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Abstract

For a fixed integer t ⩾ 1, a (t-)long claw, denoted St,t,t, is the unique tree with three leaves, each at
distance exactly t from the vertex of degree three. Majewski et al. [ICALP 2022, ACM ToCT 2024]
proved an analog of the Gyárfás’ path argument for St,t,t-free graphs: given an n-vertex St,t,t-free
graph, one can delete neighborhoods of O(log n) vertices so that the remainder admits an extended
strip decomposition (an appropriate generalization of partition into connected components) into
particles of multiplicatively smaller size. In this work, we refine the argument of Majewski et al. to
its arguably final form: we show that a constant number of neighborhoods suffice.

The statement of Majewski et al. is one of the two pillars of a recent quasi-polynomial time
algorithm for Maximum Weight Independent Set in St,t,t-free graphs [Gartland et al., STOC
2024]; our work immediately improves the quasi-polynomial function in the running time bound.
Furthermore, our result significantly simplifies known polynomial-time algorithms for Maximum
Weight Independent Set in St,t,t-free graphs with an additional sparsity assumption such as
bounded degree or excluding a fixed biclique as a subgraph.
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28:2 Graphs with No Long Claws

1 Introduction

The Maximum Weight Independent Set (MWIS) problem is a fundamental problem
in combinatorial optimization, where the objective is to find an independent set of vertices
in a graph such that the sum of their weights is maximized. The complexity of MWIS
significantly varies depending on the structure of the input graph. Some graph classes allow
for polynomial-time solutions (e.g., chordal graphs), while in general graphs the problem is
NP-hard and hard to approximate within an n1−ε factor [27, 20]. A crucial research direction
involves identifying graph classes where the absence of specific substructures simplifies the
MWIS problem. This leads to the study of hereditary graph classes – those closed under
vertex deletion. Equivalently, they can be defined by a list of forbidden induced subgraphs.
In particular, H-free graphs – graphs that do not contain a specific graph H as an induced
subgraph – are of significant interest.

As observed by Alekseev in the 1980s [5, 6], the problem of MWIS remains NP-hard
in H-free graphs for most graphs H: MWIS remains NP-hard unless every connected
component of H is either a path or a subdivided claw. Moreover, it cannot even be solved
in subexponential time, unless the Exponential-Time Hypothesis fails. Thus, significant
attention has been devoted to Pt-free graphs (Pt is a path on t vertices) and to St,t,t-free
graphs (St,t,t is a tree with three leaves at distance t from the vertex of degree 3).

The class of P4-free graphs (also known as cographs) is well-structured and many problems,
including MWIS, are polynomial-time solvable in it. Similarly, MWIS is polynomial-time
solvable in S1,1,1-free graphs [24, 26] (also known as claw-free graphs). For the latter, claw-
free graphs are closely related to line graphs, and finding a maximum-weight independent
set in a line graph corresponds to finding a maximum-weight matching. The next smallest
subdivided claw is S2,1,1 (also known as the fork), for which a polynomial algorithm was
shown by Alekseev [7] in 2004.

However, moving further is far from being trivial. Currently, S1,2,2 is the smallest open
case where the polynomiality of MWIS has not been confirmed. In 2014, Lokshtanov,
Vatshelle, and Villanger [22] showed that MWIS is solvable in polynomial time on P5-free
graphs using a framework of potential maximal cliques. The result was extended to P6-free
graphs by Grzesik, Klimošová, Pilipczuk, and Pilipczuk in 2019 [17]. The case of P7-free
graphs remains open. Several related partial results have been obtained, see for instance [2, 4].
In 2020, in a breakthrough result, Gartland and Lokshtanov [13] obtained a quasipolynomial-
time algorithm for MWIS in Pt-free graphs. The result later was significantly simplified by
Pilipczuk, Pilipczuk, and Rzążewski [25] (but still quasipolynomial time) and generalized to
a larger class of problems and to C>t-free graphs (graphs without induced cycle of length
more than t) [16].

In St,t,t-free graphs several partial results were obtained. Abrishami, Chudnovsky, Dibek,
and Rzążewski announced a polynomial-time algorithm for MWIS in St,t,t-free graphs of
bounded degree [1] that was later improved in [3] where the same set of authors and Pilipczuk
also provide a polynomial-time algorithm for MWIS in graphs excluding any (arbitrary but
fixed) graph whose every component is a subdivided claw as an induced subgraph, and any
(arbitrary but fixed) biclique as a subgraph, not necessarily induced. However, much less was
known for the general cases (even for a specific small t) up until recently. In 2023, another
breakthrough, a quasipolynomial algorithm for St,t,t-free graphs, was presented by Gartland,
Lokshtanov, Masařík, Pilipczuk, Pilipczuk, and Rzążewski [15]. This progress corroborates
the conjecture that MWIS is polynomial-time solvable in H-free graphs for all the open
cases left by the original hardness reductions, that is, whenever H is a forest whose every
connected component has at most three leaves.
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The work [15] is built upon two pillars. The first one is the branching strategy similar to
the first Pt-free paper [13]. The second pillar is a work [23] that gives a structural result for
St,t,t-free graphs that is an analog of the Gyárfás’ path argument from Pt-free graphs. In this
work, we improve the main result of [23] to a form with near optimal parameter dependency.
Before we state the result formally, let us discuss the relevant results and techniques.

Firstly, we return to Pt-free graphs. In the 1980s, Gyárfás showed that for every fixed t

the class of Pt-free graphs is χ-bounded [18, 19]. Bacsó, Lokshtanov, Marx, Pilipczuk, Tuza,
and van Leeuwen [8] gave a subexponential-time algorithm for MWIS in Pt-free graphs,
using the following important corollary of the Gyárfás’ path argument.

▶ Theorem 1. Given an n-vertex graph G with nonnegative vertex weights, one can in
polynomial time find an induced path Q in G such that every connected component of
G − N [V (Q)] has weight at most half of the total weight of V (G).

Observe that in Pt-free graphs, Q contains at most t − 1 vertices. In particular, having
connected components of multiplicatively smaller size after removing the neighborhood of a
constant number of vertices became very useful in the recursive approach.

For the progress in general St,t,t-free graphs, the paper [23] shows that the notion of an
extended strip decomposition, developed by Chudnovsky and Seymour in their project to
understand claw-free graphs [11], became useful as an analog of the Gyárfás’ path argument.
For a formal definition of extended strip decomposition, we refer to Section 2. For an
intuition to develop, we remark that in an extended strip decomposition of a graph, we can
distinguish particles (specific induced subgraphs of the graph). The crucial property is that
a maximum weight independent set of the whole graph can be combined from solutions
obtained independently in individual particles ([10]). Thus, “particles” of an extended strip
decomposition can be viewed as analogs of connected components. Particles of multiplicatively
smaller size in St,t,t-free graphs have been obtained in [23].

▶ Theorem 2 ([23]). Given an n-vertex graph G with nonnegative vertex weights and an
integer t ⩾ 1, one can in polynomial time either:

output an induced copy of St,t,t in G, or
output a set P consisting of at most 11 log n + 6 induced paths in G, each of length at
most t + 1, and a rigid extended strip decomposition of G − N [

⋃
P ∈P V (P )] whose every

particle has weight at most half of the total weight of V (G).

Using this structural result, the authors provided a subexponential-time algorithm with
running time 2O(

√
n log n) and a quasipolynomial-time approximation scheme with running

time 2O(ε−1 log5 n). Both results improved and simplified the state-of-the-art knowledge by
Chudnovsky, Pilipczuk, Pilipczuk, and Thomassé [10] from 2020.

This result has already found several applications besides simplifying the analysis of
the quasipolynomial-time algorithm [3]. Most importantly, it became as a black box one
of the pillars of the quasipolynomial-time algorithm for MWIS in St,t,t-free graphs [15].
There, the key structural ingredient for the algorithm is the following. For a fixed integer
t ≥ 1, given a graph G, one can in polynomial time find either an induced St,t,t in G, or a
balanced separator consisting of O(log |V (G)|) vertex neighborhoods in G, or an extended
strip decomposition of G with each particle of weight multiplicatively smaller than the weight
of G. We remark that the third output gives an extended strip decomposition of the whole
graph, in contrast with Theorem 2.

MFCS 2025
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1.1 Our Contribution
We address an open question from [23] that asked to eliminate the logarithmic factor in
output 2 of Theorem 2. Indeed, it turns out that removing neighborhoods of a constant
number of short paths is sufficient to obtain an extended strip decomposition with each
particle of weight multiplicatively smaller than the total weight of the graph. Our main
contribution is the following theorem.

▶ Theorem 3. Given a graph G = (V, E) with nonnegative vertex weights w : V → N and
an integer t ⩾ 1, one can in polynomial time either:

output an induced copy of St,t,t in G, or
output a set S of size at most 3t+11, and a rigid extended strip decomposition of G−N [S]
whose every particle has weight at most w(V )/2.

Observe that removing some (unbounded) number of vertices is sometimes needed to get
a nontrivial extended strip decomposition: adding to any St,t,t-free graph a large number of
universal vertices keeps the graph St,t,t-free (for t ⩾ 2), but destroys any useful extended
strip decomposition of the graph. Hence, in other words, Theorem 3 improves one of the
two pillars of the quasipolynomial algorithm for MWIS in St,t,t-free graphs of [15] to an
arguably optimal bound of removing only a constant number of neighborhoods.

1.2 Technical overview
Similarly, as in [23], our starting point is the Gyárfás’ path, refining the selection of splitting
vertices. If its length is within a small multiple of t, we even have a stronger result of
components of half of the weight of G. Otherwise, we identify specific vertices of the Gyárfás’
path and query the three-in-a-tree theorem, originally developed by Chudnovsky and Seymour
[12] with improved running time by Lai, Lu, and Thorup [21], on them. The output of the
three-in-a-tree theorem is either an induced tree connecting the given vertices or an extended
strip decomposition of G. By the choice of the vertices we make sure the second output
applies, otherwise an induced copy of St,t,t is found. The main difference from [23] lies in
a more involved choice of the vertices with a better understanding of the structure of the
extended strip decomposition. Among others, we use the obvious but powerful property of
the last two vertices of the Gyárfás’ path. After removing the neighborhood of the Gyárfás’
path up to its second-to-last vertex, the largest connected component is still “big” (has
weight larger than half of the weight of G). However, after removing the neighborhood of
the last vertex, its weight suddenly drops below this threshold. This observation lets us look
more closely at the interaction of the “big” particle and the “big” connected component.

1.3 Algorithmic implications
Theorem 3 improves the quasi-polynomial running time bound of the algorithm for MWIS
in St,t,t-free graphs of [15], but does not yield a polynomial-time algorithm. The running
time bound of the algorithm of [15] is nOt(log16 n), where Ot hides factors depending on t.
Few, but not all, of the log n factors in the exponent come from Theorem 2; using Theorem 3
instead removes them from the exponent. We refrain from re-doing here a detailed analysis
of the branching algorithm of [15] to specify exactly what the improvement is; this analysis
will appear in the journal version of [15].

In the specific case of sparse St,t,t-free graphs considered by [3], Theorem 3 significantly
simplifies the situation. For the bounded degree case, the polynomial-time algorithm is now
immediate: apply Theorem 3, exhaustively branch on N [S], and recurse on the particles of
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the extended strip decomposition. The algorithm for the more general case of excluding any
fixed graph whose every component is a subdivided claw as an induced subgraph, and any
fixed biclique as a subgraph can also be significantly simplified (but not to half a sentence as
the previous case).

We remark that a very similar result to Theorem 3 has been independently obtained by
Chudnovsky, Codsi, Milanič, Lokshtanov, and Sivashankar [9], via a slightly different proof.

2 Preliminaries

2.1 Notation
All graphs are simple. Let G be a graph. For X ⊆ V (G), by G[X] we denote the subgraph of
G induced by X, i.e., (X, {uv ∈ E(G) : u, v ∈ X}). If the graph G is clear from the context,
we will often identify induced subgraphs with their vertex sets.

For a vertex v, by NG(v) we denote the set of neighbors of v, and by NG[v] we denote
the set NG(v) ∪ {v}. For a set X ⊆ V (G), we also define NG(X) :=

⋃
v∈X NG(v) − X, and

NG[X] = NG(X) ∪ X. If it does not lead to confusion, we omit the subscript and write
simply N(·) and N [·]. By

(
V (G)

3
)

we mean the set of all subsets of V (G) of size 3. By T (G),
we denote the set of all triangles in G. Note that T (G) ⊆

(
V (G)

3
)
. Similarly to writing

xy ∈ E(G), we will write xyz ∈ T (G) to indicate that G[{x, y, z}] is a triangle. We say that
two sets X, Y ⊆ V (G) touch if X ∩ Y ̸= ∅ or there is an edge with one end in X and another
in Y . For a family Q of sets, by

⋃
Q we denote

⋃
Q∈Q Q. For a function w : V → Z⩾0 and

subset V ′ ⊆ V , we denote w(V ′) :=
∑

v∈V ′ w(v).
A graph G is said to be F-free for some graph F if no induced subgraph of G is isomorphic

to F . For integers t, a, b, c > 0, by Pt we denote the path on t vertices, and by Sa,b,c, we
denote the tree with three leaves at respective distance a, b, and c from the unique vertex of
degree 3 of the tree.

2.2 Extended strip decompositions
See [23, Figure 1] or [14, Figure 3] for an illustration of the definition below.

▶ Definition 4 (Extended strip decomposition, [12]). An extended strip decomposition of a
graph G is a pair (H, η) that consists of:

a simple graph H,
a set η(x) ⊆ V (G) for every x ∈ V (H),
a set η(xy) ⊆ V (G) for every xy ∈ E(H), and its subsets η(xy, x), η(xy, y) ⊆ η(xy),
a set η(xyz) ⊆ V (G) for every xyz ∈ T (H),

which satisfy the following properties:
1. {η(o) | o ∈ V (H) ∪ E(H) ∪ T (H)} is a partition of V (G),
2. for every x ∈ V (H) and every distinct y, z ∈ NH(x), the set η(xy, x) is complete to

η(xz, x),
3. every uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (H) ∪ E(H) ∪ T (H), or is

as follows:
u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (H) and y, z ∈ NH(x), or
u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(H), or
u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (H).

MFCS 2025



28:6 Graphs with No Long Claws

For an edge xy ∈ E(H), the sets η(xy, x) and η(xy, y) are called the interfaces of the
edge xy. An extended strip decomposition (H, η) is rigid if (i) for every xy ∈ E(H) it holds
that η(xy, x) ̸= ∅, and (ii) for every x ∈ V (H) such that x is an isolated vertex it holds that
η(x) ̸= ∅. Observe that if we restrict η to V ′ ⊂ V (G), i.e. we keep in η only vertices of V ′,
then (H, η) after the restriction remains an extended strip decomposition, but it might not
be rigid anymore.

We say that a vertex v ∈ V (G) is peripheral in (H, η) if there is a degree-one vertex x

of H, such that η(xy, x) = {v}, where y is the (unique) neighbor of x in H. Note that we
can also assume η(x) = ∅, as otherwise all vertices from η(x) can be moved to η(xy). For a
set Z ⊆ V (G), we say that (H, η) is an extended strip decomposition of (G, Z) if H has |Z|
degree-one vertices and each vertex of Z is peripheral in (H, η). The following theorem by
Chudnovsky and Seymour [12] is a slight strengthening of their celebrated solution of the
famous three-in-a-tree problem.

▶ Theorem 5 (Chudnovsky, Seymour [12, Section 6]). Let G be an n-vertex graph and
Z ⊆ V (G) with |Z| ⩾ 2. There is an algorithm that runs in time O(n4) and returns one of
the following:

an induced subtree of G containing at least three elements of Z,
a rigid extended strip decomposition of (G, Z).

The running time was improved to O(m log2 n) (where m = |E|) in [21].

▶ Definition 6. Let (H, η) be an extended strip decomposition of a graph G. We distinguish
the following special subsets of V (G):

vertex particle: Ax := η(x) for each x ∈ V (H),
edge interior particle: A⊥

xy := η(xy) − (η(xy, x) ∪ η(xy, y)) for each xy ∈ E(H),
half-edge particle: Ax

xy := η(x) ∪ η(xy) − η(xy, y) for each xy ∈ E(H),

full edge particle: Axy
xy := η(x) ∪ η(y) ∪ η(xy) ∪

⋃
z : xyz∈T (H)

η(xyz) for each xy ∈ E(H),

triangle particle: Axyz := η(xyz) for each xyz ∈ T (H).

We refer to these sets as particles and discern between their respective types.

A vertex particle Ax is trivial if x is an isolated vertex in H. Similarly, an extended
strip decomposition (H, η) is trivial if H is an edgeless graph. Given a weight function
w : V (G) → N, we say that a particle is small if its weight is at most w(V (G))

2 , and an
extended strip decomposition (H, η) of G is refined if all its particles are small.

3 Properties of extended strip decompositions and the proof
of Theorem 3

3.1 Overview of the proof
Before the actual proof, we show several properties of extended strip decompositions. For
the purposes of this overview, the most important is Lemma 11, which states that if (H, η)
is an extended strip decomposition of a graph G then any induced path P (in G) between
peripheral vertices is entirely contained in edge particles. Moreover, in each edge particle, P

has at most one vertex in each interface.
Let us now describe the key ideas of the proof of Theorem 3. We start by considering

a Gyárfás’ path Q in G. If Q is short, we can set S = V (Q) and return a trivial extended
strip decomposition of G − N [S] satisfying the requirements of Theorem 3, so assume that
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Q is long. First, we mark specific vertices of Q on which we will query the three-in-a-tree
theorem: The first vertex of Q (call it x) and the vertices at distance t + 3 (call it y) and
t + 1 (call it z) from the end of Q other than x. Before querying the three-in-a-tree theorem,
we remove the neighborhood outside Q of three subpaths of Q: the subpaths of Q starting
at x and z and taking the next t vertices in Q, respectively, and the subpath taking the t

vertices of Q preceding y. We also remove the vertex of Q between y and z. See Figure 1 for
an illustration. Observe that this selection ensures that the three-in-a-tree theorem either
outputs an induced copy of St,t,t (which is a desired output of Theorem 3) or an extended
strip decomposition of the graph minus the mentioned neighborhoods.

We take a closer look at the returned extended strip decomposition. If all its particles
are small, we can simply return it, so assume it has a big particle A. Let us assume that A

is a full edge particle, i.e., A = Apq
pq, the other cases being easy to handle. We distinguish

two cases depending on whether the subpath Q1 of Q from x to y intersects A or not. If
Q1 is disjoint from A, the only vertices of Q1 that can have a neighbor in A are vertices in
an interface of a neighboring edge of pq in H. Lemma 11 implies that there can be at most
four of them. Finally, using that Q is a Gyárfás’ path, we observe that after removing the
neighborhoods of the three previously mentioned subpaths, of these four vertices and of four
other well-chosen vertices, every remaining connected component has weight at most half of
the total weight of G. If Q1 intersects A, denote by Q2 be the subpath of Q from z to the
end of Q. The fact that Q is induced and Lemma 11 together imply that Q2 does not have
any neighbor in A. From the property of Gyárfás’ path, letting ℓ denote the last vertex of Q,
we have that G − N [V (Q) − ℓ] has a big connected component C but G − N [V (Q)] does not.
Therefore, ℓ has a neighbor in V (C). Two big parts must intersect, so V (C) and A intersect.
It then follows from Lemma 11 that V (C) ⊆ A. This contradicts the fact that Q2 does not
have any neighbor in A.

3.2 Properties of extended strip decompositions
We start the proof of Theorem 3 with several properties of extended strip decompositions.

▶ Lemma 7. Let (H, η) be an extended strip decomposition of a graph G. Let A = Axy
xy be a

full edge particle. For z ∈ {x, y}, let Fz be the set of edges of H incident with z. Let

B =
⋃

z∈{x,y}

⋃
f∈Fz−{xy}

η(f, z).

Then, NG(A) ⊆ B. Furthermore, if (H, η) is rigid, then NG(A) = B.

Proof. The claim NG(A) ⊆ B follows from the third property of the definition of an extended
strip decomposition: Axy

xy consists of η(xy), η(x), η(y), and η(xyz) for all triangles xyz, and
vertices in those sets are allowed only to have neighbors outside Axy

xy in sets η(f, x) for
f ∈ Fx − {xy} and η(f, y) for f ∈ Fy − {xy}.

If (H, η) is rigid, then η(xy, x) is nonempty and any vertex of η(xy, x) is complete to⋃
f∈Fx−{xy} η(f, x); a symmetric claim holds for η(xy, y). This proves that NG(A) = B in

this case. ◀

▶ Lemma 8. Let (H, η) be a rigid extended strip decomposition of a graph G. Let A = Axy
xy be

a full edge particle. There exists a set XA ⊆ A of size at most 2 such that NG(A) ⊆ NG(XA).

Proof. Since (H, η) is rigid, there exist vx ∈ η(xy, x) and vy ∈ η(xy, y). Set XA = {vx, vy}.
Let u ∈ NG(A). Since u /∈ A is adjacent to a vertex in A = Axy

xy, by Lemma 7, there exists
z ∈ {x, y} and an edge f ̸= xy incident to z such that u ∈ η(f, z). Then, u is adjacent to
vz ∈ {vx, vy} so u ∈ NG(XA). ◀

MFCS 2025
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We note that the above observation was mentioned in [23, Observation 8], we include it here
for completeness.

As discussed above, if (H, η) is an extended strip decomposition of a graph G, if G′ is an
induced subgraph of G and η′ is the restriction of η to V (G′) then (H, η′) is an extended
strip decomposition of G′, but it is not necessarily rigid anymore. The following lemma
(whose proof we postpone to Section 3.4 in order not to disturb the flow of arguments here)
shows how to modify it to obtain a rigid extended strip decomposition, while preserving the
same bounds for the maximum weight of a particle.

▶ Lemma 9. Let G = (V, E) be a graph with nonnegative vertex weights w : V → N,
w ⩾ w(V )/2 and (H, η) be an extended strip decomposition of G whose every particle has
weight at most w. Then, one can in polynomial time compute either a rigid extended strip
decomposition of G whose every particle has weight at most w, or a set X ⊆ V (G) of size at
most 2 such that every connected component of G − N [X] has weight at most w.

We now look at induced paths in G whose endpoints are peripheral in (H, η), with
particular emphasis on where their vertices appear in (H, η). The following two lemmata
characterize how an induced path (in G) between peripheral vertices can traverse an extended
strip decomposition.

▶ Lemma 10. Let (H, η) be an extended strip decomposition of a graph G and z ∈ V (G)
be a peripheral vertex in (H, η). Let Q = (z = x0, x1, . . . , xk−1, xk) be an induced path in G

with endpoint z. Let A = Apq
pq be a full edge particle such that z /∈ η(pq). If V (Q) ∩ N [A] ̸= ∅,

there exists an edge f ̸= pq and r ∈ {p, q}, r ∈ f such that η(f, r) ∩ V (Q) ̸= ∅.

Proof. Since z /∈ η(pq) and z is peripheral in (H, η) then z /∈ A. Suppose V (Q) ∩ N [A] ̸= ∅
and let i be minimum such that xi ∈ N [A].

If i = 0, then z ∈ N [A]. Let f be the unique edge of H such that z ∈ η(f). Then,
f ≠ pq by assumption. Furthermore, since z ∈ N [A] − A = N(A), by Lemma 7, there exists
r ∈ {p, q} such that z ∈ η(f, r).

Otherwise, by minimality of i, we have xi−1 /∈ N [A], which implies xi /∈ A. Thus,
xi ∈ N [A] − A = N(A) so there exists an edge f and r ∈ {p, q} such that xi ∈ η(f, r). Since
xi /∈ A then f ̸= pq, which concludes the proof. ◀

▶ Lemma 11. Let (H, η) be an extended strip decomposition of a graph G and x, y ∈ V (G)
be two distinct peripheral vertices in (H, η). Let Q = (x = x0, x1, . . . , xk−1, xk = y) be an
induced path in G with endpoints x and y. Then, for every edge e = ab ∈ E(H), it holds that
|V (Q) ∩ η(e, a)| ⩽ 1, and V (Q) ⊆

⋃
e∈E(H) η(e).

Proof. First, we prove that if there exists v ∈ V (H) and xi ∈ V (Q) such that xi ∈ η(v), then
there exist p < i < q and an edge e incident to v such that xp, xq ∈ η(e, v). Indeed, suppose
that xi ∈ V (Q) ∩ η(v) for some v ∈ V (H). Let p < i be maximum such that xp /∈ η(v) (this
is well-defined since x0 = x /∈ η(v) as x is peripheral in (H, η)). Observe that xp+1 ∈ η(v).
Since xpxp+1 ∈ E(G), there exists an edge e ∈ E(H) incident to v such that xp ∈ η(e, v).
Similarly, there exists q > i and an edge f ∈ E(H) incident to v such that xq ∈ η(f, v).
Since Q is an induced path and q > p + 1, there is no edge xpxq in G and thus e = f . Thus,
xp, xq ∈ η(e, v). With the same argument, it also holds that if there exists t ∈ T (H) and
xi ∈ V (Q) such that xi ∈ η(t) then there exist p < i < q, an edge e ∈ E(t) and a vertex
v ∈ V (t) such that xp, xq ∈ η(e, v). Therefore, it suffices to prove that |V (Q) ∩ η(e, a)| ⩽ 1
for every edge e = ab ∈ E(H) to prove that V (Q) ⊆

⋃
e∈E(H) η(e).
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For uv ∈ E(H), let L(uv, u) and R(uv, u) be minimum and maximum values of i such
that xi ∈ η(uv, u), or ⊥ if no such values exist. We claim that if |V (Q) ∩ η(uv, u)| ≥ 2,
then L(uv, v) ≤ L(uv, u), R(uv, u) ≤ R(uv, v) (and, in particular, |V (Q) ∩ η(uv, v)| ≥ 2)
and prove that as follows. Let L(uv, u) = i < j = R(uv, u). If xj ∈ η(uv, v), then
R(uv, v) ≥ j = R(uv, u). If xj ̸∈ η(uv, v), then consider the set A = η(u) ∪ η(uv) − η(uv, v)
and the smallest j′ > j such that xj′ ̸∈ A. Such j′ is well defined as y ̸∈ A since
|η(uv, u)| ≥ 2. If j′ > j + 1, then xj′−1 ∈ A from the minimality of j′, whereas if
j′ = j + 1, then xj′−1 = xj ∈ A. So, in any case xj′−1 ∈ A and we deduce that
xj′ ∈ N(A) ⊆ η(uv, v) ∪

⋃
uw∈E(H),w ̸=v η(uw, u). However, if xj′ ∈ η(uw, u) for some w ̸= v,

then xixj′ ∈ E(G), which is a contradiction as Q is an induced path and j′ > j > i. Hence,
xj′ ∈ η(uv, v) ⇒ R(uv, v) ≥ j′ > R(uv, u). In either case, we have that R(uv, v) ≥ R(uv, u).
Similarly, we conclude L(uv, v) ≤ L(uv, u), which proves our auxiliary claim. However, as
|V (Q)∩η(uv, v)| ≥ 2, the roles of u and v can be reversed to show that L(uv, u) ≤ L(uv, v) and
R(uv, v) ≤ R(uv, u), hence we conclude that L(uv, u) = L(uv, v) and R(uv, u) = R(uv, v).

By contradiction, suppose that there exists an edge e = ab ∈ E(H) which satis-
fies |V (Q) ∩ η(e, a)| ⩾ 2. Let L(ab, b) = i and R(ab, b) = j. We have that i < j,
L(ab, a) = i and R(ab, a) = j, hence xi, xj ∈ η(ab, a) ∩ η(ab, b). Let us consider the
set A = η(a) ∪ η(b) ∪ η(ab) ∪

⋃
abc∈T (H) η(abc) and the smallest j′ > j such that xj′ ̸∈ A.

Such j′ is well defined as |η(ab, a)|, |η(ab, b)| ≥ 2, so y ̸∈ A. We have that xj′ ∈ N(A),
however N(A) ⊆

⋃
ac∈E(H),c̸=b η(ac, a) ∪

⋃
bc∈E(H),c ̸=a η(bc, b), therefore N(A) is complete

to η(ab, a) ∩ η(ab, b). Hence xixj′ ∈ E(H), which is a contradiction since Q is an induced
path and j′ > j > i, which concludes the proof. ◀

▶ Corollary 12. Let (H, η) be an extended strip decomposition of a graph G and x, y ∈ V (G)
be two distinct peripheral vertices in (H, η). Let Q = (x = x0, x1, . . . , xk−1, xk = y) be an
induced path in G with endpoints x and y. For every e = ab ∈ E(H) such that V (Q)∩η(e) ̸= ∅,
then G[V (Q) ∩ η(e)] is a path with endpoints in η(e, a) and η(e, b) and all internal vertices
in η(e) − (η(e, a) ∪ η(e, b)).

Proof. Since x, y ∈ V (G) are peripheral in (H, η), there exist edges ex = uxvx ∈ E(H),
ey = uyvy ∈ E(H) with vx, vy being degree-one vertices, such that η(ex, vx) = {x} and
η(ey, vy) = {y}.

Let GE = G[
⋃

e∈E(H) η(e)]. By Lemma 11 we have that Q ⊆ GE .
Let e = ab ∈ E(H) such that V (Q) ∩ η(e) ̸= ∅. Let i be minimum such that xi ∈ η(e)

and j be maximum such that xj ∈ η(e). If i = 0 then xi = x so e = ex and up to renaming a

and b we have xi ∈ η(e, a). If i > 0 then xi−1 /∈ η(e) and xi−1xi ∈ E(G) so up to renaming
a and b we have xi ∈ η(e, a). Similarly, we have that xj ∈ η(e, a) ∪ η(e, b).

Let us first consider the cases where i = j.
If i = j = 0. Then, e = ex = uxvx and xi = x ∈ η(ex, vx). Furthermore, we have
xi+1 = xj+1 /∈ η(ex) by maximality of j, and vx has degree 1 in H and η(vx) = ∅ since x

is peripheral so x ∈ η(e, ux).
If i = j = k. This is similar to the previous case.
If 0 < i = j < k. In this case we need to prove that xi ∈ η(e, b). Let us assume by
contradiction that this is false. We have that xi−1, xi+1 ∈ N(xi) ∩ V (GE) − η(e). As
xi ∈ η(e, a) − η(e, b), we conclude that xi−1, xi+1 ∈

⋃
ac∈E(H),c̸=b η(ac, a). Let us write

then that xi−1 ∈ η(ac1, a) and xi+1 ∈ η(ac2, a). If c1 = c2, then |V (Q) ∩ η(ac1, a)| ≥ 2,
which is a contradiction with Lemma 11. If c1 ̸= c2, then xi−1xi+1 ∈ E(G), which is a
contradiction with Q being an induced path.
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Q

zy z′ `x

Qx Qy Qz

Q1 Q2

Figure 1 Notations from the proof of Theorem 3. The sets Qx, Qy and Qz all have size t + 1.

From now on, let us assume that i < j. Since |V (Q) ∩ η(e, a)|, |V (Q) ∩ η(e, b)| ≤ 1 by
Lemma 11, we have that xi ∈ η(e, a) − η(e, b), xj ∈ η(e, b) − η(e, a) and no other vertices
of Q belong to η(e, a) ∪ η(e, b). Moreover, η(e, a) ∪ η(e, b) separates η(e) − (η(e, a) ∪ η(e, b))
from V (GE) − η(e), so proving that xi+1 ∈ η(e) would imply that all internal vertices of the
path xixi+1 . . . xj−1xj belong to η(e) − (η(e, a) ∪ η(e, b)), as desired, so this is what we are
going to prove in the remaining cases.

If i = 0 < j. Then e = ex = uxvx and xi = x ∈ η(ex, vx), so we have that a = vx, b = ux.
We recall xi ∈ η(e, a) − η(e, b) and xj ∈ η(e, b) − η(e, a). As a is a degree one vertex and
x0 /∈ η(e, b), we clearly have that x1 ∈ η(e), which proves our claim.
If i < j = k. This is similar to the previous case.
If 0 < i < j < k. We recall that xi ∈ η(e, a) − η(e, b) and xj ∈ η(e, b) − η(e, a). As
xi ∈ η(e, a) − η(e, b), we can use the same reasoning as in the 0 < i = j < k case to
argue that xi+1 ∈ η(e) (which operated under the same assumption that 0 < i and
xi ∈ η(e, a) − η(e, b), but excluded the possibility that xi+1 ∈ η(e). That again completes
the argument. ◀

3.3 Proof of Theorem 3
For convenience, we restate the Theorem 3

▶ Theorem 3. Given a graph G = (V, E) with nonnegative vertex weights w : V → N and
an integer t ⩾ 1, one can in polynomial time either:

output an induced copy of St,t,t in G, or
output a set S of size at most 3t+11, and a rigid extended strip decomposition of G−N [S]
whose every particle has weight at most w(V )/2.

Proof. Let Q be a minimal induced path in G given by Theorem 1, that is, a path such that
every connected component of G − N [V (Q)] has weight at most w(V )/2 and Q is minimal
with this property. If |V (Q)| ⩽ 3t + 11, set S = V (Q) and observe that every connected
component of G − N [S] has weight at most w(V )/2. Thus, G − N [S] has a trivial rigid
extended strip decomposition whose every particle has weight at most w(V )/2. Assume now
that |V (Q)| > 3t + 11. Let ℓ be the last vertex of Q. Let Q2 be the subpath of Q induced by
the last t + 2 vertices of Q, and denote by z the first vertex of Q2. Let z′ be the predecessor
of z in Q, and y the predecessor of z′ in Q. Let x be the first vertex of Q, and Q1 be the
subpath of Q from x to y. Observe that |V (Q1)| > 2t + 8. Let Qx be the set containing x

and the first t successors of x, Qy be the set containing y and the first t predecessors of y,
and Qz be the set containing z and the first t successors of z.

Let Y = Qx ∪ Qy ∪ Qz. Then, |Y | = 3t + 3. Consider the graph G′ defined as
G′ = G − (N(Y ) − V (Q1) − V (Q2)). Note that every vertex of the induced path Q is a
vertex of G′, except z′. Let Z = {x, y, z}. By Theorem 5, we can find in polynomial time
either an induced subtree of G′ containing all three elements of Z, or a rigid extended strip
decomposition of (G′, Z).
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We claim that the first outcome is impossible. Observe that for every ξ ∈ {x, y, z}, the
vertex ξ is of degree 1 in G′ and every internal vertex of Qξ is of degree 2 in G′. Hence, any
induced subtree of G′ containing all three elements of Z contains an induced St,t,t since it
must contain x, y, and z as leaves and the three induced paths G[Qx], G[Qy], G[Qz], each
containing t edges.

Therefore, we can assume that we find a rigid extended strip decomposition (H, η) of
(G′, Z). Note that the size of H is polynomial in the size of G since the algorithm of
Theorem 5 runs in polynomial time. Suppose first that every particle of (H, η) has weight
at most w(V )/2. Applying Lemma 9 to G − NG[Y ] and the restriction of (H, η), with
w = w(V )/2, we can find in polynomial time either a rigid extended strip decomposition
of G − NG[Y ] whose every particle has weight at most w(V )/2, in which case we are done
setting S = Y , or a set X ⊆ V (G − NG[Y ]) of size at most 2 such that every connected
component of (G − NG[Y ]) − NG−NG[Y ][X] = G − NG[Y ∪ X] has weight at most w(V )/2,
in which case we are done setting S = Y ∪ X.

Suppose now that there exists a particle A such that w(A) > w(V )/2. Without loss of
generality, we can assume that whenever p ∈ V (H) is isolated then G[η(p)] is connected.
Consider such a p ∈ V (H). Since Q is a path between peripheral vertices then we have
NG[V (Q)] ∩ η(p) = ∅ so G[η(p)] is a connected component of G − NG[V (Q)], which implies
w(η(p)) ⩽ w(V )/2. Since every nontrivial particle is contained in a full edge particle we
can assume without loss of generality that A is a full edge particle: A = Apq

pq for some
edge pq ∈ E(H). Applying Lemma 11 to the induced path Q1 in G′, we obtain that
V (Q1) ⊆

⋃
e∈E(H) η(e).

▷ Claim 13. V (Q1) ∩ η(pq) = ∅.

Proof. By contradiction suppose that V (Q1) ∩ η(pq) ̸= ∅.
By Corollary 12, G′[V (Q1)∩η(pq)] is a path with endpoints vp ∈ η(pq, p) and vq ∈ η(pq, q).

Therefore, η(pq, p) ̸= {z} and η(pq, q) ̸= {z} so z /∈ η(pq). Applying Lemma 10 to the induced
path Q2 with endpoint z in G′, we get that if V (Q2) ∩ NG′ [A] ̸= ∅, there exists an edge
f ̸= pq, r ∈ {p, q} and z′′ ∈ η(f, r) ∩ V (Q2). However, we would then have z′′vr ∈ E(G)
with z′′ ∈ V (Q2) and vr ∈ V (Q1), contradicting that Q is an induced path in G. Therefore,
V (Q2) ∩ NG′ [A] = ∅.

By minimality of Q, G − NG[V (Q) − {ℓ}] has a connected component C such that
w(V (C)) > w(V )/2. Therefore, ℓ has a neighbor in V (C), and V (C) ∩ A ̸= ∅ since
w(V (C)),w(A) > w(V )/2. Observe also that C ⊆ V (G) − NG[V (Q) − {ℓ}] ⊆ V (G′). If
u ∈ V (C) ∩ NG′(A) then there exists f ̸= pq ∈ E(H) and r ∈ {p, q} such that u ∈ η(f, r).
However, this implies that uvr ∈ E(G′) ⊆ E(G) and therefore u ∈ NG[V (Q1)], which
is impossible since V (C) ∩ NG[V (Q1)] = ∅. Thus, V (C) ∩ NG′(A) = ∅, and therefore
V (C) ∩ A ̸= ∅ implies V (C) ⊆ A since C is connected in G′. Hence, ℓ has a neighbor in A,
which contradicts V (Q2) ∩ NG′ [A] = ∅.

This finishes the proof of the claim. ◁

From Claim 13 and Lemma 11 we infer that V (Q1) ∩ A = ∅ as x and y are peripheral.
Let X = NG′ [A] ∩ V (Q1). If u ∈ X, there is a vertex a ∈ A such that ua ∈ E(G), and
thus there exists r ∈ {p, q} and an edge f incident to r such that u ∈ η(f, r). However,
by Lemma 11, we have |V (Q1) ∩ η(ab, a)| ⩽ 1 for every edge ab ∈ E(H). Furthermore,
if u1 ∈ η(f1, r), u2 ∈ η(f2, r), u3 ∈ η(f3, r) for some pairwise distinct edges f1, f2, f3 then
G[{u1, u2, u3}] induces a triangle. Since Q1 is an induced path, it follows that |X| ⩽ 4. By
Lemma 8, there exists a set XA of size at most 2 such that NG′(A) ⊆ NG′(XA).
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▷ Claim 14. Every connected component of G′′ := G − NG[Y ∪ X ∪ XA ∪ {ℓ, z′}] has weight
at most w(V )/2.

Proof. Consider a connected component C of G′′ and assume by contradiction that it satisfies
w(V (C)) > w(V )/2. Then, V (C) ∩ A ̸= ∅. If v ∈ V (G′′) ∩ NG[A] then v ∈ V (G′) and v /∈
NG[XA] ⊇ NG′(XA) ⊇ NG′(A). Therefore, v ∈ NG′ [A] − NG′(A) = A. Since V (C) ∩ A ̸= ∅
and C is connected in G′′ then V (C) ⊆ A. However, every connected component of G −
NG[V (Q)] has weight at most w(V )/2. Thus, C is not contained in any connected component
of G−NG[V (Q)] and therefore there exists some vertex q ∈ V (Q)−NG[Y ∪X ∪XA ∪{ℓ, z′}]
which is in NG[V (C)]. Therefore, q ∈ V (Q1) ∩ NG[V (C)] ⊆ V (Q1) ∩ NG[A] = X, a
contradiction. This finishes the proof of the claim. ◁

Thanks to Claim 14, by setting S = Y ∪X ∪XA ∪{ℓ, z′}, we have |S| ⩽ 3t+11 and G−NG[S]
has a trivial rigid extended strip decomposition whose every particle has weight at most
w(V )/2.

Finally, note that this proof is constructive and immediately yields a polynomial time
algorithm. ◀

3.4 Proof of Lemma 9
▶ Lemma 9. Let G = (V, E) be a graph with nonnegative vertex weights w : V → N,
w ⩾ w(V )/2 and (H, η) be an extended strip decomposition of G whose every particle has
weight at most w. Then, one can in polynomial time compute either a rigid extended strip
decomposition of G whose every particle has weight at most w, or a set X ⊆ V (G) of size at
most 2 such that every connected component of G − N [X] has weight at most w.

Proof. For the purposes of the proof, we introduce the notion of relaxed extended strip
decomposition, which is similar to that of extended strip decomposition, except that we have
a set η(xyz) for every triple of vertices xyz in H and not only for every triangle xyz in H.
We require the same properties as in an extended strip decomposition when replacing T (H)
by

(
V (H)

3
)
. The particles of a relaxed extended strip decomposition are the vertex particles,

the full edge particles and the triple particles, each defined similarly to the corresponding
particle in an extended strip decomposition when replacing T (H) by

(
V (H)

3
)
. Note that every

extended strip decomposition naturally corresponds to a relaxed extended strip decomposition
and that a relaxed extended strip decomposition such that η(xyz) = ∅ whenever xyz /∈ T (H)
naturally yields an extended strip decomposition.

We view (H, η) as a relaxed extended strip decomposition of G, and we start by ensuring
that every edge xy ∈ E(H) satisfies η(xy, x) ̸= ∅. Let xy ∈ E(H) be such that η(xy, x) = ∅.
If η(xy, y) = ∅ too, let H ′ be the graph obtained from H by removing the edge xy and adding
an isolated vertex v. For every o ∈ V (H) ∪ E(H) ∪

(
V (H)

3
)

− {xy}, set η′(o) = η(o), and set
η′(v) = η(xy) and η′(vu1u2) = ∅ for every newly created triple of vertices. If η(xy, y) ̸= ∅,
let H ′ be the graph obtained from H by removing the edge xy and adding a vertex z

adjacent only to y. For every o ∈ V (H) ∪ E(H) ∪
(

V (H)
3

)
− {xy}, set η′(o) = η(o), and set

η′(zy) = η′(zy, z) = η(xy), η′(zy, y) = η(xy, y), η′(z) = ∅ and η′(zu1u2) = ∅ for every newly
created triple of vertices.

Note that in both cases (H ′, η′) is still a relaxed extended strip decomposition of G whose
every particle has weight at most w. When going from (H, η) to (H ′, η′), the number of
edges with an empty interface decreases strictly. Therefore, by repeating this operation, we
eventually get that every edge xy ∈ E(H) satisfies η(xy, x) ̸= ∅.
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Suppose now that there exists an isolated vertex x of H and a triple xyz ∈
(

V (H)
3

)
such that

η(xyz) ̸= ∅. If yz ∈ E(H), let H ′ = H and for every o ∈ V (H) ∪ E(H) ∪
(

V (H)
3

)
− {xyz, yz},

set η′(o) = η(o), set η′(xyz) = ∅ and η′(yz) = η(yz) ∪ η(xyz), η′(yz, y) = η(yz, y), and
η′(yz, z) = η(yz, z). If yz /∈ E(H), let H ′ be the graph obtained from H by adding an
isolated vertex v. For every o ∈ V (H) ∪ E(H) ∪

(
V (H)

3
)

− {xyz}, set η′(o) = η(o), and set
η′(v) = η(xyz), η′(xyz) = ∅ and η′(vu1u2) = ∅ for every newly created triple of vertices.

Observe that in both cases (H ′, η′) is still a relaxed extended strip decomposition of G

whose every particle has weight at most w. When going from (H, η) to (H ′, η′), we create no
edge with an empty interface and the number of triples xyz ∈

(
V (H)

3
)

such that η(xyz) ̸= ∅
and x is isolated in H decreases strictly. Therefore, by repeating this operation, we eventually
get that no edge has an empty interface and for every triple xyz ∈

(
V (H)

3
)

such that x is
isolated, we have η(xyz) = ∅.

Therefore, if x is an isolated vertex of H such that η(x) = ∅ then after removing x

from H, what we obtain is again an extended strip decomposition of G with the same
properties. By iteratively removing such vertices, we eventually get a rigid relaxed extended
strip decomposition whose every particle has weight at most w.

We now show how to convert this rigid relaxed extended strip decomposition (H, η)
into a rigid extended strip decomposition whose every particle has weight at most w. If
there is no xyz ∈

(
V (H)

3
)

such that η(xyz) ̸= ∅ and xyz /∈ T (H) then restricting η to
V (H) ∪ E(H) ∪ T (H) gives the desired rigid extended strip decomposition. Suppose now
that there exists a triple xyz ∈

(
V (H)

3
)

such that η(xyz) ̸= ∅ and xyz /∈ T (H). We consider
several cases.

If η(xyz) is not adjacent to V (G) − η(xyz), let H ′ be the graph obtained from H by
adding an isolated vertex v. For every o ∈ V (H)∪E(H)∪

(
V (H)

3
)
−{xyz}, set η′(o) = η(o),

and set η′(v) = η(xyz), η′(xyz) = ∅ and η′(vu1u2) = ∅ for every newly created triple of
vertices.
If η(xyz) is adjacent to only one of {η(xy), η(xz), η(yz)}, say η(xy), let H ′ = H

and for every o ∈ V (H) ∪ E(H) ∪
(

V (H)
3

)
− {xyz, xy}, set η′(o) = η(o), and set

η′(xy) = η(xy) ∪ η(xyz) and η′(xyz) = ∅. Importantly, we set η′(xy, x) = η(xy, x) and
η′(xy, y) = η(xy, y).
Otherwise, since xyz /∈ T (H), only two of {xy, xz, yz} are edges of H, say xy and xz.
Then, η(xyz) is adjacent to both η(xy) and η(xz). Again, we set H ′ = H, for every
o ∈ V (H) ∪ E(H) ∪

(
V (H)

3
)

− {xyz, x}, set η′(o) = η(o), and set η′(x) = η(x) ∪ η(xyz)
and η′(xyz) = ∅.

In each case, (H ′, η′) is a rigid relaxed extended strip decomposition of G and the number
of triples xyz ∈

(
V (H)

3
)

such that η(xyz) ̸= ∅ and xyz /∈ T (H) decreases strictly. Thus, by
iterating this operation we eventually obtain a rigid relaxed extended strip decomposition
of G with no xyz ∈

(
V (H)

3
)

such that η(xyz) ̸= ∅ and xyz /∈ T (H). If this relaxed extended
strip decomposition has no particle of weight strictly greater than w then as before we can
turn it into the desired rigid extended strip decomposition of G.

Therefore, we can assume that one of the above operations created a particle of weight
strictly greater than w. Note that in the first case, we do not increase the weight of any
pre-existing particle, and the only non-empty particle we create is Av = η′(v) = η(xyz)
which has weight at most w by assumption. Similarly, in the second case, we do not increase
the weight of any particle. Therefore, we created a particle of weight strictly greater than w

going from some rigid relaxed extended strip decomposition (H, η) to another rigid relaxed
extended strip decomposition (H ′, η′) using the third case. In this case, all particles keep
the same weight except for Axyz which becomes empty, Ax, and the full edge particles Axa

xa
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(a /∈ {y, z}). Since after the modification we have Ax ⊆ Axy
xy and the weight of Axy

xy did not
change then after the modification we still have w(Ax) ⩽ w. Thus, there exists a full edge
particle A′ = Axa

xa of (H ′, η′) such that w(A′) > w, and a /∈ {y, z}.
Since (H, η) is rigid, as in Lemma 8 there exists a set XA′ of size at most 2 such that

NG(A′) ⊆ NG(XA′). Therefore, in G−NG[XA′ ], the remaining vertices of A′ are disconnected
from V − A′. Furthermore, V − A′ has weight at most w(V ) − w(A′) ⩽ w. Let A = Axa

xa

be the corresponding particle of (H, η). Then, A′ = A ∪ η(xyz) but since a /∈ {y, z} then
η(xyz) is not adjacent to A in G. Hence, for every connected component C of G − NG[XA′ ],
we have either V (C) ⊆ V − A′ or V (C) ⊆ η(xyz) or V (C) ⊆ A. In all three cases we have
w(V (C)) ⩽ w since (H, η) is refined.

Finally, note that this proof is algorithmic and can be implemented in polynomial time
(in the sizes of H and G). Indeed, every modification we perform on the relaxed extended
strip decomposition can be done in polynomial time, and we can find the next one in
polynomial time. Therefore, we just need to argue that the size of the relaxed extended
strip decomposition remains within a polynomial factor of the size of the initial extended
strip decomposition. First, we perform a polynomial number of modifications to ensure
that no edge has an empty interface, and each such modification adds at most one vertex.
Then, to ensure that there is no triple xyz such that x is isolated and η(xyz) ̸= ∅ we again
perform a polynomial number of modifications, each adding at most one vertex. Then,
we remove isolated vertices, which cannot increase the size of the relaxed extended strip
decomposition. Finally, we perform a polynomial (in the size of the current relaxed extended
strip decomposition) number of operations to turn the relaxed extended strip decomposition
into a proper extended strip decomposition. ◀
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