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Abstract
Cops and Robbers is a game played on a graph where a set of cops attempt to capture a single
robber. The game proceeds in rounds, where each round first consists of the cops’ turn, followed by
the robber’s turn. In the first round, the cops place themselves on a subset of vertices, after which
the robber chooses a vertex to place himself. From the next round onwards, in the cops’ turn, every
cop can choose to either stay on the same vertex or move to an adjacent vertex, and likewise the
robber in his turn. The robber is considered to be captured if, at any point in time, there is some
cop on the same vertex as the robber. The cops win if they can capture the robber within a finite
number of rounds; else the robber wins.

A natural question in this game concerns the cop-number of a graph – the minimum number of
cops needed to capture a robber. It has long been known that graphs embeddable (without crossings)
on surfaces of bounded genus have bounded cop-number. In contrast, it was shown recently that the
class of 1-planar graphs – graphs that can be drawn on the plane with at most one crossing per edge
– does not have bounded cop-number. This paper initiates an investigation into how the distance
between crossing pairs of edges influences a graph’s cop number. In particular, we look at Distance
d Cops and Robbers, a variant of the classical game, where the robber is considered to be captured if
there is a cop within distance d of the robber.

Let cd(G) denote the minimum number of cops required in the graph G to capture a robber
within distance d. We look at various classes of graphs, such as 1-plane graphs, k-plane graphs
(graphs where each edge is crossed at most k times), and even general graph drawings, and show that
if every crossing pair of edges can be connected by a path of small length, then cd(G) is bounded,
for small values of d. For example, we show that if a graph G admits a drawing in which every
pair of crossing edges is contained in a path of length at most 3, then c4(G) ≤ 21. And if the
drawing permits a stronger assumption that the endpoints of every crossing induce the complete
graph K4, then c3(G) ≤ 9. The tools and techniques that we develop in this paper are sufficiently
general, enabling us to examine graphs drawn not only on the sphere but also on orientable and
non-orientable surfaces.
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1 Introduction

Pursuit-evasion is a general mathematical framework for problems that involve a set of
pursuers attempting to capture a set of evaders. Such problems have many applications in
robotics [21], network security [15], surveillance [9], etc. The game of Cops and Robbers,
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27:2 Cops and Robbers for Graphs on Surfaces with Crossings

introduced independently by Quilliot [29], and Nowakowski and Winkler [27], belongs to the
family of pursuit-evasion problems where a set of cops (the pursuers) attempt to capture
a single robber (the evader) on a graph. The game is played in rounds, with each round
consisting first of the cops’ turn, followed by the robber’s turn. Initially, the cops first position
themselves on a set of vertices, after which the robber chooses a vertex to place himself. In
subsequent rounds, the cops’ turn consists of each cop either staying on the same vertex or
moving to a neighbouring vertex, and likewise the robber in his turn. The game ends when
the robber is captured by a cop; this happens when the robber is on the same vertex as some
cop. If the robber has a strategy to permanently evade the cops, then the robber wins; else
the cops win. (See the book [14] by Bonato and Nowakowski for an extensive introduction to
Cops and Robbers.)

One of the central questions in Cops and Robbers is to identify graph classes that require
few cops to capture the robber. Formally, the cop-number of a graph G, denoted by c(G),
is defined as the minimum number of cops required to capture the robber. A graph class
G is said to be cop-bounded if c(G) ≤ p for some integer p and all graphs G ∈ G; else G is
cop-unbounded. Many graph classes are known to be cop-bounded; for example, chordal
graphs [27, 29], planar graphs [1], graphs of bounded genus [30], H-minor-free graphs [3]
and H-(subgraph)-free graphs [26]. On the other hand, examples of graph classes that are
cop-unbounded include bipartite graphs [14], d-regular graphs, for all d ≥ 3 [2], 1-planar
graphs [23], and graphs of diameter 2 [12]. One of the deepest open problems on cop-number
is Meyniel’s conjecture which states that c(G) ∈ O(

√
n) for all n-vertex graphs G (see [4] for

a survey paper on Meyniel’s conjecture).

1.1 Survey of Related Results
In this paper, we are interested in the cop-number of graphs drawn on (orientable and non-
orientable) surfaces with crossings. Most results in this area are concerned with cop-number
of graphs embedded without crossings on surfaces with genus g. For planar graphs, which
are graphs embeddable on the sphere (g = 0), Aigner and Fromme [1] proved that 3 cops
are sufficient, and sometimes necessary. For graphs with (orientable) genus g > 0, the best
known bound on the cop-number is 4

3 g + 10
3 [18]. A long-standing conjecture by Schroeder

[31] is that c(G) ≤ g + 3 for all values of g. For non-orientable surfaces of genus g, Andreae
[3] gave the first result that c(G) ∈ O(g), which was later improved by Nowakowski and
Schröder (in an unpublished work [28]) to c(G) ≤ 2g + 1. The current best result is by
Clarke et al. [22] who show that c(G) is at most the maximum of all cop-numbers of graphs
embeddable on an orientable surface of genus g − 1. (Refer to [13] for a survey of results,
conjectures and open problems for cop-numbers of graphs on surfaces.)

Ever since the appearance of the proof that c(G) ≤ 3 for planar graphs [1], it has been
known that the geometrical representation of a graph plays an important role in bounding
its cop-number. For instance, the strategy for guarding planar graphs was adapted to show
that c(G) ≤ 9 for unit disk graphs [8], and c(G) ≤ 15 for string graphs [24]. More recently,
the study of cop-numbers for the beyond-planar graph classes was initiated by Durocher et
al. [23]. They show that unlike planar graphs, the class of 1-planar graphs – which allow
for one crossing per edge – is cop-unbounded. On the positive side, they show 3 cops are
sufficient, and sometimes necessary, for a maximal 1-planar graph: a 1-planar graph to which
no edge can be added without violating 1-planarity (while staying simple). To prove this,
they crucially use the fact that the endpoints of every crossing induce the complete graph
K4. In a recent paper, Bose et al. [16] showed that even under the relaxed requirement
that no crossing of a 1-plane graph is an ×-crossing – a crossing whose endpoints induce a
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matching – the cop-number remains bounded, and is at most 21. As a corollary, their result
implies that 1-planar graphs with large cop-numbers necessarily embed with a large number
of ×-crossings.

Table 1 Summary of results for various graph classes drawn on the sphere with crossings.

Category Graph Class Cop Number Remarks

1-Plane
Graphs

Full 1-plane graphs c(G) ≤ 3 Corollaries 4.7 and 5.5; gen-
eralizes result in [23]

1-plane graphs without
×-crossings c(G) ≤ 15 Corollary 4.7; improves

c(G) ≤ 21 from [16]

1-plane graphs cX−1(G) ≤ 6X − 3
cx−1(G) ≤ 6x + 9

Corollary 4.7

Graphs with at most
one crossing per face of
sk(G)

Cop-unbounded Theorem 3.9; holds even with
distant crossings

k-Plane
Graphs

Full k-plane graphs c2(G) ≤ 12k − 3 Corollary 4.8

k-plane graphs without
×-crossings c3(G) ≤ 18k − 3 Corollary 4.8

k-plane graphs
cX−1(G) ≤ 6k(X + 1) − 3
cx−1(G) ≤ 6k(x + 2) − 3 Corollary 4.8

k-Framed graphs c⌈ k+8
3 ⌉(G) ≤ 21 Corollary 4.9

General
Graphs

Graphs where all cross-
ings are full c3(G) ≤ 9 Corollary 4.10

Graphs without ×-
crossings c4(G) ≤ 21 Corollary 4.10

Map graphs c(G) ≤ 3
Theorem 5.4; includes full
1-plane and optimal 2-plane
graphs

All graphs c⌈ 3
2 (X+1)⌉(G) ≤ 9

c⌈ 3
2 (x+2)⌉(G) ≤ 15

Corollary 4.11

All graphs, 1 < α <

3/2
c⌈α(X+1)⌉(G) ≤ 8

α−1
c⌈α(x+2)⌉(G) ≤ 11

α−1

Corollary 4.11

For all integers µ ≥ 6, the set
{c⌊X/6⌋−1(G) : X(G) ≥ µ} is
unbounded (Theorem 4.12)

1.2 Our Contribution
Motivated by [16], we undertake a comprehensive study of how the distance between crossing
pairs of edges affects the cop number of graphs. Unlike [16], our aim is to go beyond 1-planar
graphs, and look at general graphs drawn on surfaces, under the restriction that every
crossing pair of edges can be connected by a path of small length. (A similar approach was
undertaken in [10] to generalise results on vertex connectivity from 1-plane graphs without
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27:4 Cops and Robbers for Graphs on Surfaces with Crossings

×-crossings to arbitrary graphs drawn on the sphere.) We consider two notions of distance
between crossing pairs of edges. For any pair of edges {e1, e2} that cross in G, we say that
two endpoints of the crossing are consecutive if one endpoint is a vertex incident with e1
and the other is a vertex incident with e2. For any fixed drawing of a graph G on a surface,
let x(G) (resp. X(G)) be the smallest integer such that for every crossing in the drawing,
there is a path of length at most x(G) (resp. X(G)) connecting some (resp. every) pair of
consecutive endpoints of the crossing. By the definition above, x(G) ≤ X(G); furthermore,
X(G) ≤ x(G) + 2 since there exists a path of length at most x(G) + 2 at every crossing where
the first and last edges of the path are precisely the crossing pair of edges. Notwithstanding
the tight relation between X(G) and x(G), we differentiate between the two parameters to
capture their varying impact on cop-number. Indeed, one may already notice this for 1-plane
graphs. If G is a maximal 1-plane graph, where the endpoints of every crossing induce a K4,
we have X(G) = 1 and c(G) ≤ 3 [23]. On the other hand, if G is a 1-plane graph without
×-crossings, we have x(G) = 1 and c(G) ≤ 21 [16].

Most results that we present in this paper concern Distance d Cops and Robbers – a
variant of the classical Cops and Robbers in which the robber is considered to be captured if,
at any point in time, there is a cop within distance d of the robber [12]. We use the notation
cd(G) to denote the minimum number of cops required to capture the robber within distance
d in the graph G. In this paper, we give several interesting results on distance d cop-numbers
of graphs G, where d is parameterised by X(G) and x(G). We restrict our discussion here
only to graphs drawn on the sphere, even though they extend to graphs drawn on surfaces
with crossings. Our results not only encompass and improve the existing results on 1-plane
graphs [23, 16], but also greatly simplify the existing proofs. The tools that we develop in
this paper are equipped to handle beyond 1-planar graphs, such as k-plane graphs (where
each edge is allowed to cross at most k times), and even arbitrary graphs on surfaces.

1.2.1 Our Results
We show that graphs that embed on the plane with small values of X(G) or x(G) have small
cop-numbers. (A summary of our results is given in Table 1.) Let us call a crossing in a
graph G a full crossing if its endpoints induce the complete graph K4, and an ×-crossing if
its endpoints induce a matching. We show that for any graph where all crossings are full,
c3(G) ≤ 9, and if no crossing of the graph is an ×-crossing, then c4(G) ≤ 21. For larger
values of X(G) or x(G), we show that c⌈α(X+1)⌉(G) and c⌈α(x+2)⌉(G) are in O( 1

α−1 ), for any
1 < α < 3/2. For values of α ≥ 3/2, the cop-numbers are at most 9 and 15, respectively.
In contrast to this, we show that for every integer µ ≥ 6, max{c⌊X/6⌋−1(G) : X(G) ≥ µ} is
unbounded. We also consider the question of standard cop-numbers c(G) for special classes
of graphs. Let sk(G) denote the subgraph induced by the set of uncrossed edges of G. We
show that for the class of map graphs, which are precisely graphs that have an embedding on
the plane such that all crossed edges are inserted as cliques inside some faces of sk(G), the
cop-number is at most 3. (In fact, this generalises the result c(G) ≤ 3 for maximal 1-plane
graphs [23].) On the other hand, for graphs where there is at most one crossing in each face
of sk(G), we show that c(G) is unbounded, even when no pair of crossings are close to each
other. However, if one were to restrict the number of edges that bound each face of sk(G) by
an integer k, then we are in the class of k-framed graphs, and we show that c⌈ k+8

3 ⌉(G) ≤ 21.

Organisation. Section 2 provides the necessary preliminaries and formal definitions used
throughout the paper. In Section 3, we investigate the distance d variant of Cops and Robbers,
and introduce two fundamental operations that simplify studying distance d cop-number
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for arbitrary graphs drawn on surfaces to 1-plane drawings of graphs on surfaces. Section 4
focuses on 1-planar graphs drawn on the sphere, and explores the consequences of our result
for k-plane graphs and general graphs drawn on the sphere. Section 5 extends our study to
graphs drawn on (orientable and non-orientable) surfaces with crossings, and also discussing
map graphs on surfaces.

2 Preliminaries

All graphs in this paper are finite and undirected. If H is a subgraph of G, then we write
H ⊆ G. For any distinct pair of vertices s and t in G, an (s, t)-path is a simple path in G

with s and t as its end vertices. If a path P contains vertices u and v, then the subpath of P

containing all vertices from u to v will be denoted by P (u . . . v). The length of a path P is
the number of edges on P , and is denoted by |P |. If G is edge-weighted and P is a path in
G, then |P | denotes the sum of weights of all edges in P .

Graph Drawings. A drawing of a graph G = (V, E) on a surface is a mapping of its vertex
set V (G) to distinct points on the surface and a mapping of each edge e = (u, v) to a
non-self-intersecting curve that has u and v as its endpoints and does not pass through any
other vertex of G. In all drawings that we consider, any pair of edges can intersect only
a finite number of times, no three edges are allowed to intersect at a point that is not a
vertex, and no two edges can touch each other tangentially. (This is not a restriction because
one can re-draw edges within a local neighbourhood of points on the surface to satisfy the
requirements.) A pair of distinct edges are said to cross each other if there is a point on the
surface interior to both edges. For any graph G drawn on a surface S, the faces of G are the
connected regions of S \ G. The boundary of a face is a sequence of edges or part-edges (the
interior of an edge with at least one end being a crossing point) that bound the face. The
skeleton of a graph G drawn on some surface is the subgraph sk(G) induced by all uncrossed
edges of G. Hence, any drawing of a graph G can be viewed as the union of sk(G) together
with the set of crossed edges drawn inside the faces of sk(G).

Crossings and (Σ, 1)-Planar Graphs. A graph is planar if it has a drawing on the sphere
such that no two edges cross each other. If G is a graph drawn on a surface Σ, then the
Σ-planarisation of G is the graph G× obtained by inserting a dummy vertex at each crossing
point in the drawing. Let G be any graph drawn on a surface. Let e1 and e2 be two edges
of G that cross each other. The endpoints of e1 and e2 are together called endpoints of
the crossing. Two endpoints (possibly non-distinct) v1, v2 of the crossing are said to be
consecutive if v1 is incident with e1 and v2 with e2. Let (u, v) and (w, x) be a pair of edges
that cross in a drawing of a graph G. Assume that the crossing has four distinct endpoints,
and consider the graph G[{u, v, w, x}] induced by these endpoints, up to counting parallel
edges as a single edge. If G[{u, v, w, x}] is isomorphic to the complete graph K4, then we say
that the crossing is full. If G[{u, v, w, x}] consists only of edges (u, v) and (w, x), then we say
that the crossing is an ×-crossing. (The nomenclature of crossings based on the subgraphs
induced by its endpoints is borrowed from [11].)

A graph G is a (Σ, k)-planar graph if it has a drawing on a surface Σ such that each edge
is crossed at most k times; a graph G with such a drawing is called a (Σ, k)-plane graph.
If Σ is a sphere, then we omit mentioning Σ, and say that G is a k-planar or a k-plane
graph. In this paper, we deal extensively with (Σ, 1)-plane graphs. For any (Σ, 1)-plane
graph, we can always assume that no pair of edges incident to the same vertex cross each
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27:6 Cops and Robbers for Graphs on Surfaces with Crossings

other, since the edges can be re-drawn without affecting (Σ, 1)-planarity. Hence, every
crossing in a (Σ, 1)-plane graph has four distinct endpoints. In a (Σ, 1)-plane graph, if two
edges e1 and e2 cross each other, we use the notation {e1, e2} to denote the crossing. A
simple (Σ, 1)-planar graph is said to be maximal if no edge can be added to the graph
while maintaining (Σ, 1)-planarity and simplicity. Consider a crossing {(u, v), (w, x)} in a
(Σ, 1)-planar drawing of a graph G, with c as the crossing point. If there is an uncrossed edge
connecting two consecutive endpoints of the crossing, say (u, w), and {(u, w), (w, c), (c, u)}
bounds a face of the drawing, then we say that (u, w) is a kite-edge of the crossing. In a
maximal (Σ, 1)-plane graph, the endpoints of every crossing induce the complete graph K4.
More generally, a graph is called full (Σ, k)-planar if it has a (Σ, k)-planar drawing such that
every crossing is full. If one allows for parallel edges, then these graphs can be drawn such
that there is a kite-edge connecting every pair of consecutive endpoints of a crossing.

Cops and Robbers. Cops and Robbers is a game played on a graph G where a set of cops
try to capture a robber. The game proceeds in rounds, where each round consists first of
the cops’ turn and then the robber’s turn. We assume that the game is played with perfect
information – all players know all other players’ position at every time instant. In the first
round, the cops initially choose to place themselves on a subset of vertices, and thereafter, the
robber chooses a vertex for himself. In subsequent rounds, in the cops’ turn, every cop can
choose to stay on the same vertex or move to an adjacent vertex. Similarly, in the robber’s
turn, the robber may choose to stay on the same vertex or move to an adjacent vertex. In
the classical version of the game, the robber is considered to be captured if, at some point,
the robber is on the same vertex as a cop. The cop-number of a graph G, denoted by c(G),
is the minimum number of cops required to capture a robber. A family of graphs G is said to
be cop-bounded if there is an integer p such that c(G) ≤ p for all graphs G ∈ G; otherwise, G
is said to be cop-unbounded. A variant of this game which we study extensively is Distance d

Cops and Robbers, where a robber is considered to be captured if, at some point, the robber
is within distance d of some cop [12]. When d = 0, this reduces to the classical Cops and
Robbers game. The distance d cop-number of G, denoted by cd(G), is the minimum number
of cops required to capture the robber within distance d.

3 Distance d Cops and Robbers

At the outset, we state one of the simplest yet frequently used observation in our study of
distance d cop-numbers.

▶ Observation 3.1. For any graph G and integers d1 ≥ d2 ≥ 0, we have cd1(G) ≤ cd2(G).

By Observation 3.1, cd(G) ≤ c(G) for all values of d ≥ 0. However, the two types of cop
numbers are connected in a more interesting way. For any integer k > 0, let G(k) denote the
graph obtained by replacing each edge of G with a path on k edges. Equivalently, the graph
G(k) is obtained from G by subdividing each edge (k − 1) times.

▶ Theorem 3.2 (Lemma 9 in [12]). For any graph G and any integer d ≥ 0, c(G) ≤
cd(G(2d+1)) ≤ c(G) + 1.

It is worth mentioning that there is no direct relation between c(G) and cd(G). In fact,
for any pair of integers d, m ≥ 1, there exists a graph G such that cd(G) = 1 but c(G) ≥ m

[12]. Despite this, some important results from the classical Cops and Robbers game can be
extrapolated to the distance version of the game. For instance, one of the well-known results
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concerns the cop-number of a graph G and its retracts. A subgraph H ⊆ G is a retract of
G if there is a function f : V (G) 7→ V (H) such that f(v) = v for every v ∈ V (H) and if
(u, v) ∈ E(G), then (f(u), f(v)) ∈ E(H). It is well-known that if H is a retract of G, then
c(H) ≤ c(G) ≤ max{c(H), c(G \ H) + 1} [7]. One can easily extend this to distance d Cops
and Robbers, as shown in Theorem 3.3.

▶ Theorem 3.3 (Theorems 3.1 and 3.2 in [7]). If H is a retract of a graph G, then cd(H) ≤
cd(G) ≤ max{cd(H), cd(G \ H) + 1}.

The proof for Theorem 3.3 is similar to the proof for the special case d = 0. For values of
d > 0, we make use of the fact that if there is a path P from u to v in G, then H contains a
path P ′ from f(u) to f(v) of length at most |P |.

We now state another result that is a distance analogue of the following classical result:
c(G) ≤ c(G(k)) ≤ c(G) + 1 for any k ≥ 1 [26]. Considering that the reader may not find it
straight-forward to extend the proof in [26] to Theorem 3.4, and given the importance of
this theorem for this paper, we believe that it will be useful to provide a complete proof of
Theorem 3.4. (Proof in full-version [17].)

▶ Theorem 3.4. For any graph G and integers d ≥ 0, k ≥ 1, we have c⌈d/k⌉(G) ≤ cd(G(k)) ≤
c⌊d/k⌋(G) + 1.

3.1 (Σ, 1)-Planarisation and Kite-Augmentation
We use Theorems 3.3 and 3.4 to define two simple operations for graphs drawn on surfaces,
both of which are foundational to this paper. The two operations, called (Σ, 1)-planarisation
and kite-augmentation, are described below.

▶ Definition 3.5 ((Σ, 1)-Planarisation). For any graph G drawn on a surface Σ, let the
(Σ, 1)-planarisation of G be a graph G(k) such that G(k) is (Σ, 1)-plane.

Every graph G drawn on a surface Σ has a (Σ, 1)-planarisation: set k equal to the minimum
integer such that every edge is crossed at most k times, and place (k−1) subdivision vertices on
each edge around crossing points so that G(k) is (Σ, 1)-planar. Note that (Σ, 1)-planarisation
of a graph is not unique, since subdivisions of (Σ, 1)-plane graphs are also (Σ, 1)-plane.
When Σ is a sphere, then the resulting graph is 1-plane; in this case we simply write 1-
planarisation instead of (Σ, 1)-planarisation. In [23], the process of 1-planarisation was used
to prove that 1-planar graphs are cop-unbounded. Briefly, notice that by Theorem 3.4, if
G(k) is a 1-planarisation of G, then c(G) ≤ c(G(k)) ≤ c(G) + 1. Since every graph G has
a 1-planarisation H, and the universal set of graphs is cop-unbounded, so is the set of all
1-planar graphs.

Recall from Section 2 that a kite edge at a crossing of a (Σ, 1)-plane graph is an uncrossed
edge connecting two consecutive endpoints of a crossing such that the edge bounds a face
incident to the crossing point. In this paper, we shall see that the presence of kite edges, or
paths of uncrossed edges connecting consecutive endpoints of crossings, are especially useful
to bound cop-numbers of 1-planar graphs. To this end, we introduce a class of (Σ, 1)-planar
drawings on surfaces called kite-augmented (Σ, 1)-planar drawings.

▶ Definition 3.6 (Kite-augmented (Σ, 1)-plane graph.). A (Σ, 1)-plane graph is said to be
kite-augmented if, for every pair of consecutive endpoints u, v of a crossing at a point c, there
is a shortest (u, v)-path κuv such that each edge of κuv is uncrossed, each internal vertex of
κuv has degree 2, and {(c, u)} ∪ κuv ∪ {(v, c)} bounds a face of the drawing.

MFCS 2025
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Figure 1 On the left is a drawing of a graph G, and on the right is a drawing of G⊠. The
numbers alongside the edges indicate the lengths of the paths κuv. (The lengths of other paths can
be inferred by symmetry.)

The above definition lends itself to a procedure called kite-augmentation, defined below.

▶ Definition 3.7 (Kite-augmentation). For any (Σ, 1)-plane graph, let kite-augmentation
refer to the following process: for every pair of consecutive endpoints u and v of every crossing
in the drawing, add a kite edge between u and v (if it does not already exist), and subdivide it
to get a path κuv of length equal to that of a shortest (u, v)-path in the original drawing.

For any graph G drawn on a surface Σ, we use the notation G⊠ to denote a graph
obtained by (Σ, 1)-planarising G and then kite-augmenting the resulting graph (see Figure 1
for an example). If G(k) is a (Σ, 1)-plane graph, and G⊠ is obtained by kite-augmenting
G(k), then G(k) is a retract of G⊠ since there is a homomorphism from each path κuv to a
shortest (u, v)-path in G(k). This observation, together with Theorems 3.3 and 3.4 gives us
the following corollary.

▶ Corollary 3.8 (Corollary of Theorems 3.3 and 3.4). Let G be any graph drawn on a surface
Σ, G(k) be a (Σ, 1)-planarisation of G, and G⊠ be the kite-augmentation of G(k). Then
c⌈d/k⌉(G) ≤ cd(G⊠) ≤ c⌊d/k⌋(G) + 1 for any integer d ≥ 0.

Proof. From Theorem 3.4, we have c⌈d/k⌉(G) ≤ cd(G(k)) ≤ c⌊d/k⌋(G) + 1. Since G(k) is a
retract of G⊠, we have from Theorem 3.3 that cd(G(k)) ≤ cd(G⊠) ≤ max{cd(G(k)), cd(G⊠ \
G(k)) + 1}. As G⊠ is obtained by kite-augmenting G(k), the graph G⊠ \ G(k) is a col-
lection of vertex-disjoint paths; hence cd(G⊠ \ G(k)) = 1. This implies that cd(G⊠) ≤
max{cd(G(k)), 2} ≤ max{c⌊d/k⌋(G) + 1, 2} = c⌊d/k⌋(G) + 1. By combining the above inequal-
ities, we get c⌈d/k⌉(G) ≤ cd(G⊠) ≤ c⌊d/k⌋(G) + 1. ◀

The process of (Σ, 1)-planarisation combined with kite-augmentation leads to several
interesting consequences. One such consequence is presented in Theorem 3.9. It has long
been known that planar graphs have cop-number at most 3 [1]. An interesting question is
whether the set of all graphs G that can be drawn with at most one crossing in each face
of its skeleton sk(G) (i.e., the subgraph induced by the set of all uncrossed edges) has a
small cop-number. Using the process of 1-planarisation and kite-augmentation, we can show
that this is false. Indeed, one can even assume that no two crossings are close to each other
in terms of face-distances. For a precise formulation, we need some definitions first. For
any graph G drawn on the sphere, consider the graph obtained by first planarising G (i.e.,
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adding dummy vertices at crossing points), and then inserting a face-vertex inside each face
and making it adjacent to all vertices on the face-boundary. Define the radial graph of G as
the plane bipartite subgraph R(G) induced by all edges incident with face-vertices. Let the
face-distance between any two crossings be the number of face-vertices on a shortest path in
R(G) connecting the two crossing points.

▶ Theorem 3.9. For any three integers d, f, m ≥ 0, there exists a 1-plane graph G such that
each face of sk(G) contains at most one crossing, the face-distance between any two crossing
points is at least f , and cd(G) ≥ m.

Proof. Consider any graph H with c(H) ≥ m. From Theorem 3.2, we know that
cd(H(2d+1)) ≥ m. Let G′ be a graph obtained by 1-planarising H(2d+1) and then kite-
augmenting it. Therefore, G′ is a 1-planar graph such that sk(G′) has at most one crossing
per face. Using Corollary 3.8 and Observation 3.1 (d1 ≤ d2 implies cd1(G) ≥ cd2(G)), we
can see that m ≤ cd(H(2d+1)) ≤ cd(G′). To make the pairwise face-distance between the
crossing points at least f , we repeat the following process ⌈f/2⌉ times: Subdivide each edge
twice to get a 1-planar drawing such that the endpoints of every crossing consist only of
the newly added subdivision vertices, and then kite-augment the graph. This increases the
face-distance between any two crossing points by 2, and after repeating ⌈f/2⌉ times, the
face-distance becomes at least f . Let G be the resulting graph. By repeatedly applying
Corollary 3.8 (and Observation 3.1), we can verify that cd(G) ≥ m. ◀

3.2 Parameterizing d through Distances Between Crossing Edges
Our study of distance d Cops and Robbers for graphs drawn on surfaces focuses primarily
on those values of d that in some way capture how close crossing pairs of edges are in the
drawing. To this end, we define two parameters X(G) and x(G):

▶ Definition 3.10 (x(G) and X(G).). For any fixed drawing of a graph G on a surface, x(G)
is the smallest integer such that for every crossing in the drawing, there is a path of length at
most x(G) connecting some pair of consecutive endpoints of the crossing. On the other hand,
X(G) is the smallest integer such that for every crossing in the drawing, there is a path of
length at most X(G) connecting every pair of consecutive endpoints of the crossing.

These two parameters are closely related to a structure called ribbon associated with
crossings (first defined in [10]): For any crossing pair of edges e1 and e2, a ribbon at the
crossing is a path with e1 as the first edge and e2 as the last edge. Every crossing in a
graph has a ribbon of length at most x(G) + 2. Since any pair of consecutive endpoints of
a crossing can be connected by a sub-path of a ribbon at the crossing, X(G) ≤ x(G) + 2.
Therefore, X(G) ∈ {x(G), x(G) + 1, x(G) + 2}. Our intention in differentiating between x(G)
and X(G) is to capture the differences arising in cop-numbers due to variations in crossing
configurations. For instance, in a maximal 1-planar graph G where the endpoints of every
crossing induce K4, we have x(G) = X(G) = 1, and c(G) = 3 [23]. However, in a 1-planar
graph without ×-crossings where the endpoints induce at least 3 edges, we have x(G) = 1
(and X(G) ≤ 3), and c(G) ≤ 21 [16].

In Lemma 3.11 (proof in full-version [17]), we give useful bounds on X(G(k)) and x(G(k))
in terms of the corresponding parameters for G. These will be used in Theorem 3.12, and in
later sections of the paper.

▶ Lemma 3.11. For any graph G and integer k ≥ 1, we have k · X(G) ≤ X(G(k)) ≤
k · X(G) + 2⌊k/2⌋ and k · x(G) ≤ x(G(k)) ≤ k · x(G) + 2(k − 1).
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In Theorem 3.12 (proof in full-version [17]), we give a relation between distance d

cop-numbers of G and G⊠, where d is measured through the parameters x(G) and X(G).

▶ Theorem 3.12. For all graphs G drawn on a surface Σ, all graphs G⊠ obtained by
(Σ, 1)-planarising and kite-augmenting G, and all real numbers α > 0:
(a) c⌈α(x(G)+2)⌉(G) ≤ c⌈αx(G⊠)⌉−1(G⊠) ≤ c⌊αx(G)⌋−1(G) + 1
(b) c⌈α(X(G)+1)⌉(G) ≤ c⌈αX(G⊠)⌉−1(G⊠) ≤ c⌊αX(G)⌋−1(G) + 1

4 1-Planar Graphs

In view of Theorem 3.12, it is sufficient to restrict attention to kite-augmented (Σ, 1)-plane
graphs. In this section, we focus on kite-augmented 1-planar graphs (drawn on the sphere),
while Section 5 extends the discussion to kite-augmented (Σ, 1)-plane graphs on surfaces. The
entirety of this section is devoted to proving Theorem 4.1 and understanding its implications.

▶ Theorem 4.1. Let G be any kite-augmented 1-plane graph. For d ∈ {X(G), x(G)} and
α ≥ 1, we have c⌈αd⌉−1(G) ≤ 3 · (2β + 1) where

β =

d + 1 if d = x(G) and α = 1⌈
1

2(α−1)

⌉
+ 1 if d = x(G) and α > 1

β =

d − 1 if d = X(G) and α = 1⌈
1

2(α−1)

⌉
if d = X(G) and α > 1

The proof of Theorem 4.1 is structured along the lines of the proof that the cop-number
of a planar graph is at most 3 [1, 14]. For planar graphs, the essential idea is that 3 cops
progressively guard larger and larger subgraphs, while maintaining as an invariant that the
frontier between the guarded and unguarded subgraph is always either a shortest path or
a cycle composed of two shortest paths. Unlike planar graphs that require a single cop to
guard a shortest path, we require 2β + 1 cops since the cops must also ensure that the robber
does not cross any edge of the shortest path; this coarsely explains why the cop-number
increases by a factor of 2β + 1 in Theorem 4.1.

4.1 Guarding Shortest Paths in (s, t)-Subgraphs
The choice of which shortest path or cycle to guard is made by selecting two vertices, say s

and t, and then finding a shortest (s, t)-path through the unguarded subgraph. Since we
require that such a shortest path include at least one vertex from the unguarded subgraph,
it may be necessary to exclude the edge (s, t) when both s and t are already guarded and
adjacent in G. In light of this, we find it convenient to view an unguarded subgraph as
an (s, t)-subgraph, defined as follows. (For Definition 4.2, recall the notation κab from
Definition 3.7 for the path resulting from repeated subdivision of kite-edges.)

▶ Definition 4.2 ((s, t)-subgraphs of G). Let G be a kite-augmented 1-planar graph. Let s

and t be two distinct vertices of G. A connected subgraph H of G, with s, t ∈ V (H), is an
(s, t)-subgraph of G if, for any pair of distinct vertices a, b ∈ V (H), except possibly for the
pair {a, b} = {s, t}, if κab ⊆ G, then κab ⊆ H.

In Lemma 4.3, we show that there always exists a shortest (s, t)-path in an (s, t)-subgraph
such that no two edges of the shortest path cross each other. For brevity, we say that a
subgraph H of G is self-crossing if there exist a pair of edges of H that cross each other;
otherwise, H is non-self-crossing.
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▶ Lemma 4.3. In any (s, t)-subgraph H of a kite-augmented 1-planar graph G, there exists
an (s, t)-path P that is a shortest path in H and is non-self-crossing.

Proof. Let P be a shortest (s, t)-path of H with the minimum number of self-crossings.
If P has no self-crossings, then we are already done, so assume otherwise, for the sake of
contradiction. We will construct another shortest (s, t)-path P ′ with fewer self-crossings than
P . Enumerate the vertices of P based on their distances from s, and let {(u, v), (w, x)} be a
crossing of G such that {(u, v), (w, x)} ⊆ E(P ), and up to renaming, let the four endpoints
of the crossing appear in P in the order u, v, w, x. As G is kite-augmented, there exists a
path κux in G. If κux ⊆ H, then one can substitute the subpath P (u . . . x) with κux to
get another shortest path; i.e., P ′ := P \ E(P (u . . . x)) ∪ E(κux) is a shortest (s, t)-path
in H with fewer self-crossings. Since this leads to a contradiction, we must assume that
κux is not a subgraph of H. Since H is an (s, t)-subgraph and κux is a path of uncrossed
edges, this can happen only when {u, x} = {s, t}. Let P ′ be the path κuw ∪ {(w, x)}. Since
|κuw| ≤ |P (u . . . w)|, we have |P ′| ≤ |P |. This again leads to a contradiction as P ′ has fewer
self-crossings than P . ◀

As mentioned before, our intention is to guard paths and cycles in (s, t)-subgraphs of G

such that the robber can neither land on a vertex nor cross any edge of the path or cycle.
This idea is formalised with the following definition.

▶ Definition 4.4 (Crossing-guarded subgraph). For any integer d ≥ 0, a graph H is crossing-
guarded at distance d by a set U of cops if:
(a) For any vertex v ∈ V (H), if the robber lands on v, then he is captured by a cop of U , and
(b) For any crossing {(u, v), (w, x)} of G with (u, v) ∈ E(H), if the robber crosses the edge

(u, v) by moving from w to x, then he is captured by a cop of U within distance d.

In Lemma 4.5 (proof in full-version [17]), we show that any shortest path in an (s, t)-
subgraph of G is crossing guardable at distance ⌈αd⌉ − 1 by 2β + 1 cops for the values of α,
d and β as stated in Theorem 4.1.

▶ Lemma 4.5. Let H be an (s, t)-subgraph of G containing the robber, where the robber is
restricted to moving only along the edges of H. Let P be a shortest (s, t)-path in H. For
d ∈ {x(G), X(G)} and any α ≥ 1, P is crossing-guardable at distance ⌈αd⌉ − 1 by a set U of
cops where |U| ≤ 2β + 1 and

β =

d + 1 if d = x(G) and α = 1⌈
1

2(α−1)

⌉
+ 1 if d = x(G) and α > 1

β =

d − 1 if d = X(G) and α = 1⌈
1

2(α−1)

⌉
if d = X(G) and α > 1

4.2 Cop-Strategy for Kite-Augmented 1-Planar Graphs
We now use Lemma 4.5 on guarding shortest paths to prove Theorem 4.1. For this, we use
ideas from [14] for the proof that planar graphs have cop-number at most 3, and from [16] for
the modifications needed to handle crossings in 1-planar graphs. We first give an overview of
the proof, and then provide a formal description in detail in Lemma 4.6.

We consider three sets of 2β + 1 cops, and proceed in iterations, where every iteration
begins with a path or a cycle being crossing-guarded at distance ⌈αd⌉ − 1. (For the rest of
this discussion, we use the term “guard” as a shortcut to saying “crossing-guard at distance
⌈αd⌉ − 1”.) We ensure that the paths and cycles are non-self-crossing, so that they trace
simple paths and simple cycles on the sphere. These paths and cycles serve as the frontiers
between the guarded subgraph and the unguarded subgraph of G, and these are the only
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Figure 2 The robber territory, denoted by R(·), is progressively cut down across iterations, where
each iteration is marked by either a path P or a cycle C being guarded. For each successive iteration,
the new path or cycle to be guarded is determined by choosing a shortest (s, t)-path Q to be guarded
in the (s, t)-subgraph (the region enclosed within bold edges).

subgraphs that are actively guarded at any point in time. A path requires only one set of
cops to guard, and a cycle requires two sets of cops; hence at least one of three sets of cops
is free at the beginning of every iteration.

Every iteration begins by choosing a shortest path to be guarded by the free set of cops.
For this, two special vertices s and t are identified that have a neighbour in the robber
territory – the maximal subgraph of G within which the robber can move without getting
captured. Then, we consider the (s, t)-subgraph formed by the union of the robber territory
together with the set of all edges connecting {s, t} and the robber territory. Now, we guard
a shortest non-self-crossing (s, t)-path in the (s, t)-subgraph identified above. This path may
be the only path actively guarded, or may be combined with a previously guarded path to
form a new cycle to be actively guarded (Figure 2). Once the path has been guarded, the
current iteration ends, at least one set of cops is freed, and the next iteration begins. At the
end of every iteration, we shall maintain the invariant that the shortest (s, t)-path chosen to
be guarded contains at least one vertex of the robber territory. Therefore, every iteration
ends with at least one more vertex of the graph being guarded, and after a finite number of
iterations, the robber is captured.

We now give a detailed and formal treatment of the above overview in Lemma 4.6 (proof
in full-version [17]).

▶ Lemma 4.6. Let G be a kite-augmented 1-plane graph. For d ∈ {x(G), X(G)}, α ≥ 1, and
any (s, t)-subgraph H of G, let |U| be the smallest integer such that any shortest (s, t)-path
P ⊆ H is crossing-guardable at distance ⌈αd⌉−1 by a set U of cops. Then c⌈αd⌉−1(G) ≤ 3|U|.

Lemmas 4.5 and 4.6 together establish Theorem 4.1.

4.3 Implications of Theorem 4.1

In this section, we discuss the implications of Theorem 4.1 for 1-plane graphs, k-plane graphs
and general graphs drawn on the sphere. A summary of the results in this section appears in
Table 1. To keep notation compact, we let cf(X)(G) and cf(x)(G) be shortcuts to cf(X(G))(G)
and cf(x(G))(G), respectively.
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4.3.1 1-Plane graphs
One of the first implications Theorem 4.1 for 1-plane graphs is that cX−1(G) and cx−1(G)
are at most linear in X(G) and x(G).

▶ Corollary 4.7. If G is a 1-plane graph, then cX−1(G) ≤ 6X − 3 and cx−1(G) ≤ 6x + 9.

Proof. Consider the graph G⊠ obtained by kite-augmenting G. From Theorem 4.1, setting
α = 1, we have cX−1(G⊠) ≤ 3 · (2(X(G⊠) − 1) + 1) = 6X(G⊠) − 3 and cx−1(G⊠) ≤
3 · (2(x(G⊠) + 1) + 1) = 6x(G⊠) + 9. As X(G) = X(G⊠) and x(G) = x(G⊠), we get the
stated result. ◀

Corollary 4.7 corroborates, improves and generalises all existing results on cop-numbers
of 1-planar graphs. For a maximal 1-planar graph, it was shown in [23] that c(G) ≤ 3. In a
maximal 1-planar graph, the endpoints of every crossing induce a K4. Setting X(G) = 1 in
Corollary 4.7 gives us the same cop-number. In fact, it shows that 3 cops are sufficient for
the larger class of full 1-planar graphs: 1-planar graphs where the endpoints of every crossing
induce a K4. (We shall give a much simpler proof of this result in Section 5.2.) Another class
of 1-planar graphs that has been studied is 1-planar graphs embeddable without ×-crossings
(crossings whose endpoints induce a matching). In [16], it was shown that c(G) ≤ 21 for all
such 1-planar graphs G. Corollary 4.7 gives us a better bound: as x(G) = 1 for 1-planar
graphs without ×-crossings, we get c(G) ≤ 15.

4.3.2 k-Plane graphs
We now look at k-plane graphs. In Corollary 4.8, we look at distance X + 1 and x + 2
cop-numbers obtained by setting α = 1 in Theorem 3.12.

▶ Corollary 4.8. If G is a k-plane graph, then cX+1(G) ≤ 6k(X + 1) − 3 and cx+2(G) ≤
6k(x + 2) − 3.

Proof. From Theorem 3.12, setting α = 1, we have cX+1(G) ≤ cX−1(G⊠) and cx+2(G) ≤
cx−1(G⊠). From Lemma 3.11, we get X(G⊠) ≤ k(X(G) + 1) and x(G⊠) ≤ k(x(G) + 2) − 2.
From Corollary 4.7, we have cX−1(G⊠) ≤ 6X(G⊠) − 3 ≤ 6k(X(G) + 1) − 3 and cx−1(G⊠) ≤
6x(G⊠) + 9 ≤ 6k(x + 2) − 3. Hence, the result. ◀

From Corollary 4.8, we see that if G is a full k-plane graph (X(G) = 1), then c2(G) ≤
12k − 3. On the other hand, if G is a k-plane graph without ×-crossings (x(G) = 1), then
c3(G) ≤ 18k − 3.

A graph G is a k-framed graph if it has a drawing on the sphere such that its skeleton
sk(G) (the subgraph induced by the set of all uncrossed edges) is simple, biconnected, spans
all vertices and each face boundary has at most k edges [6]. Clearly, a simple k-framed graph
can have at most k2 edges inside each face. One can draw these graphs such that any two
edges cross at most once, hence they are k2-planar graphs.

▶ Corollary 4.9. If G is a k-framed graph, then c⌈ k+8
3 ⌉(G) ≤ 21.

Proof. Since every face of sk(G) has at most k edges, for every crossing of G, there is a path of
length at most k/4 that connects some pair of consecutive endpoints; therefore, x(G) ≤ k/4.
By setting α = 4/3 for k = x(G) in Theorem 4.1, we get c⌈ k+8

3 ⌉(G) = c⌈ 4
3 ( k

4 +2)⌉(G) ≤
c⌈ 4

3 x⌉−1(G⊠) ≤ 21. ◀
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4.3.3 General graphs

We now consider general graphs drawn on the sphere. In Corollary 4.10, we look at graphs
where all crossings are full and graphs without ×-crossings.

▶ Corollary 4.10. For any graph G, if X(G) = 1, then c3(G) ≤ 9, and if x(G) = 1, then
c4(G) ≤ 21.

Proof. From Theorem 3.12, we have c⌈α(X+1)⌉(G) ≤ c⌈αX⌉−1(G⊠) and c⌈α(x+2)⌉(G) ≤
c⌈αx⌉−1(G⊠). By setting α = 3/2 for d = X(G⊠) in Theorem 4.1, we get β =

⌈
1

2(α−1)

⌉
= 1,

and setting α = 4/3 for d = x(G⊠), we get β =
⌈

1
2(α−1)

⌉
+ 1 = 3. This implies that

c3(G) = c⌈α(X+1)⌉(G) ≤ c⌈αX⌉−1(G⊠) ≤ 3 when X(G) = 1, and c4(G) = c⌈α(x+2)⌉(G) ≤
c⌈αx⌉−1(G⊠) ≤ 21 when x(G) = 1. ◀

From Theorem 4.1, it is easy to see that for α > 1, distance ⌈αx⌉ − 1 and ⌈αX⌉ − 1
cop-numbers of 1-plane graphs are within a constant factor of 1/(α − 1). When combined
with Theorem 3.12, one can obtain a similar bound for c⌈α(X+1)⌉(G) and c⌈α(x+2)⌉(G) for
arbitrary graphs G.

▶ Corollary 4.11. For any graph G,

c⌈α(X+1)⌉(G) ≤

{
8

α−1 if 1 < α < 3
2

9 if α ≥ 3
2

c⌈α(x+2)⌉(G) ≤

{
11

α−1 if 1 < α < 3
2

15 if α ≥ 3
2

(See full-version [17] for a proof of Corollary 4.11.) Corollary 4.11 shows that c⌈α(X+1)⌉(G)
is bounded for all constants α > 1. In contrast, the class of diameter 2 graphs are such that
X(G) ≤ 2, but this class of graphs is cop-unbounded [12]. In other words, for every integer
m > 0, there is a graph G such that X(G) ∈ {1, 2}, but c(G) ≥ m. In Theorem 4.12, we
show a similar result for arbitrarily large values of X(G).

▶ Theorem 4.12. For every pair of integers m ≥ 1 and µ ≥ 6, there exists a graph G with
X(G) ≥ µ and c⌊X/6⌋−1(G) ≥ m.

Proof. Let H be a graph of diameter 2 such that c(H) ≥ m. To get the distance d cop-
number to be at least m, we use Theorem 3.2, which guarantees that c(H) ≤ cd(H(2d+1)).
By this, c(H) ≤ c(d−1)/2(H(d)) when d is odd, and c(H) ≤ cd/2−1(H(d−1)) when d is even.
Substituting d := µ + 1, we get:

Case (a): µ + 1 is odd. Set G := H(µ+1), and we have c⌊µ/2⌋(G) ≥ c(H).

Case (b): µ + 1 is even. Set G := H(µ), and we have c⌊(µ−1)/2⌋(G) ≥ c(H).

As H has diameter 2, in any drawing of H on the sphere, 1 ≤ X(H) ≤ 2. By Lemma 3.11,
we have µ ≤ µX(H) ≤ X(H(µ)) ≤ µX(H) + µ ≤ 3µ. Likewise, we can show µ + 1 ≤
X(H(µ+1)) ≤ 3(µ + 1). As G = H(µ) or G = H(µ+1), we have µ ≤ X(G) ≤ 3(µ + 1).
We now are left with showing that c⌊X(G)/6⌋−1(G) ≥ m. Note that ⌊X(G)/6⌋ − 1 =
⌊ X(G)−6

6 ⌋ ≤ ⌊ 3(µ−1)
6 ⌋ = ⌊ µ−1

2 ⌋ ≤ ⌊ µ
2 ⌋. Hence, for all µ ≥ 6, we have X(G) ≥ µ ≥ 6, and

c⌊X/6⌋−1(G) ≥ c⌊(µ−1)/2⌋(G) ≥ c⌊µ/2⌋(G) ≥ c(H) ≥ m. ◀
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5 Graphs on Surfaces

In this section, we study cop-numbers for (Σ, 1)-planar drawings of graphs on both orientable
and non-orientable surfaces. (We assume that the reader is familiar with basic concepts
related to graphs on surfaces; see [25] for a reference.) All drawings are assumed to be
cellular ; i.e, if γ : G 7→ S is a function that maps a graph G onto a surface S, then S \ γ(G)
is a disjoint union of disks. Equivalently, G is cellularly drawn if and only if G× (the graph
obtained by adding dummy vertices at crossing points) is a cellular embedding on S. For
orientable surfaces, we use the term genus to refer to the number of handles on the surface,
whereas for non-orientable surfaces, genus refers to the number of crosscaps on the surface.

5.1 (Σ, 1)-Planar Drawings on Orientable and Non-orientable Surfaces
In Theorem 5.1, we extend the results of Theorem 4.1 to (Σ, 1)-planar drawings on orientable
surfaces. The main ideas for the proof of Theorem 5.1 (in the full-version [17]) are inspired
from [30], which shows that any graph embeddable (without crossings) on an orientable
surface of genus g has cop-number at most 2g + 3.

▶ Theorem 5.1. Let G be any graph that has a kite-augmented (Σ, 1)-planar graph drawing
on an orientable surface Σ of genus g. For any α ≥ 1, we have c⌈αx⌉−1(G) ≤ (2g +3) ·(2β +1)
and c⌈αX⌉−1(G) ≤ (2g + 3) · (2β + 1) + g where

β =

d + 1 if d = x(G) and α = 1⌈
1

2(α−1)

⌉
+ 1 if d = x(G) and α > 1

β =

d − 1 if d = X(G) and α = 1⌈
1

2(α−1)

⌉
if d = X(G) and α > 1

We now shift our focus to non-orientable surfaces. In [22], it was shown that for any graph
G embedded (without crossings) on a non-orientable surface of genus g, there is a graph H

embedded (without crossings) on an orientable surface of genus g − 1 such that c(G) ≤ c(H).
The main idea for this stems from the well-known fact that every non-orientable surface Σg

of genus g has an orientable surface Σg−1 of genus g − 1 as a 2-sheeted covering space. In
other words, there is a continuous function π : Σg−1 7→ Σg such that for every point x ∈ Σg,
there exist an open neighbourhood Ux containing x such that π−1(Ux) is a disjoint union of
two open sets V 1

x and V 2
x where π(V i

x) is homeomorphic to Ux for i ∈ {1, 2}. So, if a graph
G embedded on Σg is lifted into a graph H in Σg−1, then there are two copies for every
vertex, edge and face of G in H (a simple application of Euler’s formula then explains the
genus g − 1 for the covering space). Here, we use ideas from [22] to derive a similar result for
kite-augmented 1-planar drawings on non-orientable surfaces (proof in full-version [17]).

▶ Theorem 5.2. Let G be a graph drawn on a non-orientable surface Σg of genus g.
Then there exist a (Σg, 1)-plane graph G⊠ and a (Σg−1, 1)-plane graph H, where Σg−1 is
an orientable surface of genus g − 1, such that X(G⊠) = X(H), x(G⊠) = x(H), and
cd(G⊠) ≤ cd(H) ≤ 2 · cd(G⊠) for any integer d ≥ 0.

Combining Theorems 3.12, 5.1, and 5.2, we get the following corollary (proof in full-version
[17]).

▶ Corollary 5.3. Let G be any graph drawn on a non-orientable surface Σ of genus g. For any
α ≥ 1, we have c⌈α(x+2)⌉(G) ≤ (2g+1)·(2β+1) and c⌈α(X+1)⌉(G) ≤ (2g+1)·(2β+1)+(g−1)
where

β =

d + 1 if d = x(G) and α = 1⌈
1

2(α−1)

⌉
+ 1 if d = x(G) and α > 1

β =

d − 1 if d = X(G) and α = 1⌈
1

2(α−1)

⌉
if d = X(G) and α > 1
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5.2 Map Graphs

We now consider a special class of graphs on surfaces called map graphs. A graph G is a
map graph on a surface S if the vertex set of G can be represented by internally-disjoint
closed-disc homeomorphs called nations on S, and a pair of vertices are adjacent in G if and
only if their corresponding nations touch each other. The above definition generalises map
graphs originally defined for the sphere [20] to arbitrary surfaces. In [20], it is shown that
a graph G = (V, E) is a map graph on the sphere if and only if there is a planar bipartite
graph H, called the witness, with bipartition V (H) = {V, F} such that G = H2[V ]. That
is, two vertices u and v are adjacent in G if and only if there is a path (u, f, v) in H where
u, v ∈ V and f ∈ F . The witness graph H is obtained from the map representation of G as
follows: insert a nation vertex in the interior of each nation and a boundary vertex at points
where two or more nations touch each other; then join a nation vertex with a boundary
vertex if and only if the boundary point is part of the nation. Conversely, given a plane
bipartite witness graph H with bipartition V (H) = {V, F}, we draw a star-shaped region
around each vertex of V such that its boundary contains all vertices of F that the vertex is
adjacent to. This gives us a map representation of G = H2[V ]. Clearly, this combinatorial
characterisation of map graphs in terms of witness graphs extends to map graphs on surfaces.
That is, a graph G = (V, E) is a map graph on a surface S if and only if there is a bipartite
witness graph H embeddable on S (without crossings), with bipartition V (H) = {V, F},
such that G = H2[V ].

▶ Theorem 5.4. If G has a map representation on a surface with a graph H as a witness,
then c(G) ≤ c(H).

Proof. To prove Theorem 5.4, we employ our usual strategy of simulating the robber-moves
of G on H, and the corresponding cop-moves of H on G. Let {U ′

1, . . . , U ′
p} be a set of p cops

where p = c(H). We will show that a set {U1, . . . , Up} of p cops in G is sufficient to capture
a robber in G. Consider the first round of the game. For every cop U ′

i occupying a vertex
v ∈ V (H): if v ∈ V (G), place Ui on v; else place Ui on a vertex of G neighbouring v. If the
robber’s initial position in G is on a vertex x ∈ V (G), then place the robber on the same
vertex x ∈ V (H). Thereafter, every single round played in G can be simulated as two rounds
played in H: If the robber in G moves along an edge (x, y) ∈ E(G), then the robber in H

moves along a path (x, f, y) in H, for some vertex f ∈ V (H) \ V (G) (this is possible since
G = H2[V ]). Similarly, the moves of a cop U ′

i can be simulated by Ui in G such that at the
end of every two rounds played in H: if U ′

i is on a vertex v ∈ V (G), so is Ui; else if U ′
i is on

a vertex f /∈ V (G), then Ui is on some vertex of G neighbouring f .
Now consider the final round in H when the robber gets captured by a cop U ′

i . Suppose
that the robber in G takes an edge (x, y). As seen before, this corresponds to a path (x, f, y)
in H. If the robber is captured on y, then he is captured by Ui in G. If the robber is captured
on f , then Ui captures the robber on y as the neighbours of f induce a clique in G. ◀

Theorem 5.4 gives us a simple proof of the fact that full 1-planar graphs have cop-number
at most 3 (Corollary 4.7), as all full 1-planar graphs are map graphs on the sphere [19].
Another interesting corollary is that all optimal 2-planar graphs also have cop-number at
most 3. This is again due to the fact that all optimal 2-planar graphs are map graphs on the
sphere [5].

▶ Corollary 5.5. If G is a full 1-planar or an optimal 2-planar graph, then c(G) ≤ 3.
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