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Abstract
Geometric hitting set problems, in which we seek a smallest set of points that collectively hit a given
set of ranges, are ubiquitous in computational geometry. Most often, the set is discrete and is given
explicitly. We propose new variants of these problems, dealing with continuous families of convex
polyhedra, and show that they capture decision versions of the two-level finite adaptability problem
in robust optimization. We show that these problems can be solved in strongly polynomial time
when the size of the hitting/covering set and the dimension of the polyhedra and the parameter space
are constant. We also show that the hitting set problem can be solved in strongly quadratic time for
one-parameter families of convex polyhedra in constant dimension. This leads to new tractability
results for finite adaptability that are the first ones with so-called left-hand-side uncertainty, where
the underlying problem is non-linear.
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1 Introduction

In this paper we present three contributions on hitting and covering problems for families
of convex polyhedra. (Throughout the paper, all polyhedra considered are convex.) First,
we introduce a new flavor of these problems, dealing with hitting or covering continuous
families of polyhedra, and show that they capture decision versions of the two-level finite
adaptability problem in robust optimization. Next, we show that general methods from
quantifier elimination yield strongly polynomial time algorithms for these problems when
certain parameters are constant. Last, we present a fixed-parameter algorithm for a special
case of our continuous hitting set problem.
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33:2 Hitting and Covering Affine Families of Convex Polyhedra

1.1 Hitting affine families of polyhedra

An affinely parameterized family of polyhedra in Rd, or an affine family of polyhedra for short,
is a continuous family P (Ω) of polyhedra in Rd defined by a domain Ω ⊂ Rp and two affine
maps A : Ω 7→ Rm×d and b : Ω 7→ Rm via

P (Ω) = {P (ω) : ω ∈ Ω} where P (ω) =
{

x ∈ Rd : A(ω)x ≤ b(ω)
}

. (1)

Observe that an affine family of polyhedra has three defining parameters: the dimension d

of the ambient space of the polyhedra, the dimension p of the parameter space Ω, and the
number m of constraints defining each polyhedron. When every polyhedron P (ω) is bounded,
we call P (Ω) an affine family of polytopes.

Figure 1 Two examples of affine families of polygons together with a hitting set (the black dots);
For readability, we represent the polygon P (ω) for only a finite subset of ω in the domain.

We call a set S ⊂ Rd a hitting set for an affine family of polyhedra if S intersects every
member of that family. See Figure 1 for some examples. We adopt the following important
convention: if an affine family of polyhedra P (Ω) has one empty member, that is if P (ω) = ∅
for some ω ∈ Ω, then P (Ω) has no hitting set. We first consider the following computational
problem:

Given an integer k and an affine family of polyhedra, does that family admit a hitting
set of size k?

1.2 Context: robust optimization and finite adaptability

This continuous hitting set problem arises as the decision version of a special case of the
finite adaptability problem in robust optimization [6]. This line of research in mathematical
programming deals with uncertainty in planning by modeling the decision to make as the
optimization of some objective function under some constraints, with the objective function
and the constraints depending not only of the free variables, but also of some uncertainty
parameter ω. One then searches for an optimal solution that is valid for all values of the
uncertainty parameter ω. Among robust optimization problems, those that involve successive
stages of decision are of particular interest [39]; Here is for instance the two-stage robust
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optimization problem:

inf
xf ∈Rℓ

sup
ω∈Ω

inf
xs∈Rδ

cf
T xf + cs(ω)T xs

s. t. Af (ω)xf + As(ω)xs ≤ b(ω)
(2)

where Ω is the domain of uncertainty, Af (ω), As(ω), b(ω) and cs(ω) are input matrices
and vectors depending on the uncertainty parameter ω, and cf is a deterministic input
vector. The variables xf and xs correspond respectively to the first and second stages of
the optimization, where the second stage takes place only once the uncertainty ω has been
revealed. The problem is therefore to optimize in the first stage the worst-case outcome from
the second stage.

In 2010, Bertsimas and Caramanis [8] proposed to approximate the solution of Problem (2)
by solving the following finite adaptability problem:

inf
xf ∈Rℓ

x1
s,x2

s,...,xk
s ∈Rδ

sup
ω∈Ω

inf
i∈[k]

cf
T xf + cs(ω)T xi

s

s. t. Af (ω)xf + As(ω)xi
s ≤ b(ω)

(3)

(We use [k] to denote the set {1, 2, . . . , k}.) For fixed k this problem is called the k-adaptability
problem. It models the precomputation, in the first stage, of k candidate values for the
second-stage variable xs. Once the uncertainty ω is revealed, the second stage consists in
selecting one of the k precomputed values that satisfies the constraints and minimizes the
objective. Under a suitable continuity assumption, the value of Problem (3) converges to
the value of (2) as k → ∞ [27, § 2]. See [24, 33, 11, 36] for recent work on Problem (3) and
variants.

Throughout the paper we only consider the case where Af , As, b, and cs are affine maps.

1.3 Our results
Problem correspondence. The continuous hitting set problem stated above corresponds to
the decision version of the optimization Problem (3) when there is no first-stage decision
(ℓ = 0); See Lemma 5. This correspondence is also the motivation for our convention that
an affine family of polyhedra with one empty member has no hitting set, as such a family
corresponds to an unfeasible problem. Like in the discrete setting, the hitting and covering
problems for affine families of polyhedra enjoy some form of duality (see Section 2.1). We
prove (Lemma 6) that the decision version of the general finite adaptability problem is a
special case of the following covering problem:

Given two affine families of polyhedra in Rd and k ∈ N, does there exist k polyhedra
in the second family whose union covers a polyhedron from the first family?

Notice that this problem is purely linear, whereas the finite adaptability Problem (3) exhibits
some non-linearity.

Complexity. We then turn our attention to the computational complexity of these problems.
We first observe that quantifier elimination methods yield strongly polynomial solutions 1

for these problems in fixed dimension.

1 The standard model of computation in computational geometry is the Real-RAM model, a variant of
the classical random access machine (RAM) that operates on arbitrary real numbers instead of finite
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33:4 Hitting and Covering Affine Families of Convex Polyhedra

▶ Theorem 1. For every constant k, ℓ, δ, p, there is an algorithm that solves the decision
version of the k-adaptability Problem (3) on m constraints, with Ω a polyhedron in Rp given
as an intersection of v halfspaces, in time strongly polynomial in m and v.

Similarly, the hitting and covering problems stated above can be solved in time mO(1) when
we fix k, the ambient dimensions of the polyhedra and the dimension of the parameter
space(s) (see Section 3). The bound in the exponent grows with the values of the fixed
parameters, and the fixed-parameter tractability of these problems is a natural question. In
the special case where the parameter domain is one-dimensional, we can give an algorithm
for the hitting set problem where the order of the complexity does not depend on k or the
ambient dimension of the polyhedra.

▶ Theorem 2. For every constant d and k, there is an algorithm that decides in strongly
O(m2) time, given an affine family of polytopes P ([α, β]) in Rd, each defined by at most m

constraints, whether P ([α, β]) admits a hitting set of size k.

If k is part of the input, then our algorithm has complexity O(km2) in the Real-RAM model
(Proposition 13) but is no longer strongly polynomial. We can extend the method behind
Theorem 2 to the optimization problem:

▶ Corollary 3. For every constant δ and k, there is an algorithm that solves the k-adaptability
Problem (3) in the special case where ℓ = 0 and Ω is an interval, in time strongly O(m4).

1.4 Background and related works
1.4.1 Complexity of finite adaptability
Bertsimas and Caramanis proved [8, Prop. 5] that unless P = NP, there is no polynomial-
time algorithm for the finite adaptability problem (3). This already holds in the special case
where k = 2, there is no first decision xf , and As is constant, i.e. independent of ω. Their
proof requires, however, that the dimensions of xs and ω as well as the number m of rows
in As be part of the input. A natural question is whether the computational complexity
becomes polynomial when some of these parameters are constant.

We are only aware of two2 previous tractability results for Problem (3). On the one hand,
Subramanyam, Gounaris and Wiesemann [36, Prop. B.3] observed that Problem (3) reduces
to linear programming, and is therefore polynomial, when Af , As and b are constant (but
cs still depends on ω). On the other hand, Kedad-Sidhoum, Meunier and Medvedev [27,
Theorems 1.1 and 1.2] proved that if k ≤ 3, the number of vertices (and dimension) of Ω
is bounded, and only the right-hand side b of the constraints depends on the uncertainty
parameter (that is, Af , As and d are constant), then Problem (3) reduces to a constant
number of linear programs and is therefore polynomial in the Turing machine model.

The tractable cases of the decision version of finite adaptability that are identified by
Theorem 1 are therefore new in that they allow left-hand-side uncertainty, that is with the
map As affine rather than constant. This makes the underlying problem non-linear in xf , xs

binary words, see [20, §7.4] and [21, §6.1]. Algorithms that run in polynomial time on a Real-RAM and
that translate to polynomial-time algorithms in the usual sense are called strongly polynomial. Whether
linear programming can be solved in strongly polynomial time remains a major open problem, known
as Smale’s 9th problem [34].

2 Note that Bertsimas and Caramanis gave a reformulation of Problem (3) as a bilinear optimization
problem with a linear objective function [8, Prop. 4], but it does not yield a polynomial-time algorithm
even when all dimensions and k are fixed. Indeed, their reformulation uses ℓ + d + mk variables and
mk(v + 2) bilinear constraints, where v is the number of extreme points of the domain Ω.
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and ω. An example of problem from operations research that directly benefits from this
tractability result is antenna design [7, § 2]. Indeed, it can be modeled by two-stage robust
optimization (2) with continuous variables and uncertainty, and the recourse matrices Af

and As depend on the uncertainty parameter. Moreover, the fact that the recourse matrices
are uncertain makes affine decision rules, the standard approximation method for TSRO [5,
§ 14.3.1], potentially intractable [5, § 14.3.3]. Other examples include variants of project
management [5, example 14.2.1], supply chain design [23, § 4.1], route planning [23, § 4.2]
and capital budgeting [23, § 4.3]. The variants are obtained in two steps: relaxing the
discrete variables into continuous ones and making the model more expressive by allowing
the recourse matrices to depend on the uncertainty. Both steps are common practice in
operations research, so these variants are of interest.

Corollary 3, which shows that without first decision and with one-dimensional uncertainty,
finite adaptability can be solved in O(m4) time for any constant k and δ, is the first
fixed-parameter tractability result for this problem that we are aware of.

1.4.2 Related notions in computational geometry
Hitting set problems were extensively investigated in discrete and computational geometry
for discrete, unstructured families of sets. One typically expects that deciding whether k

points suffice to hit n given subsets of Rd is NP-hard when k or d is part of the input; see
for instance the landmark results of Megiddo [31] and Megiddo and Supowit [32]. When
both k and d are fixed, the problem can be solved in polynomial time via the computation of
an arrangement.

Notions of uncertainty related to robust mathematical programming were also investigated
by computational geometers. In this context, uncertainty in the input geometric data is
typically modeled by replacing single points by regions (say, disks of some small radius), in
which the actual point is guaranteed to lie. One can preprocess the regions, and prepare for
the worst-case actual input. Recent examples include sorting and finding the Pareto front of
imprecise point sets [38, 37]. We refer to Löffler for a general discussion of imprecision in
computational geometry [28].

More generally, continuous families of geometric sets are ubiquitous in computational
geometry. In range searching, for instance, we are given a collection of points in d-dimensional
space, and are asked to construct a data structure that allows to answer queries of the following
form: Given a range R ⊂ Rd, report the set of points from the collection that are contained in
R. The ranges are typically restricted to be axis-aligned boxes, halfspaces, or semialgebraic
sets, giving rise to the corresponding orthogonal, halfspace, or semialgebraic range searching
problems; see the survey of Agarwal [1] for references. In the problem of finding small ε-net,
the goal is similar to ours, in that we wish to find small hitting sets of continuous family
of ranges. More precisely, given a finite set S of points together with a continuous family
of ranges (typical examples are all halfspaces, or all unit disks), we wish to find a set N

of points that collectively hit all ranges that contain at least an ε fraction of the points of
S [25]. If the set is restricted to be a subset of S, then N is called a strong ε-net, and a
weak ε-net otherwise [15]. While this also bears a superficial resemblance with our question,
it is yet quite different, since in our case, all members of the input continuous family have
to be hit, whatever their size is. Brönimann and Goodrich [10], and then Even, Rawitz,
and Shahar [22], showed that finding ε-nets of size O(c/ε) in polynomial time implied the
existence of c-approximation algorithms for the discrete hitting set problem. In the same
spirit, Elbassioni [19] recently proposed an approximation algorithm for finding small hitting
sets of infinite range spaces of bounded VC-dimension, and gave an application to the problem
of covering a polygonal region by translates of a given polygon.

MFCS 2025



33:6 Hitting and Covering Affine Families of Convex Polyhedra

2 Relation between hitting/covering and finite adaptability

Let us clarify the relation between the hitting and covering problems for affine families of
polytopes and the finite adaptability Problem (3). We assume in this section that the domain
of uncertainty Ω is a polyhedron in Rp, the matrices Af (ω), As(ω) and the vectors b(ω),
cs(ω) depend affinely on the uncertainty parameter ω, and the vector cf is deterministic.

2.1 The hitting-covering duality

Let us start by remarking that for any regions Λ ⊆ Ω ⊆ Rp, every affine map on Ω restricts,
in a unique way, to an affine map on Λ; Conversely, every affine map on Λ extends to an
affine map on Ω, and this extension is unique if Ω is contained in the affine span of Λ. This
implies that any affine family of polyhedra P (Ω) restricts (in a unique way) to an affine
family of polyhedra P (Λ), and that conversely every affine family of polyhedra P (Λ) extends
to an affine family of polyhedra P (Ω), and that this extension is unique if Ω is contained in
the affine span of Λ.

Let us fix two affine maps A : Rp 7→ Rm×d and b : Rp 7→ Rm and consider the maps

P : ω 7→
{

x ∈ Rd : A(ω)x ≤ b(ω)
}

for ω ∈ Rp,

P̂ : x 7→ {ω ∈ Rp : A(ω)x ≤ b(ω)} for x ∈ Rd,

so that x ∈ P (ω) if and only if ω ∈ P̂ (x). Hence, switching from P to P̂ exchanges hitting
and covering in the sense that for any domain Ω ⊆ Rp, a set S ⊆ Rd is a hitting set for
{P (ω) : ω ∈ Ω} if and only if Ω ⊆

⋃
x∈S P̂ (x). It turns out that P̂ is also an affine family of

polyhedra, which we call the dual of P .

▶ Lemma 4. If P (Rp) is an affine family of polyhedra in Rd, each defined by m constraints,
then P̂ (Rd) is an affine family of polyhedra in Rp, each defined by m constraints.

Proof. Let us fix a basis (e1, e2, . . . , ep) of Rp, so as to write ω = (ω1, ω2, . . . , ωp), A(ω) =
A0+

∑p
i=1 ωiAi and b(ω) = b0+

∑p
i=1 ωibi, where A0, A1, . . . , Ap ∈ Rm×d, b0, b1, . . . , bp ∈ Rm.

For x ∈ Rd, we have

P̂ (x) =
{

ω ∈ Rp :
(

A0 +
p∑

i=1
ωiAi

)
x ≤ b0 +

p∑
i=1

ωibi

}

=
{

ω ∈ Rp :
p∑

i=1
(Aix − bi) ωi ≤ b0 − A0x

}
.

Let Â(x) =
∑p

i=1 (Aix − bi) ei
T ∈ Rm×p, so that Â(x)ω =

∑p
i=1 (Aix − bi) ωi. Let b̂(x) =

b0 − A0x. Note that P̂ (x) = {ω ∈ Rp : Â(x)ω ≤ b̂(x)} with Â and b̂ affine maps. It follows
that P̂ (Rd) is an affine family of polyhedra, with ambient space of dimension p, parameter
space of dimension d and each polyhedron defined by m constraints. ◀

When Ω is a polyhedron in Rp, a natural candidate for the dual of an affine family P (Ω)
of polyhedra is {ω ∈ Ω: x ∈ P (ω)}. This is again an affine family of polyhedra, which we
denote by P̂|Ω(Rd) = {P̂ (x) ∩ Ω: x ∈ Rd}. In other words, restricting P (Rp) into P (Ω)
translates, under duality, into intersecting each dual polyhedron with Ω.
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2.2 Direct correspondences

Let us first consider the k-adaptability problem (3) without first decision (ℓ = 0), that is

inf
x1

s,x2
s,...,xk

s ∈Rδ
sup
ω∈Ω

inf
i∈[k]

cs(ω)T xi
s

s. t. As(ω)xi
s ≤ b(ω)

(4)

▶ Lemma 5. For any real t, the value of the k-adaptability problem without first decision (4)
is at most t if and only if the affine family of polyhedra Pt(Ω) = {Pt(ω) : ω ∈ Ω} defined by

Pt(ω) =
{

x ∈ Rd :
(

As(ω)
cs(ω)T

)
x ≤

(
b(ω)

t

)}
admits a hitting set of size k.

Proof. Let t ∈ R. The value of Problem (4) is at most t if and only if there exists
xs = (x1

s, x2
s, . . . , xk

s) ∈ (Rd)k such that

sup
ω∈Ω

inf
i∈[k] s.t. As(ω)xi

s≤b(ω)
cs(ω)T xi

s(ω) ≤ t,

⇔ ∀ω ∈ Ω, inf
i∈[k] s.t. As(ω)xi

s≤b(ω)
cs(ω)T xi

s(ω) ≤ t,

⇔ ∀ω ∈ Ω, ∃i ∈ [k] As(ω)xi
s ≤ b(ω) and cs(ω)T xi

s(ω) ≤ t︸ ︷︷ ︸
⇔ xi

s∈Pt(ω)

.

Hence, the value of Problem (4) is at most t if and only if Pt(Ω) admits a hitting set of
size k. Observe that in particular, Problem (4) is infeasible if and only if there is no feasible
solution (x1

s, x2
s, . . . , xk

s), that is no hitting set of size k for P (Ω). ◀

When there is a first decision (ℓ > 0), one may proceed as in Lemma 5, mutatis mutandis,
and obtain the following characterizations of the fact that the value of (3) is at most t:
(a) The affine family of polyhedra Pt(Ω) = {Pt(ω) : ω ∈ Ω} defined by

Pt(ω) =
{(

xf

xs

)
∈ Rℓ+δ :

(
Af (ω) As(ω)

cf
T cs(ω)T

)(
xf

xs

)
≤
(

b(ω)
t

)}
admits a hitting set of size k in which all points have the same first ℓ coordinates.

(b) There exists xf ∈ Rℓ such that the affine family of polyhedra Pxf ,t(Ω) = {Pxf ,t(ω) : ω ∈
Ω} defined by

Pxf ,t(ω) =
{

xs ∈ Rδ :
(

As(ω)
cs(ω)T

)
xs ≤

(
b(ω) − Af (ω)xf

t − cf
T xf

)}
admits a hitting set of size k.

In other words, we have to either require the hitting set to lie on some coordinate subspace
(a), or work with an affinely parameterized family of affine families of polyhedra (b). Each
affine family of polyhedra in (b) corresponds to the slice of the affine family of polyhedra
of (a) by a coordinate subspace of codimension ℓ.

MFCS 2025



33:8 Hitting and Covering Affine Families of Convex Polyhedra

2.3 A simpler correspondence via lifting

A reformulation of the k-adaptability problem (3) neater than those of Section 2.2 can be
obtained by linearizing the problem via a “lifting” similar to the classical Veronese map.
Specifically, let us fix ℓ and p and define

L :


Rℓ+p → Rℓ+p+ℓp

(xf , ω1, ω2, . . . , ωp︸ ︷︷ ︸
ω

) 7→ (xf , ω, ω1xf , ω2xf , . . . , ωpxf ).

Observe that L(Rℓ+p) is the surface Σ ⊆ Rd of dimension ℓ + p defined by the quadratic
equations zp+iℓ+j = zjzℓ+i for 1 ≤ i ≤ p and 1 ≤ j ≤ ℓ. Letting π : (z1, z2, . . . , zd) 7→
(z1, z2, . . . , zℓ+p) be the projection that forgets the last ℓp coordinates, we see that L is a
bijection with inverse π|Σ.

We use L to recast any set defined by bilinear conditions in Rℓ+p between xf and ω as the
intersection of Σ with a set defined by linear conditions in Rℓ+p+ℓp. For better readability,
we let d = ℓ + p + ℓp, use z to denote a point in Rd, and write zxf

= (z1, . . . , zℓ)T and zω =
(zℓ+1, . . . , zℓ+p)T . Now, for ω ∈ Ω, let us decompose Af (ω) into Af (ω) = AL,0+

∑
i∈[p] ωiAL,i,

where AL,0, AL,1, . . . , AL,p ∈ Rm×δ. We then define, for every xs ∈ Rδ,

⌣
Qt(xs) =

z ∈ Rd :


AL,0zxf

+ As(zω)xs +
∑
i∈[p]

AL,i(zip+ℓ+1, . . . , zip+ℓ+p)T ≤ b(zω)

cf
T zxf

+ cs(zω)xs ≤ t

 .

Notice that this definition replaces every bilinear term ωiAL,ixf arising in Af (ω)xf by
its linear “lift” AL,i(zip+ℓ+1, . . . , zip+ℓ+p)T . We also define

⌣
Pt(xf ) = L(xf × Ω) for every

xf ∈ Rℓ.
Now, for any fixed t ∈ R,

⌣
Pt(Rℓ) = {

⌣
Pt(xf ) : xf ∈ Rℓ} and

⌣
Qt(Rδ) = {

⌣
Qt(xs) : xs ∈ Rδ}

are affine families of polyhedra. For
⌣
Qt(Rδ), this follows from the assumption that As(ω)

depends affinely on ω and AL,0, AL,1, . . . , AL,p are constant matrices. For
⌣
Pt(Rℓ), this follows

from the assumption that Ω is a polyhedron.

▶ Lemma 6. For any real t, the value of the k-adaptability problem (3) is at most t if and
only if there is a member of

⌣
Pt(Rℓ) that can be covered by some k members of

⌣
Qt(Rδ).

Proof. Let us fix t ∈ R and start from the characterization (b) from Section 2.2 – from which
we recover the notation Pxf ,t(ω). The value of the k-adaptability problem (3) is at most t if
and only if there exists (xf , x1

s, x2
s, . . . , xk

s ) ∈ Rℓ×(Rδ)k such that for every ω ∈ Ω, there exists
i ∈ [k] such that xi

s ∈ Pxf ,t(ω). Letting St(xs) =
{

(xf , ω) ∈ Rℓ × Ω: xs ∈ Pxf ,t(ω)
}

, the
characterization becomes: there exists (xf , x1

s, x2
s, . . . , xk

s) ∈ Rℓ × (Rδ)k such that {xf } × Ω
is covered by St(x1

s) ∪ St(x2
s) ∪ . . . ∪ St(xk

s).
Let us now consider how the lift L acts on this characterization. First, L is a bijection

from Rℓ+p to Σ, so {xf } × Ω is covered by St(x1
s) ∪ St(x2

s) ∪ . . . ∪ St(xk
s) if and only if

L({xf }×Ω) is covered by L(St(x1
s))∪L(St(x2

s))∪ . . .∪L(St(xk
s )). Now, L({xf }×Ω) = ⌣

P (xf )
by definition of ⌣

P . On the other hand, the definition of
⌣
Q ensures that L(St(xs)) =

⌣
Qt(xs)∩Σ.

The characterization therefore reformulates as: there exists (xf , x1
s, x2

s, . . . , xk
s) ∈ Rℓ × (Rδ)k

such that ⌣
P (xf ) is covered by

(
⌣
Qt(x1

s) ∩ Σ
)

∪
(

⌣
Qt(x2

s) ∩ Σ
)

∪ . . . ∪
(

⌣
Qt(xk

s) ∩ Σ
)

. Since for
every xf ∈ Rℓ, the set ⌣

P (xf ) is contained in Σ, we can drop the intersections with Σ in that
characterization, and the statement follows. ◀
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3 Polynomial complexity bounds

We first show that algorithms for quantifier elimination yield, when the parameter k and
the dimensions are constant, strongly polynomial algorithms for the decision version of the
k-adaptability Problem (3) as well as for our continuous hitting and covering problems.

3.1 Semi-algebraic sets and first-order formulas
Our proofs involve the analysis of families of polynomial inequalities in Rd, that is of semi-
algebraic sets. It will be convenient to formulate these sets in the equivalent form of formulas
from the first-order theory of the reals with addition and multiplication (see the book of
Basu, Pollack and Roy [4, §2.3]). We will use the following complexity bounds on quantifier
elimination.

▶ Theorem 7 ([4, §14, Theorem 14.16]). Let ϕ(X1, X2, . . . , Xd) be a first-order formula of the
form (Q1Y1)(Q2Y2) . . . (QnYn)F (X, Y ), where Q1, Q2, . . . , Qn are quantifiers in {∀, ∃}
and F is a quantifier free formula. Assume that each set Yi has at most b variables and that
F is built with at most s polynomials of degree at most r (in nb + d variables).

(i) There exists a quantifier free formula equivalent to ϕ(X1, X2, . . . , Xd) involving at most ν

polynomials, each of degree at most δ,
(ii) this quantifier free formula can be computed in ν arithmetic operations in the ring

generated by the coefficients of the polynomials, and
(iii) if the coefficients of the input polynomials are in Z and have bitsize at most τ , then the

polynomials that arise in the algorithm have coefficients of bitsize bounded by τδ,
where ν = s(d+1)(b+1)n

rdO(b)n and δ = rO(b)n .

We will also use the following complexity bound for the existential theory of the reals.

▶ Theorem 8 ([4, §13, Theorem 13.13]). Let ϕ be a quantifier free formula with d free
variables, built on ν polynomials of degree at most δ.

(i) The truth of the sentence (∃X ∈ Rd, ϕ(X)) can be decided in νd+1δO(d) arithmetic
operations in the ring generated by the coefficients of the polynomials, and

(ii) if the coefficients of the input polynomials are in Z and their bitsize is bounded by τ , the
polynomials that arise in the algorithm have coefficients of bitsize bounded by τδO(d).

3.2 Application to k-adaptability
The decision version of Problem (3) asks, given some real number t, whether the optimal
value of (3) is at most t.

Proof of Theorem 1. The decision version of Problem 3 can be cast as deciding, given t,
the validity of the formula

∃xf ∈ Rℓ, x1
s, x2

s, . . . , xk
s ∈ Rδ Φt(xf , xs),

where

Φt(xf , xs) ≡ ∀ω ∈ Rp (ω ̸∈ Ω) ∨
(
(xf , x1

s) ∈ Pt(ω)
)

∨
(
(xf , x2

s) ∈ Pt(ω)
)

∨ . . .

. . . ∨
(
(xf , xk

s) ∈ Pt(ω)
)

,

and Pt(Ω) is the affine family of polyhedra defined by

Pt(ω) =
{

(xf , xs) ∈ Rℓ+δ :
(

Af (ω)As(ω)
cf (ω)T cs(ω)T

)
(xf , xs) ≤

(
b(ω)

t

)}
.
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Note that the polyhedron Pt(ω) encodes both the constraints enforced by Af , As, and b on
(xf , xi

s), and the bound t on the optimal value (like in the proof of Lemma 4). The universal
quantifier on ω takes care of the supω∈Ω in the formulation (3), while the disjunction on the
terms of the form (xf , xi

s) ∈ Pt(ω) takes care of the infi∈[k].
We can apply Theorem 7 to eliminate the universal quantifier in Φt(xf , xs). Referring

to the parameters in Theorem 7, we have n = 1 and b = p, and there are s ≤ v + k(m + 1)
polynomials involved, defining the polyhedra Ω and Pt(ω). Each polynomial is of degree at
most r = 2, and the total number of free variables is kδ + ℓ. Hence, the elimination of the
quantifier takes time O

(
(v + m)(kδ+ℓ+1)(p+1)

)
.

We now have a formula with a single existential quantifier on (xf , xs), to which we can
apply Theorem 8. Following Theorem 7, the degree is at most rO(b)n = 2O(p), and we can
therefore decide the validity of the formula in time(

O
(

(v + m)(kδ+ℓ+1)(p+1)
))kδ+ℓ+1

2O((kδ+ℓ)p) = O
(

(v + m)(kδ+ℓ+1)2(p+1)
)

as claimed. ◀

Similarly, we can express the hitting and covering problems for affine families of polyhedra
as the decision of the validity of a formula, which can then be handled by Theorems 7 and 8.
This gives the following results:

For every constant k, p, and d there is an algorithm that decides in time strongly
polynomial in m, given a polyhedron Ω in Rp defined by m constraints and an affine
family of polyhedra P (Ω) in Rd, each defined by at most m constraints, whether P (Ω)
admits a hitting set of size k. The complexity is mO(1), where the exponent depends on
k, p, and d.
For every constant k, γ, λ and d there is an algorithm that decides in time strongly
polynomial in m, given an affine family of polyhedra P (Γ) in Rd defined by at most m

constraints, and an affine family of polyhedra Q(Λ) in Rd, defined by at most m constraints,
with Γ ⊆ Rγ and Λ ⊆ Rλ polyhedra defined by at most m constraints each, whether
there exist γ0 ∈ Γ and λ1, λ2, . . . , λk ∈ Λ such that P (γ0) ⊆ Q(λ1) ∪ Q(λ2) ∪ . . . ∪ Q(λk).
The complexity is mO(1), where the exponent depends on k, γ, λ and d.

This approach can also be applied to the decision version of the two-stage robust optimization
problem (2), yielding an algorithm with higher complexity than for the decision version
of finite adaptability (3), see [12, Appendix C]. We also note that similar tools [4, §14,
Algorithm 14.9] can solve the optimization version of the k-adaptability Problem (3), with Ω
a polyhedron in Rp, in polynomial time for every constant k, ℓ, δ and p.

4 Hitting a one-parameter family of polyhedra

We now prove Theorem 2: for every constant d, the size k of the smallest hitting set of a
one-parameter affine family of polytopes in Rd can be computed in O(km2), where m denotes
the number of constraints defining each polytope. The proof is essentially a greedy algorithm
building on an application of parametric search [29] to a carefully chosen linear-time algorithm
for linear programming in fixed dimension, here we use Megiddo’s [30].

4.1 The intersection of an affine family of polyhedra
We define the common intersection region of an affine family of polyhedra P (Ω) in Rd as
the set HP (Ω) =

⋂
ω∈Ω P (ω). We use some properties of this region. Even though Section 4

focuses on the one-parameter case (Ω ⊆ R), we find it convenient to establish these property
more generally here.
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We let ext(C) denote the set of extreme3 points of a set C ⊂ Rp, and write X for the
topological closure of a subset X ⊆ Rp.

▶ Lemma 9. For any affine family of polyhedra P (Ω) and for any subset Λ ⊆ Ω of its
parameter set, we have (i) HP (Λ) = HP (conv Λ), (ii) HP (Λ) = HP

(
Λ
)

and, (iii) if Λ is
bounded, HP (Λ) = HP

(
ext
(
conv Λ

))
.

Proof. Observe first that for every subsets A, B ⊆ Ω, if A ⊆ B, then
⋂

ω∈B P (ω) ⊆⋂
ω∈A P (ω). It follows that HP (Λ) ⊇ HP (conv Λ) and HP (Λ) ⊇ HP

(
Λ
)
.

Let us prove that HP (Λ) ⊆ HP (conv Λ). Let x ∈
⋂

ω∈Λ P (ω). Consider a finite convex
combination ω =

∑v
i=1 αiλi where v ∈ N and λ1, . . . , λv ∈ Λ. By assumption, for all i ∈ [v],

x hits the polyhedron P (λi), that is for all i ∈ [v], A(λi)x ≤ b(λi). It follows that

A(ω)x =
v∑

i=1
αiA(λi)x ≤

v∑
i=1

αib(λi) = b(ω),

and x ∈ P (ω). This completes the proof of (i).
Let us now prove that HP (Λ) ⊆ HP

(
Λ
)
. Let x ∈

⋂
ω∈Λ P (ω). Let ω ∈ Λ. Then there

exists a sequence (λn)n∈N of elements of Λ that converges to ω. By assumption, for all n ∈ N,
x hits the polyhedron P (λn), that is for all n ∈ N, A(λn)x ≤ b(λn). Since A and b are
continuous, it comes that A(ω)x ≤ b(ω), that is x ∈ P (ω). This completes the proof of (ii).

Let us prove HP (Λ) = HP

(
ext
(
conv Λ

))
. A theorem of Minkowski (see [26, Chapter A,

§ 2.3, Theorem 2.3.4]) asserts that if C is compact, convex in a finite dimensional euclidean
space, then C is the convex hull of its extreme points. Hence, if Λ is bounded, conv Λ is a
compact convex set in Rp, and is therefore the convex hull of its extreme points. So we have:⋂

ω∈Λ

P (ω) (i)=
⋂

ω∈conv Λ

P (ω) (ii)=
⋂

ω∈conv Λ

P (ω)

=
⋂

ω∈conv(ext(conv Λ))
P (ω) (i)=

⋂
ω∈ext(conv Λ)

P (ω). ◀

This has an interesting computational consequence, which is already known as a tractable
instance of static robust optimization [6, Chapter 1, Corollary 1.3.5 (i)], and which we include
here for completeness.

▶ Corollary 10. Let Ω ⊆ Rp be a polytope with v vertices and let P (Ω) be an affine family
of polyhedra in Rd, with every member of the family defined by m constraints. Deciding
the existence of a one-point hitting set for P (Ω) reduces to solving a linear program with d

variables and v · m constraints.

Proof. We apply Lemma 9 (i) to the set Λ = ext(Ω). Since conv(ext(Ω)) = Ω, it comes
that

⋂
ω∈ext(Ω) P (ω) =

⋂
ω∈conv(ext(Ω)) P (ω) =

⋂
ω∈Ω P (ω). That is to say, P (Ω) admits

a one-point hitting set if and only if the set P (ext(Ω)) = {P (ω) : ω ∈ ext(Ω)} admits a
one-point hitting set. The latter condition is equivalent to the existence of x ∈ Rd such that
for all ω ∈ ext(Ω), A(ω)x ≤ b(ω). This is equivalent to finding a feasible solution of a linear
program with d variables and v · m constraints. ◀

3 Recall that a point c in a convex C is called extreme if it cannot be expressed as the midpoint of two
distinct points in C, or equivalently if C \ {c} is convex [26, Chapter A, § 2.3, Definition 2.3.1].
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4.2 Structure of a minimum-size hitting set
Let α, β ∈ R and let P ([α, β]) be an affine family of polyhedra. By Lemma 9, for any point
x ∈ Rd, the set P̂ (x) = {ω ∈ R : x ∈ P (ω)} is a closed interval. For λ ∈ [α, β] let us define

σP (λ) = sup {λ} ∪
{

ν ∈ [α, β] : ∃x ∈ Rd s. t. [λ, ν] ⊆ P̂ (x)
}

.

Note that if P (λ) = ∅, then σP (λ) = λ. Also note that the supremum σP (λ) may be finite
but not a maximum, in the sense that P ([λ, σP (λ)]) may not have a one-point hitting set.
Indeed, consider for example [α, β] = [0, 2] and P (ω) = {x ∈ R : x(ω − 1) ≥ 1}; For ω ∈ [0, 1),
we have P (ω) = (−∞, 1

ω−1 ], so that σP (0) = 1; Note, however, that P (1) = ∅, which prevents
P ([0, 1]) from having a (one-point) hitting set. When P ([α, β]) is an affine family of polytopes,
we argue that the supremum σP (λ) is always attained.

▶ Lemma 11. Let α, β ∈ R and let P ([α, β]) be an affine family of polytopes. For every
λ ∈ [α, β], either P (λ) is empty or there exists xλ ∈ Rd such that P̂ (xλ) contains [λ, σP (λ)].

Proof. Let λ ∈ [α, β]. We can assume that P (λ) is nonempty, as otherwise the statement
is trivial. We can also assume that σP (λ) > λ, as otherwise any point xλ ∈ P (λ) satisfies
the condition. Now, suppose, by contradiction, that

⋂
t∈[λ,σP (λ)] P (t) = HP ([λ, σP (λ)]) is

empty. Since σP (λ) > λ, we have HP ([λ, σP (λ))) = HP ([λ, σP (λ)]) by Lemma 9 (ii), so⋂
t∈[λ,σP (λ)) P (t) is already empty. Helly’s theorem asserts that if a (possibly infinite) family

of compact convex sets in Rd has empty intersection, then some d + 1 of them already
have empty intersection. Therefore, there exist t1 ≤ t2 ≤ . . . ≤ td+1 in [λ, σP (λ)) such
that

⋂d+1
i=1 P (ti) is empty. Yet, td+1 < σP (λ) ensures that there exists x ∈ Rd such that

[λ, td+1] ⊆ P̂ (x). In particular, x ∈
⋂d+1

i=1 P (ti), a contradiction. ◀

Let us write σ
(i)
P = σP ◦ σP ◦ . . . ◦ σP︸ ︷︷ ︸

i times

. Lemma 11 yields a simple characterization of the size

of hitting sets of one-parameter families of polytopes.

▶ Lemma 12. An affine family of polytopes P ([α, β]) has a hitting set of size k if and only
if σ

(k)
P (α) = β.

Proof. Suppose that σ
(k)
P (α) = β. Let t0 = α and for i = 1, 2, . . . k let ti = σP (ti−1).

By Lemma 11, for i = 1, 2, . . . , k there exists xi ∈ Rd such that P̂ (xi) ⊇ [ti−1, ti]. Since
tk = σ

(k)
P (α) = β, we have

⋃k
i=1[ti−1, ti] = [α, β], and {x1, x2, . . . , xk} is a hitting set for

P ([α, β]).
Conversely, suppose that P ([α, β]) admits a hitting set H = {x1, x2, . . . , xk}. Let us

write P̂ (xi) = [ℓi, ri] and assume, without loss of generality, that ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓk. Observe
that, by definition, ri = min{β, σP (ℓi)}, hence ri ≤ σP (ℓi) for all i ∈ [k]. Also observe that
ℓi ≤ ri−1, since otherwise H misses P (ω) for some ω ∈ (ri−1, ℓi). We must also have β ≤ rk,
since otherwise H misses P (β), and ℓ1 ≤ α, otherwise H misses P (α). Combining these
observations, and using the fact that the function σP is nondecreasing, we obtain:

β ≤ rk ≤ σP (ℓk) ≤ σP (rk−1) ≤ σP (σP (ℓk−1)) ≤ . . . ≤ σ
(k)
P (ℓ1) ≤ σ

(k)
P (α).

Since σP (λ) is at most β, we must have σ
(k)
P (α) = β, as claimed. ◀

4.3 Parametric search on a linear programming algorithm
Lemma 12 reduces the computation of a minimum-size hitting set for a one-parameter affine
family of polytopes P ([α, β]) to the computation of the function σP . We now focus on the
latter problem.
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4.3.1 Comparing is easy
Let us fix some real s and write s∗ = σP (s); we assume that s is known, and want to
determine s∗. We first notice that we already have efficient algorithms for comparing any
input real t to s∗: this is equivalent to deciding whether P ([s, t]) can be hit by a single point,
and therefore reduces to testing whether P (s) ∩ P (t) is empty, by Corollary 10, which can
be done by solving a linear program with d variables and 2m constraints. Let us note that
several deterministic algorithms have been proposed to solve such linear program in O(m)
time when the dimension d is fixed [30, 17, 18, 3, 16, 9, 14].

4.3.2 From comparing to computing
It turns out that a general technique, called parametric search [29], can turn4 an algorithm for
comparing to s∗ into an algorithm for computing s∗, the latter having complexity O(f(n)2)
where f(n) is the complexity of the former. This suggests that all we need is to apply
parametric search to one of these linear-time algorithms for linear programming to get a
quadratic-time algorithm to compute σP . There is, however, a catch: parametric search can
only be applied to a comparison algorithm that can be modeled by an algebraic decision
tree where the decisions have bounded degree. This is, fortunately, the case of Megiddo’s
algorithm [30] (a fact more easily checked from Clarkson’s summary of that algorithm [17]).
For completeness, we summarize in the next subsections the model of algebraic decision trees
and the parametric search technique.

4.3.3 Background: algebraic decision trees
The algebraic decision tree model of computation [35] represents an algorithm with input
x ∈ Rn as a rooted tree where (i) each internal node v is decorated with a polynomial pv

with constant coefficients and with variables some of the input xi, (ii) for each internal node,
the edges towards its descendants are labeled by sign conditions (< 0, ≤ 0, = 0, ̸= 0, ≥ 0 or
> 0) that are mutually exclusive and cover all cases, and (iii) each leaf has a label that serves
as answer to the algorithm. To execute an algebraic decision tree T on an input x ∈ Rn, we
traverse T starting from the root, determining at each node v the sign of the polynomial pv

on the input x and taking the corresponding edge towards a descendant, and return the label
of the leaf we eventually reach. Let us stress that this model of computation is nonuniform,
in the sense that the tree is actually a family of trees, one per input size n. Let us also
emphasize that if a polynomial Real RAM algorithm can be modeled by an algebraic decision
tree in which every node polynomial has constant degree, then that algorithm is strongly
polynomial.

4.3.4 Background: Parametric search
Let D(λ) be a decision problem depending on a real parameter λ. Suppose that D is
monotone in the sense that if D(λ) is true, then D(µ) is also true for all µ ≤ λ. Then, there
exists some λ∗ = sup{λ ∈ R : P (λ) is true}, possibly ∞. Parametric search [29] (see also [2])
is a technique to turn certain algorithms A for evaluating λ 7→ P (λ) into algorithms for
computing λ∗. This technique applies to algorithms presented as algebraic decision trees.
Intuitively, it consists in identifying the path in A that would be followed if that tree was
executed on λ∗.

4 A more effective technique for this purpose was proposed by Chan [13], but unfortunately we could not
apply it here.
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Let us sketch a simplification of that technique sufficient for our purpose. We traverse the
tree while maintaining an interval I known to contain λ∗, initially set to R. When reaching
a node v, we check whether the sign of the polynomial pv is constant over I. If it is, we
follow the suitable branch and keep I unchanged. Otherwise, we compute the set S of roots
of pv and use A to determine P (λ) for each λ ∈ S; the monotony ensures that the largest
root r of pv such that P (r) is true and the smallest root s of pv such that P (s) is false are
consecutive in S; they determine our new interval I, and we follow the branch indicated by
the sign of pv on I. We continue this procedure until we reach a leaf, and return the upper
endpoint of I. Altogether, if h is the height of the tree, the parametric search takes O(h)
calls to A on specific values as well as O(1) additional computation at each level. In other
words, if A has complexity O(f(n)), then the parametric search determines the exact value
of λ∗ in time O(f(n)2).

4.4 Proof of Theorem 2

Let us first summarize how our algorithm works in the real RAM model.

▶ Proposition 13. For every constant d, there is a Real-RAM algorithm that computes
in time O(km2), given an affine family of polytopes P ([α, β]), each defined by at most m

constraints, the size k of the smallest hitting set of P ([α, β]).

Proof. We are given as input P ([α, β]). We put α0 = α and compute αi = σP (αi−1), for
i = 1, 2, . . ., until we reach some value αi ≥ β. At this point, we return i as the size of the
smallest hitting set of P ([α, β]). We compute αi from αi−1 by performing parametric search
on the algorithm A that, given some real t, uses Megiddo’s algorithm to solve the linear
program that determines whether t ≤ σP (αi−1). Since the dimension d is fixed, Megiddo’s
algorithm takes O(m) time to solve one comparison to σP (αi−1), and the computation of
one αi takes O(m2) time. Altogether, the algorithm takes O(km2) time, where k is the size
of the smallest hitting set of P ([α, β]). ◀

To prove Theorem 2, it remains to analyze the bit complexity of the numbers manipulated
by the algorithm of Proposition 13 when k is fixed in addition to the ambient dimension d of
the polytopes. This proof relies on the observation that if A is an algebraic decision tree of
height h that decides a monotone decision problem P (·), then the algorithm obtained by
performing parametric search on A can also be modeled by a tree of height O(h2), which
is almost an algebraic decision tree (except for the leaves, that do not output only true or
false). The key ingredient for this is the following lemma.

▶ Lemma 14. For every constant d1 and d2, there exist algebraic decision trees of constant
complexity that, given an integer r ≤ d1 and a vector V ∈ Rd1+d2+2 describing the coefficients
of two univariate polynomials p1(X) and p2(X) of degree at most d1 and d2, respectively,
solve the following problems:

(i) does p1(X) have at least r real roots?
(ii) is the value of p2 in the r-th real root of p1 strictly positive (resp. strictly negative,

zero)?

Proof. We first reformulate questions (i) and (ii) as formulas from the first-order theory of
the reals in a constant number of variables. Let πs(V, X) denote ps(X) for s = 1, 2. For (i),
the polynomial p1 has at least r distinct real roots (α1 < · · · < αr) if and only if the following
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formula is true:

∃(x1, x2, . . . , xd1) ∈ Rd1 ,

(
d1∧

ℓ=1
(π1(V, xℓ) = 0 ∨ (ℓ > r))

)
∧

(
d1−1∧
ℓ=1

(xℓ+1 > xℓ)
)

.

For (ii), we treat the case of strictly positive sign, the two other cases follow the same path.
Observe that the sign of π2(V, ·) in the rth root of π1(V, ·) is positive if and only if

the polynomial x 7→ π1(V, x) has at least r distinct real roots x1 < x2 < . . . < xr,
any other root of x 7→ π1(V, x) is larger than xr, and
π2(V, xr) > 0.

This holds if and only if the following formula is true (we have r appear in the formula only
as a value, not as an index, to ensure that eventually the tree depends only on d1 and d2):

∃(x1, x2 . . . , xd1) ∈ Rd1 , ∀x ∈ R,(
d1∧

ℓ=1
(π1(V, xℓ) = 0 ∨ (ℓ > r))

)
∧

(
d1−1∧
ℓ=1

(xℓ+1 > xℓ)
)

∧

(
(π1(V, x) = 0) ⇒

(
d1∨

ℓ=1
((x = xℓ) ∧ (ℓ ≤ r))

)
∨

(
d1∧

ℓ=1
((x > xℓ) ∨ (ℓ > r))

))

∧
d1∧

ℓ=1
(π2(V, xℓ) > 0 ∨ (ℓ ̸= r)) .

By Theorem 7, such a formula is equivalent to a quantifier free formula in the input vector V

and r, involving a constant number of polynomials of constant degree. That quantifier-free
formula can in turn be modeled by an algebraic decision tree of constant complexity. ◀

We can now complete the proof of Theorem 2.

Proof of Theorem 2. Let V be a vector of real numbers consisting of the parameters that
represent P ([α, β]). Let A0 denote an algebraic decision tree that models the comparison,
using Megiddo’s linear-time algorithm, of t to σP (s). The input of A0 is s, V and t. The
height of A0 is O(m).

Now, consider the real RAM algorithm that computes σP (s) by performing parametric
search on A0. This algorithm has complexity O(m2) and takes s, V and t as input. Observe
that the value that it outputs is not an arbitrary real: the principles of parametric search
ensure that the output is either +∞ or a real root of a polynomial Π1 determining the
branching in one of the nodes of A0 (see Section 4.3.4). We can therefore represent the
output of the parametric search by an integer r1 (to mean we are interested in the r1th
real root) and a polynomial of constant degree and whose coefficients are constant degree
polynomials of some input coordinates. We can model this parametric search by a tree A1
that is almost an algebraic decision tree: A1 takes s and V as input, and each leaf contains
the description of σP (s) in the form of the integer r1 and the polynomial Π1. The only aspect
in which A1 is not an algebraic decision tree is that it does not solve a decision problem.

We can now append at each leaf of A1 a second copy of A1 where the input parameter s

has been substituted for the r1th root of Π1. This only requires changing, in the second copy
of A1, for every branching polynomial Π, the one-node evaluation of the sign of Π in s by
the constant-size subtree evaluating the sign of Π in the r1th root of Π1 given by Lemma 14.
This results in a tree A2 that takes s and V as input, and where each leaf contains the
description of σ

(2)
P (s). Again, the principles of parametric search ensures that the output
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can be presented in the form of an integer r2 and a polynomial Π2 of constant degree, the
coefficients of which are constant degree polynomials of some input coordinates. Again, the
only aspect in which A2 is not an algebraic decision tree is that it does not solve a decision
problem. Again, A2 has height O(m2).

And so on, for every constant i we can construct a tree Ai of height O(m2), that takes s

and V as input, and where each leaf contains the description of σ
(i)
P (s). Finally, in Ak, we

substitute every leaf by a constant-size algebraic decision tree that compares the number
stored in that leaf to the input number β. The resulting tree A is an algebraic decision tree
of height O(m2) that takes s and V as input, and that compares σ

(k)
P (s) to β. Executing

this tree for s = α gives a strongly quadratic algorithm for deciding whether P ([α, β]) has a
k-point hitting set. ◀

Proving Corollary 3 now amounts to going from a decision problem to the associated
optimization problem.

Proof of Corollary 3. With Lemma 5 and Theorem 2, we already have that for every constant
d and k, there is an algorithm that solves the decision version of the k-adaptability Problem (3)
in the special case where ℓ = 0 and Ω is an interval, in time strongly quadratic in m. That
algorithm can be modeled by an algebraic decision tree (this is the final tree A in the proof
of Theorem 2). We can therefore perform parametric search on that algorithm to solve the
optimization version of these problems in time strongly quartic in m. ◀

5 Concluding remarks

1. The quantifier elimination algorithms do not need the maps Af , As, b, and cs (for the finite
adaptability) or the maps A and b (for families of polyhedra) to be affine, but merely to
be polynomial of constant degree. Theorem 1 thus generalizes, mutatis mutandis, to this
setting. Note that the assumption that these maps are affine is used in the correspondence
between the finite adaptability and the hitting/covering of affine families of polyhedra, in
the hitting/covering duality, and in the proof of Theorem 2 and Corollary 3.

2. The assumption in Theorem 2 that P be an affine family of polytopes, rather than
polyhedra, is used to ensure that σP is not only a supremum, but actually a maximum
(this underlies the proof of Lemma 11). We conjecture that if P is a one-parameter family
of polyhedra and P ([λ, σP (λ)]) cannot be hit by a single point, then the polyhedron
P (σP (λ)) must be empty. If that is true, then Theorem 2 readily generalizes to affine
families of polyhedra.

3. A natural question is whether the hitting set problem for affine families of polyhedra is
fixed-parameter tractable with respect to the dimensions (of the ambient space of the
polyhedra as well as the parameter space).
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