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Abstract
In a graph G, a k-attack A is any set of at most k vertices and ℓ-defense D is a set of at most
ℓ vertices. We say that defense D counters attack A if each a ∈ A can be matched to a distinct
defender d ∈ D with a equal to d or a adjacent to d in G. In the defensive domination problem, we
are interested in deciding, for a graph G and positive integers k and ℓ given on input, if there exists
an ℓ-defense that counters every possible k-attack on G. Defensive domination is a natural resource
allocation problem and can be used to model network robustness and security, disaster response
strategies, and redundancy designs.

The defensive domination problem is naturally in the complexity class ΣP
2 . The problem was

known to be NP-hard in general, and polynomial-time algorithms were found for some restricted
graph classes. In this note, we prove that the defensive domination problem is ΣP

2-complete.
We also introduce a natural variant of the defensive domination problem in which the defense is

allowed to be a multiset of vertices. This variant is also ΣP
2-complete, but we show that it admits

a polynomial-time algorithm in the class of interval graphs. A similar result was known for the
original setting in the class of proper interval graphs.
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1 Introduction

All graphs discussed in this paper are finite and simple. The vertex set and edge set of
a graph G are denoted by V (G) and E(G). For a subset U ⊆ V (G), G[U ] denotes the
subgraph of G induced by U , and G ∖ U denotes the subgraph G[V (G) ∖ U ], which is
shortened to G ∖ v when U = {v}. The neighborhood of a vertex v, denoted by NG(v),
comprises of vertices adjacent to v and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}.
The closed neighborhood and the neighborhood of a set U ⊆ V (G) of vertices are defined
as NG[U ] =

⋃
v∈U NG[v] and NG(U) = NG[U ] ∖ U , respectively. The subscript G can be

dropped if the graph is clear from the context. A graph on t vertices with all
(

t
2
)

edges is a
clique Kt. When G[U ] is isomorphic to Kt for some set U of vertices, we say that G contains
Kt as a subgraph. The clique problem asks for the maximum t such that Kt is contained
as a subgraph in a given graph. A set D ⊆ V (G) is a dominating set when NG[D] = V (G).
The graph domination problem asks for the minimum size of a dominating set in a given
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35:2 A Note on the Complexity of Defensive Domination

graph and is a classical problem in graph theory and combinatorial optimization. We use
the following specification of the problem.

▶ Problem 1. DominatingSet
Input: A graph G and a positive integer ℓ

Output: Yes if and only if G admits a dominating set of size at most ℓ

This problem has broad practical applications in resource allocation, network design, analysis
and security. It is also of theoretical interest, as it is one of the first problems known to be
NP-complete, see [7], and is used as a base for countless reductions. Consult [8, 9, 10] for
various versions and applications of the domination problem.

Graph domination can be understood through the analogy in which the vertices of a
graph are under threat of some attack and defenders need to be placed in the vertices so
that each vertex either has a defender stationed directly in it or in an adjacent vertex.
This concept is useful in network security, facility location problems (positioning service
centers), and disaster response strategies (deploying rescue teams). Presented in this way,
the DominatingSet problem looks for a minimum number of defenders that can counter
any attack on a single vertex.

Farley and Proskurowski [6] proposed the following extension of the problem, called
defensive domination, where we prepare for a simultaneous attack on at most k vertices. We
say that any set A of at most k distinct vertices in G is a k-attack. An ℓ-defense D is a set
of at most ℓ distinct vertices of G and corresponds to placing ℓ defenders, one in each vertex
of D. We say that defense D counters attack A if there is a matching between A and D such
that each a ∈ A is matched to a distinct defender d ∈ D with a equal to d or a adjacent
to d in G. A defense D that counters every possible k-attack in G is called a k-defensive
dominating set. This extension is natural and meets the redundancy requirements usual for
all applications of the domination problem. We use the following formal specification of the
problem.

▶ Problem 2. DefensiveDominatingSet
Input: A graph G and positive integers k and ℓ

Output: Yes if and only if G admits an ℓ-defense that counters every k-attack in G

The parametrized version of the problem, where the size of the attack is an external parameter
and not a part of the input is also of interest.

▶ Problem 3. k-DefensiveDominatingSet
Input: A graph G and a positive integer ℓ

Output: Yes if and only if G admits an ℓ-defense that counters every k-attack in G

Observe that k-DefensiveDominatingSet for k = 1 is exactly DominatingSet.
Dereniowski, Gavenčiak, and Kratochvíl [3] proposed a further extension of the problem,
which seems a bit technical, but was successfully applied to study a variant of the cops
and robbers game. The proposed extension of defensive domination allows the placement
of multiple defenders in a single vertex of the graph and limits the possible attacks to the
ones that are explicitly specified on the input. A multiset ℓ-defense D places ℓ defenders
in total at the vertices of G, each vertex getting as many defenders as its multiplicity in D.
Multiset defense D counters attack A if each a ∈ A can be matched to a distinct defender
stationed in a, or any vertex adjacent to a. The formal specification of the problem proposed
by Dereniowski, Gavenčiak, and Kratochvíl [3] follows.
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▶ Problem 4. A-DefensiveDominatingMultiset
Input: A graph G, a set of attacks A ⊆ 2V (G), multisets D1 and D2 of vertices of G, and a

positive integer ℓ

Output: Yes if and only if G admits a multiset ℓ-defense D with D1 ⊆ D ⊆ D2 that counters
every attack A ∈ A

Observe, that we do not allow for multiset attacks, as it would lead to a different problem.
We believe that allowing for multiset defenses is an interesting extension and allows for

various applications. We propose the following natural extension of the defensive domination
problem, that allows for multiset defenses, but drops other technical conditions introdued by
Dereniowski, Gavenčiak, and Kratochvíl.

▶ Problem 5. DefensiveDominatingMultiset
Input: A graph G and positive integers k and ℓ

Output: Yes if and only if G admits a multiset ℓ-defense that counters every k-attack in G

To illustrate the strength of this extension, consider the following example. Graph K1,t is a
complete bipartite graph with bipartition classes of sizes 1 and t. Note that any 2-defensive
dominating set on K1,t has at least t defenders, but it is enough to use 2 defenders in the
multiset setting. In the proof of the main result of this paper, we focus on DefensiveDomi-
natingSet, but the hardness also applies to DefensiveDominatingMultiset, which we
believe should attract more attention.

As DominatingSet is NP-complete, it is straightforward that all mentioned dom-
ination problems are NP-hard. Both of the problems k-DefensiveDominatingSet
and A-DefensiveDominatingMultiset are in fact NP-complete, since one can guess
a defense and check if it counters all possible attacks in polynomial time (for k-
DefensiveDominatingSet there are O

(
nk

)
possible attacks to check which is polynomial

in n when k is fixed). On the other hand, as DefensiveDominatingSet is naturally
expressed as:

∃D⊆V (G),|D|⩽ℓ : ∀A⊆V (G),|A|⩽k : D counters A in G,

we easily get that DefensiveDominatingSet is in the second level of polynomial hierarchy
class ΣP

2 . Consult the textbook by Arora and Barak [1, Chapter 5] for an introduction of
the polynomial hierarchy. Schaefer and Umans [13, 14, 15] give an extensive list of complete
problems for different classes in the polynomial hierarchy. For a very brief introduction, ΣP

2
is defined as NPNP – a class of languages decidable in polynomial time by nondeterministic
Turing machines with access to NP-oracle, where NP-oracle allows to test any language in
NP in a single step of execution. The canonical complete problem for ΣP

2 is the following.

▶ Problem 6. Existential-2-Level-SAT
Input: Formula φ(x1, . . . , xa, y1, . . . , yb) with variables in two disjoint sets {x1, . . . , xa} and
{y1, . . . , yb}

Output: Yes if and only if the following Boolean formula is true.

∃x1,x2,...,xa
: ∀y1,y2,...,yb

: φ(x1, . . . , xa, y1, . . . , yb)

It was indpendently proved by Stockmeyer [16] and Wrathall [17] that the class ΣP
2 is exactly

the class of languages reducible to Existential-2-Level-SAT via polynomial-time many-
one reductions. Clearly, the following nondeterministic algorithm using NP-oracle solves

MFCS 2025
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DefensiveDominatingSet: algorithm first guesses a set of defenders D and then uses
NP-oracle to test whether there exists an attack of size at most k not defended by D. This
fact makes ΣP

2 a natural complexity class for DefensiveDominatingSet problem.
Ekim, Farley, and Proskurowski [4] showed that DefensiveDominatingSet is unlikely

to be in NP. The reason is that the following problem that corresponds to checking if a given
defense D counters every k-attack on G is already co-NP-complete.

▶ Problem 7. GoodDefense
Input: A graph G, a subset D of vertices, and a positive integer k

Output: Yes if and only if defense D counters every k-attack in G

For any defense set, or multiset, D, and any set of vertices X ⊆ V (G), let countD(X)
denote the number of elements (counting multiplicities for multisets) in D∩X. The following
connection between defensive domination and Hall’s condition was already observed in [4].

▶ Observation 1 (Ekim, Farley, Proskurowski [4]). The following conditions are equivalent:
Defense D counters every k-attack in G.
For every k-attack A we have |A| ⩽ countD(N [A]).

This draws our attention to the complementary problem of GoodDefense and a very
similar problem that is known to be NP-complete and W[1]-hard.

▶ Problem 8. BadDefense
Input: A graph G, a subset D of vertices, and a positive integer k

Output: Yes if there exists k-attack A with |A| > countD(N [A])

▶ Problem 9. HallSet
Input: A bipartite graph G with bipartition classes U and W and a positive integer k

Output: Yes if and only if there exists X ⊆ U with |NG(X)| < |X| ⩽ k

In [2, Exercise 13.28], a parametrized reduction is given from Clique to HallSet.
HallSet has an easy parametrized reduction to BadDefense. All of these observations
allow for the following conclusion.

▶ Lemma 2 (Theorem 2.3 in Ekim, Farley, Proskurowski [4]). GoodDefense is co-NP-
complete. BadDefense is NP-complete and W[1]-hard when parametrized by k.

When k is an external parameter of the problem, k-DefensiveDominatingSet is in NP,
and it remains NP-complete even when the input graph is restricted to split graphs [4], or
bipartite graphs [11]. On the positive side, DefensiveDominatingSet admits polynomial-
time algorithms when the input graph is restricted to cliques, cycles, trees [6], co-chain
graphs, threshold graphs [4], or proper interval graphs [5].

The main result of this paper is the following.

▶ Theorem 3. DefensiveDominatingSet and DefensiveDominatingMultiset are
ΣP

2 -complete.

The introduced multiset setting not only may better fit some applications, but might also
be more approachable algorithmically. For example, in Section 3 we investigate the multiset
defensive domination problem on the class of interval graphs. A graph G is an interval graph
when each vertex v ∈ V (G) corresponds to a closed interval Iv ⊆ R, and {u, v} ∈ E(G) if
and only if Iu ∩ Iv ̸= ∅. We prove the following.
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▶ Theorem 4. DefensiveDominatingMultiset is in P when the input graphs are restricted
to the class of interval graphs.

A similar result for DefensiveDominatingSet was shown for proper interval graphs by
Ekim, Farley, Proskurowski, and Shalom [5]. The complexity of DefensiveDominatingSet
for interval graphs remains unknown.

The proof of the main theorem is based on a reduction of the following problem, which
was shown to be ΣP

2 -complete by Rutenburg [12].

▶ Problem 10. CliqueNodeDeletion
Input: A graph G and positive integers s and t

Output: Yes if and only if G admits a set X of at most s vertices such that G ∖ X does not
contain Kt as a subgraph

▶ Theorem 5 (Theorem 6 in Rutenburg [12]). CliqueNodeDeletion is ΣP
2 -complete.

As the original paper includes only an idea of the proof that requires some minor alterations,
we have decided to present a streamlined proof of Theorem 5 in Appendix A.

2 Main Result

We are ready for the proof of the main result.

▶ Theorem 3. DefensiveDominatingSet and DefensiveDominatingMultiset are
ΣP

2 -complete.

Proof. We present a reduction from CliqueNodeDeletion. Assume that we are given an
instance G, s, t, where s is the number of vertices to remove from G and t is the size of clique
to avoid as a subgraph. For technical reasons, we assume that t ⩾ 4. Let n = |V (G)| denote
the number of vertices in G.

We construct an equivalent instance G′, k, ℓ of DefensiveDominatingSet. We set the
maximum size of an attack k = n+s, the maximum size of a defense ℓ = 4(n+s)+nt−(t−1),
and construct the graph G′ as depicted in Figure 1:

For each vertex v ∈ V (G), we introduce two vertices v′ and v′′ representing v in G′. Set
W denotes vertices v′, v′′ introduced for all v ∈ V (G).
For each edge e = (u, v) in E(G), we introduce the vertex e′ and add the edges joining
e′ with four vertices u′, u′′, v′, v′′ in W . Set F denotes vertices e′ introduced for all
e ∈ E(G).
We introduce four independent sets: I1 of size n + s; I2 of size n + s −

(
t
2
)
; I3 of size

n + s; and I4 of size n + s + ℓ.
We introduce three cliques: Q1 of size n + s; Q2 of size n + s− (t + 1); and Q3 of size
n + s.
For each vertex v ∈ V (G), we introduce a complete bipartite graph with one bipartition
class Iv of size

(
t
2
)
, and the other class I ′

v of size t. Set IV denotes the union of sets Iv

for all v ∈ V (G) and I ′
V denotes the union of sets I ′

v for all v ∈ V (G).
We add edges of complete bipartite graphs given by the biparition classes: (Q1, I1);
(Q2, Q1 ∪ I2 ∪ F ∪ IV ); (Q3, I3); (W, Q3 ∪ I4); and ({v′, v′′} , Iv) for each v ∈ V (G).

We claim that s vertices can be removed from G so that the resulting graph does not
include Kt as a subgraph if and only if there is an ℓ-defense that counters every k-attack in
G′. Before presenting the proof, let us give some ideas on the role of different “gadgets” used

MFCS 2025
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Q1

Q2 Q3

I1

I2

I4

I3

WF

Iv I ′
v

IV I ′
V

n + s

n + s− (t + 1) n + s

n + s

−
(

t
2
)

n + s

n + s

(
t
2
)

t

n + s + ℓ

v′

v′′

u′′
u′

e′

Figure 1 Reduction: The edge e = (u, v) of G is represented by the edges between e′ and
v′, v′′, u′, u′′ in G′. The defenders are represented by crossed circles.

in the construction of G′. The sets I force any successful defense to position many defenders
in their neighborhood. This allows for good control over the degrees of freedom in successful
ℓ-defenses. The set W contains two copies of each vertex of G and the defense is forced to
position at least one defender on them. We use the possibility of choosing some of the second
copies in each pair to express the selection of a clique hitting set. We are able to limit the
“dangerous” choices of k-attacks so that they express the choice of edges of a clique Kt in the
set F . We independently prove the implications in both directions.

(⇒) Let X be a solution to the instance G, s, t. We have |X| = s and G ∖ X does not
include Kt as a subgraph. We construct the following defense D:

D = Q1 ∪Q2 ∪Q3 ∪ I ′
V ∪ {v′ : v ∈ V (G)} ∪ {v′′ : v ∈ X} .

Note that D positions exactly n + s defenders on W . Additionally, D has nt defenders
on I ′

V and 3(n + s) − (t + 1) defenders on Q1 ∪Q2 ∪Q3, which gives ℓ defenders in total.
We show that D counters every attack of size at most n + s. Suppose for a contradiction
that A is an inclusion minimal attack with countD(N [A]) < |A| ⩽ n + s. First, we observe
that every vertex in the sets W , I1, I3, I4, Q1, Q2, and Q3 is adjacent to at least n + s

defenders (either from the set Q1, Q2, Q3 or W ). If any of these vertices is included in A,
then countD(N [A]) ⩾ n + s ⩾ |A|. We conclude that

A ⊆ I2 ∪ F ∪ IV ∪ I ′
V .

As every vertex in I ′
V is in D, we do not have A ⊆ I ′

V and hence A ∩ (I2 ∪ F ∪ IV ) ̸= ∅.
In particular, Q2 ⊆ N [A], and hence countD(N [A]) ⩾ |Q2| = n + s − (t + 1). Since every
vertex in IV is adjacent to additional t + 1 defenders in W ∪ I ′

V , we have A ∩ IV = ∅. Now,
N [I ′

V ]∩A = I ′
V ∩A, and I ′

V ⊆ D, so by the minimality of A we get A∩ I ′
V = ∅. We conclude

that

A ⊆ I2 ∪ F .
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As t + 1 <
(

t
2
)

for t ⩾ 4 and |A| > countD(N [A]) ⩾ n + s− (t + 1) > n + s−
(

t
2
)

= |I2|, we
also have A ∩ F ≠ ∅. As A includes at least one vertex in F , N [A] includes at least two
vertices in W ∩D and |A| > n + s− (t + 1) + 2. We conclude that

|A ∩ F | ⩾ |A| − |I2| > n + s− (t + 1) + 2−
(

n + s−
(

t

2

))
=

(
t

2

)
− (t− 1) =

(
t− 1

2

)
.

Now, as A includes more than
(

t−1
2

)
vertices in F , N [A] includes at least t vertices in

W ∩D, and |A| > n + s− (t + 1) + t. Hence, |A| = n + s and I2 ⊊ A, as otherwise we would
have countD(N [A]) > n + s. We call an attack A to be serious if

I2 ⊊ A ⊆ I2 ∪ F, |A ∩ F | =
(

t

2

)
.

We have shown that attack A is serious. Any
(

t
2
)

edges in G span at least t + 1 vertices
or span t vertices that form a clique Kt in G. As we know that G ∖ X does not contain Kt

as a subgraph, we get that if the edges span only t vertices then at least one of them is in X.
In either case, we get countD(N [A]) ⩾ n + s− (t + 1) + (t + 1) = n + s and D counters A.

(⇐) Let D be an ℓ-defense that counters every k-attack in G′. We make the following
observations.
1. As D counters attack I1, there are at least n + s defenders in I1 ∪Q1.
2. As D counters attack I3, there are at least n + s defenders in I3 ∪Q3.
3. As D counters every possible (n + s)-attack in I4 ∖ D, there are at least n + s defenders

in W .
4. For every v ∈ V (G), as D counters attack I ′

v, there are at least t defenders in Iv ∪ I ′
v.

Thus, in total, there are at least nt defenders in IV ∪ I ′
V .

5. By calculation, there are at most n + s− (t + 1) defenders in I2 ∪Q2 ∪ F .
6. For every v ∈ V (G), as D counters attack I2 ∪ Iv and there are at most n + s− (t + 1)

defenders in I2 ∪Q2, there are at least t + 1 defenders in Iv ∪ I ′
v ∪ {v′, v′′}. As |I ′

v| = t,
at least one of the defenders is in Iv ∪ {v′, v′′}.

We now construct a modified defense D′ and claim that D′ counters every serious attack
on G. As we focus on serious attacks, and the defenders in IV are not used to counter any
serious attack, we move some of them. For each v ∈ V (G) if v′ /∈ D and v′′ /∈ D, we move
one defender from Iv to v′ (guaranteed to be there by point 6). Observe that even after this
move there are at least t defenders in Iv ∪ I ′

v. As there are still at least nt + (n + s) + (n + s)
defenders in IV ∪ I ′

V ∪ I1 ∪ Q1 ∪ I3 ∪ Q3, there are at most (n + s) + (n + s − (t + 1) in
I2 ∪Q2 ∪F ∪W . Second, since serious attacks include only vertices in I2 ∪F , and vertices in
Q2 dominate I2 ∪F , and there are at most n + s− (t + 1) defenders in I2 ∪Q2 ∪F , we move
all defenders from I2 and F to Q2. Third, while |D ∩W | > n + s, we select any v ∈ V (G)
with defenders both in v′ and v′′ and move the defender from v′′ to Q2. The resulting defense
D′ has the property that it also counters every serious attack, as D did.

The resulting defense D′ has exactly n + s defenders in W , at most n + s − (t + 1)
defenders in Q2, at least one defender in each {v′, v′′} for every v ∈ V (G), and counters
every serious attack. Let X be a set of vertices v in V (G) for which both v′ and v′′ are in D′.
There are exactly s such vertices. We claim that G ∖ X does not contain Kt as a subgraph.
Indeed, given a t-element set Q of vertices of G with Q ∩X = ∅ and G[Q] isomorphic to Kt,
we can create a k-attack composed of I2 and the set of

(
t
2
)

vertices e′ representing edges of
G[Q]. This attack has size n + s and has at most n + s− (t + 1) neighboring defenders in Q2
and exactly t neighboring defenders in W . Thus, this serious attack is not countered by D′,
which contradicts the construction of D′.

MFCS 2025



35:8 A Note on the Complexity of Defensive Domination

We leave it to the reader to verify that exactly the same reduction also shows that
DefensiveDominatingMultiset is also a ΣP

2 -complete problem. ◀

3 Interval Graphs

Building on the work of Ekim, Farley, Proskurowski, and Shalom [5], who presented a greedy
algorithm for DefensiveDominatingSet on proper interval graphs, we develop a similar
greedy strategy for DefensiveDominatingMultiset on general interval graphs.

For the remainder of this section, let G be an interval graph given by its interval
representation: each vertex v ∈ V (G) corresponds to a closed interval Iv ⊆ R, and {u, v} ∈
E(G) if and only if Iu∩Iv ̸= ∅. We assume that this representation ensures that no two distinct
intervals share an endpoint. For any bounded closed set S ⊆ R, let left(S) and right(S)
denote the minimum and the maximum element in S, respectively. For any set (or multiset)
of intervals X, let sum(X) =

⋃
I∈X I denote their union, and let span(X) be the minimum

closed interval containing every interval in X, that is, the interval [left(X), right(X)]. For a set
Y ⊆ V (G), we define sum(Y ) = sum({Iv : v ∈ Y }) and span(Y ) = span({Iv : v ∈ Y }). A set
(or multiset) of intervals X is proper if no interval in X is a proper subset of another interval
in X. We say that a set Y ⊆ V (G) is proper, when {Iv : v ∈ Y } is proper. The algorithm
presented by Ekim, Farley, Proskurowski, and Shalom [5] for DefensiveDominatingSet
worked under the condition that V (G) is proper.

Our first observation is that in the multiset setting we can focus on constructing proper
defenses.

▶ Observation 6. For any multiset defense D, there exists a proper multiset defense D′ such
that |D′| = |D| and D′ counters any attack that D counters.

Proof. Consider a multiset defense D. If it is not proper, then there exist two vertices
u, v ∈ D such that Iu ⊊ Iv. Let D′ be the multiset defense obtained from D by replacing
every copy of u with an additional copy of v. Clearly, |D′| = |D|. Since Iu ⊊ Iv, we have
that N [u] ⊆ N [v] and that any attack A that is countered by D using defenders in u is
countered by D′ using added defenders in v. Therefore, D′ counters every attack countered
by D. Observe that this replacement increases the total length of the intervals that represent
vertices in the defense. Thus, repeating this replacement procedure eventually stops and
yields a proper defense that counters any attack that the original defense counters. ◀

Note that Observation 6 holds specifically for the multiset setting and does not have a
direct analogue for DefensiveDominatingSet. The next observation is that sets with
smaller union are more dangerous for any defense than those with larger union.

▶ Observation 7. For any defense D and two sets A1, A2 with countD(N [A1]) < |A1|,
|A1| ≤ |A2|, and sum(A2) ⊆ sum(A1) we have countD(N [A2]) < |A2|.

Proof. We have that countD(N [A2]) is the number of intervals in D that have a nonempty
intersection with sum(A2) which is a subset of sum(A1). Thus,

countD(N [A2]) ≤ countD(N [A1]) < |A1| ≤ |A2| . ◀

Let x = right(Iv) for some vertex v ∈ V (G). Let Vx = {v ∈ V (G) : right(Iv) ≤ x} denote
the nonempty set of vertices that lie completely to the left of x in the representation. Let
c = |Vx| and for every integer 1 ≤ i ≤ c we define the i-th block at x, denoted Bx,i, in the
following way. Let v1, v2, . . . , vc be Vx arranged in a sequence sorted descending by the left
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endpoint of the representing interval, that is, left(Iu) > left(Iw) if and only if u appears
earlier than w in the sequence. We select Bx,i = {v1, v2, . . . , vi} to be the first i elements in
the sequence. Note that if defined, Bx,i contains exactly i vertices, Bx,i+1 is a superset of
Bx,i, and Bx,i maximizes left(span(X)) among all subsets X ⊆ Vx with |X| = i.

We say that D is a k-block defense if it counters every attack Bx,i for every possible right
endpoint x and every i ≤ k.

▶ Lemma 8. A proper k-block defense D counters every k-attack in G.

Proof. Assume to the contrary that a proper k-block defense D does not counter some
k-attack. By Observation 1 we have a set A with countD(N [A]) < |A| = m ≤ k. Among
such sets, we select A with the minimum size m.

Let w ∈ A be the vertex that maximizes right(Iw) among the vertices in A. Let
x = right(Iw), c = |Vx|, and v1, v2, . . . , vc be Vx arranged in a sequence sorted descending
by the left endpoint of the representing interval. All elements of A are represented to the
left of x, so we have m ≤ c. Recall that Bx,i = {v1, v2, . . . , vi} for every 1 ≤ i ≤ c. By
the assumption of the lemma, we know that A ̸= Bx,m. Since D counters Bx,m, we have
countD(N [A]) < countD(N [Bx,m]) and there is d ∈ D with d ∈ N [Bx,m] and d /∈ N [A].
Every interval representing a vertex in A is either completely to the left or completely to the
right of Id. Let

A1 = {v ∈ A : right(Iv) < left(Id)} and A2 = {v ∈ A : right(Id) < left(Iv)}.

Since x ∈ Iw and x /∈ Id, we have w ∈ A2. Since left(span(A)) < left(span(Bx,m)), we have
A1 ̸= ∅. We have partitioned A into two nonempty subsets A1 and A2.

By the minimality of A we have countD(N [A1]) ≥ |A1| and countD(N [A2]) ≥ |A2|.
We get that there is at least one d′ ∈ D ∩ N [A1] ∩ N [A2], as otherwise we would have
countD(N [A]) = countD(N [A1])+countD(N [A2]) ≥ |A1|+ |A2| = |A|. Interval Id′ intersects
both span(A1) and span(A2). This allows us to write the following inequalities:

left(Id′) < right(span(A1)) < left(Id) < right(Id) < left(span(A2)) < right(Id′),

and conclude that Id is a proper subset of Id′ contradicting with D being a proper defense. ◀

We are ready for the proof of the main result of this section.

▶ Theorem 4. DefensiveDominatingMultiset is in P when the input graphs are restricted
to the class of interval graphs.

Proof. The proposed algorithm, see Algorithm 1 for the pseudocode, works as follows. It
assumes that G has n vertices and is given in the interval representation by the intervals
I1, I2, . . . , In. It sorts the intervals ascending by their right endpoints. Then, for every
1 ≤ i ≤ n, let x be the right endpoint of the i-th interval in the list. The algorithm calculates
the number count of defenders missing to counter every m-block attack Bx,m for m ≤ k.
Then, it selects the interval d that maximizes the right endpoint among all intervals that
include x. The algorithm adds count copies of the interval d to D.

Clearly, Algorithm 1 runs in polynomial time. The algorithm only adds inclusion maximal
intervals to D, so the constructed multiset defense D is proper. The algorithm explicitly
adds the required number of defenders to counter every possible attack Bx,m, so D is also
k-block. Thus, by Lemma 8 we get that D counters every k-attack in G.
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Algorithm 1 Greedy Multiset Defensive Domination in Interval Graphs.

1: procedure GreedyDefense((I1, I2, . . . , In) , k)
2: D ← ∅
3: I1, I2, . . . , In ← intervals I1, I2, . . . , In sorted ascending by their right endpoints
4: for i = 1, 2, . . . , n do
5: x = right(Ii)
6: for m = 1, 2, . . . , min(i, k) do
7: count← max(0, m− countD(N [Bx,m]))
8: d← interval with left(d) < x and maximum right(d)
9: Add count copies of d to D

10: end for
11: end for
12: return D

13: end procedure

For the proof that the defense D is of minimum size, let ℓ = |D|, J1, J2, . . . , Jℓ be the
multiset of intervals in D sorted ascending by their left endpoints. Assuming to the contrary,
let D′ be another proper defense that counters every k-attack with ℓ′ = |D′| < |D| and
K1, K2, . . . , Kℓ′ be the multiset of intervals in D′ sorted ascending by their left endpoints.
Among such defenses, select one that maximizes the number p such that Ji = Ki for all
1 ≤ i ≤ p. We have p < ℓ′ < ℓ. Let d = Jp+1 and d′ = Kp+1. We do not have d′ ⊊ d,
as otherwise we could exchange d′ for d in D′ and get another defense that counters every
k-attack of the same size, but with larger p. We also do not have d ⊊ d′, as the algorithm
only adds inclusion maximal intervals to D. Let x, m be such that the algorithm added d to
D when considering attack Bx,m.

If left(d′) > left(d) then right(d′) > right(d) and as the algorithm did not add d′ to D we
have left(d′) > x. This means that D′ has exactly p intervals K1, . . . , Kp = J1, . . . , Jp with
the left endpoint less than or equal to x. The algorithm calculated that these intervals do
not counter Bx,m and no other interval in D′ intersects span(Bx,m). We conclude that D′

does not counter Bx,m, a contradiction.
If left(d′) < left(d) then right(d′) < right(d) and we can exchange d′ for d in D′ and

get another defense D′′ that counters every k-attack with |D′′| = |D′| but with bigger p.
Indeed, we can show that the resulting defense D′′ satisfies countD′′(N [By,q]) ≥ q for every
possible right endpoint y and every q ≤ k. For y < x, this follows from the fact that D′′

agrees with D on the first p intervals that are enough to counter these attacks. For y ≥ x,
we have d′ ∈ N [By,q]⇒ d ∈ N [By,q] and countD′′(N [By,q]) ≥ countD′(N [By,q]) ≥ q. We get
a contradiction with the choice of D′. ◀

We claim that Algorithm 1 can be implemented to run in O (nk) time using standard
techniques, and we omit the details of this implementation.

4 Summary

In this work, we have shown that both DefensiveDominatingSet and DefensiveDomi-
natingMultiset are ΣP

2 -complete. For the multiset variant of the problem, in the class
of interval graphs, we have indicated a polynomial-time algorithm. This algorithm does
not work in the original setting where at most one defender can be located at a single
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vertex. Furthermore, we do not even know if GoodDefense admits a polynomial-time
algorithm in the class of interval graphs. We would like to see the complexity status of
DefensiveDominatingSet resolved in the class of interval graphs.

We also believe that potential applications in the facility location problem should justify
the investigation of defensive domination problems in the class of planar graphs. Note
that the reductions presented for ΣP

2 -completeness of DefensiveDominatingSet and
DefensiveDominatingMultiset or the W[1]-hardness of BadDefense construct graphs
with large cliques and cannot be applied to show the hardness in the class of planar graphs.
There is a natural dynamic programming FPT-algorithm that checks BadDefense when
parametrized by the tree-width of the input graph. When looking for dangerous k-attacks
against a fixed defense, it is enough to consider attacks A such that N [A] is connected. This
means that in a planar graph, we can fix some outerplanar decomposition of the graph
and only consider k-attacks that span at most 2k − 1 adjacent layers of the outerplanar
decomposition. As the tree-width of such subgraphs is bounded, we obtain a simple FPT-
algorithm that checks BadDefense when parametrized by k in the planar graphs. This
shows that in the parametrized sense, defensive domination problems might be easier in
planar graphs than they are in general graphs. This motivates the following questions. Does
GoodDefense admit a polynomial-time algorithm in the class of planar graphs? What is
the complexity of DefensiveDominatingSet and DefensiveDominatingMultiset in
the class of planar graphs? Both problems are NP-hard, but we do not know if they are
ΣP

2 -complete.
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A Clique Node Deletion

The main result of this paper is proved by a reduction from CliqueNodeDeletion to
DefensiveDominatingSet. Clique Node Deletion Problem was first introduced by Ruten-
burg [12] in a more general setting called Generalized Node Deletion. Rutenburg gives an
idea for a proof [12, Theorem 6] that CliqueNodeDeletion is ΣP

2 -complete. As CliqueN-
odeDeletion is an important intermediate problem for our result, we present a streamlined
proof based on Rutenburg’s idea.

The proof is based on a reduction from the following problem, which is a variation on the
quantified boolean formula satisfaction problem. It is a natural ΣP

2 -complete problem with
an easy reduction from Existential-2-Level-SAT [16].

▶ Problem 11. Existential-2-Level-3-CNF

Input: 3-CNF formula φ(x1, . . . , xa, y1, . . . , yb) with variables in two disjoint sets {x1, . . . , xa}
and {y1, . . . , yb}

Output: Yes if and only if the following Boolean formula is true.

∃x1,x2,...,xa : ¬∃y1,y2,...,yb
: φ(x1, . . . , xa, y1, . . . , yb)
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QC1 QC2

C1C1

C2

Cc

GC1 GC2

Gx1 Gx2 Gx3

Gy1 Gy2 Gy3

x1 ¬x1 x2 ¬x2 x3 ¬x3

y1 ¬y1 y2 ¬y2 y3 ¬y3

x1 ¬x2 y1 ¬x2 ¬x3 ¬y3

Figure 2 Rutenburg’s reduction. The part of G corresponding to the clauses C1 ≡ (x1 ∨ ¬x2 ∨ y1)
and C2 ≡ (¬x2 ∨ ¬x3 ∨ ¬y3). Ugly vertices are represented by crossed circles.

We are now ready to present the proof of the following theorem.

▶ Theorem 5 (Theorem 6 in Rutenburg [12]). CliqueNodeDeletion is ΣP
2 -complete.

Proof. We reduce from Existential-2-Level-3-CNF to CliqueNodeDeletion. Assume
that we are given two disjoint sets of variables X = {x1, . . . , xa}, Y = {y1, . . . , yb}, and a
set of clauses C = {C1, . . . , Cc} with each clause having exactly three occurrences of three
distinct variables in X ∪ Y . For technical reasons, we assume that c > 6, as otherwise there
are at most 18 variables and we can simply check all the possibilities. We set s = ac + 3c,
t = b + c, and construct a graph G such that G admits a subset X of vertices with |X| ≤ s

such that G ∖ X does not contain Kt as a subgraph if and only if the following formula

∃x1,x2,...,xa
: ¬∃y1,y2,...,yb

: C1 ∧ C2 ∧ . . . ∧ Cc

is true. The graph G is constructed in the following steps. Consult Figure 2 for an example.
1. For each variable xi (1 ⩽ i ⩽ a) we introduce Gxi : a copy of Kc,c with one bipartition

class called positive and the other class called negative. We number positive vertices from
1 to c and number negative vertices from 1 to c.

2. For each variable yj (1 ⩽ j ⩽ b) we introduce Gyj : two independent vertices, one called
positive and the other called negative.

3. For each clause Ck (1 ⩽ k ⩽ c) we introduce GCk
: a copy of K3,3 with one bipartition

class called good and the other class called bad. We select one of the bad vertices to be
ugly. In Ck there are 3 occurrences of variables. For each such occurrence, we assign a
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distinct good vertex in GCk
. We call the good vertices assigned to variables in X (Y ) to

be X-good (Y -good).
4. For each edge (u, v) in every Gxi

and every GCk
we add a copy of Kt on u, v and

additional t− 2 new vertices.
5. For each GCk

with g X-good vertices we compose set Z of all X-good vertices in GCk
and

every positive (negative) vertex numbered k in Gxi
with xi having a positive (negative)

occurrence in Ck. Set Z has exactly 2g elements. We add a copy of Kt−1+g on vertices
in Z and additional t− 1− g new vertices. We call this added clique QCk

.
6. For each positive (negative) occurrence of yj in Ck, let u be the Y -good vertex in GCk

assigned to this occurrence. We add an edge between u and the positive (negative) vertex
in Gyj

. We also add edges between u and both vertices in every other Gyj′ for j′ ̸= j.
7. For each clause Ck, let u be the ugly vertex in GCk

. We add edges between u and both
vertices in every Gyj

.
8. For every 1 ⩽ j < j′ ⩽ b, we add all four edges between any of the two vertices in Gyj

and any of the two vertices in Gyj′ .
9. Finally, for every 1 ⩽ k < k′ ⩽ c, every bad or Y -good vertex u in GCk

, and every bad or
Y -good vertex u′ in GCk′ we add an edge between u and u′.

Observe that G contains many copies of Kt. We distinguish four types of such cliques:
(A) A clique that contains a positive and a negative vertex in a single Gxi

. The common
neighborhood of such a pair of vertices is the set of additional vertices added in step 4
of the construction.

(B) A clique that contains a good and a bad vertex in a single GCk
. The common neighbor-

hood of such a pair of vertices is the set of additional vertices added in step 4 of the
construction.

(C) A clique that contains an X-good vertex in some GCk
and is not of type B. As this clique

does not contain any bad vertex in GCk
, it must be a subclique of QCk

constructed in
step 5.

(D) Other. Observe that every other clique of size t can contain only Y -good or ugly vertices
in GCj or positive or negative vertices in Gyi .

We independently prove the implications in both directions.
(⇐) Let ν1, ν2, . . . , νa be a valuation of x1, x2, . . . , xa such that formula

∃y1,y2,...,yb
: C1 ∧ C2 ∧ . . . ∧ Cc

is false. We construct a set X of vertices in V (G) in the following way. From each Gxi
we

select all the c negative vertices if νi is true and all c positive vertices if νi is false. For each
Ck if Ck is satisfied by any of the variables xi = νi we select all 3 good vertices. Otherwise,
we select all 3 bad vertices. The constructed set X has ac + 3c vertices. We claim that
G ∖ X does not contain Kt as a subgraph. Each clique of type A or B is removed by
the selection of vertices. Each clique QCk

of type C corresponding to a clause Ck with g

occurrences of variables in X is removed, as we either remove g vertices corresponding to the
false occurrences of variables in variable gadgets, or all good vertices in clause gadgets GCk

.
Now, assuming to the contrary, let Q be some clique of type D that remains in G ∖ X.

It is clear that Q can have at most one vertex in each Gyj
and at most one vertex in each

GCk
. As t = b + c, Q has exactly one vertex in each Gyj

that corresponds to a valuation
µ1, µ2, . . . , µb of variables y1, y2, . . . , yb. We claim that the combined valuation (xi = νi,
yj = µj) satisfies all clauses C1, C2, . . . , Cc, which gives a contradiction. As clique Q also has
exactly one vertex in each GCk

, let u be that vertex and observe that y is ugly or Y -good in
GCk

. If u is the ugly vertex in GCk
, it means that the bad vertices are not removed, and Ck
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is satisfied by one of the variables x1, x2, . . . , xa. If u is a Y -good vertex, then u corresponds
to an occurrence of some variable yj . The construction of G guarantees that there is only
one edge between u and a vertex in Gyj

that corresponds to a valuation of yj that satisfies
clause Ck. Thus, every clause is satisfied by some variable. A contradiction.

(⇒) Let X be a subset of vertices of G witch |X| ⩽ ac + 3c and G ∖ X does not contain
Kt as a subgraph. We construct a valuation ν1, ν2, . . . , νa of variables x1, x2, . . . , xa such
that formula

∃y1,y2,...,yb
: C1 ∧ C2 ∧ . . . ∧ Cc

is false. To remove all cliques of type A, X must include at least a positive or a negative
vertices in each Gxi . To remove all cliques of type B, X must include at least 3 good or
3 bad vertices in each GCk

. As |X| ⩽ ac + 3c, we get that X includes exactly a positive
or exactly a negative vertices in each Gxi . We set νi to be true if and only if X includes
negative vertices in Gxi

. Observe that if the constructed valuation of x1, x2, . . . , xa satisfies
clause Ck, then X has to include 3 good vertices in GCk

, and the ugly vertex in GCk
remains

in G ∖ X. Otherwise, there would remain a clique of type C in G ∖ X.
Now, assuming to the contrary, let µ1, µ2, . . . , µb be a valuation of variables y1, y2, . . . , yb

that satisfies all the clauses. We construct a clique Q in G∖X of size t = b + c the following
way. For each 1 ⩽ j ⩽ b, we select a positive (negative) vertex from Gyj

when µj is true
(false). For each 1 ⩽ k ⩽ c, we select the ugly vertex from GCk

if it is not removed. If the
ugly vertex is removed, then we know that Ck is satisfied by one of the variables y1, y2, . . . , yb,
and we select the Y -good vertex in GCk

that was assigned to the satisfied occurrence.
We claim that the resulting set of vertices induces a clique with b + c vertices. Indeed,

vertices from different subgraphs Gyj
, Gyj′ are always connected by an edge (step 8). All

ugly vertices are connected to each other (step 9) and both vertices in every subgraph Gyj

(step 7). Let u be a Y -good vertex selected from some GCk
to Q. Vertex u corresponds to

the occurrence of variable yj in Ck. Vertex u is connected to ugly and Y -good vertices in
other GCk′ for k ≠ k′ (step 9) and both vertices in every subgraph Gyj′ for j ̸= j′ (step 6).
As u corresponds to a satisfied occurrence of yj in Ck, we get that u is also connected to the
vertex selected from Gyj

. Thus, we have found a clique Kt in G ∖ X. A contradiction. ◀
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