
On the Reachability Problem for Two-Dimensional
Branching VASS
Clotilde Bizière
LaBRI, Univ. Bordeaux, CNRS, Bordeaux INP, Talence, France

Thibault Hilaire
LaBRI, Univ. Bordeaux, CNRS, Bordeaux INP, Talence, France

Jérôme Leroux
LaBRI, Univ. Bordeaux, CNRS, Bordeaux INP, Talence, France

Grégoire Sutre
LaBRI, Univ. Bordeaux, CNRS, Bordeaux INP, Talence, France

Abstract
Vectors addition systems with states (VASS), or equivalently Petri nets, are arguably one of the most
studied formalisms for the modeling and analysis of concurrent systems. A central decision problem
for VASS is reachability: whether there exists a run from an initial configuration to a final one.
This problem has been known to be decidable for over forty years, and its complexity has recently
been precisely characterized. Our work concerns the reachability problem for BVASS, a branching
generalization of VASS. In dimension one, the exact complexity of this problem is known. In this
paper, we prove that the reachability problem for 2-dimensional BVASS is decidable. In fact, we
even show that the reachability set admits a computable semilinear presentation. The decidability
status of the reachability problem for BVASS remains open in higher dimensions.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Vector addition systems, Reachability problem, Semilinear sets, Verification

Digital Object Identifier 10.4230/LIPIcs.MFCS.2025.22

Related Version Full Version: https://arxiv.org/abs/2506.22561 [2]

1 Introduction

Vectors addition systems with states (VASS), or equivalently Petri nets, are arguably one
of the most studied formalisms for the modeling and analysis of concurrent systems. A
central decision problem for VASS is reachability: whether there exists a run from an initial
configuration to a final one. This problem was shown decidable more than forty years
ago [26] but its precise complexity was only established a few years ago [23, 9, 22]. Several
VASS extensions have been introduced and studied, most notably unordered data nets [20],
pushdown VASS [1, 19], and branching VASS [10, 31]. But so far, the reachability problem
is still open for these models.

One of the first subclasses of VASS for which reachability was shown to be decidable is the
class of 2-dimensional VASS. For this class, Hopcroft and Pansiot devised an algorithm that
computes a finite description (more precisely, a semilinear presentation) of the reachability
set [16]. As an immediate consequence, they obtained that reachability is decidable for this
class. In fact, the algorithm of Hopcroft and Pansiot can be viewed as a refinement of the
classical Karp-Miller algorithm [18] where the abstract pumping of cycles (putting ω in some
components) is replaced by an exact acceleration of cycles (adding new vectors to the current
set of periods).

© Clotilde Bizière, Thibault Hilaire, Jérôme Leroux, and Grégoire Sutre;
licensed under Creative Commons License CC-BY 4.0

50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Paweł Gawrychowski, Filip Mazowiecki, and Michał Skrzypczak; Article No. 22; pp. 22:1–22:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0003-6469-1170
https://orcid.org/0009-0008-7324-8767
https://orcid.org/0000-0002-7214-9467
https://orcid.org/0009-0004-3839-0005
https://doi.org/10.4230/LIPIcs.MFCS.2025.22
https://arxiv.org/abs/2506.22561
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


22:2 Reachability for Two-Dimensional Branching VASS

In this paper, we investigate the reachability problem for branching VASS (shortly
called BVASS in the sequel), a branching generalization of VASS. More precisely, BVASS
extend VASS with special branching transitions that merge configurations (by summing their
vectors). This model has gained a lot of interest recently due to strong links with several fields
in computer science such as cryptographic protocols [31], linear logic [10, 21], recursively
parallel programs [5], timed pushdown systems [7], computational linguistic [29, 30], game
semantics [8], equational tree automata [28, 25] and data logics [17, 4]. For instance,
provability in the multiplicative exponential fragment of linear logic (MELL) is inter-reducible
with the reachability problem in BVASS [10]. As mentioned before, the reachability problem
is still open in arbitrary dimension for BVASS. In dimension one, the reachability problem
is decidable and the exact complexity is known [15, 12]. The objective of our work was to
investigate the decidability of the reachability problem for 2-dimensional BVASS.

Contributions. In this paper, we prove that the reachability problem for 2-dimensional
BVASS is decidable. In fact, we even show that the reachability set admits a computable
semilinear presentation. We propose an algorithm that essentially performs a forward
symbolic exploration of a 2-dimensional BVASS given as input. Our algorithm is inspired
from Hopcroft and Pansiot’s algorithm for classical 2-dimensional VASS [16]. The latter
computes a symbolic reachability tree, but in our case we need an acyclic graph, that we call
exploration, because of branching transition rules.

Compared to Hopcroft and Pansiot’s algorithm where pumped cycles are computed stat-
ically, in our case pumped cycles are computed dynamically since they exploit configurations
that are discovered during the exploration. This feature complicates the proof of soundness
of our algorithm. But the main challenge is the proof of termination. As usual, we proceed
by contradiction and assume that the algorithm constructs an infinite exploration. A first
source of difficulty in order to obtain a contradiction is that the set of pumped cycles is
potentially infinite. A second source is the fact that we cannot consider any infinite path of
the exploration. In fact, there are mutual dependencies between paths since the exploration
is not necessarily a tree. We need to consider an infinite path that ultimately does not
depend on the other paths, and we show that such a path always exist. We believe that
our proof techniques could be applied to other algorithms that construct potentially infinite
acyclic graphs.

Related Work. In general dimension, the coverability problem (a weak version of the
reachability problem) and the boundedness problem are decidable for BVASS [31], and their
precise complexity is known [11, 21]. The complexity of the reachability problem for bounded
BVASS was established in [27]. The reachability problem for BVASS and pushdown VASS
is still open. For pushdown VASS the problem is known to be decidable in the bidirected
case [14]. In small dimensions, the above-mentioned idea of pumping cycles was successfully
applied to the analysis of several VASS generalizations, and in particular to solve reachability
for 2-dimensional VASS and extensions [3, 6, 13], coverability for 1-dimensional pushdown
VASS [24], and reachability for 1-dimensional BVASS [15, 12].

Outline. Some preliminary background and notations are provided in Section 2. We define
in Section 3 the model of BVASS and their semantics. Section 4 introduces a class of
acyclic graphs, called explorations, where nodes are labeled by sets of configurations, and
presents our reachability algorithm for 2-BVASS. We show in Section 5 that the explorations
constructed by our algorithm, called algorithmic explorations, are sound and complete (for



C. Bizière, T. Hilaire, J. Leroux, and G. Sutre 22:3

the reachability set). This shows the partial correctness of our algorithm, and we then
focus on its termination. We prove in Section 6 that any infinite graph that admits a
finitely-branching spanning forest contains a “core” witness of infinity defined as a so-called
directed and primary graph. Section 7 provides the proof of termination of our algorithm,
and is decomposed into four subsections. First, we study the stabilization of cones, a form
of acceleration for cones through the so-called notion of modes. Second, we show how to
decompose the effect of paths in an exploration into a sum of so-called elementary vectors
corresponding to previously mentioned pumped cycles, and consecutive vectors. Third, we
prove that the periodic set associated to a primary infinite set of nodes in an algorithmic
exploration is finitely-generated. Fourth, we assemble the results from the previous sections
to deduce the termination of our algorithm. Section 8 concludes the paper. Due to space
limitations, detailed proofs are deferred to the full version [2] of the paper.

2 Preliminaries

We denote by Z the set of integers, N the set of natural numbers, by Q the set of rational
numbers, and by Q≥0 the set of non-negative rational numbers. We also introduce N>0 and
Q>0 defined as N \ {0} and Q≥0 \ {0}, respectively. The powerset of a set S is written P(S).

Vectors. Vectors are typeset in bold face. Given c ∈ Qd, we let (c(1), . . . , c(d)) denote the
vector of rational numbers defining c. We write x ≤ y for two vectors x, y ∈ Qd if x(i) ≤ y(i)
for every i ∈ {1, . . . , d}. The sum of two vectors x + y is defined component-wise. The sum
operator over vectors is extended over sets X, Y ⊆ Qd by X + Y = {x + y | x ∈ X ∧ y ∈ Y}.
Given X ⊆ Qd and x ∈ Qd, we define x + X as {x} + X. The set X + x is defined similarly.
We also write Q≥0X the set {λx | λ ∈ Q≥0 ∧ x ∈ X}.

Periodic sets and semilinear sets. A set P ⊆ Qd is said to be periodic if 0 ∈ P and
P + P ⊆ P. Given a set A ⊆ Qd, we denote by Per(A) the set of finite sums a1 + · · · + ak

where k ∈ N, and a1, . . . , ak ∈ A. This periodic set is called the periodic set spanned by A.
A periodic set P is said to be finitely-generated if P = Per(A) for some finite set A ⊆ Qd.
The sum of two periodic sets is a periodic set. Given a sequence (Pi)i∈I of periodic sets
indexed by a finite or infinite set I, we denote by

∑
i∈I Pi the periodic set Per(

⋃
i∈I Pi).

Notice that that if I is finite, this definition of sum coincides with the previously introduced
finite sum of subsets of Qd. A set L ⊆ Nd is said to be linear if L = b + P where b ∈ Nd

and P ⊆ Nd is a finitely-generated periodic set. A set S ⊆ Nd is semilinear if S is a finite
union of linear subsets of Nd.

Cones. A cone C of Qd is a periodic subset of Qd such that Q≥0C ⊆ C. The cone spanned
by a set A ⊆ Qd is the cone denoted by Con(A) and defined as Q≥0 Per(A). A cone C ⊆ Qd

is said to be finitely-generated if C = Con(A) for some finite set A ⊆ Qd.

▶ Lemma 2.1 ([16, Lemma 1.2]). Let P ⊆ Zd be a periodic set. Then P is a finitely-generated
periodic set if, and only if, Con(P) is a finitely-generated cone.

Graphs. A graph is a pair G = (N, →) where N is a set of nodes, and → is a binary relation
on N called the edge relation. The graph is said to be empty (resp. finite, infinite) when its
set of nodes is empty (resp. finite, infinite). We denote by +−→ the transitive closure of →,
and by ∗−→ the reflexive closure of +−→. The graph is called acyclic when +−→ is irreflexive. We

MFCS 2025



22:4 Reachability for Two-Dimensional Branching VASS

associate with a node n ∈ N the set of ancestors AncG(n) = {m ∈ N | m
∗−→ n}, and the set of

descendants DesG(n) = {m ∈ N | n
∗−→ m}. Ancestors and descendant are extended over sets

of nodes X ⊆ N as expected, by AncG(X) =
⋃

n∈X AncG(n) and DesG(X) =
⋃

n∈X DesG(n).
A set of nodes X ⊆ N verifying X = AncG(X) is said to be ancestor-closed. A node n ∈ N

is called a leaf if there does not exist a node m ∈ M satisfying n → m. A node n is called
a source if there is no node m such that m → n. The restriction of a graph G = (N, →)
to a set of nodes X ⊆ N is the graph (X, → ∩ (X × X)). A node-labeled graph is a triple
(N, →, λ) where (N, →) is a graph and λ is a function with domain N . The notions defined
above for graphs naturally carry over to node-labeled graphs.

3 Branching VASS

A d-dimensional branching vector addition system with states (d-BVASS for short) is a
pair B = (Q, ∆) where Q is a finite non-empty set of states and ∆ ⊆ (P(Q) × Zd × Q)
is a finite set of transition rules. A transition rule δ = (S, a, q) in ∆ consists in a set
S ⊆ Q of input states, a displacement a ∈ Zd, and a single output state q ∈ Q. Intuitively,
assuming that S = {q1, . . . , qk}, this transition rule can be seen as the rewriting rule
q1(x1), . . . , qk(xk) → q(a + x1 + · · · + xk) with formal parameters x1, . . . , xk. Note that our
definition forbids a state from occurring twice on the left-hand side of a transition rule (as
this left-hand side is given by a set of states). This restriction is only a matter of technical
convenience. A transition rule δ = (S, a, q) is called initial when S = ∅, unary when |S| = 1,
and branching when |S| ≥ 2. A d-dimensional vector addition system with states (d-VASS
for short) is a d-BVASS V = (Q, ∆) such that |S| ≤ 1 for every transition rule (S, a, q) in ∆.

We formulate the semantics of a d-BVASS B = (Q, ∆) in terms of a configuration-set
transformer Post. A configuration of B is a pair (q, x) in Q × Nd, also written as q(x) in
the sequel. By extension, given a set X ⊆ Nd, we let q(X) denote the set of configurations
{q} × X. The set of initial configurations of B is {q(a) | (∅, a, q) ∈ ∆ and a ≥ 0}. For each
transition rule δ = (S, a, q) in ∆, we define the function Postδ : P(Q × Nd) → P(Q × Nd) by1

Postδ(C) = q
({

y ∈ Nd | ∃D ⊆ C : S = {{r | r(z) ∈ D}} and y = a +
∑

r(z)∈D z
})

for every set C ⊆ Q × Nd. We also introduce PostB : P(Q × Nd) → P(Q × Nd), defined
by PostB(C) =

⋃
δ∈∆ Postδ(C). Note that PostB is ⊆-nondecreasing and that PostB(∅)

coincides with the set of initial configurations of B. The reachability set of B, written JBK, is
the ⊆-least set C ⊆ Q × Nd such that PostB(C) ⊆ C.

▶ Example 3.1. Consider the 2-BVASS E depicted in Figure 1. It has four states p, q, r, s and
seven transition rules, namely (∅, (4, 4), p), ({p, q}, (0, 0), r) and five unary transition rules
(see Figure 1). We have p(4, 4) ∈ JEK since (∅, (4, 4), p) ∈ ∆. From ({p}, (−1, 0), q) ∈ ∆ and
p(4, 4) ∈ JEK we get that q(3, 4) ∈ JEK. From ({p, q}, (0, 0), r) ∈ ∆ and p(4, 4), q(3, 4) ∈ JEK
we get that r(7, 8) ∈ JEK. ⌟

A set of configurations C ⊆ Q ×Nd is said to be semilinear if C is a finite union of sets of
the form q(L) where q ∈ Q and L ⊆ Nd is linear, i.e. a set of the form b + Per(A) for some
b ∈ Nd and some finite subset A of Nd. A presentation of a semilinear set of configurations

1 We use double braces {{· · ·}} to denote multisets. Here, the condition S = {{r | r(z) ∈ D}} means
that, firstly, the set S is equal to the set {r | r(z) ∈ D}, and, secondly, r1 ̸= r2 for every two distinct
configurations r1(z1), r2(z2) in D.



C. Bizière, T. Hilaire, J. Leroux, and G. Sutre 22:5

r

p q

s

(4, 4)

(−1, 0)

(−1, 1)

(1, 3)

(0, 0)(0, 0)

+

p, (4, 4), {(0, 0)}n0

q, (3, 4), {(0, 0)}n1

s, (3, 4), Per({(2, 5)})n2

p, (3, 4), Per({(2, 5)})n3

q, (2, 4), Per({(2, 5)}) n4r, (6, 8), Per({(2, 5)})n5

r, (7, 8), {(0, 0)} n6

Figure 1 The 2-BVASS E from Example 3.1 (left) and an execution of Explore(E) (right).

C ⊆ Q × Nd is a finite set {(q1, b1, A1), . . . , (qk, bk, Ak)}, where qj ∈ Q, bj ∈ Nd, and Aj is
a finite subset of Nd, such that C =

⋃k
j=1 qj(bj + Per(Aj)). The main contribution of this

paper is the generalization to 2-BVASS of the following theorem.

▶ Theorem 3.2 ([16]). For every 2-VASS V, the reachability set JVK of V is semilinear and
a presentation of JVK is computable from V.

In order to generalize Theorem 3.2 to 2-BVASS, we will extend to BVASS some techniques
developed for classical VASS. A linear (i.e., non-branching) view of BVASS behaviors is
required to do so. Intuitively, this view is obtained by instantiating transition rules δ = (S, a, q)
with |S| ≥ 2 into unary transition rules. This instantiation can be performed at the semantic
level or at the syntactic level. Let us make these ideas more concrete. We assume that
B = (Q, ∆) is a d-BVASS for the remainder of this section.

For each transition rule δ = (S, a, q) in ∆, we introduce the binary relation δ=⇒ on Q ×Nd

defined as the set of pairs (p(x), q(y)) ∈ (Q × Nd)2 such that p ∈ S and there exists a set
D ⊆ JBK verifying (S \{p}) = {{r | r(z) ∈ D}} and y = a+x+

∑
r(z)∈D z. The binary relation

δ=⇒ instantiates the transition rule δ at the semantic level as it relies on the reachability set
JBK of B. We also introduce the binary step relation =⇒ on Q × Nd defined as the union⋃

δ∈∆
δ=⇒. The reflexive-transitive closure of =⇒ is denoted by ∗=⇒. It is readily seen that

=⇒ and ∗=⇒ are diagonal.2 Using square brackets to denote relational images3, we have

PostB(C) ⊆ =⇒[C] ⊆ ∗=⇒[C] ⊆ JBK for every set of configurations C ⊆ JBK.

Let us now instantiate transition rules at the syntactic level. Given a finite set F ⊆ Q×Nd,
the instantiation of B with F , written B⟨F ⟩, is the d-VASS B⟨F ⟩ = (Q, ∆′) where ∆′ is the
set of triples ({p}, a′, q) such that there exist a transition rule (S, a, q) ∈ ∆ with p ∈ S and a
set D ⊆ F verifying (S \ {p}) = {{r | r(z) ∈ D}} and a′ = a +

∑
r(z)∈D z. We observe that if

F ⊆ JBK then the step relation of B⟨F ⟩ is contained in the step relation of B.

2 A binary relation ▷◁ on Q × Nd is called diagonal if p(x) ▷◁ q(y) implies p(x + u) ▷◁ q(y + u), for every
configurations p(x), q(y) ∈ Q × Nd and vector u ∈ Nd.

3 Given a binary relation ▷◁ on a set S and a subset X of S, we let ▷◁[X] denote the relational image of
X under ▷◁, defined by ▷◁[X] = {y ∈ S | ∃x ∈ X : x ▷◁ y}.

MFCS 2025



22:6 Reachability for Two-Dimensional Branching VASS

▶ Remark 3.3. In the definition of the instantiation B⟨F ⟩, we require F to be finite solely to
ensure that ∆′ is finite. We could drop this requirement and obtain an “infinite d-VASS”,
meaning that its set of transition rules is potentially infinite. The step relations of B and of
the resulting “infinite d-VASS” B⟨JBK⟩ coincide.

We conclude this section with notions that are specific to classical VASS. Consider a
d-VASS V = (Q, ∆). From now on, unary transition rules ({p}, a, q) ∈ ∆ will be written
(p, a, q) for short. A path of V is a non-empty sequence θ = (p1, a1, q1) · · · (pk, ak, qk) of unary
transition rules (pi, ai, qi) ∈ ∆ such that qi = pi+1 for all i ∈ {1, . . . , k − 1}. Such a path θ is
also shortly written θ = p1

a1
↪−→ q1 · · · ak

↪−→ qk. We call p1 and qk the start and the end of θ,
respectively. The displacement of θ is

∑k
i=1 ai. We say that θ is a cycle if p1 = qk. It is an

elementary cycle if p1 = qk and p1, . . . , pk are pairwise distinct.
▶ Fact 3.4. Consider a d-BVASS B = (Q, ∆) and finite set F ⊆ JBK. Let q ∈ Q, x ∈ Nd and
let θ be an elementary cycle of B⟨F ⟩ with displacement v and with start (and end) q. If
x ≥ (c, . . . , c) where c = |Q| maxi∈{1,...,d} max(S,a,q)∈∆ −a(i) then q(x) ∗=⇒ q(x + v).

4 Reachability Set Computation for 2-BVASS

We present in this section an algorithm to compute the reachability set for 2-BVASS. More
precisely, given a 2-BVASS B, our algorithm returns a finite exploration of B that is both
sound and complete. We start by defining what we mean by sound and complete exploration.

▶ Definition 4.1. An exploration of a 2-BVASS B = (Q, ∆) is a node-labeled acyclic graph
G = (N, →, λ) such that
1. the edge relation → is well-founded, i.e., there is no infinite sequence n0, n1, . . . of nodes

in N such that ni+1 → ni for all i ∈ N, and
2. each node n ∈ N is labeled with λ(n) = (an, qn, zn, Pn) where an ∈ Z2, qn ∈ Q, zn ∈ N2,

and Pn is a periodic subset of N2.

Intuitively, the label λ(n) = (an, qn, zn, Pn) of a node n provides, firstly, the displacement
an of the transition rule used to create n (this will be made clear later on and can be ignored
for now), and, secondly, the set of configurations qn(zn + Pn) associated with the node n.
Recall that JBK denotes the reachability set of a 2-BVASS B. Similarly, we associate to an
exploration G = (N, →, λ) of B the set of configurations JGK =

⋃
n∈N qn(zn + Pn). We say

that G is sound when JGK ⊆ JBK and that it is complete when JGK ⊇ JBK. A node n ∈ N is
called redundant if there exists s ∈ N verifying s

+−→ n and qn(zn + Pn) ⊆ qs(zs + Ps). We
say that G is non-redundant when every redundant node is a leaf.

▶ Example 4.2. The node-labeled acyclic graph depicted on the right-hand side of Figure 1
is an exploration of the 2-BVASS E depicted on the left-hand side (see also Example 3.1). For
instance, the set of configurations associated with the node n4 is {q(2 + 2k, 4 + 5k) | k ∈ N}.
The first component an of λ(n) is omitted in the figure to reduce clutter. As mentioned
above, the vectors an can be ignored for now, see Example 5.2 for actual values. ⌟

As in Hopcroft and Pansiot’s algorithm for classical 2-VASS [16], a crucial ingredient of our
algorithm is the acceleration of cycles. The purpose of cycle acceleration is to make the periodic
sets Pn grow. We will utilize three kinds of cycles. Consider an exploration G = (N, →, λ)
of a 2-BVASS B = (Q, ∆). We associate to each node n ∈ N the 2-VASS Vn defined as the
instantiation B⟨F ⟩ of B with the finite set of configurations F = {qs(zs) | s ∈ N, s

+−→ n}. In
particular, if n is a source then Vn = B⟨∅⟩ = (Q, ∆′) where ∆′ = {(S, a, q) ∈ ∆ | |S| = 1} is



C. Bizière, T. Hilaire, J. Leroux, and G. Sutre 22:7

the set of unary transition rules in ∆. We introduce three finite subsets of Z2, namely En,
Cn and Cn, that correspond to the three kinds of cycles mentioned above. Let us define
c = |Q| maxi∈{1,2} max(S,a,q)∈∆ −a(i). We call c the constant of iteration of B. Observe that
c is the same constant as the one in Fact 3.4.

En is the set of vectors v ∈ Z2 such that there exist an elementary cycle θ of Vn with
displacement v and a node s ∈ Anc(n) verifying qs is the start of θ, zs ≥ (c, c) and s ≠ n

implies v ≥ (0, 0).
Cn is the set of vectors v ∈ Z2 such that there exists a node s ∈ Anc(n) verifying qs = qn,
v = zn − zs, zn ̸≥ (c, c) and zs ̸≥ (c, c).
Cn is the set of vectors v ∈ Z2 such that there exists a node s ∈ Anc(n) verifying qs = qn

and v = zn − zs.
Note that Cn ⊆ Cn. We also introduce the finite set In defined by In = En ∪ Cn if∑

m→n Pm = {(0, 0)} and In = En ∪ Cn otherwise. Vectors in En, Cn, and In are
respectively called n-elementary, n-consecutive and n-iterable.

▶ Example 4.3. Let us continue Example 4.2. The constant of iteration of E is c = 4.
By definition, Ini

= Eni
∪ Cni

for i ∈ {0, 1, 2, 6}, and Ini
= Eni

∪ Cni
for i ∈ {3, 4, 5}.

We first discuss n-consecutive vectors. We have Cn0 = Cn0 = {(0, 0)} since n0 has no
ancestor except itself. The set Cn1 is empty because the first component of zn1 = (3, 4)
is strictly below c, hence, zn1 ̸≥ (c, c). Similarly, Cn2 = Cn3 = ∅. It is readily seen that
Cn1 = Cn2 = {(0, 0)} and that Cn3 = {(0, 0), (−1, 0)}. We now discuss n-elementary vectors.
The 2-VASS Vn0 = E⟨∅⟩ contains exactly one elementary cycle (up to rotation), namely

θ0 = p
(−1,0)

↪−−−−→ q
(0,0)

↪−−−→ s
(0,0)

↪−−−→ p. It follows that En0 = {(−1, 0)}. In addition to the cycle θ0,

the 2-VASS Vn1 = E⟨{p(4, 4)}⟩ also contains the elementary cycle θ1 = q
(4,4)

↪−−−→ r
(−1,1)

↪−−−−→ q.
Still, the set En1 is empty, because none of these two cycles contributes to En1 . Indeed, even
though the elementary cycle θ0 contains the states qn0 and qn1 , its displacement v0 = (−1, 0)
is not in En1 because zn1 ̸≥ (c, c) and v0 ̸≥ (0, 0). Analogously, the displacement of θ1 is
not in En1 because zn1 ̸≥ (c, c). The elementary cycles of Vn2 are θ0, θ1 and θ2, where

θ2 = p
(3,4)

↪−−−→ r
(−1,1)

↪−−−−→ q
(0,0)

↪−−−→ s
(0,0)

↪−−−→ p. The displacement v2 = (2, 5) of θ2 is in En2 since
θ2 contains the state qn0 , zn0 ≥ (c, c) and v2 ≥ (0, 0). We get that En2 = {(2, 5)}. Last, we
observe that Vn2 = Vn3 since the state qn2 is not part of any branching transition. So Vn3

has the same elementary cycles as Vn2 , and we get that En3 = En2 = {(2, 5)}. Indeed, even
though the elementary cycle θ0 contains the state qn3 , its displacement v0 = (−1, 0) is not
in En3 because zn3 ̸≥ (c, c) and v0 ̸≥ (0, 0). ⌟

Given a set I ⊆ Z2 and a periodic set P ⊆ N2, we introduce the periodic set Add∗
I (P)

defined as the set of vectors p + v1 + · · · + vk where p ∈ P, k ∈ N, and v1, . . . , vk are vectors
in I such that p + v1 + · · · + vℓ ≥ (0, 0) for every ℓ ∈ {1, . . . , k}.

▶ Lemma 4.4. For every finite sets G ⊆ N2 and I ⊆ Z2, we can effectively compute a finite
set H ⊆ N2 such that Add∗

I (Per(G)) = Per(H).

Proof sketch. First of all, notice that Theorem 3.2 is not sufficient for proving that result
since there exist semilinear periodic sets, like {(0, 0)} ∪ ((1, 1) + N2) that are not finitely-
generated. From Lemma 2.1, we deduce that Add∗

I (Per(G)) is finitely-generated periodic set
if Con(Add∗

I (Per(G))) is a finitely-generated cone. We observe that this cone is spanned by
G ∪ (I ∩N2) ∪ U where U is a set of axis, i.e. a subset of {(1, 0), (0, 1)}. It follows that there
exists a finite set H ⊆ N2 such that Add∗

I (Per(G)) = Per(H). Finally, with a step-by-step
algorithm computing increasing finite subsets of Add∗

I (Per(G)) we eventually reach a set H
satisfying the lemma. ◀

MFCS 2025



22:8 Reachability for Two-Dimensional Branching VASS

Algorithm 1 Explore(B).

Input: A 2-BVASS B = (Q, ∆).
Output: A sound and complete finite exploration of B.

1 (N, →, λ, R, W ) := (∅, ∅, ∅, ∅, ∅)
2 foreach (S, a, q) ∈ ∆ with S = ∅ and a ≥ (0, 0) do
3 create a new node n (with n ̸∈ N)
4 N := N ∪ {n}
5 λ(n) := (a, q, a, {(0, 0)})
6 W := W ∪ {n}
7 while W ̸= ∅ do
8 let n be a node in W

9 W := W \ {n}
10 Pn := Add∗

In
(Pn)

11 if there exists s ∈ N verifying s
+−→ n and qn(zn + Pn) ⊆ qs(zs + Ps) then

12 R := R ∪ {n}
13 else
14 foreach M ⊆ N with n ∈ M and M ∩ (R ∪ W ) = ∅ do
15 foreach (S, a, q) ∈ ∆ with S = {{qm | m ∈ M}} do
16 (z′, P′) := (

∑
m∈M zm,

∑
m∈M Pm)

17 let B be a finite subset of N2 such that (B + P′) = (a + z′ + P′) ∩ N2

18 foreach b ∈ B do
19 create a new node n′ (with n′ ̸∈ N)
20 (N, →) := (N ∪ {n′}, → ∪ {(m, n′) | m ∈ M})
21 λ(n′) := (a, q, b, P′)
22 W := W ∪ {n′}

23 return (N, →, λ)

Our algorithm, dubbed Explore, is defined in Algorithm 1. We use an abstract pseudocode
to simplify the presentation. This raises implementability issues that are addressed in
Remark 4.5. Given a 2-BVASS B = (Q, ∆) as input, Explore(B) iteratively computes an
exploration of B and then returns it. This exploration is maintained in the variables N ,
→ and λ, and is initially empty (see line 1). As in Definition 4.1, we let qn, zn and Pn

denote the second, third and fourth components of λ(n). The set of redundant nodes of the
exploration is tracked in the variable R. The set of unprocessed nodes, called the worklist, is
maintained in the variable W . Both variables R and W remain disjoint subsets of N during
the execution of the algorithm. For each initial configuration q(a) of B, a new node is created
and put in the worklist (see lines 2–6). After this initialization phase, Explore(B) repeatedly
selects a node from the worklist and processes it, as long as the worklist is non-empty (see
lines 7–22). The processing of a node n consists in four steps. First, the node n is removed
from the worklist (so n is considered processed afterwards). Second, the periodic set Pn is
enlarged using the set In of n-iterable vectors (see line 10). This is the cycle acceleration step.
Note that the set In is finite and implicitly depends on the constant of iteration of B and
on the current exploration (N, →, λ) of B. The assignment at line 10 actually means that
the label λ(n) of the node n is modified (in fact, only the fourth component of the label is
modified). Third, the algorithm tests whether the node n is “covered” by one of its ancestors



C. Bizière, T. Hilaire, J. Leroux, and G. Sutre 22:9

(see line 11). If that is the case then n is added to the set R of redundant nodes and the
processing of n stops. Otherwise, as a fourth step, the node n is expanded (see lines 14–22),
meaning that for each set of processed and non-redundant nodes M containing n and for
each transition rule (S, a, q) that applies to M , finitely many children of n are created and
put in the worklist. At first glance, one might want to create a single child labeled with
(a, q, a + z′, P′). This would be fine if a + z′ ≥ (0, 0), however that is not the case in general.
This is the reason why we need the finite set B at line 17 and the foreach-loop at lines 18–22.
The existence of such a finite set is explained in Remark 4.5. The observant reader will
notice that the modification of the variables N and W at lines 20 and 22 has no impact on
the foreach-loop iteration at line 14, since N \ W remains constant. When the worklist
becomes empty, the constructed exploration is returned at line 23. The reachability set of B
is then easily obtained from this exploration, provided that it is sound and complete.
▶ Remark 4.5. The abstract pseudocode used in Algorithm 1 raises some implementability
issues. The first issue is that we liberally use periodic sets in the pseudocode, but these
periodic sets need to admit a finite and computable representation. To address this issue,
we observe that each periodic set defined in Algorithm 1 is finitely-generated and admits a
computable finite spanning set. The only line where this property is non-trivial is line 10,
but Lemma 4.4 provides the result. The second issue is the existence and computation of
the finite set B at line 17. To address this issue, we recall the following well-known fact (see
for instance [16, Lemma 1.1]). Given a vector v ∈ Zd and a finite subset A = {a1, . . . , ak} of
Nd, the set (v + Per(A)) ∩ Nd is equal to (B + Per(A)) where B ⊆ Nd is the finite set of
vectors v + α1a1 + · · · + αkak such that (α1, . . . , αk) is a minimal vector in Nk satisfying
v + α1a1 + · · · + αkak ≥ 0.

▶ Example 4.6. To illustrate Algorithm 1, we apply it on the 2-BVASS E from Example 3.1.
The resulting exploration is depicted in Figure 1. There is only one initial configuration, so
the exploration has only one source n0. The nodes are added to (+) and removed from (−)
the worklist in the order +n0, −n0, +n1, −n1, +n2, +n6, −n2, +n3, −n3, +n4, +n5. So the
nodes n4, n5 and n6 are still in the worklist. The labels qn and zn are straightforward. For the
periodic sets Pn, we first recall from Example 4.3 that In0 = {(0, 0), (−1, 0)}, In1 = {(0, 0)},
In2 = {(0, 0), (2, 5)} and In3 = {(2, 5)}. The periodic set Pn0 is Add∗

In0
({(0, 0)}) = {(0, 0)}.

The node n1 also has {(0, 0)} as periodic set since In1 = {(0, 0)}. The periodic set Pn2 is
Add∗

In2
({(0, 0)}) = Per({(2, 5)}). Similarly, Pn3 = Add∗

In3
(Per({(2, 5)})) = Per({(2, 5)}). ⌟

5 Soundness and Completeness of Algorithmic Explorations

This section is devoted to the partial correctness of our algorithm Explore (see Algorithm 1).
Its termination is much more involved and will be the subject of the next sections. We first
refine the notion of exploration to account for the behavior of our algorithm.

▶ Definition 5.1. An exploration G = (N, →, λ) of a 2-BVASS B = (Q, ∆) is algorithmic if
it satisfies, for every node n ∈ N , the three following conditions:
1. the multiset S = {{qm | m → n}} is a set and verifies (S, an, qn) ∈ ∆,
2. the vector zn is in an +

∑
m→n(zm + Pm), and

3. the periodic set Pn verifies Pn = Add∗
In

(
∑

m→n Pm).

Intuitively, Conditions 1 and 2 ensure that the exploration conforms to the semantics of
2-BVASS. As hinted before, the vector an is the displacement of the transition rule leading
to n (see Condition 1). Notice these two conditions entail in particular that qn(zn) is an
initial configuration for every source n. Condition 3 corresponds to the previously-mentioned
cycle acceleration step (see line 10 of Algorithm 1).

MFCS 2025



22:10 Reachability for Two-Dimensional Branching VASS

▶ Example 5.2. Let us get back to the exploration of Example 4.2 and give the actual values of
the vectors an. We take an0 = (4, 4), an1 = an4 = (−1, 0) and an2 = an3 = an5 = an6 = (0, 0).
The restriction to {n0, n1, n2, n3} of the resulting exploration is algorithmic. ⌟

▶ Remark 5.3. For every algorithmic exploration G = (N, →, λ) and every node n ∈ N , the
set Anc(n) is finite. Indeed, by Condition 1, every node n ∈ N has finite in-degree (i.e., the
set of nodes m ∈ N such that m → n is finite). As → is well-founded by Condition 1 of
Definition 4.1, it follows from König’s Lemma that Anc(n) is finite for every n ∈ N .

In the rest of this section, we show, firstly, that every algorithmic exploration is sound,
and secondly, that our algorithm constructs explorations that are algorithmic and complete.

5.1 Soundness of algorithmic explorations
The main difficulty to establish the partial correctness of our algorithm Explore comes from
the cycle acceleration step (see line 10 of Algorithm 1), which translates to Condition 3 of
Definition 5.1. Contrary to usual cycle acceleration techniques, our cycle acceleration step is
“retroactive” since the set In used to accelerate a node n accounts for elementary cycles of
Vn that apply to an ancestor s

+−→ n. Thus, to show that a given algorithmic exploration
G is sound, we transform G into an alternative exploration H whose periodic sets Qn are
closed in the sense that each Qn already accounts for all potential cycles applicable to n,
and we show that H is sound. Let us make these ideas more precise.

Consider a 2-BVASS B = (Q, ∆). For every configuration q(x) of B, we define the
function Cloq,x : P(N2) → P(N2) by Cloq,x(P) = {w ∈ N2 | ∃u ∈ P : q(x + u) ∗=⇒ q(x + w)}.
Observe that Cloq,x is an upper closure operator4 on the partially-ordered set (P(N2), ⊆).
In fact, for every subset P ⊆ N2, the set Cloq,x(P) is the ⊆-greatest subset Q ⊆ N2 such
that q(x + Q) ⊆ ∗=⇒[q(x + P)]. Note also that Cloq,x preserves periodicity, meaning that
Cloq,x(P) is periodic for every periodic subset P ⊆ N2. The following technical lemma will
allow us to relate Add∗

In
and Cloqn,zn

.

▶ Lemma 5.4. For every configuration q(x) of B and periodic subset P of N2, it holds that
Add∗

J(P) = Cloq,x(P) where J is the set of vectors v ∈ Z2 such that there exists y ∈ N2 and
u ∈ P verifying (v = y − x and q(x + u) ∗=⇒ q(y)) or (v = x − y and q(y + u) ∗=⇒ q(x)).

▶ Lemma 5.5. Every algorithmic exploration of a 2-BVASS is sound.

Proof sketch. Let G = (N, →, λ) be an algorithmic exploration of 2-BVASS B. We introduce
the family (Qn)n∈N of subsets of N2 defined, by well-founded recursion over →, by Qn =
Cloqn,zn(

∑
m→n Qm) for every node n ∈ N . Observe that each Qn is periodic and that

m → n implies Qm ⊆ Qn. We show by well-founded induction over → that, for all n ∈ N ,
we have Pn ⊆ Qn and qn(zn + Qn) ⊆ JBK. Let n ∈ N and assume that Ps ⊆ Qs and
qs(zs + Qs) ⊆ JBK for all s ∈ N with s

+−→ n. We derive from Conditions 1 and 2 of
Definition 5.1 that qn(zn +

∑
m→n Qm) ⊆ JBK. It follows that qn(zn + Qn) ⊆ JBK. It remains

to show that Pn ⊆ Qn. Let Jn denote the set J defined in Lemma 5.4 with q(x) := qn(zn)
and P := Qn. The crucial observation now is that En and Cn are both contained in Jn, hence,
In ⊆ Jn. We obtain from Lemma 5.4 that Add∗

In
(Qn) ⊆ Cloqn,zn

(Qn) = Qn since Cloqn,zn

is idempotent. Recall that Pm ⊆ Qm ⊆ Qn for every m ∈ N with m → n. We derive from
Condition 3 of Definition 5.1 that Pn = Add∗

In
(
∑

m→n Pm) ⊆ Add∗
In

(Qn) ⊆ Qn. ◀

4 An upper closure operator on a partially-ordered set (S, ≤) is any function f : S → S that is ≤-
nondecreasing (x ≤ y implies f(x) ≤ f(y)), extensive (x ≤ f(x)), and idempotent (f ◦ f = f).



C. Bizière, T. Hilaire, J. Leroux, and G. Sutre 22:11

5.2 Partial correctness of Explore

Consider an execution σ of Explore(B), where B is a 2-BVASS. We let(
N j , →j , λj , Rj , W j

)
j∈J

denote the successive values of the variables N , →, λ, R and
W at line 7 of Algorithm 1, just before the evaluation of the while-loop condition. The
index set J is N if the execution σ does not terminate (i.e., W j ̸= ∅ for all j ∈ N). Otherwise,
J = {0, . . . , κ} where κ ∈ N is the number of iterations of the while-loop (i.e., W κ = ∅ and
W j ̸= ∅ for all j ∈ {0, . . . , κ − 1}). It is understood that, in both cases, the values of the
variables after the foreach-loop at lines 2–6 are N0, →0, λ0, R0 and W 0. Moreover, if σ

terminates then it returns (Nκ, →κ, λκ) at line 23. For every j ∈ J , we let Gj denote the
labeled graph (N j , →j , λj), and we let Ĝj denote the restriction of Gj to the set of processed
nodes N̂ j = N j \ W j . The following lemma is easily derived from Algorithm 1 (the detailed
proof is tedious but straightforward).

▶ Lemma 5.6. Both Gj and Ĝj are non-redundant explorations of B, for every j ∈ J .
Moreover, Ĝj is algorithmic and it holds that PostB(JĜjK) ⊆ JGjK.

Notice that N j ⊆ N j+1, N̂ j ⊂ N̂ j+1 and →j ⊆ →j+1, for every j ∈ J with (j + 1) ∈ J .
We introduce the “limit” values Nσ, N̂σ and →σ of the corresponding sequences, defined
naturally by Nσ =

⋃
j∈J N j , N̂σ =

⋃
j∈J N̂ j and →σ=

⋃
j∈J →j . We also define λσ as the

function with domain Nσ that maps each n ∈ Nσ to the ultimate value of the sequence(
λj(n)

)
j∈J,n∈Nj . The latter sequence is non-empty and ultimately constant. We let Gσ

denote the labeled graph (Nσ, →σ, λσ), and we let Ĝσ denote the restriction of Gσ to N̂σ.

▶ Lemma 5.7. For every 2-BVASS B and every execution σ of Explore(B), Ĝσ is a non-
redundant and algorithmic exploration of B. If σ terminates then Ĝσ is finite and complete,
and σ returns Ĝσ. Otherwise, Ĝσ is infinite.

Proof sketch. Let σ be an execution of Explore(B), where B is a 2-BVASS. It is routinely
checked that, for every j ∈ J ,
1. for every m, n ∈ Nσ, if n ∈ N j and m →σ n then m ∈ N j and m →j n, and
2. the restriction of Ĝσ to N̂ j coincides with Ĝj .
The first observation entails that the edge relation →σ of Gσ is well-founded, hence, both Gσ

and Ĝσ are explorations of B. The second observation, combined with Lemma 5.6, entails
that Ĝσ is a non-redundant and algorithmic exploration of B. If σ terminates then it returns
Gκ. Moreover, we have Gκ = Ĝκ = Ĝσ in that case, hence, Ĝσ is finite and complete by
Lemma 5.6. If σ does not terminate then N̂σ is infinite since N̂ j ⊂ N̂ j+1 for all j ∈ N. ◀

Partial correctness of our algorithm Explore follows from Lemma 5.7. To prove termina-
tion, we will show in the next sections that every non-redundant and algorithmic exploration
of a 2-BVASS is finite, under an additional technical condition called spannability and
discussed in next section. Termination of our algorithm will then be ensured by Lemma 5.7.

6 Core Witnesses of Infinity for Spannable Graphs

A graph (N, →) is called a forest if the edge relation → is well-founded (hence acyclic) and
the set {m ∈ N | m → n} contains at most one node for every node n ∈ N . A forest is said
to be finitely-branching if the set of source nodes is finite and the set {n ∈ N | m → n} is
finite for every node m ∈ N . We say that a graph G = (N, →) is spannable if there exists a
subrelation →F of → such that F = (N, →F ) is a finitely-branching forest. In that case, F is
called a spanning forest of G. Explorations Ĝσ built by algorithm Explore(B) are spannable.

MFCS 2025



22:12 Reachability for Two-Dimensional Branching VASS

This property is obtained by observing that along the execution of the algorithm, new created
nodes are connected, thanks to an edge that we call special, to a node that is removed from
the worklist at that step. The spanning forest is then obtained by restricting the exploration
to the special edges.

A branch β of a forest (N, →F ) is an infinite sequence β = (βn)n∈N of nodes such that
β0 is a source node of F and such that βi →F βi+1 for every i ≥ 0. Thanks to the Koenig’s
lemma, we know that any infinite finitely-branching forest admits a branch. Such a branch
can be seen as a witness of infinity of F . We extend this notion of witnesses to infinite
spannable graphs in a non-trivial way. Naturally, denoting by F a spanning forest of G, any
branch of F is a kind of witness of infinity of G. However such a witness depends somehow
on the choice of F and does not take into account the structure of G.

Our “core” witness of infinity of an infinite spannable graph is defined thanks to the notion
of primary and directed graphs. A graph G = (N, →) is said to be primary if N \ Des(n) is
finite for every node n ∈ N . A graph G = (N, →) is said to be directed if for every n, m ∈ N ,
there exists s ∈ N such that n

∗−→ s and m
∗−→ s. The following lemma will be useful to

extract from an infinite spannable graph a “core” subset of nodes that explain its infinity.

▶ Lemma 6.1. For every infinite spannable graph G = (N, →), there exists an infinite
ancestor-closed set X ⊆ N such that the restriction of G to X is primary and directed.

Proof sketch. Let F be a spanning forest of G. We associate to each branch β = (βn)n∈N
of F , the set Anc(β) =

⋃
n∈N Anc(βn) of ancestors of β with respect to the graph G. We

introduce the preorder (reflexive and transitive) ⊑ over the branches defined by α ⊑ β if
Anc(α) ⊆ Anc(β). A branch β is said to be minimal (for the relation ⊑) if for every branch
α such that α ⊑ β, we have β ⊑ α. Notice that a branch β is minimal for ⊑ if, and only
if, Anc(β) is minimal for the inclusion relation. We prove that a minimal branch exists by
contradiction. Intuitively, if there does not exist a minimal branch then any branch admits a
strictly smaller one (we can even select an eagerly smaller one). Since the number of sources
of F is finite, and the set {n ∈ N | m → n} is finite for every node m ∈ N , we can extract
from this infinite sequence of branches, a subsequence that “converges” to another branch.
We prove that this branch is necessarily minimal providing a contradiction. It follows that
there exists a minimal branch β. Then, we show that X = Anc(β) satisfies the lemma. ◀

▶ Remark 6.2. If (N, →) is a primary graph then ∗−→ is a well-quasi-order (wqo). In fact,
let us consider an infinite sequence (ni)i∈N of nodes ni ∈ N . Since G is primary, the set
N0 = N \ Des(n0) is finite. If ni ∈ N0 for every i ≥ 1 then there exists i < j such that
ni = nj and in particular ni

∗−→ nj . Otherwise there exists j ≥ 1 such that nj ̸∈ N0 and in
that case n0

∗−→ nj . So, in any case, we have proved that there exists i < j such that ni
∗−→ nj .

Therefore ∗−→ is a wqo.

7 Termination

The termination of Algorithm 1 is obtained by contradiction. We assume that the algorithm
is not terminating and from an infinite execution we derive an infinite exploration. Such an
exploration is spannable, algorithmic and infinite. Thanks to Lemma 6.1 we can extract a
sub-exploration (N, →, λ) that is also directed and primary. We prove that the sequence of
periodic sets Pn for this exploration stabilizes. From Lemma 2.1 it is sufficient to prove that
the sequence of cones Con(Pn) eventually stabilizes. Since the exploration is directed, it is
sufficient to prove that the cone spanned by PN =

⋃
n∈N Pn is finitely-generated.



C. Bizière, T. Hilaire, J. Leroux, and G. Sutre 22:13

This result is obtained by interpreting geometrically the acceleration step Pn :=
Add∗

In
(Pn) performed at line 10, as the so-called v-stabilization of Con(Pn) by vectors

v ∈ In. More formally, the v-stabilization of a cone C ⊆ Q2
≥0 for some vector v ∈ Z2 is

the cone (C + Q≥0v) ∩ Q2
≥0. A cone C ⊆ Q2

≥0 is said to be v-stable when it is equal to its
v-stabilization.

▶ Example 7.1. The cone C = Con({(1, 2), (2, 1)}) is (−1, −1)-stable. It is not (−3, −1)-
stable since its (−3, −1)-stabilization is C + Q≥0(0, 1). ⌟

The v-stabilization of a cone C ⊆ Q2
≥0 spanned by a finite set of vectors G ⊆ N2 is

the cone spanned by G ∪ {v} when v ≥ (0, 0), and the cone spanned by G ∪ U where
U is a subset of the set of axis {(1, 0), (0, 1)} when v ̸≥ (0, 0). Since at some step of the
algorithm, no new axis are added, it follows that the cone Con(Pn) is v-stable for every
vector v ∈ In \ Q2

≥0. In fact a stronger stabilization property occurs: there exists a node n0
such that for every n, m ∈ Des(n0), the cone Con(Pn) is v-stable for every v ∈ Im \Q2

≥0. In
order to capture this special node n0, we introduce in Section 7.1 the notion of modes of a
cone and prove that modes of non-decreasing sequence of cones eventually stabilizes.

Thanks to the notion of modes, it will be clear that Con(Pn) is v-stable for every vector
v ∈ In \Q2

≥0 but also for every vector v ∈ Im \Q2
≥0 where m ∈ Des(n0). This v-stabilization

with respect to vectors that can be discovered later by the algorithm will be useful with
the decomposition of elementary vectors of En introduced in Section 7.2 as finite sums of
elementary vectors Em where m ranges over a finite set independent of n.

Thanks to the notion of modes and the decomposition of elementary cycles, we prove
in Section 7.3 that the cones Con(PN ) is finitely-generated. We conclude our proof by
contradiction in Section 7.4.

7.1 Modes
The v-stabilization of a cone C ⊆ Q2

≥0 does not change the cone when v satisfies some
conditions depending on the set of axis of C and a natural number h ∈ N that provides a
lower-bound on some negative components of v. By axis of a cone C ⊆ Q2

≥0 we mean a
vector in C ∩ {(1, 0), (0, 1)}. The h-mode of C is the set of vectors v ∈ Z2 \ N2 such that C
is v-stable, and such that the following two conditions hold:

v(1) ≥ −h if (1, 0) is not an axis of C.
v(2) ≥ −h if (0, 1) is not an axis of C.

▶ Lemma 7.2. The h-mode of any non-decreasing sequence of cones C0 ⊆ C1 ⊆ · · · ⊆ Q2
≥0

eventually stabilizes.

Proof sketch. By considering a suffix of the sequence, by discarding the trivial cases, and by
symmetry (on the set of axis), we can assume that (1, 0) ∈ Cn ̸⊆ Q≥0(1, 0) for every n ∈ N.
We observe that the h-mode Mn of Cn can be decomposed into Qn ∪ (N × {−h, . . . , −1})
where Qn = {v ∈ Mn | v(1) < 0 ∧ v(2) ∈ {−h, . . . , 0}}. By observing that (Qn)n∈N is a
non-increasing sequence of finite sets, we deduce that it eventually stabilizes. ◀

7.2 Cycle Decomposition
In this section, we prove that vectors in En can be decomposed as finite sums of vectors
in Em, vectors in Ps and some consecutive vectors where m and s ranges over finite sets
independent of n. The finiteness of those sets follows from the co-finiteness of Des(n0) and
Des(n1) since the exploration is primary.

MFCS 2025



22:14 Reachability for Two-Dimensional Branching VASS

▶ Lemma 7.3. For every primary and directed algorithmic exploration (N, →, λ) and for
every node n0 ∈ N such that

∑
s→n0

Ps ̸= {(0, 0)}, there exists a node n1 ∈ Des(n0) such
that for every node n ∈ Des(n0), we have:

En ⊆
∑

m∈Des(n0)\(Des(n1)\{n1})

Per(Em) +
∑

s̸∈Des(n0)

Ps +
∑

m|n0
∗−→m

+−→n

Per(Cm)

We define a node n1 satisfying the previous lemma as follows. We fix a primary and
directed exploration (N, →, λ) and a node n0 ∈ N such that

∑
s→n0

Ps ̸= {(0, 0)}. We
introduce an abstraction function α : N2 → {0, . . . , c}2 defined by α(x)(i) = x(i) if x(i) < c

and α(x)(i) = c if x(i) ≥ c, for every x ∈ N2 and every i ∈ {1, 2}, where c is the constant of
iteration of B. We introduce a partial order ⊑ on the set of nodes Des(n0) defined by s ⊑ n

if s
∗−→ n and qs(α(zs)) = qn(α(zn)). Since ∗−→ is a well-quasi-order on the set of nodes, and

the equality is a well-quasi-order on the finite set Q × {0, . . . , c}2, the partial order ⊑ is also
a well-quasi-order as the intersection of two well-quasi-orders. In particular the set Nmin
defined as the set of minimal nodes n ∈ Des(n0) for ⊑ is finite and for every n ∈ Des(n0),
there exists s ∈ Nmin such that s ⊑ n. Since the exploration is primary, the set N \ Des(n0)
is finite. Moreover, as the exploration is directed and Nmin ∪ (N \ Des(n0)) is finite, there
exists a node n′

0 ∈ N such that n
∗−→ n′

0 for every n ∈ Nmin ∪ (N \ Des(n0)). Let Qc be
the set of states q ∈ Q such that there exists a node n ∈ Des(n′

0) satisfying zn ≥ (c, c) and
qn = q. For each q ∈ Qc, we pick such a node nq. Since the set {nq | q ∈ Qc} is finite and
the exploration is directed, there exists n1 ∈ Des(n′

0) such that nq
∗−→ n1 for every q ∈ Qc.

This node n1 satisfies Lemma 7.3. Intuitively, this property is obtained by decomposing
recursively either paths in the algorithmic exploration from a node n ∈ Des(n0) to a node
m such that qn = qm following intermediate nodes n satisfying zn ≥ (c, c) into elementary
and consecutive cycles, and by replacing any elementary cycle using a transition coming
from an instantiated node n ∈ Des(n0) by the elementary cycle obtained by using a node
s ∈ Nmin satisfying s ⊑ n rather than n for the instantiation. Since the effect of the original
cycle is equal to the sum of the effect of the new one with the effect of a path from s to
n, by recursively decomposing that path we prove that n1 satisfies Lemma 7.3. Such a
decomposition and the proof that n1 satisfies Lemma 7.3 are fully detailed in [2].

7.3 Finitely-generated Cone
In this section, we prove the following lemma.

▶ Lemma 7.4. For every primary and directed algorithmic exploration, the cone spanned by
PN =

∑
n∈N Pn is finitely-generated.

Let G be a primary and directed algorithmic exploration and let PN be the periodic
set

∑
n∈N Pn. We introduce the set of axis U = Con(PN ) ∩ {(1, 0), (0, 1)}, the constant of

iteration c, and the set Z = {zn | n ∈ N ∧ zn ̸≥ (c, c)}. If U = {(1, 0), (0, 1)} we are done
since in that case Con(PN ) = Q2

≥0. So, we can assume that U contains at most one vector.

▶ Lemma 7.5. There exists h ∈ N such that Z ⊆ {0, . . . , h}2 + U∗.

Proof. Recall from Section 6 that ∗−→ is a wqo. Given q ∈ Q, d ∈ {0, . . . , c−1}, and i ∈ {1, 2},
we introduce the set Nq,i,d of nodes n ∈ N such that qn = q and zn(i) = d. Since ∗−→ is a
wqo, the set Mq,i,d of minimal elements of Nq,d,i for this partial order is finite, and for every
n ∈ Nq,i,d, there exists m ∈ Mq,i,d such that m

∗−→ n. We pick h ∈ N satisfying h ≥ zm(̄i) for
every q ∈ Q, i ∈ {1, 2}, d ∈ {0, . . . , c − 1} and m ∈ Mq,i,d.



C. Bizière, T. Hilaire, J. Leroux, and G. Sutre 22:15

Observe that for every z ∈ Z, there exists n ∈ N such that z = zn ̸≥ (c, c). It follows
that there exists i ∈ {1, 2} such that d = zn(i) is in {0, . . . , c − 1}. Let q = qn and notice
that n ∈ Nq,i,d. It follows that there exists m ∈ Mq,i,d such that m

∗−→ n. Observe that
zm(i) = d = zn(i) and qm = q = qn. Moreover zm(̄i) ≤ h. If zn(̄i) ≤ h then z ∈ {0, . . . , h}2.
If zn(̄i) > h, then zn−zm ∈ Q≥0u for some u ∈ {(1, 0), (0, 1)}. It follows that u is in Con(Pn)
since zn − zm is a consecutive vector in Cn. Hence it is also in U. As zm ∈ {0, . . . , h}2 we
deduce that z ∈ {0, . . . , h}2 + U∗. We have proved the lemma. ◀

In the sequel, h denotes a fix natural number satisfying the previous lemma and h ≥ c.
We put P′

n =
∑

s→n Ps for every node n ∈ N . If P′
n = {(0, 0)} for every n ∈ N then

Con(PN ) = {(0, 0)} and we are done also in that case. So, we can assume that there exists a
node n ∈ N such that P′

n ̸= {(0, 0)}.
Let us prove that there exists a node n0 such that U is the set of axis of Con(Pn0) and

P′
n0

̸= {(0, 0)}. If U = ∅, it is sufficient to consider a node n0 ∈ N such that P′
n0

̸= {(0, 0)}.
If U ̸= ∅, it is sufficient to consider a node n0 such that the unique vector of U is in Con(P′

n0
).

By replacing n0 by a descendant of n0, thanks to Lemma 7.2, we can assume that the h-mode
of Con(Pn) is equal to the h-mode of Con(Pn0) for every n ∈ Des(n0).

In the sequel, given a set X ⊆ Q2, we introduce X+ = X ∩ Q2
≥0 and X− = X \ Q2

≥0.

▶ Lemma 7.6. The set Con(U) +
∑

m∈Des(n0) Con(C+
m) is a finitely-generated cone.

Proof sketch. We just observe that Cm ⊆ Z − Z and Z ⊆ {0, . . . , h}2 + U∗. ◀

Now, let n1 ∈ Des(n0) satisfying Lemma 7.3.

▶ Lemma 7.7. The set Con(PN ) can be decomposed as follows:∑
m∈Des(n0)\(Des(n1)\{n1})

Con(E+
m) +

∑
s ̸∈Des(n0)

Con(Ps) + Con(U) +
∑

m∈Des(n0)

Con(C+
m)

Proof sketch. Let K be the cone given above. Clearly E+
m where m ∈ Des(n0) \ (Des(n1) \

{n1}), Ps where s ̸∈ Des(n0), U and C+
m where m ∈ Des(n0) are included in Con(PN ).

It follows that K ⊆ Con(PN ). We prove the converse inclusion by induction on the well-
foundedness of the relation →, showing that Pn ⊆ K for every n ∈ N . The crucial observation
is the fact that even if in the right-hand side we discard vectors in E−

m and C−
m, since the h-

mode of Con(Pn) does not depend on the node n ∈ Des(n0), we can apply the decomposition
of En given by Lemma 7.3 to prove the inclusion Pn ⊆ K. ◀

Lemma 7.6 and Lemma 7.7 show that Con(PN ) is a finitely-generated cone.

7.4 Wrap-Up
In this section, we prove the termination of our algorithm by assembling the results from the
previous sections. We start with the following observation.

▶ Lemma 7.8. Let G = (N, →, λ) be an algorithmic exploration of a 2-BVASS B and let
s, n ∈ N . If s

∗−→ n, qs = qn and Ps = Pn then Con(Pn) is (zn − zs)-stable.

Proof sketch. The decomposition mentioned in Section 7.2 provides a way to decompose
a path from s to n in the algorithmic exploration into elementary cycles and consecutive
cycles, with cutting points from intermediate nodes m satisfying zm ̸≥ (c, c). With such a
decomposition, we deduce that zn − zs is a sum of vectors in Pn and vectors v ∈ Im where

MFCS 2025



22:16 Reachability for Two-Dimensional Branching VASS

m ranges over the intermediate nodes of the considered path. Since Con(Pm) is v-stable
for each v ∈ Im and Con(Pm) = Con(Pn), we deduce that Con(Pn) is v-stable for all those
vectors v ∈ Im. We deduce that Con(Pn) is (zn − zs)-stable. ◀

▶ Lemma 7.9. Every non-redundant, algorithmic, primary and directed exploration of a
2-BVASS is finite.

Proof. Let G = (N, →, λ) be a non-redundant, algorithmic, primary and directed exploration
of a 2-BVASS B = (Q, ∆). By Lemma 7.4, the set P =

∑
n∈N Pn is a finitely-generated

periodic set. This entails that P =
∑

n∈N ′ Pn for some finite set N ′ ⊆ N . As G is directed,
there exists a node n0 ∈ N such that n′ ∗−→ n0 for every n′ ∈ N ′. This entails that Pn = P
for all n ∈ Des(n0). Assume, by contradiction, that N is infinite. Since G is primary, the
set Des(n0) is infinite and the binary relation ∗−→ is a wqo on N . By Dickson’s Lemma, the
binary relation ⪯ on N defined by by m ⪯ n if qm = qn and zm ≤ zn, is also a wqo on
N . We derive that there exists an infinite sequence n1, n2, n3, . . . of nodes in Des(n0) such
that n1

+−→ n2
+−→ n3

+−→ · · · , qn1 = qn2 = qn3 = · · · , and zn1 ≤ zn2 ≤ zn3 ≤ · · · . Note that
Pni = P for all i ≥ 1. We deduce from Lemma 7.8 that Con(P) is (zni − zn1)-stable for
all i ≥ 1. Since the vector zni

− zn1 is in N2, we get that it is in Con(P). It follows that
zni

∈ zn1 + Con(P) for all i ≥ 1. So the set B = {zni
| i ≥ 1} is contained in zn1 + Con(P).

We obtain from [16, Lemma 1.2] that B + P = B′ + P for some finite subset B′ ⊆ B. This
entails that znj

∈ (zni
+ P) for some i < j. Observe that qnj

(znj
+ Pnj

) ⊆ qni
(zni

+ Pni
).

Moreover, we have ni
+−→ nj since i < j. So the node nj is redundant, but nj is not a leaf

since nj
+−→ nj+1. This contradicts our assumption that G is non-redundant. ◀

▶ Corollary 7.10. Every non-redundant, algorithmic and spannable exploration of a 2-BVASS
is finite.

Proof. This corollary follows from Lemma 6.1, Lemma 7.9 and the following observation.
Given an exploration G = (N, →, λ) of a 2-BVASS B and an ancestor-closed subset X of N ,
the restriction of G to X is also an exploration of B. Moreover, if G is non-redundant (resp.,
algorithmic) then the restriction of G to X is also non-redundant (resp., algorithmic). ◀

As indicated in Section 6, for every 2-BVASS B and every execution σ of Explore(B),
the constructed exploration Ĝσ is spannable. We derive from Lemmas 5.5 and 5.7 and Corol-
lary 7.10 that every execution of Explore(B) terminates and returns a sound and complete
finite exploration of B. The reachability set of B is then easily obtained from this exploration.
We obtain the following theorem.

▶ Theorem 7.11. For every 2-BVASS B, the reachability set JBK of B is semilinear and a
presentation of JBK is computable from B.

8 Conclusion

In this paper, we have shown that the reachability set of a 2-BVASS admits a computable
semilinear presentation. This entails that the reachability problem for 2-BVASS is decidable.
Our approach, which is inspired from Hopcroft and Pansiot’s algorithm for classical 2-
VASS [16], does not provide any upper bound on the complexity of this problem. The
decidability status of the reachability problem for d-BVASS remains open in arbitrary
dimension.



C. Bizière, T. Hilaire, J. Leroux, and G. Sutre 22:17

References
1 Mohamed Faouzi Atig and Pierre Ganty. Approximating petri net reachability along context-

free traces. In Supratik Chakraborty and Amit Kumar, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011,
December 12-14, 2011, Mumbai, India, volume 13 of LIPIcs, pages 152–163. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPICS.FSTTCS.2011.152.

2 Clotilde Bizière, Thibault Hilaire, Jérôme Leroux, and Grégoire Sutre. On the reachability
problem for two-dimensional branching VASS, 2025. arXiv:2506.22561.

3 Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazic,
Pierre McKenzie, and Patrick Totzke. The reachability problem for two-dimensional vector
addition systems with states. J. ACM, 68(5):34:1–34:43, 2021. doi:10.1145/3464794.

4 Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-
variable logic on data trees and XML reasoning. In Stijn Vansummeren, editor, Proceedings of
the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 26-28, 2006, Chicago, Illinois, USA, pages 10–19. ACM, 2006. doi:10.1145/
1142351.1142354.

5 Ahmed Bouajjani and Michael Emmi. Analysis of recursively parallel programs. ACM Trans.
Program. Lang. Syst., 35(3):10:1–10:49, 2013. doi:10.1145/2518188.

6 Dmitry Chistikov, Wojciech Czerwinski, Filip Mazowiecki, Lukasz Orlikowski, Henry Sinclair-
Banks, and Karol Wegrzycki. The tractability border of reachability in simple vector addition
systems with states. In 65th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 1332–1354. IEEE, 2024. doi:
10.1109/FOCS61266.2024.00086.

7 Lorenzo Clemente, Slawomir Lasota, Ranko Lazic, and Filip Mazowiecki. Timed pushdown
automata and branching vector addition systems. In 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12.
IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005083.

8 Conrad Cotton-Barratt, Andrzej S. Murawski, and C.-H. Luke Ong. ML and extended
branching VASS. In Hongseok Yang, editor, Programming Languages and Systems - 26th
European Symposium on Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-
29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 314–340.
Springer, 2017. doi:10.1007/978-3-662-54434-1_12.

9 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for Petri nets is not elementary. J. ACM, 68(1):7:1–7:28, 2021.
doi:10.1145/3422822.

10 Philippe de Groote, Bruno Guillaume, and Sylvain Salvati. Vector addition tree automata. In
19th IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku,
Finland, Proceedings, pages 64–73. IEEE Computer Society, 2004. doi:10.1109/LICS.2004.
1319601.

11 Stéphane Demri, Marcin Jurdzinski, Oded Lachish, and Ranko Lazic. The covering and
boundedness problems for branching vector addition systems. J. Comput. Syst. Sci., 79(1):23–
38, 2013. doi:10.1016/J.JCSS.2012.04.002.

12 Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre. Polynomial-
space completeness of reachability for succinct branching VASS in dimension one. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, volume 80 of LIPIcs, pages 119:1–119:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPICS.ICALP.2017.119.

13 Alain Finkel, Jérôme Leroux, and Grégoire Sutre. Reachability for two-counter machines with
one test and one reset. In Sumit Ganguly and Paritosh K. Pandya, editors, 38th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS

MFCS 2025

https://doi.org/10.4230/LIPICS.FSTTCS.2011.152
https://arxiv.org/abs/2506.22561
https://doi.org/10.1145/3464794
https://doi.org/10.1145/1142351.1142354
https://doi.org/10.1145/1142351.1142354
https://doi.org/10.1145/2518188
https://doi.org/10.1109/FOCS61266.2024.00086
https://doi.org/10.1109/FOCS61266.2024.00086
https://doi.org/10.1109/LICS.2017.8005083
https://doi.org/10.1007/978-3-662-54434-1_12
https://doi.org/10.1145/3422822
https://doi.org/10.1109/LICS.2004.1319601
https://doi.org/10.1109/LICS.2004.1319601
https://doi.org/10.1016/J.JCSS.2012.04.002
https://doi.org/10.4230/LIPICS.ICALP.2017.119


22:18 Reachability for Two-Dimensional Branching VASS

2018, December 11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 31:1–31:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.FSTTCS.2018.31.

14 Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche.
Reachability in bidirected pushdown VASS. In Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
124:1–124:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.
ICALP.2022.124.

15 Stefan Göller, Christoph Haase, Ranko Lazić, and Patrick Totzke. A polynomial-time algorithm
for reachability in branching VASS in dimension one. In ICALP, volume 55 of LIPIcs, pages
105:1–105:13. Schloss Dagstuhl, 2016. doi:10.4230/LIPIcs.ICALP.2016.105.

16 John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theor. Comput. Sci., 8:135–159, 1979. doi:10.1016/0304-3975(79)
90041-0.

17 Florent Jacquemard, Luc Segoufin, and Jerémie Dimino. Fo2(<, +1, ~) on data trees, data
tree automata and branching vector addition systems. Log. Methods Comput. Sci., 12(2), 2016.
doi:10.2168/LMCS-12(2:3)2016.

18 Richard M. Karp and Raymond E. Miller. Parallel Program Schemata. J. Comput. Syst. Sci.,
3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

19 Ranko Lazic. The reachability problem for vector addition systems with a stack is not
elementary. CoRR, abs/1310.1767, 2013. doi:10.48550/arXiv.1310.1767.

20 Ranko Lazic, Thomas Christopher Newcomb, Joël Ouaknine, A. W. Roscoe, and James
Worrell. Nets with tokens which carry data. Fundam. Informaticae, 88(3):251–274, 2008. URL:
http://content.iospress.com/articles/fundamenta-informaticae/fi88-3-03.

21 Ranko Lazić and Sylvain Schmitz. Nonelementary complexities for branching VASS, MELL,
and extensions. ACM Trans. Comput. Log., 16(3):20:1–20:30, 2015. doi:10.1145/2733375.

22 Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1241–1252. IEEE, 2021. doi:10.1109/FOCS52979.2021.00121.

23 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.
doi:10.1109/LICS.2019.8785796.

24 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the coverability problem for pushdown
vector addition systems in one dimension. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming -
42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part II, volume 9135 of Lecture Notes in Computer Science, pages 324–336. Springer, 2015.
doi:10.1007/978-3-662-47666-6_26.

25 Denis Lugiez. Counting and equality constraints for multitree automata. In Andrew D. Gordon,
editor, Foundations of Software Science and Computational Structures, 6th International
Conference, FOSSACS 2003 Held as Part of the Joint European Conference on Theory
and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings,
volume 2620 of Lecture Notes in Computer Science, pages 328–342. Springer, 2003. doi:
10.1007/3-540-36576-1_21.

26 Ernst W. Mayr. An algorithm for the general petri net reachability problem. SIAM J. Comput.,
13(3):441–460, 1984. doi:10.1137/0213029.

27 Filip Mazowiecki and Michal Pilipczuk. Reachability for bounded branching VASS. In Wan J.
Fokkink and Rob van Glabbeek, editors, 30th International Conference on Concurrency
Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of
LIPIcs, pages 28:1–28:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPICS.CONCUR.2019.28.

https://doi.org/10.4230/LIPICS.FSTTCS.2018.31
https://doi.org/10.4230/LIPICS.ICALP.2022.124
https://doi.org/10.4230/LIPICS.ICALP.2022.124
https://doi.org/10.4230/LIPIcs.ICALP.2016.105
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.2168/LMCS-12(2:3)2016
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.48550/arXiv.1310.1767
http://content.iospress.com/articles/fundamenta-informaticae/fi88-3-03
https://doi.org/10.1145/2733375
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1007/3-540-36576-1_21
https://doi.org/10.1007/3-540-36576-1_21
https://doi.org/10.1137/0213029
https://doi.org/10.4230/LIPICS.CONCUR.2019.28
https://doi.org/10.4230/LIPICS.CONCUR.2019.28


C. Bizière, T. Hilaire, J. Leroux, and G. Sutre 22:19

28 Hitoshi Ohsaki. Beyond regularity: Equational tree automata for associative and commutative
theories. In Laurent Fribourg, editor, Computer Science Logic, 15th International Workshop,
CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13, 2001,
Proceedings, volume 2142 of Lecture Notes in Computer Science, pages 539–553. Springer,
2001. doi:10.1007/3-540-44802-0_38.

29 Owen Rambow. Multiset-valued linear index grammars: Imposing dominance constraints
on derivations. In James Pustejovsky, editor, 32nd Annual Meeting of the Association for
Computational Linguistics, 27-30 June 1994, New Mexico State University, Las Cruces,
New Mexico, USA, Proceedings, pages 263–270. Morgan Kaufmann Publishers / ACL, 1994.
doi:10.3115/981732.981768.

30 Sylvain Schmitz. On the computational complexity of dominance links in grammatical
formalisms. In Jan Hajic, Sandra Carberry, and Stephen Clark, editors, ACL 2010, Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, July 11-16,
2010, Uppsala, Sweden, pages 514–524. The Association for Computer Linguistics, 2010. URL:
https://aclanthology.org/P10-1053/.

31 Kumar Neeraj Verma and Jean Goubault-Larrecq. Karp-miller trees for a branching extension
of VASS. Discret. Math. Theor. Comput. Sci., 7(1):217–230, 2005. doi:10.46298/DMTCS.350.

MFCS 2025

https://doi.org/10.1007/3-540-44802-0_38
https://doi.org/10.3115/981732.981768
https://aclanthology.org/P10-1053/
https://doi.org/10.46298/DMTCS.350

	1 Introduction
	2 Preliminaries
	3 Branching VASS
	4 Reachability Set Computation for 2-BVASS
	5 Soundness and Completeness of Algorithmic Explorations
	5.1 Soundness of algorithmic explorations
	5.2 Partial correctness of {Explore}

	6 Core Witnesses of Infinity for Spannable Graphs
	7 Termination
	7.1 Modes
	7.2 Cycle Decomposition
	7.3 Finitely-generated Cone
	7.4 Wrap-Up

	8 Conclusion

