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—— Abstract

We study the refutation complexity of graph isomorphism in the tree-like resolution calculus. Toran
and Worz [42] showed that there is a resolution refutation of narrow width k for two graphs if and
only if they can be distinguished in (k 4 1)-variable first-order logic (FO**'). While DAG-like
narrow width & resolution refutations have size at most n*, tree-like refutations may be much larger.
We show that there are graphs of order n, whose isomorphism can be refuted in narrow width k

k/2
(n*/ ). This is a supercritical trade-off where bounding one parameter

but only in tree-like size 2%
(the narrow width) causes the other parameter (the size) to grow above its worst case. The size
lower bound is super-exponential in the formula size and improves a related supercritical trade-off
by Razborov [35]. To prove our result, we develop a new variant of the k-pebble EF-game for
FOF to reason about tree-like refutation size in a similar way as the Prover-Delayer games in proof
complexity. We analyze this game on the compressed CFI graphs introduced by Grohe, Lichter,
Neuen, and Schweitzer [25]. Using a recent improved robust compressed CFI construction of de
Rezende, Fleming, Janett, Nordstrém, and Pang [19], we obtain a similar bound for width k (instead
of the stronger but less common narrow width) and make the result more robust.
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1 Introduction

A common theme in proof complexity is the difficulty of refuting a given CNF formula in a
particular proof system. There are many variants of this problem depending on the proof
system and the notion of difficulty under investigation. We focus on (variants of) resolution,
perhaps the most-studied proof system. Here typical measures of difficulty include the
minimum width, depth, space, and (tree-like) size over all refutations of the input formula.

By analyzing the proof complexity of formulas that encode natural combinatorial problems,
we also gain insights about the inherent complexity of these problems. In this paper, we
focus on the graph isomorphism problem, the complexity status of which is still unknown [30].
On the one hand, Babai [4] showed in a breakthrough result that graph isomorphism is
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solvable in quasi-polynomial time (see also [26]), which makes it a rare natural candidate for
a problem that might be neither NP-complete nor polynomial-time solvable. On the other
hand, only relatively weak complexity lower bounds are known [39]. This motivates the study
of the hardness of graph isomorphism from other perspectives, such as proof complexity.

In this direction, Tordn [40] showed that graph isomorphism is hard for resolution: There
are non-isomorphic graphs on n vertices such that every resolution refutation certifying
non-isomorphism has size 2°("). Graph isomorphism and the Weisfeiler-Leman algorithm — a
well-known algorithm in the context of graph isomorphism — have both been studied in different
proof systems, including Sherali-Adams [3,28], (extended) polynomial calculus [12,13,33], sum-
of-squares [32], cutting planes [41], and in extensions of resolution with different symmetry
rules [36,41]. We are interested in “tree-like” refutations, which intuitively means that
whenever we want to use a clause in a proof step we have to re-derive it. Tree-like resolution
corresponds exactly to Boolean decision trees and is closely related to the DPLL algorithm.
We will be concerned with “trade-offs” between the width — i.e. the maximum number of
literals occurring in any clause — and the size of tree-like refutations.

Studying trade-offs — i.e. situations where in order for a refutation to be “easy” with
respect to one measure, it has to be “hard” with respect to another — is a prominent theme
in proof complexity. For example, there are trade-offs between size and space [5,9], between
width and depth, and between width and size [11,16,38]. There are two senses in which a
trade-off can be particularly strong. Firstly, a trade-off is robust if it not only shows that one
measure A has to be large when another measure B is small, but also that B can be increased
over some (hopefully) wide range without that the bound on A decreasing. Secondly, a
trade-off is supercritical if, in case we restrict B, the measure A must be larger than the
general upper bound on A (over all formulas) in the case that B is not restricted.

In fact, one of the first supercritical trade-offs for resolution — proved by Razborov [35]
— concerns tree-like size and width: For every k = k(n), there are k-CNF formulas over n
variables that can be refuted in width O(k), but such that every tree-like refutation of
minimum width requires depth n*) “™  When the width is unrestricted then,
for each unsatisfiable formula over n variables, there is a tree-like refutation of size at most 2.
Hence, when bounding the width, the tree-like refutation size increases beyond its worst-case
and gets super-exponential in the variable number. This trade-off is not only supercritical
but also robust: The lower bounds also hold for width-&’ refutations for larger k' < n'=¢/k.

One drawback of Razborov’s trade-off is that it is not supercritical if we measure size and

width with respect to the formula size rather than the number of variables. While the k-CNF
o(k).

and size 2"

formula of Razborov uses n variables, it has size about N :=n Thus in terms of the
formula size N, the bound on tree-like resolution size is roughly 2. Our first main result
concerns narrow resolution [21] which extends resolution by an additional rule avoiding side
effects caused by large width clauses in the input formula. It is closely related to first-order
logic: The width and the depth of narrow graph isomorphism refutations correspond to the
number of variables and the quantifier depth respectively of first-order formulas distinguishing
graphs [41]. We show a supercritical trade-off with respect to formula size between width

and size for tree-like narrow resolution applied to graph isomorphism formulas.

» Theorem 1. For all integers k > 3 and n € N, there are two non-isomorphic colored
graphs G and H of order ©(n) and color class size 16 such that
1. there is a width-k narrow resolution refutation of ISO(G,H), and

2. every width-k tree-like narrow resolution refutation of 1ISO(G,H) has size 20"

Narrow resolution is stronger than resolution; in particular, the minimal width of a narrow
resolution refutation is at most the minimal width of a (plain) resolution refutation. The
formula 1SO(G, H), which encodes graph isomorphism of G and H, has size O(n*) for graphs
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of order n. Thus, Theorem 1 indeed yields a supercritical trade-off between width and
tree-like size for narrow resolution with respect to the formula size. Building upon very recent
work due to de Rezende, Fleming, Janett, Nordstréom, and Pang [19], who provided a not
only supercritical but also robust variant of the trade-off in [25], we can show that Theorem 1

also applies to usual (non-narrow) resolution and the trade-off can be made somewhat robust.

» Theorem 2. For all integers k > 3, 1 <t < %k — 1, and n € N, there are two colored
graphs G and H of order ©(n) and color class size 16 such that
1. there is a width-(k + 16) resolution refutation of 1ISO(G,H), and

2. every width-(k +t — 1) tree-like resolution refutation of 1SO(G,H) has size 202(m*/ )

With this theorem, we address Razborov’s call for supercritical bounds in terms of formula
size [35]. Moreover, our trade-off applies to formulas encoding a natural combinatorial
problem and is somewhat robust for ¢ > 16 and sufficiently large k. Since the maximum
size of a width k tree-like refutation is 20("k)7 our lower bounds are almost optimal in
this range. Our proof utilizes machinery from finite model theory: We introduce a new
Ehrenfeucht—Fraissé style game played on two graphs and show that lower bounds for
this game imply lower bounds on the tree-like size of narrow resolution refutations of the
corresponding graph isomorphism formula.

Razborov’s Trade-Off and Weisfeiler-Leman. To prove his trade-off, Razborov used a
compression technique, known as hardness condensation [15,35], that is based on zorification

and variable reuse and converts large but hard formulas into smaller ones that are still hard.

Xorification is a well-known technique which replaces every variable in a formula by an
XOR of fresh variables. Xorification, or variable substitution in general, has found many
applications in proof complexity (see e.g. [6,8-10]). Razborov’s compression technique was
adapted to the Weisfeiler-Leman (WL) algorithm — an important algorithm in the field of
graph isomorphism [4,23,27]. The algorithm, parameterized by a dimension k, is a graph
isomorphism heuristic, that is, whenever it distinguishes two graphs they are not isomorphic
but, for every k, it fails to distinguish all non-isomorphic graphs [17]. Of particular interest is
the number of iterations needed by the k-dimensional WL-algorithm to distinguish two graphs;
this almost corresponds to the quantifier depth needed in (k+ 1)-variable first-order logic with
counting to distinguish them. Berkholz and Nordstrom [15] adapted Razborov’s compression
technique to construct k-ary relational structures for which the k-dimensional WL-algorithm

Q(k/logk) jterations; here the best known upper bound is O(n*~'/logn) [24]. From

requires n
the perspective of trade-offs, first-order logic (without a bound on the variables) requires at
most quantifier depth n to distinguish all non-isomorphic graphs, which means this trade-off
is also supercritical. The lower bound was recently improved to n2(%) [24].

The trade-offs described above have a common drawback: They are supercritical with
respect to the number of variables and the number of vertices of the structures, respectively,
but not with respect to the formula size or the size of the structure (in terms of the number
of tuples in the k-ary relations). The common reason is that hardness condensation turns
3-CNF formulas into k-CNF formulas and 3-ary structures into k-ary ones. But recently,
Grohe, Lichter, Neuen, and Schweitzer [25] introduced a powerful new compression technique
for the so-called Cai-Fiirer-Tmmerman (CFT) graphs [17] to prove a lower bound of Q(n*/?)
for the iteration number of the k-dimensional WL-algorithm on graphs of order n. The bound
not only improves the known ones, it is also a bound on graphs and, as graphs have size
O(n?), the lower bound is supercritical with respect to the structure size. The inspiration
for this paper was to see if this new technique yields analogous proof complexity results.

18:3

MFCS 2025



18:4

Supercritical Size-Width Tree-Like Resolution Trade-Offs for Graph Isomorphism

Our Techniques and New Games. Tree-like refutations can be (almost) exponentially
larger than their non-tree-like counterparts [7]. The usual tool to prove width-k tree-like
size lower bounds is the Prover-Delayer game [34]. Prover maintains a partial assignment
to at most k variables. In each round, Prover forgets one variable and asks Delayer for an
assignment to another one. Delayer can either give such an assignment or allow Prover to
set it; in the latter case Delayer scores a point. Prover wants to find an inconsistent partial
assignment and Delayer wants to gain as many points as possible. If Delayer has a strategy
to score p points, then every width-k tree-like refutation has size at least 2P. On xorified
formulas, where each variable v is replaced with an XOR of vg and vy, Delayer can always
gain a point when Prover queries vy or v; so long as the other one is not already assigned.
This leads to tree-like size lower bounds exponential in the depth of a refutation [43].

However, the xorification of a graph isomorphism formula is not necessarily a graph
isomorphism formula. Since we are interested in such formulas, our idea is to instead apply
xorification on the level of graphs. We show that twins in a graph, i.e., vertices with the same
neighborhood, can play the role of XORs in a formula: When we isomorphically map a pair
of twins in one graph to a pair of twins in the other graph, the image of the first twin can be
chosen arbitrary. We consider twinned graphs, where every vertex is replaced by a pair of
twins. Ultimately, we want to show that the narrow tree-like refutation size of a twinned
graph is exponential in the refutation depth of the original graph. Unfortunately, there seems
to be no generic argument for this. To show that this is indeed the case for the graphs we
consider, we introduce a variant of the Prover-Delayer game suited for narrow resolution.
Then we use techniques from finite model theory to show lower bounds for this game. For
other examples of finite-model-theoretic techniques in proof complexity see, e.g. [1,11,22].

We cannot reuse the correspondence between width-(k—1) narrow resolution and k-variable
first-order logic [42], or equivalently the k-pebble game [29], because we care about tree-like
size, not only about width and depth. The issue is that assigning a variable to one or to
zero in graph isomorphism formulas is not symmetric: In terms of isomorphisms, fixing the
image of a vertex is usually more restrictive than forbidding a single vertex as the image of
another vertex. We introduce a new pebble game, called the k-pebble game with blocking,
which captures this difference between one and zero assignments. Round lower bounds in
the pebble game with blocking imply exponential size lower bounds for tree-like resolution.

Another game is involved in this lower bound. The hardness of uncompressed CFI graphs
for k-variable first-order logic is captured by the k-Cops and Robber game [25,37], which
forgets about the CFI construction and instead considers the simpler underlying base graphs.
For compressed CFI graphs, this game was modified to the compressed k-Cops and Robber
game [25]. To obtain lower bounds for the k-pebble game with blocking, we have to introduce
a blocking mechanism to the compressed k-Cops and Robber game. Via all these games, we
obtain the 2%("""*) narrow width-k tree-like size lower bound in Theorem 1.

From Narrow to Plain Resolution. We lift Theorem 1 to (non-narrow) resolution. Since
lower bounds for narrow resolution imply lower bounds for resolution, transferring the lower
bounds is trivial. But it is unclear whether the relevant isomorphism formula can be refuted
in (non-narrow) width k. By increasing the width by the maximal color class size of these
graphs (which is 16), we can simulate the narrow resolution refutation by a plain resolution
refutation. But now the lower bound from Theorem 1 does not apply anymore. At this point,
the aforementioned result from [19] comes to hand: The compression of the CFI graphs get
modified to obtain, for every fixed ¢ < k, graphs whose isomorphism formula can be refuted in
narrow width & but every narrow width k+t refutation has depth at least Q(n*/(*+1). So the
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lower bound is robust within the range from k to k 4+t — 1. This construction can be seen as
an interpolation between the original compression [25] with round lower bound Q(n*/?) and
the linear round lower bound Q(n) by Fiirer [20]; both appear as special cases for ¢ = 1 and
t = k. Our approach with twinned graphs also applies to the improved construction implying
a narrow width-(k + t) tree-like size lower bound of 29(”’”“71))7 but we need to restrict the
range of ¢ even further. For k large enough and ¢ > 16 we can actually refute isomorphism of
the graphs in (non-narrow) width & 4 ¢ and finally obtain a supercritical trade-off between
width and tree-like size for resolution with respect to formula size (Theorem 2).

Further Related Work. How the robust compressed CFI construction [19] yields a supercrit-
ical width-depth trade-off for resolution was presented at the Oberwolfach workshop Proof
Complexity and Beyond [2]. The resulting preprint [19] also contains a trade-off for tree-like
resolution. A key difference is that our trade-off applies to graph-isomorphism formulas.
Also, different techniques are used. We cannot apply hardness condensation techniques to
graph isomorphism formulas but apply a form of xorification on the level of graphs and
analyze them using model theoretic techniques. In contrast, the trade-off of [19] is obtained
via xorification; the parameters obtained are within a constant factor of one-another.

2 Preliminaries

Graphs. An (undirected) graph G is a tuple (V, E) where V is a finite set of vertices and
E C (V) is a set of edges. The vertex set of G is denoted by Vg and the edge set of G by Eg.
For W C Vg, the subgraph of G induced by W is denoted by G[W]. The distance between
two vertices u,v € Vg is the number of edges in a shortest path between v and v in G. The
distance between U, W C Vg is the minimal distance of all v € U and v € W. We will
sometimes consider directed graphs, where the set of edges is a subset of ng, but we mention
this explicitly. A directed graph is acyclic, if it does not contain a (directed) cycle. A source
(or sink) is a vertex without incoming (or outgoing) edges. A colored graph G is a tuple
(V, E, x) such that (V, E) is a graph and x is a map V' — N. We interpret x as a vertex
coloring of G and denote it by xg. The color class of u € Vg is the set X;l(Xg (u)) of vertices
of the same color as u. The color class size of G is the maximal cardinality of its color
classes. The graph G is ordered if x is injective. We can see every graph as a colored graph
in which every vertex is colored 0. An isomorphism of colored graphs G and H is a bijection
f: Vg — V3 such that, for all u,v € Vg, we have xg(u) = x(f(u)), and {u,v} € Eg if and
only if {f(u), f(v)} € Ex. If there is such an isomorphism, G and H are isomorphic.

Resolution. A literal is a proposition variable x or its negation T := —x. We set =z = x.
A clause C is a finite set of literals {\1,..., Ay }. We may write clauses as disjunctions, e.g.,
C=(AV--VAg). A CNF formula F is a finite set of clauses {C1, ..., Cy,}, which we may
write as a conjunction F = (Cy A -+ A Cp,). The set of variables occurring in a clause C
is var(C) and for a CNF formula F it is var(F) := (Joecpvar(C). A (partial) assignment
for a CNF formula F is a (partial) map o: var(F) — {0,1}. The domain of ¢ is dom(o).
The size of o is |[dom(o)|. The assignment o violates a clause C € F' if var(C') C dom(o)
and o satisfies no literal in C. For a variable x € var(F') and a Boolean value ¢ € {0, 1}, let
o[x + 0] be the assignment with domain dom(o) U {z} derived from o that sets z to 9, i.e.,
olz — d](x) = d and o[z — 0](y) = o(y) for all y € dom(o) \ {«}. For partial assignments o
and o', we write o’ C o if dom(¢’) C dom(c) and ¢’(x) = o(x) for all x € dom(o’). For
k € N, we write [k] := {1,...,k}. We now introduce the proof systems studied in this paper.

18:5
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» Definition 3 (Narrow Resolution [21]). A narrow resolution derivation 7 of a clause D

from a CNF formula F is a directed acyclic graph m = (V, E) whose vertices are labeled

with clauses, D is the label of a source of w, and all sinks of w are labeled with clauses in F.

Moreover, for every vertex v € V, its clause C is derived from the clauses C1,...,Cy labeling

the vertices, to which v has an outgoing edge, by one of the following three rules.

1. Axiom Rule: /=0 and C € F.

2. Resolution Rule: /=2 and C; =AVz, Co=BVT, and C = AV B.

3. Narrow Resolution Rule: ¢ > 2 and, up to reordering, Co = (AV A\ V-V \i_1) € F
is an aziom, C = (AV Ay -~V Ay_1), and C; = (A; V N\;) for alli € [¢ —1].

A resolution derivation is a narrow resolution derivation using only Rules 1 and 2. The
derivation 7 is tree-like if 7 is a tree. In this case we call the unique source the root and the
sinks leaves. The size |r| of the derivation 7 is the number of vertices |V|. The depth of 7 is
the length of the longest directed path in it. The width of a clause C'is its number of literals.
The width of a derivation w(rw) is the maximal width of all clauses in 7. The narrow width
of a derivation w*(m) is the maximal number of literals among all those clauses in 7 that
are not axioms. A k-narrow derivation is a narrow resolution derivation of narrow width at
most k. A derivation of the empty clause from F'is a refutation of F.

3 A Prover-Delayer Game for Tree-Like Narrow Resolution

In this section, we introduce a game that allows us to prove lower bounds on the size of
k-narrow tree-like refutations of graph isomorphism formulas. We now introduce these
formulas. Let G and H be n-vertex colored graphs; following [42], we define a CNF formula
ISO(G, M) whose solutions correspond to isomorphisms G — H. For all vertices u € Vg and
v € V3, we add a propositional variable z,, ,. The variables z,, , have the intended meaning
that u is mapped to v. The CNF formula ISO(G,H) contains three types of clause.
Color Clauses: for each vertex u € Vg, let W, := x5, (xg(u)) be the vertices of H with
the same color as u. Add the clause VveWu 2y to encode that u is mapped to a vertex of
the same color. For each v € V3, let W, := Xél(xy(v)) and add the clause \/, ¢y oo
Bijection Clauses: For all u € Vg and distinct v, w € V3, we add the clause (m@y VT4 1)
to encode that an isomorphism is a function. For all distinct u,v € Vg and w € V, we
add the clause (—zyw V 2y ) to encode injectivity of the desired isomorphism.
Edge Clauses: for all u,u’ € Vg and v,v" € Vi with u # u such that {u,v'} € Eg if and
only if {v,v'} & Ey, we include the clause =, V 2y . to encode the edge relation.
The formula ISO(G, H) has O(n?) variables, O(n*) clauses, width equal to the maximal color
class size of G and H (unless every vertex gets a unique color; in this case the width is two),
and is satisfiable if and only if G is isomorphic to H.

The k-Narrow Prover-Delayer Game. Let G and H be non-isomorphic colored graphs.
The k-narrow Prover-Delayer game on G, H is played by two players, Prover and Delayer,
who construct partial assignments for ISO(G, H) as follows. The game begins with the empty
assignment oy = @. Let 0;—1 be the assignment after the (¢ —1)-th round. In round ¢, Prover
chooses o C 011 with |[dom(c)| < k — 1 and makes one of the following kinds of moves.
1. Resolution Move: Prover chooses a variable ¢ dom(c). Delayer chooses a response.

a. Committal Response: Delayer responds with § € {0,1} and sets oy := o[z — J].

b. Point Response: Delayer gets a point; Prover picks ¢ € {0,1} and sets o := o[z — J].
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2. Narrow Move: Prover chooses a color clause C from I1SO(G, H). Again Delayer chooses
one of two response types.
a. Committal Response: Delayer chooses some z € C'\ 071(0) and sets o, := o[z > 1].
b. Point Response: Delayer chooses distinct x,y € C'\ 071(0) and gets a point; Prover
chooses z € {z,y} and sets o, := o[z — 1].
If the assignment oy violates a clause of ISO(G, H), the game ends and Prover wins. Otherwise,
the game continues in round ¢ 4+ 1. Prover has an r-point strategy if, no matter how Delayer
plays, Prover can always win the game while limiting Delayer to at most r points. If Prover
does not have an r-point strategy, then Delayer has an (r + 1)-point strategy. It will be useful
to start the k-narrow Prover-Delayer game on G, H from assignments o # (). In this case,
the game starts at o9 = 0. By constructing strategies for Delayer, the game can be used to
show tree-like size lower bound for resolution refutations of graph isomorphism formulas.

» Lemma 4. For all k > 1, colored graphs G, H, and k-narrow tree-like refutations m of
ISO(G,H), Prover has a ([log(|w|)])-point strategy in the (k + 1)-narrow Prover-Delayer
game on G, H.

Proof Sketch. Prover follows 7 starting at the empty clause at the root. If a resolution
rule is applied to a variable x, then Prover makes a resolution move for x. Similarly, Prover
follows narrow resolution moves. If Delayer makes a committal response, Prover moves to
the corresponding child in 7. If Delayer makes a point response, Prover moves to the child
with the smallest subtree “below it”, at least halving the size of the subtree at the current
position. Prover wins if a leaf is reached, so Delayer can score at most [log(|7|)] points. <

The k-pebble Game and Narrow Resolution. We next recall the connection between
(k — 1)-narrow resolution refutations and the k-variable fragment of first order logic [42].
For an integer k, we write % for the set of first order formulas using at most k distinct
variables. We denote the set of .Zj-formulas with quantifier depth at most r by %, . If two
graphs G and H satisfy the same sentences of £} or %} ,, the graphs are Zj-equivalent or
% equivalent, respectively, and we write G ~* H or G ~F" H respectively.

These equivalences are characterized by the following game: Let G and H be (colored)
graphs and k,r € N. The r-round k-pebble game on G, H is played by two players, Spoiler
and Duplicator. A position of the game is a pair (a, ) of partial assignments « : [k] = Vg
and f8 : [k] = V3 such that dom(«) = dom(3). These maps define positions of up to k pebble
pairs on G and H. Duplicator aims to show that G and H are isomorphic; Spoiler tries to
show they are not. Initially, no pebbles are placed. Let (v, ;) be the position at the end of
round t < r. At the beginning of round ¢ + 1, Spoiler picks one of the graphs, say G, and
i € [k]. The i-th pebble pair is picked up and Spoiler places the i-th pebble for G on some
u € Vg yielding the map ;1. Duplicator responds by placing the i-th pebble for H on a
vertex of H yielding Bit1. If (41, Bet1) does not induce a partial isomorphism, meaning
that (i) — B(i) is not an isomorphism of the induced subgraphs G[{a(i) | i € dom(a)}] and
H{B(i) | i € dom(B3)}], then Spoiler wins. Otherwise, if ¢ + 1 < r, the play continues in
the next round. If ¢t + 1 = r, then Duplicator wins. A player (Spoiler or Duplicator) has a
winning strategy, if they can win independently of the moves of the other player.

» Theorem 5 ([29,42]). Let k,r € N. The following are equivalent:

1. G#*"H, ie., G and H are not % ,-equivalent.

2. Spoiler has a winning strategy in the r-round k-pebble game on G, H.

3. There is a (k — 1)-narrow resolution refutation of 1ISO(G, H) of depth at most r.
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It will sometimes be convenient to start the game from position (g, 5p) # (0, 0); nothing
else in the rules of the games changes in this case. Similarly, we may sometimes not specify
the number of rounds in advance; in this case the game only ends if Spoiler wins.

4 Twinned Graphs and Pebble Games

In this section, we introduce the twinned graph construction, which we described on a
high-level in the introduction. This will allow us to transfer lower bounds on the k-pebble
game with blocking to lower bounds on the k-narrow Prover-Delayer game (and therefore to
lower bounds on (k — 1)-narrow tree like refutation size).

Given a colored graph G, we define a new colored graph as follows. For each vertex
u € Vg, set Xg(u) := {uog,u1}, where ug and u; are fresh vertices; intuitively these are copies
of u. We define the twinned graph X(G) with vertex set Vy(g) := U, ey, Xg(u) and edge set

Exg) = {{x,y} ‘ x € Xg(u), y € Xg(v),{u,v} € Eg } U{Xg(u) | ueVg }

We give ug and uy the same color in X(G) as u has in G. For notational convenience, we
define @y := uq and @1 := ug. Moreover, we define Xg_l(ui) :=u for i € {0,1}.

We first show that — under a mild condition — if there is a k-narrow refutation of ISO(G, H),
then there is a k-narrow refutation of ISO(X(G), X(H)). To state the condition, we need
the following notion. Two distinct vertices u,v € Vg are twins if for every w € Vg \ {u, v},
we have that {u,w} € Eg if and only if {v,w} € Eg. That is, the neighborhoods of u and
v in G are, apart from u and v themselves, identical. Twins u and v are connected twins
if {u,v} € Eg. Note that if G has no connected twins, then X'(G) has exactly one pair of
connected twins for each vertex in G. This leads to the following observation.

» Lemma 6. Let k > 3 and G and H be colored graphs that do not have connected twins. If
G #FT H, then X(G) P X (H).

By applying Theorem 5 we obtain the following corollary.

» Corollary 7. Let k > 2 and G and H be colored graphs that have no connected twins.
If there exists a k-narrow refutation of ISO(G, H) of depth d, then there exists a k-narrow
refutation of 1ISO(X(G), X(H)) of depth d + 1.

It turns out that Prover-Delayer lower bounds on our twinned graphs are implied by round
lower bounds for certain pebble games on the original graphs. The normal k-pebble game
is the wrong tool for this task; intuitively, the reason is the asymmetry between setting a
variable of a graph isomorphism formula to zero or one.

The k-Pebble Game with Blocking. Let G and H be colored graphs and k,r € N. We
define the r-round k-pebble game with blocking on G and H as follows. The game is played
in rounds by Spoiler and Duplicator. A position in the game is a triple («, 8, ¢) of partial
maps « : [k] = Vg, B : [k] = Vi, and ¢ : [k] — {regular, blocking} with dom(a)) = dom(55) =
dom(c). The first two maps give the positions of the pebbles and ¢ marks each pair of pebbles
as either regular or blocking. Regular pebbles (possibly) define partial isomorphisms as before,
but blocking ones forbid certain ones as follows.

» Definition 8 (Partial Isomorphism with Blocking). Let («, 8, ¢) be a position in the r-round
k-pebble game with blocking on G and H, R := c (regular), and B := c~!(blocking).
Then («, B, ¢) induces a partial isomorphism with blocking if («|g, B|z) induces a partial
isomorphism and if every regular pebble respects every blocking pebble. Formally, this means
that for every p € B and q € R, we have (a(p), B(p)) # (a(q), B(q)).
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In the initial position (ag, 8o, co), all maps are empty. Let (ay, B¢, ¢:) be the position after
the t-th round. At the beginning of the (¢ + 1)-th round, Spoiler can make either a regular
mowve or a blocking move. A regular move works in the same way as a move in the k-pebble
game; the pebble pair moved in this turn is then marked regular. For a blocking move, Spoiler
picks p € [k] and places the p-th pebble in G on some vertex u € Vg and in H on some vertex
v € V. Duplicator next decides how to mark this pair. If Duplicator chooses regular, then
the round ends. If instead Duplicator chooses blocking, then the round continues and Spoiler
can again choose to make either a regular or a blocking move. If (a¢41, Bt41, ci4+1) does not
induce a partial isomorphism with blocking, then Spoiler wins and the game ends. Otherwise
if t +1 < r, the game continues in round t + 2. If t + 1 = r, then Duplicator wins.

We write G :Z’T ‘H if Duplicator has a winning strategy in the r-round k-pebble game
with blocking. If G :Z’T H for all r € N, then we write G ~§ H. As for the k-pebble game,
it will also be convenient to consider variants of the k-pebble game with blocking where we
start from arbitrary positions or do not specify the number of rounds in advance. Note that
while in the (non-blocking) k-pebble game it never makes sense for Spoiler to place a pebble
on an already pebbled vertex, this is not the case in the k-pebble game with blocking.

Spoiler and Duplicator meet Prover and Delayer. We end the section by connecting the
k-pebble game with blocking to the k-narrow Prover-Delayer game via the following lemma.

» Lemma 9. Let G and H be colored graphs and k > 2 an integer. If G :’g’r ‘H, then Delayer
has an r-point strategy in the k-narrow Prover-Delayer game on X(G), X (H).

Proof Sketch. In the k-narrow Prover-Delayer game on X(G), X(H), Delayer simulates
positions of the k-pebble game with blocking on G, H. Intuitively, whenever a regular pebble
pair is placed on vertices u and v (and there is not already a pebble pair on u and v), Delayer
should score a point since it “does not matter” whether we map wug to vg or to v;. As the
round counter of the k-pebble game with blocking only advances when a pebble pair is
marked as regular, filling in the details is relatively straightforward. |

Lemmas 4 and 9 finally connect the pebble game with blocking to tree-like refutation size.

» Theorem 10. Let k> 1, and r € N and G and H be colored graphs. If G f:@“’r H, then
every k-narrow tree-like refutation of ISO(X(G), X (H)) has size at least 27.

5 Compressing CFl Graphs

By what we have seen so far (Corollary 7 and Theorem 10), to prove Theorem 1 it suffices
to show that Duplicator can survive a large number of rounds in the k-pebble game with
blocking on suitably chosen colored graphs G, H. In this section, we describe a framework
which allows us to construct such graphs.

Concretely, we recall a recent approach to construct pairs of graphs that require quantifier
depth Q(n*/2) to be distinguished in k-variable first order logic %} (and also with count-
ing) [25]. The key idea is a novel compression technique of the so-called Cai-Fiirer-Immerman
(CFT) graphs [17] and a concrete compression construction for CFI graphs over grids. Having
introduced this construction, we give a method for proving lower bounds for the k-pebble
game with blocking on compressed CFI graphs. To do this, we first recall a variant of the
Cops and Robber game, which can be used to derive lower bounds on the k-pebble game on
compressed CFI graphs, and then extend this game with an appropriate notion of blocking.
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CFIl Graphs. Let G = (Vg, Eg) be a connected ordered graph, called a base graph, and
fi+ Eg — Fa be a function, where F is the two-element field. From G and f we derive the
colored CFT graph CFI(G, f): Vertices of G are called base vertices. Every base vertex of G
is replaced by a CFI gadget and gadgets of adjacent vertices are connected. The vertices
of the CFI gadget for a degree d base vertex u € Vg are the pairs (u,a) for all d-tuples
a=(ay,...,aq) € F with 2?21 a; = 0. The vertex (u,a) has origin u. Vertices inherit the
color of their origin. Since every vertex of the base graph has a unique color, the vertices of
each gadget form a color class of the CFI graph. For all adjacent base vertices u,v € Vg, we
add the following edges between the gadgets for u and v: Let u be the i-th neighbor of v
and v be the j-th neighbor of u according to the order on V. There is an edge between
vertices (u,a) and (v, b) if and only if a; +b; = f({u,v}), where a; is the i-th entry of @ and b;
is the j-th entry of b. See Figure 1 for an example. We say that two functions f, g : Eg — Fy
twist an edge e € Eg or the edge e € Eg is twisted by f and g if f(e) # g(e). Tt is known
that CFI(G, f) 2 CFI(G, g) if and only if f and g twist an odd number of edges [17].

Compressing CFl Graphs. CFI graphs are a well-studied tool to derive lower bounds for
k-variable logic with counting or other logics, see e.g. [15,17,18,20,31]. This construction
and its generalizations have also been used to derive proof complexity lower bounds on graph
isomorphism in various proof systems [12,13,32,36,40,41]. We now discuss the method of
compressing CFI graphs [25]. The goal is to reduce the size of the resulting graph while
essentially preserving the hardness of it. The main idea is to identify the gadgets of certain
base vertices. The hardness of the resulting compressed CFI graphs heavily depends on
which gadgets get identified and can be analyzed using a variant of the Cops and Robber
game. We now present this framework.

» Definition 11 (Graph Compression). An equivalence relation = on Vg is a G-compression

if for all u,u’,v,v" € Vg it satisfies the following two conditions:

1. If u=wv, then u and v are non-adjacent and of the same degree.

2. If {u,v},{v/,v'} € Eg, u =, v =1, and u is the i-th neighbor of v (according to the
order on Vg ), then u' is the i-th neighbor of v'.

Let = C V§ be a G-compression. It induces an equivalence relation on CFI(G, f) (indepen-
dently of the function f: E — ), which we also denote by =, via (u,a) = (v, b) if and only if
u =wv and a = b. Contracting all =-equivalence classes in CFI(G, f) into a single vertex yields
the colored graph CFI(G, f)/=: the vertices of CFI(G, f)/= are the =-equivalence classes
u/=:={w € Vcrig,5) | w = u}, and u/= and v/= are adjacent if there are v’ = u and v’ = v
such that v’ and v’ are adjacent in CFI(G, f). Observe that CFI(G, f)/= is loop-free by the
condition on = that equivalent vertices of G are non-adjacent. The color of a =-equivalence
class in CFI(G, f)/= is the minimal color of one of its members in CFI(G, f). To obtain

reasonable graphs, f has to be compatible with the compression = in the following sense.

» Definition 12 (Compressible). A function f: Eg — Fy is =-compressible if f({u,v}) =
FH,v'}) for all vertices u,v,u' ,v" € Vg such that {u,v},{u/,v'} € Eg, u=1v', and v ="',

» Definition 13 (Compressed CFl). For a G-compression = and a =-compressible function
f: Eg — Fo, the graph (CFI(G, f),=) expanding the colored graph CFI(G, f) with = is a
precompressed CFI graph, and the colored graph CFI(G, f)/= is a compressed CFI graph.

Precompressed CFI graphs can also be seen as edge-colored graphs that use two colors for the
edges — one the the regular edges and one for the equivalence relation. An example is shown
in Figure 1. The round number of the bijective k-pebble game (a variant of the k-pebble
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(c) The precompressed CFI graph. (d) The compressed CFI graph.

Figure 1 Compressed CFI graphs for a grid of height 2 as base graph, a very simple compression,
which only identifies two base vertices, and the function that assigns 0 to all edges. The compression
on the base graph and the induced one on the precompressed CFI graph is drawn in magenta.

game that characterizes equivalence of k-variable first order logic with counting quantifiers)
on precompressed and compressed CFI graphs are almost equal [25]. The corresponding
statement for the k-pebble game with blocking is proved similarly.

» Lemma 14. Let k > 3, r € N, = be a G-compression, and f,g : Eg — Fy be =-compressible.
1. CFI(G, f) %" CFI(G, ) implies (CFI(G, f),=) £5" (CFI(G, g),=).

2. (CFI(G, f),=) 5" (CFI(G, g),=) implies CFI(G, f)/= #5" CFI(G,g)/=.

3. CFIG, f)/= 25" CFI(G, g)/= implies (CFI(G, f),=) #5"* (CFI(G, 9),=).

The Compressed Cops and Robber Game. The ability of the bijective k-pebble game to
distinguish non-isomorphic CFI graphs is captured by the k-Cops and Robber game [25,37].
A variant of this game — the compressed k-Cops and Robber game — provides lower bounds for
compressed CFI graphs. To see this, we consider isomorphisms of CFI graphs. These always
twist an even number of edges and can be described in terms of paths in the base graphs by
twistings (defined below). Moreover, if these paths are compatible with the compression, they
induce isomorphisms of compressed CFI graphs. For ordered base graphs, these twistings
correspond one-to-one with isomorphisms of the (compressed) CFI graphs.

» Definition 15 (Twisting). A set T' C {(u,v) | {u,v} € E} is called a G-twisting if, for
every uw € V, the set T N ({u} x V) is of even size. The twisting T

twists an edge {u,v} € E if the set T contains exactly one of (u,v) and (v,u) and

fixes a verteru € V if TN ({u} x V) = 0.

To obtain a reasonable notion of twistings for isomorphisms of compressed CFI graphs, the
twistings have to be compatible with the compression. For more details on (compressed) CFI
graphs, their isomorphisms, and twistings, we refer to the original paper [25].

» Definition 16 (Compressible Twisting). For a G-compression =, a G-twisting T is called
=-compressible if the following holds for all u,vw’ € V with u = «': Let u and v’ be of
degree d. Then for every i € [d], we have (u,v;) € T if and only if (v/,v}) € T, where v; is
the i-th neighbor of u and v} is the i-th neighbor of u' (according to the order on G).

18:11

MFCS 2025



18:12

Supercritical Size-Width Tree-Like Resolution Trade-Offs for Graph Isomorphism

The compressed k-Cops and Robber game [25] is played on a base graph G and a G-com-
pression =. The Cops Player places cops on up to k =-equivalence classes and the robber is
placed on one edge of G. Initially, only the robber is placed. The game proceeds in rounds:
1. The Cops Player picks up a cop and announces a new =-equivalence class C' for this cop.
2. The robber moves. To move from the current edge e; to another edge es, the robber has
to provide a =-compressible G-twisting that only twists the edges e; and ey and that
fixes every vertex contained in a cop-occupied =-equivalence class.
3. The cop that was picked up in Step 1 is placed on C. The next round starts.
The robber is caught if the two endpoints of the robber-occupied edge are contained in
cop-occupied =-classes. The cops have a winning strategy in r rounds, if they can catch the
robber in r rounds independently of the moves of the robber. Similarly, the robber has a
strategy for the first r rounds if the robber can avoid being caught for r rounds independently
of the moves of the Cops Player. The winner of the compressed game depends on the initial
position of the robber. This game yields lower bounds for the (bijective) k-pebble game:

» Lemma 17 ([25]). Let = be a G-compression and suppose f,g: Eg — Fo only twist a single
edge e. If the robber, initially placed on the edge e, has a strategy for the first r rounds in the
compressed k-Cops and Robber game on G and =, then (CFI(G, f),=) ~*" (CFI(G, g),=).

Introducing Roadblocks for Cops. To obtain lower bounds for the k-pebble game with
blocking, we add “roadblocks” to the compressed Cops and Robber game and prove a blocking
analogue of Lemma 17. Let G be an ordered graph. A roadblock for a verter u € Vg is
a nonempty set N C {(u,v) | {u,v} € Eg} of (directed) edges incident to u of even size.
A G-twisting T avoids a roadblock N for a vertex w if T'N {u} x Vg # N. In particular, T
may contain a strict superset or subset of N. If T' does not avoid N, then T uses N. A
roadblock for a =-equivalence class C' is a nonempty set N C [d] of even size, where d is the
unique degree of the vertices in C. A G-twisting T" avoids the roadblock N on C' if, for every
vertex u € C, the twisting T avoids the roadblock N, := {(u,v;) | i € N} for u, where v;
denotes the i-th neighbor of u. If T is =-compressible and does not avoid NN, then T" uses N,
for every vertex u € C; we say that T uses N. Let M C [d] be the set of all ¢ € [d] such
that T contains the edge to the i-th neighbor of some and, since T' is =-compressible, of
every u € C. We write T(N) for the symmetric difference of N and M.

The compressed and blocking k-Cops and Robber game is played on a base graph G and a
G-compression =. The Cops Player controls cops and roadblocks. The total number of cops
and roadblocks is k£ but the number of each may vary during the game. Cops and roadblocks
are placed on =-equivalence classes and the robber is located on an edge. Initially, only the
robber is placed. A round of the game proceeds as follows: The Cops Player picks up a cop
or a roadblock and can choose to play a cop move or a blocking move.

1. A cop move proceeds similarly to the non-blocking game. First, the Cops Player announces
a =-equivalence class C. Next, the robber moves. To move from an edge e; to another
edge es, the robber provides a =-compressible G-twisting 7" that only twists the edges e;
and ey, fixes every vertex contained in a cop-occupied =-equivalence class, and avoids
every roadblock. Afterwards, a cop is placed on the announced class C.

2. For a blocking move, the Cops Player announces a =-equivalence class C' and a roadblock N
for C. Next, the robber moves with a =-compressible G-twisting T" as in the cop move.
If T uses N, then a cop is placed on C. Otherwise, the roadblock IV is placed on C.

3. The existing roadblocks are updated. If a roadblock N’ is placed on a class C’, then it is
replaced by the roadblock T'(N') on C’. Because in both a cop and a blocking move T
avoids all roadblocks, T'(N') will always be a nonempty set. If a roadblock was placed
in this move, the Cops Player can again choose to play either a cop or a blocking move
without increasing the round counter.
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The notion of the robber being caught or having a strategy for the first r round is the same
as in the non-blocking game. As in the non-blocking game, the starting edge of the robber is
important. The following lemma is proved similarly to Lemma 17.

» Lemma 18. Suppose = is a G-compression and f,qg : Eg — Fo only twist a single edge e. If
the robber, initially placed on the edge e, has a strategy for the first r rounds in the compressed
and blocking k-Cops and Robber game on G and =, then (CFI(G, f),=) f:}gr (CFI(G, 9),=).

The =-compressible twistings of the robber induce isomorphisms of the compressed CFI
graphs, which respect all currently placed pebbles. These are used to move the twisted
edge (“the robber”) away from the pebbles. Cops correspond to regular pebble pairs and
roadblocks to blocking ones. The case distinction in Point 2 whether a cop roadblock is
placed ensures that in a blocking move in the pebble game with blocking the pebble pair
gets marked as regular or blocking consistently with the current isomorphism. Updating the
roadblocks in Point 3 corresponds to applying the isomorphism induced by the twisting 7" to
them.

6 The Super-Linear Lower Bound with Roadblocks

We now present and analyze the robust compressed CFI construction of [19]. This work shows
that the robber can survive for a large number of rounds in the compressed Cops and Robber
game for certain compressions. This section shows that the robber also has a strategy for a
large number of rounds in the game with roadblocks. By Lemma 18 and Theorem 10, such a
result implies a lower bound on tree-like refutation size for graph isomorphism formulas.

6.1 Compressing Cylindrical Grids

Fix an integer k > 3 and a sufficiently large integer w. Set f(k) := 4k. Let p1,...,px be
pairwise coprime numbers such that § < p; < w for every i € [k]. For all sufficiently large w,
such numbers exist [25]. Set J := f(k) - p1-... pg. Let C be the k x J cylindrical grid, that
is, the k x J grid, in which we also connect the top and bottom row. The vertices of C are
pairs (i,7) for all 4 € [k] and j € [J]. They are ordered lexicographically. We think of the
first component as the row index and the second component as the column index. We refer
to the first f(k) columns as the left end of C, and to the last f(k) columns as the right end
of C. We use addition on row indices in a modulo-like manner, e.g., the (k 4+ 1)-th row is the
first one and pgy1 = p1. For each t € [k — 1], we define the following equivalence =! via:

(i,4) =' (@', §') == i=1; f(k) < j,j < J—f(k); and j—j' is divisible by f(k)pi-...Dise.

These equivalences are C-compressions [19]. Note that the vertices in the left or the right

end of C are in singleton =!

-equivalence classes. The vertices in between are identified
periodically, but the period is different in every row. It is not hard to show that there are
O(w'*t) =t-equivalence classes. Together with the fact that CFI gadgets for degree 4 base

vertices have 8 vertices, this implies the next lemma:

» Lemma 19. For allt € [k — 1] and =t-compressible f: Ec — Fa, the graph CFI(C, f)/=:
has order ©(w'*Y) (where k and t are seen as constants) and color class size 8.

While the order of the graphs is ©(w!*!), the robber has a strategy for Q(w*) rounds:

» Theorem 20 ([19]). For everyt € [k—1]|, consider the compressed (k+t)-Cops and Robber
game played on C and =t. If the robber is initially placed on an edge on the left or right end
of C, then the robber has a strategy for the first Q(J) = Q(w") rounds.
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Unfortunately, this theorem does not lift to the game with roadblocks; in order to lift it, we
investigate the strategy of the robber in more detail: The robber is always located in either
the left or right end of the grid. On uncompressed grids of height k, the optimal strategy
of the Cops Player with at most 2k cops is to separate the left from the right end of grid
using the cops and to move this separator slowly towards the robber (by at most a constant
number of columns in each round). So the robber can avoid getting caught for a number
of rounds linear in the length of the grid: when a newly announced cop is about to form a
separator, the robber moves to the end furthest from the separator. In the compressed game,
the strategy is similar. However, the suitable notion of a separator and the analysis of the
situations in which the robber can move from the one end of the grid to the other are more
complicated. We now describe them on an informal level to illustrate the central ideas. For
formal details and more explanations, we refer to the original works [19,25].

To move the robber from one end of the grid to the other, we use =f-compressible
C-twistings that twist exactly two edges, one in the first and one in the last column. Such
twistings are called t-end-to-end twistings and are obtained from {-periodic paths [25].
Intuitively, these are paths from the first to the last column in the grid C, which repeat
every £ columns. This means that an ¢-periodic path is defined by a path in columns 0 to
¢ — 1 repeating every ¢ columns. If ¢ is the greatest common divisor of the compression
periods of all the rows used by the path, then the path induces a t-end-to-end twisting:

» Lemma 21 ([19,25]). Lett € [k —1], 7 = (u1,...,Um) be an €-periodic path, and I C [k]
be the set of all rows of which m contains vertices. If £ = ged{f(k)pi-... piyt |t € I}, then
induces the =*-compressible C-twisting {(wi, ui—1), (wi,uir1) | 1 <i < m}.

We now turn to a suitable notion of “a separator” for the compressed grid. Let W be a set
of =t-equivalence classes. A t-virtual cordon [19] for W is a separator S C Vi that separates
the left from the right end of the grid C and satisfies additional conditions on the vertices
that S is allowed to contain. For example, if W contains only one class of row 4, then S
may only contain a single vertex from that class. A set W is t-critical, if there is a t-virtual
cordon for W and there is no periodic path satisfying the conditions of Lemma 21 that avoids
all vertices of the classes in W (and actually even more). Intuitively, for t-critical sets the
robber cannot move between both ends. For non-¢-critical sets of size at most k4t —1 (so in
situations where at least one cop is picked up), this is always possible using periodic paths.

» Lemma 22 ([19]). Lett € [k—1] and let W be a set of at most k+t—1 many ="-equivalence
classes. If W is not t-critical, then there is a t-end-to-end-twisting avoiding all classes in W.

The minimal distance of the robber to an inclusion-wise minimal ¢-virtual cordon for W
measures the distance between the robber and the cops. When an announced cop will make
the position t¢-critical, the robber moves to the end to which this distance is larger. This
distance decreases by at most a constant in each round [19]. So, the robber still has a strategy
for a number of rounds linear in the grid length. Since the compressed CFI graphs are much
smaller, we get a much better bound for the k-pebble game on the compressed CFI graphs.

6.2 Cops do not Benefit From Roadblocks

We now show that for the C-compressions of the previous section, the Cops Player does not
benefit from roadblocks. This means that, although blocking moves possibly allow the Cops
Player to make multiple moves per round, the number of rounds the robber can avoid getting
caught does not change asymptotically compared to the game without roadblocks. Note that
converting a roadblock to a cop only makes it harder for the robber to move. To see this,
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Figure 2 The two 2-periodic paths (in blue and in green) constructed in the proof of Lemma 23.

Edges in and between rows ¢ and ¢ 4+ 1 in the cylindrical grid are drawn in black. Both paths never
use the same incident edges of any vertex. Avoided horizontal roadblocks are drawn in orange.

observe that a roadblock prevents the robber from passing through a vertex (or class) using
a specified set of incident edges, while a cops prevents the robber from passing through the
vertex (or class) at all.

» Lemma 23. Lett € [k — 1] and ¢ < %k — 1 be integers. Consider the compressed and
blocking (k + ¢)-Cops and Robber game on C and =* and assume that cops are placed in at
most ¢ rows. Then there is a t-end-to-end twisting that avoids all cop-occupied =*-equivalence
classes and avoids all roadblocks.

Proof Sketch. We call a roadblock horizontal if it blocks the use of exactly the two horizontal
incident edges of a vertex or =¢-class. If there are no horizontal roadblocks in a cop-free row,
then the straight path through that row is a t-end-to-end twisting and we are done. Assume
for a contradiction, that no t-end-to-end twisting exists. A cop-free row is lonely, if it is
sandwiched by cop-occupied rows. We show that there have to be additional (non-horizontal)
roadblocks in each non-lonely row. To do this we construct, for non-lonely rows i and
i+ 1, two 2-periodic paths that only use vertices from rows ¢ and i + 1, avoid all horizontal
roadblocks, and do not share the same incident edges of any vertex in rows ¢ and 7 + 1 (see
Figure 2). By Lemma 21, if there are no non-horizontal roadblocks in rows i and 7 + 1, then
these path would induce t-end-to-end twistings. Because the two paths do not use common
incident edges, an additional roadblock is required for each one to block the path. This allows
us to lower bound the number of roadblocks in terms of ¢ and to contradict the assumption
that ¢ < %k — 1. Hence, the desired t-end-to-end twisting exists. |

Using the previous lemma, we are ready to prove the main technical result of this section.

> Lemma 24. Let 1 <t < %k — 1 be an integer. Then the robber, initially placed on the left
or right end of C, has a strategy for the first Q(J) rounds in the compressed and blocking
(k +t)-Cops and Robber game on C and =*.

Proof Sketch. We will convert all roadblocks into cops and make the game harder for the
robber. In this way, we use the notions of ¢-critical sets and ¢-virtual cordons for these
positions. The robber always stays at one end of the grid: If the current position is not
critical, the robber stays at the current end, until an announced cop or roadblock (seen as a
cop) makes the position critical. Then using the t-end-to-end twisting from Lemma 22 the

robber moves to the end of the grid with larger distance to every minimal ¢-virtual cordon.

This distance is in Q(J) [19]. If the current position is critical, we show that blocking moves
only allow the Cops Player to decrease this distance by O(k), via a case distinction on the
number of cop-occupied rows. While this is at most %k — 1, the robber can always use
the t-end-to-end twisting given by Lemma 23 to switch ends. Otherwise, the number of
cop-occupied rows is at least %k In this case, all intermediate positions between the blocking
moves share at least one row in which only one and the same cop is placed, so by inductively
applying [19, Proposition 4.10], we show that the minimal ¢-virtual cordon before and after
the blocking moves are contained within O(k) subsequent columns.
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So, starting from a distance of £2(J), the robber has a strategy such that this distance
decreases by at most O(k) in each round. Hence, the robber has a strategy for the first
Q(J/O(k)) = Q(J) rounds (since k is seen as a constant). <

Finally, for sufficiently large n and choosing w = [ **¥/n|, Lemmas 24, 14, 19, and 18 together
imply the desired round lower bound for the (k + ¢)-pebble game with blocking.

» Theorem 25. For all integers k > 3,1 <t < %k — 1, and n € N, there are two colored

graphs G and H of order ©(n) and color class size 8 such that

1. G #*1 N, that is, Spoiler wins the (k + 1)-pebble game on G, H, and

2. G ZEH’Q("M(HI)) H, that is, Duplicator has a strategy for the first Q(nk/(“rl)) rounds in
the (k + t)-pebble game with blocking on G, H.

7  Supercritical Width versus Tree-Like Size Trade-Offs

We finally derive our main results; starting with narrow resolution.

» Theorem 26. For all integers k > 3,1 <t < %k — 1, and n € N, there are two colored
graphs G and H of order ©(n) and color class size 16 such that
1. there is a k-narrow resolution refutation of 1ISO(G,H), and

2. every (k+t — 1)-narrow tree-like resolution refutation of 1ISO(G,H) has size 202t/ )

Proof. Let k >3 and 1 <t < %k — 1. By Theorem 25, for all n € N, there are graphs G

and H of color class size 8 and order ©(n) such that G 2**! H and G :’éth’Q("k/(HZ))) H. Ttis
easy to see that X'(G) and X () have color class size 16. By Theorem 5 and Lemma 6, there
is a k-narrow resolution refutation for ISO(X(G), X(#)). Moreover, from Lemma 9 it follows
that Delayer has a strategy to score Q(n*/(+1)) points in the (k + t)-narrow Prover-Delayer
game on X(G), X(#H). Therefore, by Lemma 4, the result follows. <

Theorem 1 is the case t = 1 of Theorem 26. We now lift Theorem 26 to usual resolution
(without the narrow resolution rule). First, if G and H have color class size ¢, then we
can convert every k-narrow refutation of 1ISO(G, H) into a (usual) refutation of ISO(G, H)
of width k 4 ¢. Second, a width-k refutation is in particular a width-k narrow refutation.
Theorem 2 follows immediately. Note that while Assertion 2 of Theorem 2 provides a lower
bound for all ¢ < %k — 1, Assertion 1 only guarantees a refutation of width k + 16. Therefore,
the existing refutation must be large only for k > 45 and 17 <t < %k —-1.

Conclusion and Open Questions. We established a new super-critical (narrow) width
vs. tree-like size trade-off on graph isomorphism formulas for resolution. The lower bound of
22" ghtained for t = 1 in Theorems 2 and 26 is close to the upper bound of 27" for the
tree-like size of resolution of (narrow) width k. We exploited a compressed variant of the
CFI graphs and round number lower bounds in the k-pebble game on them. However, we
had to move from the k-pebble game to the k-pebble game with blocking, and reprove the
round number lower bounds in this setting. This raises the question of whether there is a
generic translation from round number lower bounds in the k-pebble game to tree-like size
resolution lower bounds. Another question is whether the decrease in the robustness in the
trade-off from 2k in [19] to %k in Theorem 26 is necessary. More broadly, we ask for a more
robust compression or trade-off that can be applied to a much wider range than 2k.
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