
Finding Equilibria: Simpler for Pessimists, Simplest
for Optimists
Léonard Brice #

Université Libre de Bruxelles, Belgium

Thomas A. Henzinger #

Institute of Science and Technology Austria, Klosterneuburg, Austria

K. S. Thejaswini #

Institute of Science and Technology Austria, Klosterneuburg, Austria

Abstract
We consider equilibria in multiplayer stochastic graph games with terminal-node rewards. In such
games, Nash equilibria are defined assuming that each player seeks to maximise their expected payoff,
ignoring their aversion or tolerance to risk. We therefore study risk-sensitive equilibria (RSEs), where
the expected payoff is replaced by a risk measure. A classical risk measure in the literature is the
entropic risk measure, where each player has a real valued parameter capturing their risk-averseness.
We introduce the extreme risk measure, which corresponds to extreme cases of entropic risk measure,
where players are either extreme optimists or extreme pessimists. Under extreme risk measure,
every player is an extremist: an extreme optimist perceives their reward as the maximum payoff
that can be achieved with positive probability, while an extreme pessimist expects the minimum
payoff achievable with positive probability. We argue that the extreme risk measure, especially in
multi-player graph based settings, is particularly relevant as they can model several real life instances
such as interactions between secure systems and potential security threats, or distributed controls for
safety critical systems. We prove that RSEs defined with the extreme risk measure are guaranteed
to exist when all rewards are non-negative. Furthermore, we prove that the problem of deciding
whether a given game contains an RSE that generates risk measures within specified intervals is
decidable and NP-complete for our extreme risk measure, and even PTIME-complete when all players
are extreme optimists, while that same problem is undecidable using the entropic risk measure or
even the classical expected payoff. This establishes, to our knowledge, the first decidable fragment
for equilibria in simple stochastic games without restrictions on strategy types or number of players.
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1 Introduction

Stochastic systems have been used extensively in several areas including verification [11],
learning theory [1], epidemic processes [20] to name a few. Several real-world systems however
do not work with a centralised control. Therefore, modelling using stochastic systems with
multiple agents makes for more faithful abstractions of such systems without a centralised
control. Some examples of fields in which multi-agent stochastic modelling include cyber
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physical systems [29], distributed and probabilistic computer programs [8], probabilistic
planning [30]. In such cases, the problem of reasoning about multiple agents with several,
often times orthogonal objectives, becomes important. For multi-agent systems modelled
with stochasticity on the underlying arena, a fundamental question to ask is the existence or
finding of an equilibrium – typically, an important decision problem in such games is the
constrained existence problem that asks whether a given game contains an equilibrium where
each player’s (perceived) payoff lies within a given interval. The most popular equilibria in
literature are Nash equilibria (NEs) [23], where each player plays optimally to maximise their
expected payoff, with regard to the other players’ strategies. However, Nash equilibria come
with their own downsides. In terms of computational complexity, the cost of the constrained
existence problem of NEs in stochastic games is prohibitively expensive, or even undecidable
in the general case [31]. But more importantly, NEs do not faithfully model agents in real
world settings since they do not consider their tolerance or averseness to risk.

An example. We illustrate this claim with the help of a simple game, depicted in Figure 1a.
Each vertex other than the start vertex is owned by one player among the players t˝,2,3u

and a play in this game refers to a sequence of moves of a token along the edges of the graph.
The initial vertex s denotes a stochastic vertex, which moves the token to the next vertex
with probability 1

2 at each step. When the token is on a vertex owned by a player i, that
player decides where the token goes next, and when a terminal vertex (vertex t1, t2, t3, or t4)
is reached, the numbers at the terminal vertex indicate the payoff obtained by each player.

If the token moves out of vertex s, player ˝ then chooses between a green pÓq or an
orange action pÑq. If the action Ñ was selected, the player 2 must make a similar choice
(between actions Ó and Ñ). If both players selected the action Ñ, then the player 3 is given
the opportunity to reach a terminal that offers negative reward to either player ˝ or 2, while
the other player gets an additional profit (payoff 1 instead of 0).

A strategy profile is a Nash equilibrium (NE) if no player can increase their expected
payoff by changing their strategy as long as the other players stick to theirs. If player 3

does not use randomisation, there is no NE in this game where she gets an expected payoff
1, since along any play that reaches deterministically either the vertex t3 or t4, one of the
two players ˝ or 2 gets the expected payoff 0 and has an incentive to deviate to the action Ó
at their vertex. However, using randomisation, there is such an NE if both player ˝ and 2

choose action Ñ, and player 3 chooses at random to go either to vertex t3 or t4, each with
probability 1

2 . Then, both player ˝ and player 2 have expected payoff 1, the same as if they
reach the terminals vertices t1 or t2. However, if both the players ˝ and 2 were modelling,
say, safety-critical systems, such a Nash equilibrium is dubious because neither player can
afford, even a low probability of, the reward ´1 as they do not have this tolerance to risk.
Such a strategy profile would not be stable even if only one of the two players ˝ or 2, let
alone both, were risk-averse. However, the strategy where player ˝ choses the action Ñ,
player 2 the action Ó, and player 3 randomises between her choices with equal probability,
is a potential equilibrium in the case where player 2 is risk averse. On the other hand, if all
players ˝, 2, and 3 were risk loving, say they model entities like hackers of a system that
are happy with some chance at a small positive reward, the same strategy would not be an
equilibrium, as player 2 would rather gamble for chance at the reward `1, despite the risk
of a negative reward, thus deviating from the action Ó instead to the “risky” alternative Ñ.

This example thus generalises a line of reasoning that is often made in finance or decision
theory: consider a participant of a certain lottery where they lose $100 with probability 99

100 ,
and wins $10000 with probability 1

100 . While the expected payoff is positive ($1), expectation
alone is insufficient as a decision criterion to participate in the lottery.
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(a) A 3-player stochastic game with a
stochastic vertex.

´4 ´2 0 2 4
´1

0

1

...

...

Risk parameter ρ

M
pp

ay
off
q

(b) Entropic risk measures for player ˝ for varying risk-
parameters.

Figure 1 Entropic risk measure.

Risk measures. A risk measure captures the perception that a player has of what their
payoff will be. Thus, it generalises the notion of expected payoff. Various risk measures
exist in the literature, and have been used extensively in the field of economics and finance.
They include expected shortfall (ES), value at risk (VaR) [2], variance [4], entropic risk
measure (ER) [10]. In terms of graph modelling, these risk measures have been studied
mainly over Markov decision processes (MDPs) using variance (along with mean) as a risk
measure [9, 27, 21], ES [28, 19, 22] (also referred to as conditional value at risk (CVaR),
average value at risk (AVaR), expected tail loss (ETL), and superquantile in literature)
and ER [15, 7, 3]. Studying the entropic risk measure in MDPs appears more practical
compared to ES or using variance-penalised risk measures, due to the intractable exponential
memory [14] and time required to compute optimal strategies [27] for the other measures,
even in MDPs. On the other hand, when the risk measure used is ER, players have optimal
positional strategies in MDPs [16].

Entropic risk measure. The entropic risk measure is computed by assigning a risk parameter
to an agent, i.e., a value ρ P R. The entropic risk measure of a random variable X is then
defined as MρrXs “ ´

1
ρ loge

`

E
“

e´ρX
‰˘

[12] for ρ ‰ 0. Assume X is a player’s payoff. If the
risk parameter ρ is positive, the corresponding players are risk-averse and therefore more
weight is given to worse payoffs. Conversely, players with a negative ρ are risk-loving. When
ρ tends to 0, the entropic risk measure converges to the classical expectation ErXs.

Consider again the game in Figure 1a, and the strategy profile in which player ˝ and
player 2 choose action Ñ, and player 3 goes to the vertex t3 with probability p P r0, 1s,
and to vertex t4 with probability 1 ´ p. Then, player ˝’s perception of such a strategy
profile, depending on her risk parameter ρ, is defined by the entropic risk measure Mrµ˝s “

´ 1
ρ loge ppe´ρ ` p1´ pqeρq. Figure 1b illustrates this formula, where each curve captures

the perceived payoff for a fixed probability p, the thick blue line corresponds to the case
p “ 0, the thick red line to p “ 1, and mixtures of blue and red curves to intermediary cases
– the thick purple curve corresponds to p “ 1

2 . Note that this purple curve reaches exactly
the value 0 when ρ “ 0. This is because 0 is the expected payoff of player ˝ when p “ 1

2 ,
and the entropic risk measure when ρ “ 0 – defined as the limit when ρ approaches zero –
corresponds exactly to the expected payoff. For higher values of ρ, the entropic risk measure
is lower, since it corresponds to cases where player ˝ is more risk-averse and focuses on the
event of reaching the vertex t4; for symmetric reasons, for lower values of ρ, the values of
entropic risk measure are higher.
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Extreme risk measure. Consider the perception of risk our agents may have in the previous
example. If indeed such entities were modelling safety-critical agents where rewards below a
certain threshold are unacceptable, such agents usually do not accept any strategy profile
where they have any positive probability of such rewards, disregarding what the probabilities
actually are, behaving as extremely pessimistic players – they assume that the worst of the
cases that may happen. On the other hand, we may model certain external environment
factors, or hackers of a system as an extremely optimistic player: they are happy with a small
probability of success – they can repeat such attempts with a large number of trials – and
seek to maximise the best payoff they may receive with positive probability.

We define the pessimistic risk measure of a random variable X as the supremum of values
x such that X almost surely takes values above x, or its essential infimum (ess inf); the
optimistic risk measure is defined symmetrically (using ess sup). In Figure 1b, the reader
may have observed that all curves (except the thick blue and the thick red ones) converge to
the value ´1 when ρ tends to `8, and to the value 1 when ρ tends to ´8. These extreme
cases correspond to the pessimistic and the optimistic risk measure, respectively, and we
group them under the umbrella term extreme risk measure (XR).

Risk-sensitive equilibria. Risk-sensitive equilibria are equilibria in multi-player games
defined using a specified risk measure for each player, where no player can improve the risk
measure of their payoff by deviating unilaterally from their strategy. Risk-sensitive equilibria
takes into account the risk-sensitivities of a player to ensure that a player does not have an
incentive to deviate. When the risk measure used is the entropic risk measure, we call such
equilibria entropic risk-sensitive equilibria (ERSEs). When using our novel risk measure –
the extreme risk measure – we refer to them as extreme risk-sensitive equilibria (XRSEs).

▶ Example 1. In the game depicted by Figure 1a, if players ˝ and 2 are extreme pessimists,
and player 3 is an extreme optimist, then in order for player 3 to get the risk measure 1,
it suffices that either the terminal vertex t3 or t4 is reached with positive probability. But
such a strategy profile cannot be an XRSE since there is a play such that either player ˝ or
2 gets the payoff ´1 with positive probability and, as a pessimist, they get then the risk
measure 0 if they deviate to using the Ó. They both have a profitable deviation by avoiding
player 3’s vertex. The only XRSEs in this game are therefore the strategy profiles that
almost-surely reach terminals t1 or t2, leaving then player 3 with the risk measure 0.

Risk-sensitive equilibria is particularly relevant in security contexts, where, for example,
defenders may act conservatively while attackers behave opportunistically. Similarly, in
autonomous systems, different components – such as safety controllers, efficiency optimizers,
or compliance monitors – may operate under independent objectives and distinct risk profiles.
We study ERSEs and XRSEs in a general enough framework where it might also be suitable to
model a variety of situations including epidemic processes and probabilistic planning, where
equilibria on graph games are considered. Incorporating risk measures while considering
equilibria enables more realistic and nuanced models of such multi-agent interactions.

Our results. We consider simple quantitative multiplayer stochastic games played on graphs,
that is, games in which the payoffs that the players receive depend on the terminal vertex that
is reached – and in which an infinite play is associated to the the payoff zero for all players.
In such games, we consider two questions in particular: the existence and the complexity of
the constrained existence problem of both ERSEs and XRSEs.
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In Section 3, we show that the constrained existence problem of ERSEs is undecidable,
extending from the same problem for Nash equilibria in the work of Ummels and Wojtczak [31].
However, building on results on the two-player zero-sum case by Baier et al. [3], we find
restrictions on strategies to recover decidability. Using known results about NEs, we also
show that, when the rewards are all nonnegative, such an equilibrium always exists.

We define extreme risk measure (XR) as a novel risk measure to consider in multi-agent
stochastic systems. In Section 4, we show that our new definition is robust, since it exactly
captures the well-studied entropic risk measure when the risk parameters tend to ˘8. Our
main technical contributions are about the extreme risk measure, and extreme risk-sensitive
equilibria (XRSEs). We show that the constrained existence problem of XRSEs is decidable
and NP-complete. The technical crux of proving NP membership lies in proving that if an
XRSE satisfying the constraints exists, then there exists one that has finite memory, and a
polynomial representation. Such a succinct representation then can therefore can be guessed
and verified in polynomial time. We show that the problem remains NP-complete when
strategies are required to be stationary, pure, or positional. Finally, we show that if all
players are extreme optimists, the problem is PTIME-complete.

As we do for ERSEs, we also prove the existence of XRSEs in games with nonnegative
rewards – and we show that there exists such a stationary equilibrium (where players use no
memory and only randomness) that can be algorithmically constructed in polynomial time.

Related work. Hurwicz criterion is used in decision theory in situations where probabilities
are unknown, and it assigns for a given random variable X and a parameter α P r0, 1s, the
objective of maximising the quantity α maxpXq ` p1´ αqminpXq [17, 5], which generalises
Wald’s maximin criterion [32] that constitutes to one extreme (α “ 0) of Hurwicz criterion.
Our definition of pessimistic risk measure corresponds to Wald’s maximin criterion when only
outcomes of positive probability are considered, while our pessimistic risk measure corresponds
to the other extreme of Hurwicz’s criterion (α “ 1). Even classical notions such as considering
the worst-case scenario obtained by abstracting any stochastic environment and treating it
instead as an adversary can be seen as Wald’s maximin criterion applied on all outcomes,
including probability 0 events.

To the best of our knowledge, equilibria defined using any risk measure, and in particular,
the entropic risk measure, have not been studied in multiplayer graph games. Two works have
considered risk in the specific case of two-player zero-sum games on stochastic arenas. The
first of these works is by Bruyère, Filiot, Randour, and Raskin [6] who have studied “beyond
worst-case synthesis problem” which considers some measures that address risk averseness in
a player in the context of synthesis. They consider “strongly risk-averse” strategies, those
which avoid outcomes below a certain threshold and maximise the expected payoff, resulting
in an entirely different risk measure. Baier, Chatterjee, Meggendorfer, and Piribauer have
considered two-player zero-sum stochastic games with total-reward objectives (payoff is the
sum of the rewards seen along the way), when one player is risk-sensitive and wants to
optimise their entropic risk measure [3]. They show that computing optimal strategies can
be done in PSPACE (when the base e is replaced by an algebraic number). If the base of
the exponent is e, computing optimal strategies is in 3EXPTIME due to a recent result of
Gallego-Hernández and Mansutti [13].

The two-player zero-sum case is a specific case of the constrained existence problem
in two-agent systems, where the payoff functions of the two agents as well as their risk
parameters are exactly the negation of each other. On the other hand, another subcase of
the constrained existence problem of equilibria defined using the entropic risk measure is of
course the constrained existence problem of NEs, when the risk parameters of all agents are
set to 0, which is known to be undecidable from the work of Ummels and Wojtczak [31].

MFCS 2025
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2 Preliminaries

We assume that the reader is familiar with the basics of probability and graph theory.
However, we define some concepts for establishing notation.

Probabilities. Given a (finite or infinite) set of outcomes Ω and a probability measure P
over Ω, let X be a random variable over Ω, that is, a mapping X : Ω Ñ R. We then write
EPrXs, or simply ErXs, for the expectation of X, when it is defined. Given a finite set
S, a probability distribution over S is a mapping d : S Ñ r0, 1s that satisfies the equality
ř

xPS dpxq “ 1. We write Supppdq for the support of the distribution d, that is, the set of
elements x P S such that dpxq ą 0.

Risk measures. Given a set Ω of outcomes, a risk measure over Ω is a mapping M which maps
a probability measure P over Ω and a random variable X to a real value MPrXs. Sometimes,
in the literature, risk measures are expected to have the following three properties: (1) they
are normalised, i.e., we have MPr0s “ 0; (2) they are monotone, i.e., the pointwise inequality
X ď Y implies MPrXs ď MPrY s; and (3) they are translative, i.e., MPrX ` cs “ MPrXs ` c

for every constant c. In particular, the expectation of a random variable E satisfies those
properties. We will not need those properties, and only state them here to remark that
the risk measures we consider satisfy them. Note that translativity sometimes refers to the
opposite of the definition given here, i.e., the property MPrX ` cs “ MPrXs ´ c for every c.
This is a matter of whether we use a risk measure or its negation.

Graph, paths, games. A directed graph pV, Eq consists of a set of vertices V and a set of
ordered pair of vertices, called edges, E. In a directed graph pV, Eq, for each vertex u, we
write Epuq to denote the set E X ptuu ˆ V q. For simplicity, we often write uv for an edge
pu, vq P E. A path in the directed graph pV, Eq is a (finite or infinite) word π “ π0π1 . . . over
the alphabet V such that πnπn`1 P E for every n such that πn and πn`1 exist. We write
Occpπq for the set of vertices occurring along π, and Infpπq for those that occur infinitely often,
if there are any. The prefix π0 . . . πn is written as πďn or πăn`1, and the suffix πnπn`1 . . .

is written as πěn or πąn´1. A finite path π “ π0 . . . πn is simple if every vertex occurs at
most once along π. It is a cycle if its last vertex πn is such that πnπ0 P E.

▶ Definition 2 (Game). A game is a tuple G “ pV, E, Π, pViqiPΠ, p, µq, where we have:
a directed graph pV, Eq, called the underlying graph of G;
a finite set Π of players;
a partition pViqiPΠYt?u of the set V , where Vi denotes the set of vertices controlled by
player i, and the vertices in V? are called stochastic vertices;
a probability function p : EpV?q Ñ r0, 1s, such that for each stochastic vertex s, the
restriction of p to Epsq is a probability distribution;
a mapping µ : T Ñ RΠ called payoff function, where T is the set of terminal vertices, i.e.
vertices of the graph pV, Eq that have no outgoing edges. We also write µi, for each player
i, for the function that maps a terminal vertex t to the ith coordinate of the tuple µptq.

In a more general framework, payoffs can be assigned to all infinite paths. Here, we only
focus on what is usually called simple quantitative games, i.e. games in which the underlying
graph contains terminal vertices and the payoffs depend only on which terminal vertex is
eventually reached. We thus extend the mapping µ to the set pV zT qωYpV zT q˚T by defining
µpv1 . . . vktq “ µptq, and µpv1v2 . . . q “ p0qiPΠ (if no terminal vertex is reached, everyone gets
the payoff 0). A game is Boolean if all payoffs belong to the set t0, 1u.
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An initialised game is a tuple pG, v0q, usually written Gæv0 , where v0 P V is an initial
vertex. In what follows, when the context is clear, we use the word game also for an initialised
game. We often assume that we are given a game Gæv0 and implicitly use the same notations
as in the definition above.

▶ Example 3. The example of initialised game given in Figure 1a is redrawn in Figure 2a.
There, the vertex a is controlled by player ˝, the vertex b by player 2, and the vertex c by
player 3. The vertex s is stochastic, with probability 1

2 of going to a and probability 1
2 back

to the stochastic vertex s.

▶ Definition 4 (Markov decision process, Markov chain). A (initialised or not) Markov decision
process is a game with one player. A Markov chain is a game with zero players.

Histories and plays. We call play a path in the underlying graph that is infinite, or whose
last vertex is a terminal vertex. Other paths are called histories. We will then use the
notations HistpGq to denote finite paths in the graph of the game, and PlayspGq to denote
both finite and infinite paths. For a history h “ h0 . . . hn, we write lastphq “ hn. We will also
write HistipGq for the set of histories whose last vertex is controlled by player i. A history or
play in an initialised game Gæv0 is a history or play in G whose first vertex is v0.

Strategies, and strategy profiles. In a game Gæv0 , a strategy for player i is a mapping σi

that maps each history hu P HistipGæv0q to a probability distribution over Epuq. The set
of possible strategies for player i in Gæv0 is written as StratipGæv0q. A path π0π1 . . . (be it
a history or a play) is compatible with the strategy σi if for each k such that πk P Vi, the
probability that the strategy σi proposes hk`1 after history hďk is positive, that is, we have
σiphďkqphk`1q ą 0. A strategy profile for a subset P Ď Π is a tuple pσiqiPP . A strategy
profile for the set P of players is written σ̄P , or simply σ̄ when P “ Π. We also write σ̄´i

for σ̄P where P “ Πztiu. Similarly, we use pσ´i, σ1
iq to denote the strategy profile τ̄ defined

by τi “ σ1
i and τj “ σj for j ‰ i. We sometimes write σ̄phvq to mean σiphvq where i is the

player controlling v, or ppvq when v P V?.
For some history h, and a strategy σi, we define the strategy truncated to a history h,

written σiæhv, as the strategy σ1
i : h1 ÞÑ σiphh1q in the game Gæv.

A strategy profile σ̄´i in the game Gæv0 defines an initialised Markov decision process
Gæv0pσ̄´iq, where the vertices of the (infinite) underlying graph are the histories of Gæv0 and
the edges are added from hu to each history huv iff uv P E. Similarly, a strategy profile σ̄

for Π defines an initialised Markov chain Gæv0pσ̄q. Thus, it also defines a probability measure
Pσ̄ over plays – which turns the payoff functions µi into random variables.

Pure, stationary, and positional strategies. We say that a strategy σi is pure when for each
history hu, there is a vertex v such that σiphuqpvq “ 1; then we often just write σiphuq “ v.
We say that σi is stationary when for every two histories hu, h1u P HistipGæv0q, we have
σiphuq “ σiph

1uq. In that case, we sometimes assume that strategy σi is defined in every
game Gæu and simply write σipuq for σiphuq. Finally, the strategy σi is positional when it is
pure and stationary. Those concepts are naturally generalised to strategy profiles.

Memory structures. A memory structure for player i is a tuple pSi, s0, δi, νiq, where Si is a
finite set of memory states, where s0 P Si is an initial state, where δi is a memory-update
mapping that maps each pair ps, vq P Si ˆ V to a memory state s1, and where νi is an
output mapping that maps each pair ps, vq P Si ˆ Vi to a distribution d over Epvq. The

MFCS 2025



30:8 Finding Equilibria: Simpler for Pessimists, Simplest for Optimists

s

a b c

t1 :
˝

0
˝

0
˛

0 t2 :
˝

0
˝

0
˛

0

t3 :
˝

1
˝

´1
˛

1

t4 :
˝

´1
˝

1
˛

1

1
2

1
2

(a) Figure 1a redrawn for convenience.
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Figure 2 A game and a memory structure.

memory-update mapping can be extended to a mapping δ˚
i : HistpGæv0q Ñ Si with δ˚

i pεq “ s0
and δ˚

i phuq “ δipδ
˚
i phq, uq for each history hu. The memory structure then induces a strategy

σi defined by σiphuq “ νipδ
˚
i phq, uq for each history hu P HistiGæv0 . A strategy induced by

a memory structure is called finite-memory strategy. Note that stationary strategies are
exactly the strategies that are induced by a memory structure with |Si| “ 1.

We analogously define memory structures for a subset of players P Ď Π, which also
defines finite-memory strategy profiles. Note that if σ̄P is a finite-memory strategy profile,
then each σi with i P P is finite-memory – the memory structure inducing that strategy
is obtained by replacing ν by its restriction to S ˆ Vi. Conversely, if each σi with i P P is
finite-memory, then the strategy profile σ̄P is finite-memory – a collective memory structure
can be obtained by constructing the product of individual memory structures.

▶ Example 5. Figure 2b depicts an example of memory structure, for player 2, on the game
of Figure 2a. The strategy induced can be presented as follows: when the vertex b is reached,
player 2 goes deterministically to the vertex t1 if s has been visited an even number of times.
Otherwise, he goes to c with probability 1

3 . Note that the output only depends on the history
that was seen: player 2 does not see whether player ˝ deterministically chose to go to the
vertex b, or did it as the outcome of a randomised choice.

Risk-sensitive equilibria, constrained existence problem. In multiplayer stochastic games,
we wish to study generalisations of the classical Nash equilibria where the expectation is
replaced by other risk measures. Such generalisations are called risk-sensitive equilibria [24].
When M is a risk measure and σ̄ is a strategy profile, we write Mpσ̄q for MPσ̄ .

▶ Definition 6 (Risk-sensitive equilibrium). Let Gæv0 be a game, and let M̄ “ pMiqiPΠ be a
tuple of risk measures. Let σ̄ be a strategy profile in Gæv0 , let i be a player, and let σ1

i be a
strategy for player i, called deviation of player i from σ̄. The deviation σ1

i is profitable with
regards to the risk measure Mi if we have Mipσ̄´i, σ1

iqrµis ą Mipσ̄qrµis. The strategy profile
σ̄ is a M̄ -risk-sensitive equilibrium, or M̄ -RSE, if no player i has a profitable deviation from
σ̄ with regards to Mi.

Nash equilibria in a game Gæv0 can then be defined as M̄ -risk-sensitive equilibria, where
Mi “ E for each player i. The following problem is the main focus throughout our paper.

▶ Question (Constrained existence of risk-sensitive equilibria). Given a game Gæv0 , a tuple of
risk measures M̄ , and two payoff vectors x̄, ȳ P QΠ, does there exist a M̄ -RSE σ̄ in Gæv0 such
that for each i P Π, we have xi ď Mipσ̄qrµis ď yi?

We mainly consider the entropic risk measure and the extreme risk measure.
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3 Entropic risk measure: intractable in multiplayer games

The entropic risk measure is defined using a risk parameter, i.e. a real value ρ P Rzt0u: large
positive values indicate risk-averseness, large negative values risk-inclination.

▶ Definition 7 (Entropic risk measure). Given a risk parameter ρ, the entropic risk measure
is defined for every probability measure P and random variable X as:

MP
ρrXs “ ´

1
ρ

loge

`

EP “

e´ρX
‰˘

.

This definition is generalised by replacing Euler’s constant with some base β ą 1. The
entropic risk measure with base β is then defined by MP

βρrXs “ ´
1
ρ logβ

`

EP “

β´ρX
‰˘

. The
probability measure P is omitted when clear from the context.

To see a visual representation of the entropic risk measure, see Figure 1 in the introduction.
▶ Remark 8.

The generalisation to any base β ą 1 follows only computational goals, since algebraic
bases will be easier to handle. Baring such concerns, the definitions are equivalent, since
for every β we have Mβρ “Mρ1 , where ρ1 “ ρ logepβq.
Definition 7 implies that for ρ “ 0, the function is not defined. However, it is known
that for all P, β and X, the quantity MρrXs converges to ErXs when ρ tends to 0 (see
e.g. [26]). Therefore, we henceforth assume that Mβ0rXs “ ErXs to make risk entropy
defined for all finite risk parameters ρ.

When we are given a profile ρ̄ “ pρiqiPΠ of risk parameters, we write Mβρ̄rµs for the tuple
pMβρirµisqiPΠ. Risk entropy defines a family of RSEs, namely the pMβρiqi-RSEs, that we also
call pβ, ρ̄q-entropic risk-sensitive equilibria, or pβ, ρ̄q-ERSEs. We now study the constrained
existence problem of pβ, ρ̄q-ERSEs. Unfortunately, it is undecidable in the general case.

▶ Theorem 9. The constrained existence problem of pβ, ρ̄q-ERSEs with ρ̄ P QΠ is undecidable,
even for any fixed value of β, for ρ̄ “ p0qi, and with only nonnegative payoffs.

Proof. The constrained existence problem of Nash equilibria is undecidable [31, Theorem
4.9]. Since Nash equilibria are ERSEs with ρi “ 0 for each player i, our result follows. ◀

We therefore briefly study cases where the class of strategies considered is restricted.

▶ Theorem 10. The constrained existence problem of pβ, ρ̄q-ERSEs, in quantitative simple
stochastic games, with rational risk parameters:
1. remains undecidable when players are restricted to pure strategies;
2. is decidable when players are restricted to stationary strategies, or positional strategies:

a. in 3EXPTIME if β “ e;
b. in PSPACE if the base β is algebraic:

it is NP-hard when restricted to positional strategies, and
DR-complete when restricted to stationary strategies.

We end this section with this result: ERSEs are guaranteed to exist, if all rewards are
nonnegative.

▶ Theorem 11. Let Gæv0 be a simple stochastic game with only nonnegative payoffs. Then,
there exists a (pure) pβ, ρq-ERSE over Gæv0 .

We conjecture that this result remains true when negative rewards are involved.

MFCS 2025
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4 Extreme risk measure: limit of entropic risk measure

This section introduces a new risk measure that provides a tractable alternative to existing
risk measures available in the literature. Let X be a random variable ranging over R. The
pessimistic risk measure of X is the highest value x such that X almost-surely takes a value
above x. When X takes finitely many values, that corresponds to the least value that it
takes with positive probability. In probability theory, that measure is sometimes referred to
as essential infimum, written ess inf. The definition of optimistic risk measure is symmetric.

▶ Definition 12 (Optimistic, pessimistic risk measure). The pessimistic risk measure of a
random variable X is defined by PMrXs “ ess infpXq “ suptx P X | PpX ě xq “ 1u.
Analogously, the optimistic risk measure of X is OMrXs “ ess suppXq “ inftx P X | PpX ď

xq “ 1u.

Note that the values of probabilities do not influence the optimistic or the pessimistic
risk measures, which depend only on which events have zero or nonzero probability. Thus,
those risk measures are well-suited to model players that do not care about probabilities
because they need certainties, or simply because they do not know them – which is often the
case in real-world stochastic processes.

Given a game Gæv0 , we can assign a risk measure for each player by defining a partition
pP, Oq of Π, where the set P represents the set of players that are pessimists, whose perceived
payoffs are defined by the pessimistic risk measure, while O represents the optimists, who
intend to maximise their optimistic risk measure. For convenience, we group both measures
under the umbrella term extreme risk measure (XR), and often assume that pP, Oq is given;
then, we write Xi for PM when i P P , and for OM when i P O. Since each player i is
interested only in the risk measure of their own payoff, we also write Xipσ̄q for the quantity
Xipσ̄qrµis. We define extreme risk-sensitive equilibria, or XRSEs for short, as pXiqi-RSEs.

Our definition, which considers only outcomes of positive probability, is slightly different
from a situation where each player treats every other player or stochastic vertex as an
adversary. Indeed, in Figure 1, such an adversarial treatment would mean that player
˝ assumes that the probability 0 event of the play staying in the vertex s could also be
realised, whereas in for extreme risk measure, such a probability 0 event is disregarded. The
same would hold if the stochastic vertex was instead assigned to any player whose strategy
randomises between staying and leaving that vertex.

We show that our definition of extreme risk measure corresponds to the limit cases of
entropic risk measure. Observe that in Figure 1, when player 3 follows a randomized strategy,
player ˝’s risk measure converges to ´1 when ρ tends to `8, and to `1 when ρ tends to
´8. We formally prove that our definition of extreme risk measure coincides with the limit
case of the entropic risk measure.

▶ Theorem 13. Let X be a random variable that ranges over R, and let β ą 1.
The limit of the risk entropy of X when ρ tends to `8 exists and is equal to the pessimistic
risk measure, that is, we have limρÑ`8 MβρrXs “ PMrXs.
Similarly, the limit of the risk entropy of X when ρ tends to ´8 exists and is equal to
the pessimistic risk measure, that is, we have limρÑ´8 MβρrXs “ OMrXs.

5 Constrained existence of extreme risk sensitive equilibria

We now study the computational complexity of the constrained existence problem of XRSEs.
The main result of this section will show that, contrary to the same problem with ERSEs,
it is a decidable fragment of the constrained existence of RSEs, as it is NP-complete. We
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will also study some subcases, showing that NP-completeness remains true when players are
restricted to positional, stationary, or pure strategies. Finally, we will show that when all
players are optimists, the problem becomes PTIME-complete.

5.1 Membership in NP
NP-membership is a consequence of this fact: when an XRSE exists, there also exists one
with the same extreme risk measures that uses finite memory, polynomial in the size of the
game. Let us first illustrate, with examples, how and why memory is required in such XRSEs.

▶ Example 14. We consider the following constrained existence question and analyse the
same question on three example graphs.

p˚q Is there an XRSE σ̄ such that we have X˝pσ̄q “ X˝pσ̄q “ 1?

Game in Figure 3a. The answer to Question p˚q in this game is no. Indeed, if there is such
an XRSE σ̄ in this game, then necessarily, following σ̄, both terminal vertices t1 and t2 are
reached with positive probability, and the probability of following the cycle ab forever is 0
(see Appendix E of full version). Intuitively, the problem here is that such a strategy profile
would require a randomisation: for both players to get the payoff 1 with positive probability,
there must be a random event that decides which of them will actually have that payoff. In
our world, such a situation would be solved by tossing a coin. In the game, it means that one
of the players proceeds to a randomised action. But that player, say 2 again, can deviate
from such a strategy and refuse to leave the cycle. Such refusals form undetectable deviations
from the strategy, since player ˝ only sees that player 2 went from b to a, which can be
interpreted as a possible outcome of the expected randomisation. In other words, the player
that tosses a coin is the only one that sees the result, and can therefore lie about it. This
phenomenon can be avoided only if such randomised choices are made by other “impartial”
players or by stochastic vertices.

Game in Figure 3b. Consider now a slight modification, as shown in Figure 3b. There,
the first player that plays is determined at random by the edge that is taken from an initial
stochastic vertex. The answer to Question p˚q for this game is yes. Indeed, the pure strategy
profile defined by a strategy of player ˝ that maps the history ca to the terminal t1 and the
strategy of player 2 that maps the history cb to terminal t2, and both strategies maps any
other history to vertex b, is an XRSE. Indeed, if any player deviates and refuses to leave the
cycle, the other one will immediately refuse too, making it impossible to gain any benefit
from such a deviation. Compared to the previous example, the existence of the stochastic
vertex c provides the players with a trustable common coin, that they can use to decide
which of them will get payoff 1 and which will get payoff 2.

Game in Figure 3c. Finally, consider the game depicted in Figure 3c. Here, along every
play, one player is given the opportunity of getting payoff 2, by going to the terminal vertex
t3. But the answer to Question p˚q remains yes. Indeed, the pure strategy profile σ˝ where
from vertex d, player ˝ goes from vertex d to a and then to b, from which player 2 leaves
to t2, and symmetrically, from vertex e, player 2 goes to a through b from which player ˝
goes to t1 is an XRSE. For instance, if player ˝ deviates and goes from d to t3, then there
is still the play cebat1 that is generated with positive probability and from which player ˝
cannot deviate without triggering a punishing strategy that would make such a deviation
non-profitable.

MFCS 2025
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Figure 3 Some games involving two pessimistic players.

We see in this last example that to build an XRSE that generates a given tuple of
risk measure values, we need one play for each player that anchors that player – i.e., a
play in which they get their risk measure as a payoff (the lowest/highest value they obtain
with positive probability), and from which they cannot deviate in a profitable way. Then,
randomisation (or stochastic vertices) is required to split plays into two or more potential
future plays where each anchors different subset of players, and memory is required to
remember the subset of players that are being anchored – or whether a player has deviated
from the strategy and must be punished.

In line with this intuition, the following theorem bounds the amount of memory required
by an XRSE. We further show that there is a succinct encoding of this bounded memory
that has size that is polynomial in the number of players and vertices in the game.

▶ Theorem 15. Let Gæv0 be a game with n vertices and p players, let pP, Oq be a partition
of the set Π, and let σ̄ be an XRSE in Gæv0 . Then, there exists a finite-memory XRSE σ̄‹

with at most 3np´ 2n` p` 1 many memory states, such that Xpσ̄‹q “ Xpσ̄q. Furthermore,
if σ̄ is pure, then there is such a strategy profile σ̄‹ that is pure.

Proof sketch. We prove this theorem by formalising the idea of anchoring plays. To do so,
we define a labelling function Λ, that maps each history h compatible with σ̄ to the set of
players that is, after the history h, currently being anchored. In Lemma 16, we show the
existence of such a labelling, with some properties. In the sequel, we write z̄ to denote the
risk measure of each player in the strategy profile σ̄, that is, the tuple z̄ “ pziqi “ Xpσ̄q.

▶ Lemma 16 (The labelling Λ). There exists a labelling Λ that maps each history h P HistGæv0

compatible with σ̄ to a subset of players, that is, Λphq Ď Π, such that for each such h, if we
write tv1, . . . , vku “ Supppσ̄phqq, the labelling Λ satisfies the following properties.
1. If the vertex lastphq is stochastic, or belongs to some player i R Λphq, then the sets

Λphv1q, . . . , Λphvkq form a partition of Λphq.
2. If the vertex lastphq belongs to some player i P Λphq, then the sets Λphv1qztiu, . . . , and

Λphvkqztiu form a partition of Λphqztiu, and i belongs to all sets Λphv1q, . . . , Λphvkq.
3. For each optimistic player i P Λphq, we have Xipσ̄æhq “ zi.
4. For each pessimistic i P Λphq, for all strategies τi of player i, we have Xipσ̄´iæh, τiq ď zi.
5. If there is a successor vℓ such that Λphvℓq “ Λphq, then all other successors vℓ1 are such

that Xipσ̄æhvℓ1 q ă zi for each optimist i P Λphq, and there exists τi with Xipσ̄´iæhvℓ1 , τiq ą zi

for each pessimist i P Λphq.
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Since Λ labels vertices with sets of players, potentially there are exponentially many
subsets of players A that are in the range of Λ. However, for a Λ that satisfies Items 1–5 of
Lemma 16, we show that there are at most 3p´ 2 subsets A such that λphq “ A for some
history h by an inductive counting argument. We use those subsets to create p3p ´ 2qn
memory states, to remember which players are being anchored, and what was the last vertex
visited (to detect deviations). We add one punishing state for each player, used when a
deviation by that player is detected, adding up to the desired number. We construct an
XRSE σ̄‹ from Λ that uses only those memory states. ◀

Using Theorem 15, we can show the following lemma.

▶ Lemma 17. The constrained existence problem of XRSEs is in NP. The same problem
when players are restricted to pure strategies is still in NP.

Proof. Let Gæv0 be a game. Let pP, Oq be a partition of Π, and let x̄ and ȳ be threshold
vectors. By Theorem 15, if there exists a (pure) XRSE with x̄ ď Xpσ̄q ď ȳ, then there exists
one with at most 3np´ 2n` p` 1 memory states, where p is the number of players and n

is the number of vertices. Such a strategy profile can be guessed in polynomial time. We
now show that, once such a finite-memory strategy profile σ̄ is guessed, one can check in
polynomial time whether it is an XRSE, and satisfies the constraint x̄ ď Xpσ̄q ď ȳ.

First, given σ̄, for each player i, the quantity Xipσ̄q can be computed in polynomial time,
since it reduces to computing player i’s risk measure in the Markov chain induced by σ̄

(which has polynomial size).
Second, checking that x̄ ď Xpσ̄q ď ȳ can be done in polynomial time.
Third, for each player i, we check that player i has no profitable deviation. This can also
be done in polynomial time by computing the best risk measure player i can get in the
MDP induced by σ̄´i (which has polynomial size). ◀

5.2 Membership in NP with restrictions on strategies
We have shown NP-membership of the constrained existence problem of XRSEs in the general
case. We now consider variants where the space of a strategies is restricted to stationary,
positional or pure strategies. We show that the problem is in NP for each of these cases.

▶ Lemma 18. The constrained existence problem, when all the players are restricted to
positional, stationary, or pure strategies, is in NP.

Proof. We show that we can still guess a strategy profile, and verify in polynomial time
whether it is indeed an XRSE. For the positional and stationary cases, guessing a strategy
profile is straightforward, since such a strategy profile can always be represented using
polynomially many bits. We can then verify that a given strategy profile σ̄ satisfies the
constraints and also is an XRSE in polynomial time. For pure strategies, memory may be
required. But we showed, alongside Theorem 15, that if there is a pure XRSE satisfying the
constraints, there is one with polynomial memory: our result follows. ◀

5.3 NP-hardness
We now prove hardness, for the general setting as well as when strategies are restricted.

▶ Lemma 19. The constrained existence problem of XRSEs is NP-hard, even when all players
are pessimists and all rewards are nonnegative. It remains NP-hard when the strategies are
restricted to stationary, pure, or positional ones.
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Figure 4 Construction of a game GΦ from a 3SAT formula Φ.

Proof sketch. We reduce the 3SAT problem to our problem. From a given formula Φ, we
construct the game depicted by Figure 4, where all players are pessimistic, and the symbol @
is used to mean “every other player”. For each literal ℓ P txi,␣xi | i P t1, . . . , nuu, we define
two players, namely player ˝ℓ and player 2ℓ. We also define a player Cj for each clause Cj .
Each of those players controls one vertex, labelled by their name. We show in the complete
proof that this game contains a (positional) XRSE where a witness player, player 3, gets
risk measure 2 if and only if Φ is satisfiable.

Intuitively, the game consists of a sequence of gadgets where a value is given to each
variable xi, depending on whether player ˝xi takes the edge to the vertex sxi (variable set
to true) or to the vertex ␣xi (variable set to false). That player cannot randomise between
those two edges, because she does not get the same risk measure on both sides, and therefore
would have a profitable undetectable deviation. When it is decided that the literal ℓ is true,
player 2ℓ̄ is given the possibility to deviate and get the payoff 2. In the final gadget, each
clause player Cj must choose a literal ℓ of the clause Cj that she claims to be true, under
the valuation that has been defined with the previous gadgets. Then, player 2ℓ gets risk
measure 1: that player will thus have a profitable deviation if and only if he was given the
possibility to deviate, i.e., if the literal ℓ was actually set to false. ◀

This lemma, along with Lemma 17 and Lemma 18, proves the following theorem. Observe
that our construction did not use any negative rewards, and hence the hardness results hold
already for nonnegative rewards, while our membership result works with any combination
of positive and negative rewards.

▶ Theorem 20. The constrained existence problems for XRSEs, for pure XRSEs, for
stationary XRSEs, and for positional XRSEs, are all NP-complete. The lower bound holds
even when all players are pessimistic and all rewards are non-negative.

We will now turn to a last subcase, where our problem turns out to be decidable in
deterministic polynomial time.

5.4 Things get easier when everyone is optimistic
Our NP-hardness results required only pessimistic players. We now show that optimists are
easier to deal with. The constrained existence problem of XRSEs becomes PTIME-complete
when the perceived reward of each player is defined by the risk measure OM.

We first show an upper bound by giving a polynomial-time algorithm. The intuition
is that an optimistic player has a profitable deviation as soon as a vertex is reached, with
positive probability, from which that player can get a payoff higher than their risk measure.
This is in contrast to pessimists, who have a profitable deviation only when they can avoid
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getting their risk measure as a payoff in all plays compatible with the strategy profile. Our
algorithm iteratively identifies vertices that must never be reached, and then removing from
the game the edges that must consequently never be taken.

▶ Lemma 21. If all players are optimists, then the constrained existence problem of XRSEs
is in PTIME, and there is an algorithm that decides it in time Oppm2q, where m is the
number of edges in G and p the number of players. Moreover, the algorithm can be modified
to output an XRSE that satisfies the constraints, if one exists, in time Oppm2 `m3q. If all
the upper thresholds yi are nonnegative, it takes time Oppm2q.

Proof Sketch. We want to decide whether there exists an XRSE σ̄ satisfying the constraint
x̄ ď Xpσ̄q ď ȳ. The algorithm deals with two cases, that we call cycle-friendly and cycle-
averse cases, separately. In the cycle-friendly case, we have yi ě 0 for all players i. Then,
an XRSE could have positive probability of reaching no terminal vertex. However that is
impossible in the cycle-averse case, where there is a player i such that yi ă 0. In this proof
sketch, we describe only the algorithm in the cycle-friendly case.

The algorithm constructs a decreasing sequence of sets of edges E0, E1, . . . until it reaches
a fixed point. For each set Ek, it considers the strategy profile σ̄Ek , defined as follows:
from each non-stochastic vertex v, when v is seen for the first time, it randomises uniformly
between all edges vw P Ek. Later, if v is visited again, it always repeats the same choice. If
some player i deviates and takes an edge that they are not supposed to take, then all the
players switch to a positional strategy profile designed to minimise their risk measure. Such
a strategy profile is finite-memory, but requires 2|V ||V | ` p memory states to be represented
as a memory structure: we therefore use the set Ek as a succinct representation.

At each iteration k, the algorithm identifies new sets of vertices V k
/ that must be avoided.

This includes the terminals that give some player i a payoff that is larger than yi, or vertices
from which player i can deviate and obtain a higher value than the value offered by the
strategy profile Xipσ̄

Ekq. If it is not possible to avoid reaching the set V k
/, the answer No is

returned. Otherwise, the set Ek`1 is defined from Ek by removing edges that ensure that
V k
/ is not reached with positive probability. The algorithm stops when there are no more

edges to remove and answers Yes and if we have Xipσ̄
Ekq ě xi for each i, and No otherwise.

Each iteration requires time Opmpq to identify and remove edges. Since there are Opmq
many edges, the algorithm terminates in time Oppm2q. ◀

Finally, we show that the problem is PTIME-hard, even when there are only two players.

▶ Lemma 22. The constrained existence problem of XRSEs with optimistic players is
PTIME-hard even with only two players.

Proof sketch. We give a log-space reduction from the problem of deciding two-player zero-
sum reachability games, which is known to be PTIME-complete [18, Proposition 6]. ◀

We can now conclude this section with the following theorem.

▶ Theorem 23. The constrained existence problem of XRSE is PTIME-complete when all
players are optimists, that is, when P “ H.

6 The existence of extreme risk sensitive equilibria

This section finally answers the classical question about equilibria: are they guaranteed to
exist? We show that (stationary) XRSEs exist when all rewards are nonnegative. Although
the result is reminiscent of the same result we proved for ERSEs (Theorem 11), it requires a
different, and constructive proof that we discuss below.
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We motivate the constructive algorithm with an example. Consider the game depicted in
Figure 3a that involves two pessimists: player ˝ and player 2. Both players want to leave
the cycle, but each of them would prefer that the other player leaves. If we first consider the
strategy profile that always randomises between all the available edges, then both terminal
vertices are reached with positive probability, and it is almost sure that one of them is
reached: both players get therefore risk measure 1. Then, player 2 (and symmetrically player
˝) has a profitable deviation by refusing to leave the cycle, and always going back to the
vertex a. Note that player ˝ cannot detect such a deviation, since she does not have access
to the internal coins tossed by player 2. Then, we remove the edge bt2 (or at1). This results
in a set of edges where player 2 gets the payoff 2, and player ˝ cannot get more than 1,
ensuring that the new strategy profile that we obtain is a (stationary) XRSE.

▶ Theorem 24. Let Gæv0 be a game with only non-negative rewards, and let pP, Oq be a
partition of Π. Then, there exists a stationary XRSE in Gæv0 . Moreover, there exists an
algorithm that, given such a game, outputs the representation of such an XRSE in time
Opm2pq, where m is the number of edges, and p the number of pessimistic players.

Proof sketch. Our algorithm constructs a decreasing sequence E “ E0, E1, . . . of sets of
edges, and considers, for each k, the stationary strategy profile that randomises between all
the outgoing edges in Ek from all vertices. If this strategy profile is not an XRSE, there is a
player i who has a profitable deviation. We carefully identify edges used by player i, and
remove them. This process always terminates, and the set obtained defines an XRSE. ◀

Like in the case of ERSEs, we conjecture that existence, and even existence of a stationary
XRSE, remain true in the general case. We remark that even for Nash equilibria, existence
of an NE in such simple stochastic game is known only if all the rewards are nonnegative.

7 Discussion

Our definition of extreme risk measure opens up several promising directions for future
research. One immediate extension of our work would be to study games with more
sophisticated objectives, such as mean payoff or discounted sum. Another extension is to
study the concurrent version of such games, where players choose actions concurrently rather
than in a turn-based setting. Finally, our definition of risk-sensitive equilibria is modelled
after Nash equilibria and suffers from several of their limitations. Like Nash equilibria, RSEs
allow irrational behaviours when one player deviates and must be punished, as in our game of
Figure 3c. Exploring alternative definitions of RSE, modelled after other equilibria concepts
more suited for games on graphs [25, Section 7.1], such as subgame-perfect equilibria, could
provide a relevant framework for player decision-making.
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