construct decision trees for hazard-free extensions of Boolean

functions from a decision tree for the underlying Boolean function.
» Theorem 10. For any Boolean function f, we have 2size(f) — 1 < size,(f) < 257¢(/) — 1.

The tightness of the first inequality is witnessed by the PARITY,, function and that of the
second inequality is witnessed by the AND,, function.

17:7

MFCS 2025

17:8

Sensitivity and Query Complexity Under Uncertainty

We also show that, in the case of hazard-free extensions too, sensitivity plays an important
role in the function learning problem. The problem is as follows: We are provided a few
input-output pairs and a guarantee that the function is from some family. The goal is to learn
the function from as few samples as possible. It is known that a function with sensitivity
s is completely specified by its values on a Hamming ball of radius 2s [11]. We prove an
analogue for hazard-free extensions of Boolean functions. We refer the reader to the full
version [4] for details.

» Theorem 11. A hazard-free extension f that has s, (f) < s is specified by its values on
any Hamming ball of radius 4s in {0,u, 1}™.

1.1.4 Limited Uncertainty

We study computation in the presence of only a limited amount of uncertainty by introducing
a parameter k that limits the number of bits for which the oracle can respond u. For
metastability-containing electronic circuits, it is known that assuming only limited metasta-
bility allows constructing circuits that are significantly smaller [14]. We show a similar effect
on decision tree size and query complexity when uncertainty is limited. See the full version
[4] for details.

» Theorem 12. Let T be a Boolean decision tree of size s and depth d for f. Then, there
erists a decision tree of size at most s27 1 gnd depth at most 2% - d for f provided that the
input is guaranteed to have at most k positions with value u.

For settings in which £ is a small constant, observe that the decision tree size is polynomial
in the size of the Boolean decision tree. If k is considered a parameter, observe that the
depth remains fixed-parameter tractable in the language of parameterized complexity theory.

2 Preliminaries

» Definition 13 (u-query complexity). Let f:{0,1}" — {0,1} be a Boolean function, and
let f be its hazard-free extension. A deterministic decision tree, also called a deterministic
query algorithm, computing f, is a ternary tree T whose leaf nodes are labeled by elements
of {0,u,1}, each internal node is labeled by a variable x; where i € [n] and has three outgoing
edges, labeled 0, 1, and u. On an input x € {0,u, 1}™, the tree’s computation proceeds from
the root down to a leaf as follows: from a node labeled x;, we take the outgoing edge labeled
by value of x; until we reach a leaf. The label of the leaf is the output of the tree T(x).

We say that T computes f if T(x) = f(m) for allx € {0,u,1}"™. The deterministic u-query
complexity of f, denoted Dy(f), is defined as

Du(f) := mjin depth(T),

where the minimization is over all deterministic decision trees T that compute f

» Definition 14 (u-sensitivity). Let f : {0,1}" — {0,1} be a Boolean function, and let f be
its hazard-free extension. For an x € {0,u,1}", we define the u-sensitivity of f at x as:

su(fox)={i |y € {0,u,1}" s.t. f(y) # f(z) and y; # x; at only j =i}

The elements i of the set are called the u-sensitive bits of x for f. The u-sensitivity of f,
denoted s,(f), is maxyego,u,13» Sulf,).

D. Benson, B. Komarath, N. Mande, S.S. Nalli, J. Sarma, and K. Sreenivasaiah

» Definition 15 (u-block sensitivity). Let f:{0,1}" — {0,1} be a Boolean function and let
]? be its hazard-free extension. For x € {0,u,1}", the u-block sensitivity of f at x is defined
as mazimum k such that there are disjoint subsets By, Ba, ... By C [n] and for each i € [k],
there is a y such that f(y) #* f(x) and y differs from x at exactly the positions in B;. Fach
B, is called a u-sensitive block of f on input x. The u-block sensitivity of f, denoted bs,(f),

is then defined as the maximum u-block sensitivity of f taken over all x.

For b € {0,1}, we use bs, ;(f) to denote the maximum u-block sensitivity of f at z, over all
z € f~1(b). For a string x € {0,u,1}"™ and a set B C [n] that is a sensitive block of f at
x, we abuse notation and use 2 to denote an arbitrary but fixed string y € {0,u, 1}" that

satisfies yp,)\ g = T\ p and f(y) # f(z).

We now formally define certificate complexity for hazard-free extensions of Boolean
functions. We first define a partial assignment as follows: By a partial assignment on n bits,
we mean a string p € {0,1,u, *}", representing partial knowledge of a string in {0,u, 1},
where the x-entries are yet to be determined. We say a string y € {0,u,1}™ is consistent
with a partial assignment p € {0, 1,u,*}" if y; = p; for all i € [n] with p; # *.

» Definition 16 (u-certificate complexity). Let f: {0,1}" — {0,1} and z € {O,u,1}". A
partial assignment p € {0,1,u,*}" is called a certificate for f at x if

x is consistent with p, and

f(y) = f(z) for all y consistent with p.
The size of this certificate is |p| := |{i € [n] : p; # *}|. The domain of p is said to be
{i € [n] : p; # =}. The certificate complexity of f at z € {0,u,1}", denoted cc,(f,z), is the
minimum size of a certificate p for f at ©. The u-certificate complexity of f, denoted cc,(f),
is the mazimum value of ccy(f,x) over all x.

In other words, a certificate for fat x is a set of variables of x that if revealed, guarantees
the output of all consistent strings with the revealed variables to be equal to f(z).

» Definition 17 (Randomized u-query complexity). A randomized decision tree is a distri-
bution over deterministic decision trees. We say a randomized decision tree computes f with
error 1/3 if for all = € {0,u,1}", the probability that it outputs f(x) is at least 2/3. The
depth of a randomized decision tree is the maximum depth of a deterministic decision tree in

its support. Define the randomized u-query complexity of f as follows.

Ru(f) := mTin depth(T),

where the minimization is over all randomized decision trees T that compute f to error at
most 1/3.

We refer the reader to [6] for basics of quantum query complexity.

» Definition 18 (Quantum u-query Complexity). A quantum query algorithm A for f

begins in a fized initial state |1o) in a finite-dimensional Hilbert space, applies a sequence of
unitaries Uy, Oy, U1, Oy, ..., Ur, and performs a measurement. Here, the initial state |1o)
and the unitaries Uy, U1, ..., Ur are independent of the input. The unitary O, represents the
“query” operation, and does the following for each basis state: it maps |i)|b)|w) to |i)|b+ z;
mod 3)|w) for alli € [n] (here x; = u is interpreted as x; = 2, and the last register represents
workspace that is not affected by the application of a query oracle).

The algorithm then performs a 3-outcome measurement on a designated output qutrit and
outputs the observed value.

17:9

MFCS 2025

17:10

Sensitivity and Query Complexity Under Uncertainty

We say that A is a bounded-error quantum query algorithm computing f if for all
z € {0,u, 1} the probability that f(x) is output is at least 2/3. The (bounded-error) quantum
u-query complexity of f, denoted by Qu(f), is the least number of queries required for a
quantum query algorithm to compute f with error probability at most 1/3.

3 Sensitivity Theorem in the Presence of Uncertainty

We first show that sensitivity, block sensitivity, certificate complexity, and size of the largest
prime implicant/prime implicate are all asymptotically the same. This is a more formal and
more precise restatement of Theorem 3.

» Theorem 19. Let f : {0,1}" — {0,1} be a Boolean function. Let ky be the size of a largest
prime implicant of f, and ko be the size of a largest prime implicate of f. Then, we have:

max{ki, ka} <su(f) < bs,(f) <ccu(f) < ki +ks— 1.

Proof. The inequalities s,(f) < bsy(f) < ccy(f) follow from definitions as for their Boolean
counterparts (see, for example, [6, Proposition 1]).

To show the first inequality, we crucially use our three-valued domain. Let P be a prime
implicant of f. Define the input yp € {0,u,1}" to be 1 in those positions where P contains
the corresponding positive literal, 0 where P has the corresponding negated literal, and u
everywhere else. We claim that each index in {i € [n] : ; € P or —a; € P} is sensitive for f
at yp. To see this, first observe that f(yp) = 1 since P being an implicant means f is 1 on
all resolutions of yp. Let x; € P be a positive literal. Then, observe that if setting the i’th
bit of yp to a 0 does not change the value of]?, then changing the ¢’th bit to u would also not
change the value of f This means P\ {z;} would also be an implicant of f, contradicting
the fact that P was a prime implicant. The case when x; appears as a negated literal in P is
similar. Thus we have s,(f) > k1. A similar argument can be made for prime implicates as
well, showing that s,(f) > ko. This proves the first inequality in the theorem.

To prove the last inequality, let € {0, u, 1}" be any input to f Observe that if f(x) =0,
then the prover can pick an implicate (of size at most ks) that has all literals set to 0 in z,

and reveal those values to the verifier. If f(x) = 1, then the prover reveals an implicant (of
size at most ki) that is 1. If f(x) = u, then there must exist inputs 2, 2! € Res(x) such that
f(z%) =0 and f(x') = 1. Since both z° and z! are resolutions of x, it must hold that for all
i € [n] where z; € {0,1}, 29 = 2} = z,. i.e., 2° and 2! differ from x only in positions where
x is u. Hence, a prime implicant that is 1 in z*
implicate that is 0 in 2°

prime implicate of f both of which contain a literal assigned u in z. The prover reveals the

must contain a u in x. Similarly, a prime
must contain a u in . Thus, there exists a prime implicant and a

bits in such a prime implicant and prime implicate. Since every prime implicant and every
prime implicate have at least one common variable, the prover reveals only k; + k2 — 1 values.

0 2!, and z coincide on positions where = has

Why should this convince the verifier? Since x
0 or 1, it is possible to set the u in the revealed prime implicant to values that make the
function output 1. Similarly, it is possible to make the function output 0 by filling in the
values to the u positions in the prime implicate revealed. Thus, the verifier can check that

there are indeed two valid resolutions that give different outputs. |

» Remark 20. Notice that Theorem 19 shows that in our setting, the parameters sensitivity,
block sensitivity, and certificate complexity are equivalent (up to a multiplicative constant)
to the largest prime implicants/prime implicates. In the Boolean world, for certificate
complexity we get a tighter characterization in terms of CNF/DNF width, which is analogous
to prime implicant/prime implicant size here. On the other hand, in the Boolean world,
there is a quadratic separation between sensitivity and block sensitivity [22].

D. Benson, B. Komarath, N. Mande, S.S. Nalli, J. Sarma, and K. Sreenivasaiah

We now proceed to show that similar to their Boolean counterparts, the deterministic
u-query complexity is polynomially upper bounded by u-sensitivity and deterministic, ran-
domized, and quantum u-query complexities are all polynomially related to each other. We
do this in two parts:

(') Du(.f) < Ccu(f) . bsu(f)
(i) bsu(f) = O(Ru(f)), bsu(f) = O(Qu(f)?).

We start by showing D, (f) = O(ccy(f) - bsy(f)). Algorithm 1 is a deterministic query
algorithm that achieves this bound, as shown in Theorem 24. Following this, we derive (ii)
in Lemma 27. The final relationships among the three u-query complexities is presented in
Theorem 28.

Algorithm 1 u-query algorithm.

1: Given: Known f:{0,1}" — {0, 1}; Query access to an unknown z € {0,u, 1}".
2: Goal: Output f(x)
3: Initialize partial assignment z* < %™

4: for i < 1 to max(bsyo(f),bsy,1(f)) do

5: ¢ < a minimum u-certificate of f at an arbitrary z € f_l(u) consistent with z*
6: C + domain of ¢

7 Query all variables in C'

8: Update z* with the answers from the oracle.
9: if x* is a u-certificate of fthen

10: Output u

11: if x* is a O-certificate of fthen

12: Output 0

13: if x* is a 1-certificate of fthen

14: Output 1

15: Output u

We will need the following observations to prove correctness of the algorithm:

» Observation 21. Let x* be a partial assignment that does not contain a b-certificate of]ch
for any b € {0,u,1}. Then there exists a = € f~*(u) that is consistent with x*.

Proof. Since z* does not already contain a b-certificate of ffor any b € {0,u, 1}, this means
that for each b € {0,u, 1}, there exists a setting to the x-variables in the partial assignment
to yield a b-input to f Specifically, it must be the case that there exists some assignment
to the undetermined *’s that sets an implicant of f to 1, and some assignment that sets an
implicate of f to 0. Define the string z to be the same as z* except with *’s replaced with u.
It can be observed that f(z) = u. <

» Observation 22. Let f:{0,1}" — {0,1}, b € {0,1} and z € f=1(b). Let ¢ be a minimal
certificate of f at x, and let its domain be C. Then for all i € C, we have ¢; # u.

Proof. Assume towards a contradiction an index i € [n] in a minimal certificate ¢ for f at
x with ¢; = u. By the definition of a certificate, and f, the partial assignment ¢’ obtained
by removing i from the domain of ¢ is such that all strings = € {0,u, 1}" consistent with

¢ satisfy f(x) = b. This shows that ¢’ is also a certificate for f at x, contradicting the
minimality of c. <

17:11

MFCS 2025

17:12

Sensitivity and Query Complexity Under Uncertainty

» Lemma 23. If Algorithm 1 reaches Line 15, then every 1-input of]?, and every 0-input of
f is inconsistent with the partial assignment «* (at Line 15).

Proof. Let k denote max(bs, o(f),bsy1(f)), the number of iterations of the for loop on Line
4. Assume the algorithm reached Line 15, and let 2’ be the partial assignment z* constructed
by the algorithm when it reaches Line 15.

Suppose, for the sake of contradiction, there exists an input y € ffl(l) that is consistent
with 2’. Since the algorithm reached Line 15, it must be the case that the partial assignment
x’ constructed does not contain a b-certificate for any b € {0,u, 1} because otherwise one of
the if conditions between Lines 9 and 11 would have terminated the algorithm. Then using
Observation 21, there must also exist a u-input consistent with z’. Hence every time Line 5
was executed, there was indeed an z € f_l(u) consistent with z*. Suppose the u-certificates
used during the run of the for loop on Line 4 were ¢y, ..., ck, and their respective domains
were C1,...,Cyg.

The fact that neither of the if conditions fired means that every time the oracle was
queried, the replies differed from the u-certificate being queried in at least one index each
time. Let B; C C; be the set of positions in C; where x’ differs from ¢;. By the observations
above, each B; is non-empty. Observe that since ¢; 11 is chosen to be consistent with x*, it
must be the case that ¢;11 and z* agree on all positions in C;. Hence B;y; is disjoint from
B;. With the same reasoning, we can conclude that B, is disjoint from every B; where
j<i

Observe that for each i € [k], there is a setting to the bits in B; such that 2’ becomes a
u-input — simply take the setting of these bits from ¢;, which is a u-certificate. More formally,
for each i € [k], there exists a string o;; € {0, 1} 5l such that f(2/|p,ca,) = u.

Since y is consistent with z’, it agrees with =’ on all positions where 2’ # *. This
means the previous observation holds for y too. That is, for each i € [k], there exists
strings o € {0,1}5i! such that f(y|B,«a,) = u. Recall that y € f71(1), and hence the
sets By, ..., By form a collection of disjoint sensitive blocks for fat y. Further, since the
algorithm has not found a 1-certificate (or O-certificate) yet, it must be the case that there is
some u-input consistent with &’ by Observation 21. This means there is yet another disjoint
block By that is sensitive for fat y. But this is a contradiction since the maximum, over
all 1-inputs of f, number of disjoint sensitive blocks is bsuﬁl(f) =k<k+1

A nearly identical proof can be used to show that every O-input is inconsistent with z/. <

» Theorem 24. Algorithm 1 correctly computes f, and makes at most O(ccy(f)bsy(f))
queries. Thus Dy(f) = O(ccy(f) - bsu(f)).

Proof. If the algorithm outputs a value in {0, 1}, then it must have passed the corresponding
if condition (either in Line 11, or in Line 13 and is trivially correct. If the algorithm outputs
u, then either the if condition on Line 9 must have passed, or Line 15 must have been reached.
In the former case, the correctness of the algorithm is trivial. In the latter case, from Claim
23, we conclude that every O-input and every l-input of fmust be inconsistent with the
partial assignment x* constructed by the algorithm when it arrives at Line 15. This means
that every z € {0,u, 1}™ that is consistent with «* (in particular, the unknown input =) must
satisfy f(m) = u, which concludes the proof of correctness.

The for loop runs for max(bsy, o(f), bsy,1(f)) = O(bs,(f)) many iterations, and at most
ccy(f) many bits are queried in each iteration. |

We can now conclude that deterministic, randomized, and quantum u-query complexities
are all polynomially related. We use Yao’s minimax principle [25] and the adversary method
for lower bounds on quantum query complexity due to Ambainis [2]. We state them below
for convenience.

D. Benson, B. Komarath, N. Mande, S.S. Nalli, J. Sarma, and K. Sreenivasaiah

» Lemma 25 (Yao's minimax principle). For finite sets D, E and a function f : D — E, we
have R(f) > k if and only if there exists a distribution p: D — [0,1] such that D,(f) > k.
Here, D, (f) is the minimum depth of a deterministic decision tree that computes f to error
at most 1/3 when inputs are drawn from the distribution p.

» Theorem 26 ([2, Theorem 5.1]). Let D, E be finite sets, let n be a positive integer, and
let f: D™ — E be a function. Let X, Y be two sets of inputs such that f(x) # f(y) for all
(x,y) e X xY. Let RC X xY be such that

For every x € X, there are at least m different y € Y with (z,y) € R,

for every y € Y, there are at least m' different x € X with (z,y) € R,

for every x € X and i € [n], there are at most ¢ different y € Y such that (x,y) € R and

T # Yi,

for everyy €Y and i € [n], there are at most £’ different x € X such that (z,y) € R and

T # Yi-

Then Q(f) = Q(y/ =5").

We lower bound randomized and quantum u-query complexities polynomially by u-block
sensitivity.

» Lemma 27. Let f:{0,1}" — {0,1}. Then,

Ru(f) = Qbsu(f)), Qu(f) = Q(Vbsu(f))-

Proof. We use Lemma 25 for the randomized lower bound. Let = € {0,u,1}" be such that
bsy(f) = bsy(f, z) = k, with corresponding sensitive blocks By, ..., By. Define a distribution
won {0,u,1}™ as follows:

p(x) =1/2,
w(zB) = 1/2k for all i € [k].

Towards a contradiction, let T' be a deterministic decision tree of cost less than k/10 that
computes fto error at most 1/3 under the input distribution u. Let L, denote the leaf of T
reached by the input x. There are now two cases:
If the output at L, is not equal to Jf“v(gc)7 then T errs on x, which contributes to an error
of 1/2 under u, which is a contradiction.
If the output at L, equals f(x), since the number of queries on this path is less than k/10,
there must exist at least 9k/10 many blocks B; such that no variable of 2 is read on
input #% (observe that in this case, # also reaches the leaf L,). Since f(z5) # f(x),
this means 7" makes an error on each of these B;’s, contributing to a total error of at
least 9k/10 - 1/2k = 0.45 under p, which is a contradiction.
This concludes the randomized lower bound.
For the quantum lower bound we use Theorem 26. Define X = {z},Y = {2 : i € [k]},
and R = X x Y. From Theorem 26 we have m = k,m’ = 1,{ = 1 (since each index

appears in at most 1 block, as each block is disjoint) and ¢/ = 1. Theorem 26 then implies

Qu(f) = (V) = Q(y/bsu(/))- <
» Theorem 28. For f:{0,1}" — {0,1}, we have

Du(f) = ORu(f)?), Dulf) = O(Qu(f)".

17:13

MFCS 2025

17:14

Sensitivity and Query Complexity Under Uncertainty

Proof. Theorem 24 and Theorem 19 imply

Du(f) = O(ceu(f) - bsu(f)) = O(bsu(f)?) = O(Ru(f)*),

where the final bound is from Lemma 27. Substituting the second bound from Lemma 27 in
the last equality above yields D,(f) = O(Qu(f)*). <

4 Relationships

We start by proving that for monotone functions, the presence of uncertainty does not make
computation significantly harder. Similar relationships are known for monotone combinational
circuits w.r.t. containing metastability [14].

Proof of Lemma 4. Any query algorithm for]?also computes f with at most the same cost,
and hence D(f) < D,(f). Similarly we have R(f) < R,(f) and Q(f) < Qu(f).

We start with a best (deterministic/randomized/quantum) query algorithm A for f, and
an oracle holding an input z € {0,u,1}" for f Now, for b € {0,1}, we define A, to be
the same algorithm as A, but whenever A queries the j* bit of its input, it performs the
following operation instead:

1. Query the j’th bit of x, denote the outcome by z;.
2. If z; € {0, 1}, return x;.
3. If z; = u, return b.

In the case of quantum query complexity, note that this operation can indeed be im-
plemented quantumly making 2 queries to O,. The initial query performs the instructions
described above, and the second query uncomputes the values from the tuple we don’t need
for the remaining part of the computation. Note here that O2 = I by definition, and thus
02 = O, !, which is what we need to implement for the uncomputation operations.

Let S, = {i | #; = u} be the positions that have u in z. Recall that y° := z|¢ _g (and
yl = $|Su<—f) is the input that has all the u in 2 replaced by 0s (by 1s respectively). Run Ag
and A; (possibly repeated constantly many times each to boost correctness probability) to
determine the values of f(y") and f(y') with high probability. If f(y°) = 1, then we output
1. Else if f(y') = 0, we output 0. Else we have f(y°) =0 and f(y') = 1, and we output u.

Correctness. First observe that for b € {0, 1}, all answers to queries in the algorithm A,
are consistent with the input y®. Next observe that in the poset (equivalently “subcube™)
formed by the resolutions of z, the inputs 3° and y' form the bottom and top elements
respectively. Since f is monotone, if f(y°) = 1, we can conclude that f is 1 on all resolutions
of x. Similarly when f(y') = 0, it must be the case that f is 0 on all inputs in the poset.
The remaining case is when f(y°) = 0 and f(y*) = 1. In this case, the inputs ° and y* are
themselves resolutions of x with different evaluations of f, and hence the algorithm correctly
outputs u.

By standard boosting of success probability using a Chernoff bound by repeating Ag (A1)
constantly many times and taking a majority vote of the answers, we can ensure that the
correctness probability of Ag (A7) is large enough, say at least 0.9. Thus, the algorithm
described above has correctness probability at least 0.92 = 0.81, and its cost is at most a
constant times the cost of A. |

It is easy to prove using Theorem 19 that the u-query complexity of MUX,, is exponentially
larger than its query complexity. We claim that s,(MUX,,) > 2™. Consider the input where
all selector bits are u and all data bits are 1. Flipping any data bit to zero changes the output

D. Benson, B. Komarath, N. Mande, S.S. Nalli, J. Sarma, and K. Sreenivasaiah

from 1 to u. In the following theorem, we prove a stronger statement. A function is said to
be evasive if its query complexity is the maximum possible. We first prove Theorem 6, i.e.,
MUX,, is evasive for all n. In fact, we prove a more general theorem. We consider decision

trees for MUX,, that are guaranteed to produce the correct output when the number of
unstable values in the input is at most k, for an arbitrary k € [0, 2" 4+ n]. We defer the proof
of the following theorem to the full version [4].

» Theorem 29. Let k € [0,2" 4+ n|. Any optimal-depth decision tree that correctly computes
the hazard-free extension of MUX,, on inputs with at most k unstable values has depth exactly
min {2F + n, 2" +n}.

5 Decision Tree Size and Limited Uncertainty

We show that despite requiring exponentially more depth in the presence of uncertainty, we
can compute the function MUX,, using a decision tree that is only quadratically larger in
size than the Boolean one (Theorem 8).

However, there are functions that require exponentially larger decision tree size in the
presence of uncertainty such as the AND function (Theorem 9). We defer the proofs of these
statements to the full version [4]. The size lower bound technique used here for both the
functions involves constructing a set of inputs that must all lead to different leaves and hence
any decision tree that computes the hazard-free extension correctly requires size at least as
large as the size of this input set. The upper bound is shown by an explicit construction.

We present a general construction of decision trees of hazard-free extensions of functions
from a decision tree of the underlying Boolean function (Theorem 10) in the full version
[4] of this paper. The main idea is to construct the u subtree of the root node in the new
decision tree from the 0 and 1 subtrees that have been constructed recursively. The u subtree
construction can be viewed as a product construction where we replace each leaf in a copy
of the 0 subtree with a modified copy of the 1 subtree. This product construction works
because for every input that reaches the u subtree, the output value can determined by the
output values when that bit is 0 and when it is 1, which is exactly what the 0 and 1 subtrees
compute.

We also prove in Theorem 12 that the complexity increases only gradually along with
the increase in the amount of uncertainty in the inputs. More specifically, we prove that if
the inputs are guaranteed to have at most k bits with value u, without any guarantee on
where they occur, the exponential blow-up in query complexity is contained to the parameter
k (See full version [4] for a proof). This proof also makes use of the product construction
mentioned above.

6 Discussion and Open Problems

In this paper we initiated a study of query complexity of Boolean functions in the presence of
uncertainty, by considering a natural generalization of Kleene’s strong logic of indeterminacy
on three variables.

We showed that an analogue of the celebrated sensitivity theorem [13] holds in the presence
of uncertainty too. While Huang showed a fourth-power relationship between sensitivity
and block sensitivity in the Boolean world, we were able to show these measures are linearly
related in the presence of uncertainty. The proof of sensitivity theorem in our setting is

considerably different and easier from the proof of sensitivity theorem in the Boolean world.

We can parameterize u-sensitivity and u-query complexity by restricting our attention to

17:15

MFCS 2025

17:16

Sensitivity and Query Complexity Under Uncertainty

inputs that have at most k unstable bits. The setting & = 0 gives us the Boolean sensitivity
theorem and the setting k = n, our sensitivity theorem. Can we unify these two proofs using
this parameterization? That is, is there a single proof for the sensitivity theorem that works
for all k?

We showed using u-analogues of block sensitivity, sensitivity, and certificate complexity
that for all Boolean functions f, its deterministic, randomized, and quantum u-query
complexities are polynomially related to each other. An interesting research direction
would be to determine the tightest possible separations between all of these measures. It is
interesting to note that our quadratic relationship between deterministic and randomized
u-query complexity improves upon the best-known cubic relationship in the usual query
models. Moreover, our quartic deterministic-quantum relationship matches the best-known
relationship in the Boolean world [1]. More generally, it would be interesting to see best
known relationships between combinatorial measures of Boolean functions in this model, and
see how they compare to the usual query model (see, for instance, [1, Table 1]). A linear
relationship between deterministic and randomized query complexities in the presence of
uncertainty remains open, but a quadratic deterministic-quantum separation follows from
Theorem 6 or from the OR function (via Grover’s search algorithm [12]).

While we studied an important extension of Boolean functions to a specific three-valued
logic that has been extensively studied in various contexts, an interesting future direction is
to consider query complexities of Boolean functions on other interesting logics. Our definition
of f dictates that f(z) = b e {0,1} iff f(y) = b for all y € Res(z), and f(z) = u otherwise.
A natural variant is to define a 0-1 valued function that outputs b € {0, 1} iff majority of
f(y) equals b over all y € Res(z). It is not hard to show that the complexity of this variant
of MUX,, is bounded from below by the usual query complexity of Majority on 2" variables,
which is (2") in the deterministic, randomized, and quantum query models.

—— References

1 Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. Degree vs.
approximate degree and quantum implications of huang’s sensitivity theorem. In Proceedings
of 58rd Annual Symposium on Theory of Computing (STOC 2021), pages 13301342, 2021.
doi:10.1145/3406325.3451047.

2 Andris Ambainis. Quantum Lower Bounds by Quantum Arguments. J. Comput. Syst. Sci.,
64(4):750-767, 2002. doi:10.1006/JCSS.2002.1826.

3 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
Lower Bounds by Polynomials. J. ACM, 48(4):778-797, 2001. doi:10.1145/502090.502097.

4 Deepu Benson, Balagopal Komarath, Nikhil Mande, Sai Soumya Nalli, Jayalal Sarma, and
Karteek Sreenivasaiah. Sensitivity and Query Complexity under Uncertainty, 2025. arXiv:
2507.00148.

5 Deepu Benson, Balagopal Komarath, Jayalal Sarma, and Nalli Sai Soumya. Hazard-free
decision trees. CoRR, abs/2501.00831, 2025. doi:10.48550/arXiv.2501.00831.

6 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21-43, 2002. doi:10.1016/30304-3975(01)00144-X.

7 Stephen Cook and Cynthia Dwork. Bounds on the time for parallel RAM’s to compute simple
functions. In Proceedings of the 14th Annual Symposium on Theory of Computing (STOC
1982), pages 231-233, 1982. doi:10.1145/800070.802196.

8 Stephen Cook, Cynthia Dwork, and Riidiger Reischuk. Upper and Lower Time Bounds for
Parallel Random Access Machines without Simultaneous Writes. SIAM Journal on Computing,
15(1):87-97, 1986. doi:10.1137/0215006.

9 Andrzej Ehrenfeucht and David Haussler. Learning Decision Trees from Random Examples.
Inf. Comput., 82(3):231-246, 1989. doi:10.1016/0890-5401(89)90001-1.

https://doi.org/10.1145/3406325.3451047
https://doi.org/10.1006/JCSS.2002.1826
https://doi.org/10.1145/502090.502097
https://arxiv.org/abs/2507.00148
https://arxiv.org/abs/2507.00148
https://doi.org/10.48550/arXiv.2501.00831
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1145/800070.802196
https://doi.org/10.1137/0215006
https://doi.org/10.1016/0890-5401(89)90001-1

D. Benson, B. Komarath, N. Mande, S.S. Nalli, J. Sarma, and K. Sreenivasaiah

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

Steven Fortune and James Wyllie. Parallelism in Random Access Machines. In Proceedings
of the 10th Annual Symposium on Theory of Computing (STOC 1978), pages 114-118, 1978.
doi:10.1145/800133.804339.

Parikshit Gopalan, Noam Nisan, Rocco A. Servedio, Kunal Talwar, and Avi Wigderson.
Smooth Boolean Functions Are Easy: Efficient Algorithms for Low-Sensitivity Functions. In
Proceedings of the Conference on Innovations in Theoretical Computer Science (ITCS 2016),
pages 59-70, 2016. doi:10.1145/2840728.2840738.

Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the 28th Annual Symposium on Theory of Computing (STOC 1996), pages 212-219, 1996.
doi:10.1145/237814.237866.

Hao Huang. Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture.
Annals of Mathematics, 190(3):949-955, 2019. doi:10.4007/annals.2019.190.3.6.
Christian ITkenmeyer, Balagopal Komarath, Christoph Lenzen, Vladimir Lysikov, Andrey
Mokhov, and Karteek Sreenivasaiah. On the Complexity of Hazard-free Circuits. Journal of
the ACM (JACM), 66(4):1-20, 2019. doi:10.1145/3320123.

Christian Tkenmeyer, Balagopal Komarath, and Nitin Saurabh. Karchmer-Wigderson Games
for Hazard-Free Computation. In Proceedins of 14th Innovations in Theoretical Computer

Science Conference (ITCS 2023), volume 251, pages 74:1-74:25, 2023. doi:10.4230/LIPIcs.

ITCS.2023.74.

Stasys Jukna. Notes on Hazard-Free Circuits. SIAM J. Discret. Math., 35(2):770-787, 2021.
doi:10.1137/20M1355240

Stephen Cole Kleene. Introduction to Metamathematics. P. Noordhoff N.V., Groningen, 1952.
Nikhil S. Mande and Karteek Sreenivasaiah. Query Complexity with Unknowns. CoRR,
abs/2412.06395, 2024. doi:10.48550/arXiv.2412.06395.

Ron van der Meyden. Logical Approaches to Incomplete Information: A Survey. In Logics for
Databases and Information Systems, pages 307-356. Kluwer, 1998.

Noam Nisan. CREW PRAMs and Decision Trees. SIAM J. Comput., 20(6):999-1007, 1991.
doi:10.1137/0220062.

Noam Nisan and Mario Szegedy. On the Degree of Boolean Functions as Real Polynomials.
Comput. Complex., 4:301-313, 1994. doi:10.1007/BF01263419.

David Rubinstein. Sensitivity vs. Block Sensitivity of Boolean functions. Combinatorica,
15(2):297-299, 1995. doi:10.1007/BF01200762.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory
to Algorithms. Cambridge University Press, 2014. URL: http://www.cambridge.org/de/
academic/subjects/computer-science/pattern-recognition-and-machine-learning/
understanding-machine-learning-theory-algorithms.

Ingo Wegener. The Critical Complexity of All (Monotone) Boolean Functions and Mono-
tone Graph Properties. Inf. Control., 67(1-3):212-222, 1985. doi:10.1016/S0019-9958(85)
80036-X.

Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science (SFCS 1977), pages 222-227.
IEEE Computer Society, 1977.

17:17

MFCS 2025

https://doi.org/10.1145/800133.804339
https://doi.org/10.1145/2840728.2840738
https://doi.org/10.1145/237814.237866
https://doi.org/10.4007/annals.2019.190.3.6
https://doi.org/10.1145/3320123
https://doi.org/10.4230/LIPIcs.ITCS.2023.74
https://doi.org/10.4230/LIPIcs.ITCS.2023.74
https://doi.org/10.1137/20M1355240
https://doi.org/10.48550/arXiv.2412.06395
https://doi.org/10.1137/0220062
https://doi.org/10.1007/BF01263419
https://doi.org/10.1007/BF01200762
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://doi.org/10.1016/S0019-9958(85)80036-X
https://doi.org/10.1016/S0019-9958(85)80036-X

	1 Introduction
	1.1 Our Results
	1.1.1 Sensitivity Theorem in the Presence of Uncertainty
	1.1.2 Relationships
	1.1.3 Decision Tree Size
	1.1.4 Limited Uncertainty

	2 Preliminaries
	3 Sensitivity Theorem in the Presence of Uncertainty
	4 Relationships
	5 Decision Tree Size and Limited Uncertainty
	6 Discussion and Open Problems

