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Abstract
We show that the number of distinct squares in a packed string of length n over an alphabet of
size σ can be computed in O(n/ logσ n) time in the word-RAM model of computation. This paper
is the first to introduce a sublinear time algorithm for the packed version of squares counting. The
packed representation of a string of length n over an alphabet of size σ is given as a sequence of
O(n/ logσ n) machine words in the word-RAM model (a machine word consists of ω ≥ log2 n bits).

Previously it was known how to count distinct squares in O(n) time [Gusfield and Stoye, JCSS
2004], even for a string over an integer alphabet, see [Crochemore et al., TCS 2014; Bannai et
al., CPM 2017; Charalampopoulos et al., SPIRE 2020]. We use techniques of squares extraction
from runs described by Crochemore et al. [TCS 2014]. However, the packed model requires novel
approaches. In particular, we need an O(n/ logσ n) sized representation of all long-period runs
(runs with periods that are Ω(logσ n)) which guarantees sublinear time counting of potentially
linearly-many implied squares. The long-period runs with a string period that is periodic itself
(called layer runs) are an obstacle, since their number can be Ω(n). Fortunately, the number of
all other long-period runs is O(n/ logσ n) and we can construct an implicit representation of all
long-period runs in O(n/ logσ n) time by adopting the insights of Amir et al. [ESA 2019], combined
with sublinear time tools provided by the PILLAR model of computations in case of packed strings.
We count squares in layer runs in sublinear time by exploiting combinatorial properties of types
of pyramidally-shaped groups of layer runs. As a by-product, we discover several new structural
properties of runs.

Another difficulty is to compute, in sublinear time, locations of Lyndon roots of runs in packed
strings, which is needed for grouping of runs that can generate equal squares. To overcome this
difficulty, we introduce sparse-Lyndon roots which are based on the notion of string synchronizers
proposed by Kempa and Kociumaka [STOC 2019].
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36:2 Counting Distinct Square Substrings in Sublinear Time

1 Introduction

We consider a problem of counting distinct squares (and more generally, powers) in a string.
Such problems are important not only from a purely theoretical point of view, but are also
relevant in some applications in bioinformatics (see the book [27]). Strings of the form
X2 = XX, for a non-empty string X, called squares (or tandem repeats), are the most
natural type of repetition.

A fundamental algorithmic problem related to squares is checking if a given string of
length n is square-free, that is, if it avoids square substrings. Thue’s construction of an
infinite ternary square-free string [44] can be viewed as the beginning of combinatorics on
words. The first O(n log n)-time algorithm for checking square-freeness was given by Main
and Lorentz [40]. An O(n)-time algorithm for this problem, for the case of a constant-sized
alphabet, was proposed by Crochemore [18]. Subsequently, O(n)-time algorithms for square-
freeness over an integer alphabet and over a general ordered alphabet follow from Kolpakov
and Kucherov’s [36] and Ellert and Fischer’s [23] algorithms for computing runs under these
assumptions, respectively. Most recently, Ellert, Gawrychowski, and Gourdel [24] obtained
an O(n log σ)-time algorithm for testing square-freeness of a string over a general unordered
alphabet of size σ; they also showed that the algorithm is optimal under these assumptions.
Square-freeness was also studied in on-line [29, 37], parallel [2, 3, 20] and dynamic [1] settings.

A much more challenging problem than testing square-freeness, that has received sig-
nificant attention, is computing the number of distinct square substrings of a given string.
Fraenkel and Simpson were the first to show that a string of length n contains O(n) dictinct
squares [26]. Brlek and Li very recently, using arguments from linear algebra and graph
theory, improved the 2n upper bound of Fraenkel and Simpson to just n; see [11, 10].

Linear-time algorithms for counting distinct square substrings were proposed by Gusfield
and Stoye [28], Crochemore et al. [19], Bannai, Inenaga, and Köppl [6], and Charalampopoulos
et al. [14]; notably, the last three results work for a string over an integer (generally, linearly
sortable) alphabet. As already mentioned, testing square-freeness is a simpler problem than
counting distinct squares. In particular, for a general (ordered) alphabet, element distinctness
can be reduced in linear time to counting squares1, and the latter problem is hard: it requires
Ω(n log n) time in the comparison model [8].

In the word-RAM model of computation with word size Θ(log n), we may store up to
Ω(logσ n) string characters in a single machine word, where σ is the size of the alphabet. The
packed representation of a length-n string S over an integer alphabet [0 . . σ) is a sequence of
O(n/ logσ n) integers, each encoding a fragment of S of length O(logσ n).

A recent line of work has yielded o(n)-time solutions for several basic stringology problems
in the setting where the input string(s) is/are given in packed form (the packed setting).
These include pattern matching [7] and indexing [31, 41], computing the LZ factorization
and BWT [22, 30, 31, 32], the longest common substring [13], the longest palindromic
substring [16], the Lyndon array [4], and covers of a string [42]. While for some of the
discussed problems, such as pattern matching, optimal O(n/ logσ n)-time algorithms exist,
for several others, such as BWT construction, the best known algorithms run in time
O(n

√
log n/ logσ n). A recent work of Kempa and Kociumaka [33] shed light on the source

of difficulty of several stringology problems for which the state-of-the-art solutions take
O(n

√
log n/ logσ n) time.

1 As for the reduction, a sequence a1, . . . , an contains a repeating element, if and only if, string
a2

1b1a2
2b2 · · · a2

nbn, for a square-free string b1b2 . . . bn (say, a prefix of the infinite ternary square free
string [44]), contains less than n distinct square substrings.
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We are the first to study the problem of counting squares in the packed setting. The
problem is formally defined as follows.

Packed Counting Of Distinct Squares
Input: A string T of length n over alphabet [0 . . σ) given in a packed representation.
Output: |squares(T )|, where squares(T ) denotes the set of all squares that are equal to
some substring of T .

▶ Example 1. Consider string T = (ab)1000(ba)1000; see Figure 1 for a comparison. This
string contains 2000 distinct squares. We have

squares(T ) = {b(ab)ib(ab)i : 0 ≤ i ≤ 999}∪{(ab)2i : 1 ≤ i ≤ 500}∪{(ba)2i : 1 ≤ i ≤ 500}.

We settle the time complexity of the Packed Counting Of Distinct Squares problem,
classifiying it as one of the elementary stringology problems that admit an O(n/ logσ n)-time
solution in the packed setting.

▶ Theorem 2. The Packed Counting Of Distinct Squares problem can be solved in
O(n/ logσ n) time.

Moreover, our algorithm can report k distinct squares, for any k between 0 and the actual
number of distinct squares in the string, in O(n/ logσ n + k) time. Our algorithm generalizes
readily to powers with higher exponent: for any integer t ≥ 2, a string of length n contains
at most n/(t − 1) powers with exponent t [39] and we can compute the actual number of
those in a packed string in O(n/ logσ n) time.

Other related work. A string of length n contains O(n log n) substrings that are primitively
rooted squares and they can all be computed in O(n log n) time; see [17, 21, 43]. The same
representation is computed by Apostolico and Breslauer’s parallel algorithm in [3]. We note
that these algorithms compute all occurrences of primitively rooted squares and are not
concerned with whether any two computed substrings correspond to the same square.

Technical Overview
Let T be a string of length n over alphabet [0 . . σ). It was already observed by Crochemore et
al. [19] that distinct squares in T can be computed from runs (maximal periodic fragments).
This is because a square U2 can be extended to a unique run with the same period as the
primitive root of U2 and a string of length n contains O(n) runs that can be computed in
O(n) time [36, 5, 23]. Amir et al. [1] (see also [12]) proposed an algorithm that efficiently
maintains a representation of runs in a dynamic string. We note that their algorithm works
in the PILLAR model of Charalampopoulos, Kociumaka, and Wellnitz [15] and it can be used
to compute a representation of all runs in T with period at least logσ n in O(n/ logσ n) time.
All the remaining runs in T either fit in a machine word or are so-called τ -runs (see [31]);
the number of the latter is O(n/ logσ n). As a result, a representation of all runs in T can be
computed in O(n/ logσ n) time and space. This representation can be used to compute the
longest square in a string in O(n/ logσ n) time in a straightforward way.

Computing the number of distinct squares from this representation is much more challen-
ging. The first obstacle towards achieving this goal is the difficulty in grouping the runs with
respect to their Lyndon roots in packed strings. We overcome this obstacle by introducing a
version of Lyndon roots more suitable for the packed model, called here sparse Lyndon roots.
Positions of such nonstandard roots are based on synchronizing sets of positions (see Kempa
and Kociumaka [31]).

MFCS 2025



36:4 Counting Distinct Square Substrings in Sublinear Time

Let us call squares U2 whose root U is both primitive and highly periodic (here: containing
at least 4 occurrences of the period) special, while remaining squares are called plain. Plain
squares can be efficiently counted by combining tabulation with the approach of [19] applied
on a selected O(n/ logσ n)-sized subset of the runs of T , after grouping these runs by their
Lyndon roots (for small-period runs) or sparse Lyndon roots (for long-period runs). Counting
special squares is significantly more challenging. We tackle this problem by processing certain
families of runs. The runs corresponding to special squares with large period (larger than
logσ n) are called here layer-runs. The crucial point is that these layer-runs can be grouped
in O(n/ logσ n) groups called “pyramids”, though they can contain together Ω(n) layer-runs.
These “pyramids” are very regular and counting squares in them can be done in batches in
sublinear time. Let us provide a trivial yet illustrative example.

▶ Example 3. Consider string S = (ab)m(ba)m. For each i ∈ [0 . . m), we have a square of
the form b(ab)ib(ab)i that occurs at (0-based) position 2m − 1 − 2i; this square is primitively
rooted and, in fact, S[2m − 1 − 2i . . 2m + 2i] is a run. These are the only primitively rooted
squares in S other than primitively rooted squares abab and baba; see Figure 1.

a b a b a b a b a b a b a b a b b a b a b a b a b a b a b a b a

Figure 1 The pyramidal-shaped structure of six special squares contained in (ab)8(ba)8.

Using the approach of Crochemore et al. [19], we can count all plain squares in the string
from Example 3 by processing a constant number of runs: (ab)m, (ba)m, bb, and (b(ab)i)2

for i ∈ {1, 2, 3}. However, there are Θ(n) runs of the form b(ab)ib(ab)i for i ≥ 4, each
corresponding to a special square, and we clearly cannot afford to iterate over these runs
in o(n) time. All such special squares in our example have their first half in run (ab)m and
their second half in run (ba)m, and that these two runs have the same Lyndon root (ab).

We employ an O(n/ logσ n)-sized representation of all runs that generate special squares.
As presented intuitively in Example 3, the representation relies on O(n/ logσ n) pairs T [a . . c]
and T [b . . d] of runs that have the same Lyndon root λ and satisfy b ∈ (c − |λ| + 1 . . c + 1].
Counting special squares from said representation is reduced to appropriately grouping the
computed pairs of runs.

2 Preliminaries

For a string S, its positions are numbered as S[0], . . . , S[|S| − 1]. If |S| = 0, S is called the
empty string. A string consisting of characters S[i], S[i + 1], . . . , S[j] is a substring of S. A
fragment of S is a positioned substring; that is, a fragment S[i . . j] represents the substring
S[i], S[i + 1], . . . , S[j]. Where possible, we treat fragments and substrings as equivalent. For
two fragments F = S[a . . b] and F ′ = S[a′ . . b′], we write F ⊆ F ′ if [a . . b] ⊆ [a′ . . b′]. Two
fragments S[a . . b] and S[a′ . . b′] are called neighboring if [a−1 . . b+1]∩ [a′ . . b′] ̸= ∅. For two
neighboring fragments F = S[a . . b] and F ′ = S[a′ . . b′], by F ∪ F ′ we denote the fragment
S[min(a, a′) . . max(b, b′)] and by F ∩ F ′ we denote the fragment S[max(a, a′) . . min(b, b′)].
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We say that a positive integer p is a period of string S if p ≤ |S| and S[i] = S[i + p]
for all i ∈ [0 . . |S| − p); equivalently, S[0 . . |S| − p) = S[p . . |S|). Fine and Wilf’s periodicity
lemma [25] asserts that if a string of length n has periods p and q such that p + q ≤ n, then
the string has period gcd(p, q). By per(S) we denote the smallest period of S to which we
refer as the period of S.

A non-empty string S is called primitive if the equality S = U t for a positive integer t

implies that t = 1. By rotc(S) we denote a cyclic rotation of the string S, obtained by moving
the c first characters of S to its end. A string is called a Lyndon string if it is primitive and
lexicographically minimal in the class of its cyclic rotations.

We say that a string S is periodic if per(S) ≤ 1
2 |S| and highly periodic if per(S) ≤ 1

4 |S|.
The Lyndon root of a periodic string S, denoted by Lroot(S), is the lexicographically smallest
rotation of S[0 . . per(S)). For example, Lroot((abaaa)3 aba) = aaaab.
▶ Definition 4. The Lyndon representation of a periodic string U is a quadruple Lrepr(U) =
(λ, e, α, β) such that:

λ = Lroot(U), and
U = PλeS with |P | = α < |λ| and |S| = β < |λ|. (P and/or S can be the empty string.)

▶ Example 5. We have Lrepr(U) = (aaaab, 3, 2, 1) for

U = (abaaa)3 aba = abaaa abaaa abaaa aba = ab (aaaab)3 a.

A run in a string T is a fragment F = T [a . . b] that is periodic, that is, p := per(F ) ≤ 1
2 |F |,

and inclusion-maximal, that is,
a = 0 or T [a − 1] ̸= T [a − 1 + p] and
b = |T | − 1 or T [b + 1] ̸= T [b + 1 − p].

We denote the set of runs in T by Runs(T ). A string of length n contains at most n runs
and they can be computed in O(n) time [5], even if the string is over an arbitrary ordered
alphabet [23].

The Lyndon position of a run R = T [a . . b] with Lyndon root λ is the unique position
i ∈ [a . . a + per(R)) such that T [i . . i + per(R)) = λ.

A square is a string of the form X2 = XX for a non-empty string X. A square X2 is
called primitively rooted if X is primitive and non-primitively-rooted otherwise.

We say that a square X2 is generated by a periodic string U if X2 is contained in U and
per(X2) = per(U). By the periodicity lemma, in this case |X| is a multiple of per(U). We
denote by frag-squares(U) the set of squares generated by a periodic string U .
▶ Example 6. For the underlined run R = T [1 . . 13] with period 2 in T = cababababababd,
we have frag-squares(R) = {(ab)2, (ba)2, (abab)2, (baba)2, (ababab)2}.
For a set X of periodic fragments of T we denote

frag-squares(X ) =
⋃

U∈X
frag-squares(U).

The following observation states that each square in a string is generated by a run.
▶ Observation 7 ([19]). squares(T ) = frag-squares(Runs(T )).

Unfortunately, from the point of view of counting, the same square string can be generated
by many runs. Dealing with squares whose first half is both primitive and (highly) periodic
is the most challenging. The next section is devoted to runs that generate such squares.

The next fact follows by using radix sort (with bucket sort).
▶ Fact 8. A list of O(n/ logσ n) k-tuples of integers in [0 . . n), for any constant k > 0, can
be sorted lexicographically in a stable manner in O(n/ logσ n) time.

MFCS 2025



36:6 Counting Distinct Square Substrings in Sublinear Time

3 Pyramids of Runs

In this section we describe the structure of runs that generate special squares.

▶ Definition 9 (Subperiodic strings). For a periodic string U we define

subper(U) = min { per(X) : X2 ∈ frag-squares(U) }.

A periodic string U is called subperiodic if subper(U) ≤ per(U)/4.

▶ Example 10. The string U = ab (babababab)5 ba with period 5 generates a subperiodic
square (babababab)2 of length 2 ·per(U). Thus U is subperiodic, and subper(U) = 2. Observe
that all the remaining squares generated by U , in particular, (ababababb)2 and (babababab)4,
are not subperiodic.

A special square is a square which is primitively rooted and subperiodic. All other squares
are called plain.

For two neighboring runs F, F ′ with equal period p in T , we have |F ∩ F ′| ≤ p − 1 [36].
Two such runs can induce a collection of runs with subperiod p. We formalize this structure
in the following definition and provide illustrations in Figures 2 and 3.

▶ Definition 11. Let F and F ′ be neighboring runs in T with period p and equal Lyndon
roots. A pyramid P(F, F ′) of runs is the set

{R : R is a subperiodic run, subper(R) = p, R∩ (F ∪F ′) is periodic with period per(R)}.

If R ∈ P(F, F ′), run R is called a layer-run (or a layer for brevity).

▶ Remark 12. We show that all layers in P(F, F ′) are contained in F ∪ F ′ except possibly
the longest layer (for example the red layer in Figure 3).

a a b a a b a a b a a b a a b a a b a a a b a a b a a b a a b a a b a a b a a b

Figure 2 The runs F and F ′ with period 3 (at the bottom, in blue) imply a pyramid P(F, F ′)
containing three layer-runs (aab)ia (aab)iaa, for i ∈ {4, 5, 6} (above).

a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a

Figure 3 The subsequent runs F, F ′, F ′′ with period 2 each corresponding to string (ab)7a (at
the bottom, blue) imply pyramids P(F, F ′) and P(F ′, F ′′) (above). The longest layer (in red)
corresponding to string ((ab)7a)3 is common to both pyramids.
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▶ Lemma 13. If U2 ∈ frag-squares(R ∩ (F ∪ F ′)) for some layer R in pyramid P(F, F ′),
then the first half of U2 is contained in F and the other half in F ′.

Proof. Let p = per(F ) = per(F ′). Layer R is subperiodic with subper(R) = p and thus must
have period at least 4p, so |U | ≥ 4p.

First we show that U2 cannot be a fragment of F (or of F ′). Indeed, this would mean
that U2 has period p as well as period |U |. By the periodicity lemma applied to U2, p would
divide |U |. Consequently, p would be a period of R, a contradiction.

Let us now show, by contradiction, that each half of U2 is contained in F or in F ′.
Suppose that this is not the case. One of the two halves is fully contained in one of F and F ′

and hence has period p, while the other half contains a position that is in F but not in F ′

and a position that is in F ′ but not in F , and hence has period greater than p due to the
maximality of runs F and F ′. We have thus obtained a contradiction. ◀

Next we obtain a combinatorial characterization of all runs in a pyramid.

▶ Definition 14. A layer with a maximal period in a pyramid is called a max-layer. We
denote by RegP(F, F ′) the set of layer-runs in P(F, F ′) without the max-layer. The elements
of RegP(F, F ′) are called regular layers.

▶ Example 15. In Figure 2, there are two regular layers and one max-layer. In Figure 3, the
first pyramid contains three regular layers while the second pyramid contains two; there is
one max-layer that is common to all the pyramids.

Consider a pyramid P(F, F ′) and let p = per(F ). A canonical representation of pyramid
P(F, F ′) consists of the (endpoints of) runs F and F ′, its max-layer, and sequences specifying
the starting positions, ending positions, and periods of its regular layers. In a canonical
representation, the end positions of regular layers form an arithmetic progression with
difference p, whereas the starting positions form an arithmetic progression with difference −p.
Moreover, the periods of all regular layers form an arithmetic progression with difference p.
The lemma below is proved in the following Lemmas 17 and 18.

▶ Lemma 16. Any non-empty pyramid admits a canonical representation.

We use the following notation for a fixed pyramid P(F, F ′). Let F = T [a . . b], F ′ =
T [a′ . . b′], assuming without loss of generality that a < a′, and p = per(F ) = per(F ′). Let
the Lyndon positions of F and F ′ be ℓ and ℓ′, respectively, and define δ := (ℓ′ − ℓ) mod p.
For each k ∈ Z, we denote a′

k := a′ − k · p − δ and bk = b + k · p + δ.

▶ Lemma 17. The set R := {T [x . . y] ∈ P(F, F ′) : x, y ∈ (a . . b′)} is equal to

K := {T [a′
k . . bk] : k ∈ K}, where K = {k ∈ Z : k ≥ 4, a′

k > a, bk < b′}.

For each k ∈ K, the period of run T [a′
k . . bk] is k · p + δ.

Proof. First, let us argue that per(T [a′
k . . bk]) = k · p + δ for each k ≥ 2. We note that

T [a′
k . . b] = T [a′ . . bk] (by the definition of δ and the fact that the two strings are contained in

F and F ′, respectively), so a′
k −a′ is a period of T [a′

k . . bk] by definition, and a′
k −a′ = k ·p+δ.

Observe that T [a′
k . . b] has period p and hence it cannot have an occurrence starting before

position a′ and ending after position b – as all fragments satisfying these conditions do not
have period p by the maximality of F and F ′. Thus, T [a′

k . . bk] does not have any period
smaller than k · p + δ.

MFCS 2025



36:8 Counting Distinct Square Substrings in Sublinear Time

K ⊆ R: Let R = T [a′
k . . bk]. We have

|R| = |R ∩ (F ∪ F ′)| = bk − a′
k + 1 = b − a′ + 1 + 2kp + 2δ ≥ 2kp + 2δ = 2 · per(R)

as F and F ′ are neighboring. In particular, R is periodic. Let us show that R is a maximal
fragment with period per(R). As a′

k > a, the periodicities of F and R and left maximality
of F ′ imply that

T [a′
k − 1] = T [a′

k − 1 + p] = T [a′
k − 1 + p + per(R)] ̸= T [a′

k − 1 + per(R)] = T [a′ − 1],

which shows the left maximality of R. A symmetric argument yields right maximality.
Hence, R is indeed a run.

The prefix T [a′
k . . b] of R has length |R| − per(R) ≥ per(R) = kp + δ ≥ 2p and period p,

so R is subperiodic and subper(R) ≤ p. Moreover, subper(R) cannot be smaller than p, as
then there would be a run with period smaller than p overlapping one of runs F, F ′ on at
least kp + δ ≥ 4p positions, which is impossible due to the periodicity lemma.

R ⊆ K: Let us fix some R = T [α . . β] ∈ R. As R is subperiodic, per(R) ≥ 4p, and by the
definition of R, α > a and β < b′. Consider a square T [x . . x + 2 · per(R)) ∈ frag-squares(R).
By Lemma 13, T [x . . x+per(R)) ⊆ F and T [x+per(R) . . x+2 ·per(R)) ⊆ F ′. Since primitive
strings do not match non-trivial rotations of themselves, we have that T [x . . x + p) occurs
only at positions y of T contained in F ′ such that x − ℓ ≡ y − ℓ′ (mod p). This implies
that per(R) has to be equivalent to y − x ≡ ℓ′ − ℓ ≡ δ (mod p). Then, for some k ∈ Z,
per(R) = k · p + δ. By the definition of R, k ∈ K. Finally, there can be at most one run with
period per(R) that contains at least per(R) positions of F and F ′ and we have shown the
existence of such a run in K, so R ∈ K. ◀

▶ Lemma 18. For the set R defined in Lemma 17, there is at most one run R ∈ P(F, F ′)\R.

Proof. Consider the case when there exists a run R ∈ P(F, F ′) containing position a. We
then know that R ∩ (F ∪ F ′) has subperiod p and is periodic with period per(R). Consider
the square T [a . . a + 2 · per(R)) ∈ frag-squares(R ∩ (F ∪ F ′)). By Lemma 13, we know that
the first half of this square is contained in F , while the second half is contained in F ′. Hence,
the square has subperiod p. This means that per(R) ∈ [a′ − a . . b − a], which is an interval
of length at most p − 1. Now, per(R) also has to be equivalent to δ (mod p), so there is a
single possible value for it, say y.

Observe that if b′ is not contained in R, then F is a common prefix of T [a . . |T |) and
T [a+y . . |T |), which means that a′ + |F |−1 ≤ a+y + |F |−1 < b′ and hence |F ′| > |F |. Now,
a run R′ ∈ P(F, F ′) containing position b′ would have period in [b′ − b . . b′ −a′] by symmetric
arguments to those above. Then, we would have per(R′) ≥ b′ − b > |F |, a contradiction to
the fact that a square with period per(R′) generated by R′ would have its first half in F .

Finally, if our attempt to compute a run containing position a fails, we perform symmetric
computations to find a run R ∈ P(F, F ′) that contains position b′, if one exists. ◀

4 Computing a Representation of All Runs

In this section we show that a representation of all runs in a string of length n over an
alphabet [0 . . σ) can be computed in O(n/ logσ n) time.

First we show how to compute runs with large periods. Some of these runs are grouped
in pyramids.

Amir et al. [1] showed how to compute squares and runs in a dynamic string. Their
techniques can be interpreted in the so-called PILLAR model, introduced by Charalampopoulos,
Kociumaka, and Wellnitz [15]. Recent optimal data structures for LCP queries [31] and IPM



P. Charalampopoulos et al. 36:9

queries [35] in the packed setting imply that any problem on strings of total length n that can
be solved in O(f(n)) time in the PILLAR model, can be solved in O(n/ logσ n + f(n)) time in
the packed setting. All in all, we obtain the following fact whose proof closely follows [1, 12];
for completeness, it is provided in the full version.

▶ Fact 19 (see [1, 12]). Let T ∈ [0 . . σ)n be a string given in packed form. For any constant
c > 0, in time O(n/ logσ n), we can compute a set X of runs such that none of them
is a regular layer of any pyramid of T and a set Y of pyramids given by their canonical
representations, such that |X |, |Y| = O(n/ logσ n), and, for Z :=

⋃
(F,F ′)∈Y RegP(F, F ′),

we have that
X ∪ Z is a superset of all runs in T of period at least c logσ n, and
X ∩ Z = ∅.

We do not include max-layers in set Z as they can be common to many pyramids.
▶ Remark 20. As shown in the proof of Fact 19 (given in the full version) and implicitly
in [1, 12], for any parameter q, the number of both max-layers with period at least q and
non-layer-runs with period at least q in a length-n string is O(n/q). We note that the
number of all layer runs with period at least q can be Ω(n): for any q ≥ 3, the string S from
Example 3 has at least (n/2 − q − 1)/2 layer runs with period at least q.

▶ Definition 21 (Clusters of runs). For a set of runs X in T and a set of integers D, we
define a cluster of runs:

Cluster(X , D) = {T [a + d . . b + d] : T [a . . b] ∈ X , d ∈ D, T [a . . b] = T [a + d . . b + d]}.

The size of a cluster of runs is defined as |X | + |D|.

In this work, in all considered clusters of runs, we have 0 ∈ D.

▶ Example 22. The string S = #ababaabaab$ contains runs S[1 . . 5] = ababa, S[5 . . 6] =
S[8 . . 9] = aa, S[3 . . 10] = abaabaab. Thus the following string

T = #ababaabaab$ #ababaabaab$ #edcbaedcba$ #ababaabaab$

contains a cluster of runs Cluster( {T [1 . . 5], T [5 . . 6], T [8 . . 9], T [3 . . 10]}, {0, 12, 36} ).

A τ -run R is a run of length at least 3τ − 1 with period at most 1
3 τ .

▶ Lemma 23 ([31, Section 6.1.2],[13, Lemma 10]). For a positive integer τ , a string T ∈
[0 . . σ)n contains O(n/τ) τ -runs. Moreover, if τ ≤ 1

9 logσ n, given a packed representation
of T , we can compute all τ -runs in T in O(n/τ) time. Within the same complexity, we can
compute the Lyndon position of each τ -run.

The next lemma can be proved using tabulation; a proof can be found in the full version.

▶ Lemma 24. Given a string T in packed form and an integer τ ≤ 1
9 logσ n, we can compute

all runs of length smaller than 3τ − 1 and period at most 1
3 τ , represented as O(n/ logσ n)

clusters of runs, in O(n/ logσ n) time. The sum of lengths of lists X across all clusters of
runs is Õ(n7/18).

Putting everything together, we obtain the following proposition. We may need to trim
arithmetic progressions of regular layers to avoid double reporting runs with small periods.

▶ Proposition 25. A representation of all runs in a string T ∈ [0 . . σ)n consisting of a
disjoint union of O(n/ logσ n) runs, regular layers of pyramids, and clusters of runs, can be
computed in O(n/ logσ n) time.

MFCS 2025
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5 Grouping Runs via Lyndon Roots and Sparse-Lyndon Roots

The next observation is crucial in counting distinct square substrings of a string. Let us
denote by Runs(T, λ) and squares(T, λ) the sets of runs and squares in T with Lyndon root λ.

▶ Observation 26 ([19]). Consider two runs R and R′ in a string T . Then, frag-squares(R)∩
frag-squares(R′) ̸= ∅ implies that Lroot(R) = Lroot(R′). In particular, for any Lyndon
string λ, we have

squares(T, λ) =
⋃

R∈Runs(T,λ)

frag-squares(R).

Crochemore et al. [19] considered all runs in the string in groups consisting of runs
with equal Lyndon root. The algorithm for grouping of runs that they used consists of the
following three steps:
1. Computing a Lyndon position for each run.
2. Sorting runs with equal periods in the order of the suffixes starting at Lyndon positions.

It is guaranteed that runs from the same group are listed consecutively.
3. Partitioning the sorted list of runs obtained for each period into groups by issuing an

LCP-query for each pair of subsequent runs in the list.

We use Proposition 25 to compute an O(n/ logσ n)-sized representation of all the runs
in T . For runs with small periods, we use the aforementioned approach combined with
tabulation (for runs that are not τ -runs) and the following fact for τ -runs.

▶ Fact 27 ([31, Section 6.1.2],[13, Lemma 10]). If τ ≤ 1
9 logσ n, given a packed representation

of T , all τ -runs in T can be sorted by their Lyndon roots in O(n/τ) time.

A proof of Lemma 28 is given in the full version.

▶ Lemma 28. All runs in T with periods at most τ , for a given τ ≤ 1
9 logσ n, can be grouped

by equal Lyndon roots in O(n/ logσ n) time. Among possibly many runs corresponding to
equal substrings, at least one needs to be reported, but not necessarily all.

One issue with adapting the aforementioned approach to grouping runs with large periods
is that we do not know how to compute the Lyndon positions of O(n/ logσ n) runs in T if
their period is greater than c logσ n for a constant c, in O(n/ logσ n) time.

Using cyclic equivalence queries of Kociumaka et al. [35] that allow to check if two
substrings of T are cyclic rotations of each other, we can check if two runs have the same
Lyndon root in O(1) time after O(n/ logσ n)-time preprocessing, but this is not sufficient for
grouping the runs by Lyndon roots. Moreover, it is unknown whether minimal cyclic rotation
queries can be implemented efficiently in the packed model. The fastest known solution,
by Kociumaka [34], answers minimal cyclic rotation queries in O(1) time but requires Θ(n)
preprocessing; improving the preprocessing time to sublinear here seems to be challenging.

Instead, we use a string synchronizing set, as defined by Kempa and Kociumaka [31], to
select a unique position within each long-period run (that might not be the Lyndon position)
in a consistent way that allows us to group such runs by Lyndon roots.

▶ Definition 29 (Synchronizing set [31]). For a length-n string T and a positive integer
τ ≤ 1

2 n, a set Sync ⊆ [0 . . n − 2τ ] is a τ -synchronizing set of T if it satisfies the following
two conditions:
1. Consistency: If T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ Sync if and only if j ∈ Sync.
2. Density: For i ∈ [0 . . n − 3τ + 1],

Sync ∩ [i . . i + τ) = ∅ if and only if per(T [i . . i + 3τ − 2]) ≤ 1
3 τ .
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▶ Remark 30. Informally, in the simpler case that T is cube-free, a τ -synchronizing set of T

is an O(n/τ)-sized set of synchronizing positions in T such that each length-τ fragment of T

(except for the end of the string) contains at least one synchronizing position, and the leftmost
synchronizing positions within two length-3τ matching fragments of T are consistent.

Crucially, string synchronizing sets for small values of τ can be constructed in optimal
time in the packed setting.

▶ Theorem 31 ([31, Proposition 8.10, Theorem 8.11]). For a string T ∈ [0 . . σ)n with
σ = nO(1) and τ ≤ 1

5 logσ n, there exists a τ -synchronizing set of size O(n/τ) that can be
constructed in O(n/τ) time, if T is given in a packed representation.

Henceforth, we fix τ :=
⌊ 1

18 logσ n
⌋

and a τ -synchronizing set Sync for T computed in
O(n/ logσ n) time using Theorem 31. We next define sparse-Lyndon positions, noting that
their existence is only guaranteed for runs whose periods are long enough, and use them to
group runs by Lyndon roots.

▶ Definition 32 (Sparse-Lyndon position). Position i is a sparse-Lyndon position for a
periodic fragment U = T [a . . b] with period p if T [i . . n) is the lexicographically minimal string
among {T [j . . n) : j ∈ [a . . a + p) ∩ Sync}.

If a periodic fragment U with period p has a sparse-Lyndon position i, we call T [i . . i + p)
the sparse-Lyndon root of U and denote it as sLroot(U).

The following key lemma shows that Lyndon positions can indeed be replaced by sparse-
Lyndon positions for the sake of grouping runs by Lyndon roots.

▶ Lemma 33. Both of the following hold.
(a) If a run R has period p ≥ 2τ − 1, then R has a unique sparse-Lyndon root.
(b) Two runs R1 and R2 with period p ≥ 2τ have the same Lyndon root if and only if they

have the same sparse-Lyndon root.

Proof. (a) Let R = T [a . . b]. We will first show that [a . . a + p) ∩ Sync is non-empty. String
T [a . . a+p+τ) has period p as p ≥ τ . By the periodicity lemma [25], if T [a . . a+p+τ) had a
period at most 1

3 τ , then the string would have a period p′ that is smaller than p and divides p,
which is not possible as this would imply that R has a period p′. We have p + τ ≥ 3τ − 1.
String T [a . . a + p + τ) contains a fragment of length 3τ − 1 with period greater than 1

3 τ ;
indeed, otherwise the periods of all such fragments would be equal by the periodicity lemma
and this would imply that T [a . . a+p+τ) has a period at most 1

3 τ . Let T [i . . i+3τ −2] be such
a fragment with period greater than 1

3 τ . By density, Sync ∩ [i . . i + τ) ̸= ∅. We have a ≤ i

and i + 3τ − 2 < a + p + τ , so [i . . i + τ) ⊆ [a . . a + p). Hence, indeed, [a . . a + p) ∩ Sync ̸= ∅.
This shows the existence of a sparse-Lyndon root of R. As no two distinct suffixes are

equal, the sparse-Lyndon root of R is unique.
(b) By part (a), the sparse-Lyndon roots of both runs are well-defined.
The implication “⇐” is obvious. As for the implication “⇒”, let R1 = T [a . . b] and

R2 = T [a′ . . b′] and assume that i is the sparse-Lyndon position of R1. By the assumption,
there exists i′ ∈ [a′ . . a′ + p) such that T [i′ . . i′ + p) = T [i . . i + p). By the fact that p ≥ 2τ ,
we have T [i′ . . i′ + 2τ) = T [i . . i + 2τ), so by consistency, i′ ∈ Sync.

To prove that i′ is the sparse-Lyndon position of R2, assume to the contrary that there
exists a position j′ ∈ ([a′ . . a′ + p) ∩ Sync) \ {i′} such that T [j′ . . j′ + n) < T [i′ . . i′ + n).
Consequently, T [j′ . . j′ + p) < T [i′ . . i′ + p) as no two cyclic rotations of a primitive string are
equal. By the assumption, there exists j ∈ [a . . a + p) such that T [j . . j + p) = T [j′ . . j′ + p).
By the fact that p ≥ 2τ and consistency, j ∈ Sync. We have

T [j . . j + p) = T [j′ . . j′ + p) < T [i′ . . i′ + p) = T [i . . i + p), so T [j . . j + n) < T [i . . i + n),

which contradicts the assumption that T [i . . i + p) is the sparse-Lyndon root of R1. ◀
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▶ Definition 34. The sparse-Lyndon representation of a periodic fragment U of T is a
quadruple (λ, e, α, β) such that:

λ = sLroot(U), and
U = PλeS with |P | = α < |λ| and |S| = β < |λ|.

We use the next lemma to obtain the main result of this section.

▶ Lemma 35 ([31, Theorem 4.3]). Given the packed representation of a text T ∈ [0 . . σ)n

and a t-synchronizing set S of T of size O(n/t) for t = O(logσ n), we can compute in O(n/t)
time the lexicographic order of all suffixes of T starting at positions in S.

▶ Proposition 36. All runs in T computed as in Proposition 25, except for the regular layers
of pyramids, can be grouped by equal Lyndon roots in O(n/ logσ n) time. For runs with period
at most 2

⌊ 1
18 logσ n

⌋
, we compute their Lyndon representations, and for the remaining runs,

we compute their sparse-Lyndon representations.

Proof. Recall that τ =
⌊ 1

18 logσ n
⌋
. Runs with periods at most 2τ are grouped by their

Lyndon roots using Lemma 28. The remaining runs are grouped by their sparse-Lyndon
roots, and thus by Lyndon roots due to Lemma 33, using Lemma 35 as follows.

Let Sync = {s1, . . . , s|Sync|}, with s1 < · · · < s|Sync|, be a τ -synchronizing set of T

constructed as in Theorem 31. By Lemma 35, in O(n/ logσ n) time we can construct an
array SparseRANK[1 . . |Sync|] (“sparse RANK” array) such that

SparseRANK[i] = |{j ∈ [1 . . |Sync|] : T [sj . . n) ≤ T [si . . n)}|.

Then, in O(|SparseRANK|) time, we construct a data structure that can answer range
minimum queries over SparseRANK in O(1) time [9].

Let s0 = −1 and s|Sync|+1 = n be sentinels. Let Π denote the set of all runs with period
p ≥ 2τ that are not regular layers of any pyramid. By Fact 19, set Π can be computed in
O(n/ logσ n) time. For each run T [a . . b] ∈ Π, we need to compute an interval [u . . v] such
that su−1 < a ≤ su and sv < a + p ≤ sv+1. By Lemma 33(b), this interval is not empty
and hence u ≤ v. The sparse-Lyndon position of each such run can then be computed in
O(1) time as the argmin of a range minimum query over SparseRANK[u . . v]. The positions
u and v are computed for all runs simultaneously in O(n/ logσ n) time by bucket sorting the
set {x : x = a or x = a + p − 1 for a run T [a . . b] ∈ Π} and merging the obtained sorted list
with the synchronizing set Sync in a merge-sort fashion.

The remainder of the algorithm mimics steps 2 and 3; see the discussion after Obser-
vation 26. Namely, in O(n/ logσ n) time, we bucket sort the runs with large periods by
pairs (p, SparseRANK[i]), where i is the sparse-Lyndon position and p is the period of the
run. Runs with equal sparse-Lyndon roots form consecutive sublists of the sorted lists. The
equality of sparse-Lyndon roots of consecutive runs in the sorted list can be checked in O(1)
time using longest common extension queries after an O(n/ logσ n)-time preprocessing [31,
Theorem 5.4]. Thus, the grouping is performed in O(n/ logσ n) time. ◀

6 Squares Generated by Pyramids

We show that a special square (that is, a square with a primitive and highly periodic half) is
always generated by a layer of a pyramid. The proof of the lemma uses the assumption of at
least 4 occurrences of the period in a special square half.

▶ Lemma 37. Let U2 be a fragment of T . Then U2 is a special square if and only if there
exists a pyramid P(F, F ′) in T and a layer R such that U2 ∈ frag-squares(R ∩ (F ∪ F ′)) and
per(U) = per(F ).
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Proof. (⇒) Let U2 be a special square fragment of T and p = per(U). Let F and F ′ be
runs with period p = per(U) that contain the first and the second half of the considered
occurrence of U2 in T , respectively. We have F ̸= F ′, as otherwise U2 would have period p

and, by the periodicity lemma, U would not be primitive.
By Observation 7, there exists a run R in T such that U2 ∈ frag-squares(R). By

definition, we have 4p < |U | = per(R). Moreover, R is a subperiodic run with per(R) = |U |
and subper(R) ≤ p. If we had subper(R) = p′ < p, then there would exist a run G in T with
period p′ that overlaps F or F ′ – say, F – on at least |U |/2 positions. The overlap length
would be greater than p + p′, so by the periodicity lemma, the overlap would have period
q := gcd(p, p′) < p that divides p, so F would have period q; a contradiction.

Clearly, the runs F, F ′ are neighboring. We have R ∈ P(F, F ′) or R is a max-layer
of some pyramid P(F ′′, F ′′′) with subper(R) < p. In either case, U2 ⊆ F ∪ F ′ and U2 ∈
frag-squares(R ∩ (F ∪ F ′)), as required.

(⇐) Let R be a layer of some pyramid with

per(F ) = per(F ′) = per(U) = p and U2 ∈ frag-squares(R ∩ (F ∪ F ′)).

We have |U | ≥ per(R) > 4p since R is subperiodic. By Lemma 13, one half of U2 is contained
in F and the other in F ′.

Period p does not divide |U | as otherwise we would have F = F ′. Moreover, by the
periodicity lemma, U does not have a period q that would divide U . Thus, U is primitive
and highly periodic, which means that U2 is a special square. ◀

▶ Definition 38 (Pyramid type). Let F, F ′ be neighboring runs with period p in T . We define
the type of the pyramid P(F, F ′) as a triad type(F, F ′) = (ov, X, Y ) where (see Figure 4):

ov = |F ∩ F ′|, X = F [|F | − p . . |F |), Y = F ′[0 . . p).

▶ Remark 39. The strings X and Y are cyclically equivalent if P(F, F ′) is non-empty.

▶ Example 40. Let T = T [0 . . 60] = (aaaab)5a(aaaab)7, F = (aaaab)5aaaa = T [0 . . 28] and
F ′ = (aaaab)7 = T [26 . . 60]. Then type(F, F ′) = (3, baaaa, aaaab).

F
F ′

Y
X

overlap

periodicity p

periodicity p

pyramid type

Figure 4 Illustration of type(F, F ′) = (ov, X, Y ), for two runs F, F ′ with the same period p. We
have |X| = |Y | = p.

We extend the notation frag-squares to pyramids as follows.

▶ Definition 41 (Special squares generated by pyramids).

frag-squares(P(F, F ′)) :=
⋃

R∈P(F,F ′)

frag-squares(R ∩ (F ∪ F ′)).

We say that the elements of frag-squares(P(F, F ′)) are generated by the pyramid P(F, F ′).
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▶ Lemma 42. The sets of squares generated by two pyramids of different types are disjoint.

Proof. Let F1, F ′
1 and F2, F ′

2 be pairs of neighboring runs with equal periods such that
type(F1, F ′

1) ̸= type(F2, F ′
2). We will show that the sets frag-squares(P(F1, F ′

1)) and
frag-squares(P(F2, F ′

2)) are disjoint.
Assume there exists U2 ∈ frag-squares(P(F1, F ′

1)) ∩ frag-squares(P(F2, F ′
2)). We have

U2 ∈ frag-squares(R1 ∩ (F1 ∪ F ′
1)) ∩ frag-squares(R2 ∩ (F2 ∪ F ′

2)),

for some runs R1 ∈ P(F1, F ′
1) and R2 ∈ P(F2, F ′

2). Let type(F1, F ′
1) = (ov1, X1, Y1) and

type(F2, F ′
2) = (ov2, X2, Y2). By Lemma 37, U2 is a special square with per(U) = per(F1) =

per(F ′
1) = per(F2) = per(F ′

2). Let p = per(U). Square U2 does not have period p (as U is
primitive). Hence, we can define

i as the smallest position in U2 such that per(U2[0 . . i]) > p;
j as the largest position in U2 such that per(U2[j . . |U2|)) > p.

We have j < |U | ≤ i. Then, we have

X1 = U2[i − p . . i − 1] = X2, Y1 = U2[j + 1 . . j + p] = Y2, and ov1 = i − j − 1 = ov2,

so type(F1, F ′
1) = type(F2, F ′

2). This contradiction concludes the proof. ◀

By frag-squares(RegP(F, F ′)) we denote the set of (special) squares generated by regular
layers of RegP(F, F ′).

▶ Lemma 43. Both of the following hold:
(a) If P(F, F ′) is a pyramid, then

|frag-squares(RegP(F, F ′))| = |RegP(F, F ′)| · (|F ∩ F ′| + 1).

(b) If P(F1, F ′
1) and P(F2, F ′

2) are pyramids such that type(F1, F ′
1) = type(F2, F ′

2), then

|RegP(F1, F ′
1)| < |RegP(F2, F ′

2)| ⇒ frag-squares(P(F1, F ′
1)) ⊂ frag-squares(P(F2, F ′

2)).

Proof. Let F = T [a . . b], F ′ = T [a′ . . b′] be neighboring runs with period p and a < a′. Due
to Lemma 18, the runs in RegP(F, F ′) are all layers in the set R := {T [x . . y] ∈ P(F, F ′) :
x, y ∈ (a . . b′)} defined in Lemma 17, apart, possibly, from the one with the largest period.
Proof of (a). Each run R ∈ RegP(F, F ′) generates |R| − 2 · per(R) + 1 squares. By
Lemma 17, for run R = T [a′

k . . bk], this number of squares equals

bk − a′
k + 2 − 2 · per(R) = b − a′ + 2 + 2kp + 2δ − 2 · per(R) = b − a′ + 2 = |F ∩ F ′| + 1.

Proof of (b). An application of Lemma 17 to (F1, F ′
1) and for (F2, F ′

2) produces equal
runs for subsequent values of k if type(F1, F ′

1) = type(F2, F ′
2). Thus, if |RegP(F1, F ′

1)| ≤
|RegP(F2, F ′

2)|, then for each run in RegP(F1, F ′
1), an equal run is present in RegP(F2, F ′

2).
For the max-layer R1 of P(F1, F ′

1) and the regular layer R2 ∈ RegP(F2, F ′
2) with the same

period, we have frag-squares(R1 ∩ (F1 ∪ F ′
1)) ⊆ frag-squares(R2 ∩ (F2 ∪ F ′

2)). Runs in a
pyramid have different periods, so they generate disjoint sets of squares. The max-layer of
P(F2, F ′

2) thus generates a special square that is not generated by P(F1, F ′
1). ◀

7 Counting Squares

For brevity, primitively rooted squares are called p-squares and non-primitively rooted squares
are called np-squares (see [38]). We note that special squares are, in particular, p-squares.
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7.1 Counting Plain Squares
Recall that a square is plain unless it is special; that is, U2 is plain if it is an np-square or it
is not highly periodic. The next lemma follows from [19] (and Fact 8); see full version.

▶ Lemma 44 (see [19, Theorem 13]). Assume we are given r periodic fragments in T grouped
by their Lyndon roots and that the Lyndon representations of all these periodic fragments
are available. The numbers of distinct p-squares and distinct np-squares generated by these
periodic fragments can be computed in O(r +

√
n) time.

The same conclusion holds if we are given r periodic fragments in T grouped by their
sparse-Lyndon roots and that their sparse-Lyndon representations are available.

In each case, any k distinct corresponding squares can be reported in O(k + r +
√

n) time.

▶ Lemma 45. The number of np-squares in T can be computed in O(n/ logσ n) time.

Proof. We use Lemma 44 for counting np-squares generated by all runs that are not regular
layers, grouped as in Proposition 36. For runs with small periods, we use Lyndon repres-
entations, and for the remaining runs we use sparse-Lyndon representations. There are
O(n/ logσ n) such runs, so np-squares are counted in O(n/ logσ n) time. ◀

▶ Lemma 46. The number of plain p-squares in T can be computed in O(n/ logσ n) time.

Proof. By Lemma 37, plain p-squares are generated by runs grouped as in Proposition 36.
For each run computed in Proposition 36, we check if it is also reported as a max-layer in
Proposition 25. This can be checked globally for all runs in O(n/ logσ n) time using bucket
sort. The runs that turned out to be max-layers are cut into smaller periodic fragments that
generate plain p-squares (to avoid counting of special squares) as shown below.

Consider a max-layer R = T (x . . y) with subper(R) = p. Let R0, . . . , Rg be the sequence
of runs with period p, sorted with respect to their starting positions, such that R is a
max-layer of P(Ri, Ri+1) for all i ∈ [0 . . g). Further, let Ri = T [xi . . yi] for each i ∈ [0 . . g].

For convenience, for all i ∈ Z \ [0 . . g], set xi = ∞ and yi = −∞. For i ∈ [0 . . g], let us
denote Yi := T (max{x, yi − per(R) + 1} . . min{xi+2 + per(R) − 1, y}). Due to the periodicity
of R, for any i, j ∈ [1 . . g − 3], we have Yi = Yj . Additionally, any occurrence of a plain
p-square generated by R in R is contained in some Yi. Further, each Yi does not generate
any special square of length 2 · per(R), as it only contains a single maximal periodic fragment
with period subper(R) that is of length at least per(R).

Hence, it suffices to use the strings among Y0, Y1, and Yg−2 that are of length at least
2 · per(R) instead of R. Those strings are periodic and their (sparse-) Lyndon representations
can be inferred in O(1) time from the (sparse-) Lyndon representation of the max-layer R.

We obtain O(n/ logσ n) runs that are not max-layers from Proposition 36 and O(n/ logσ n)
periodic fragments constructed as described above from max-layers (O(1) periodic fragments
from each max-layer). By Lemma 44, plain p-squares can be counted in O(n/ logσ n) time. ◀

7.2 Counting Special Squares
By Lemma 37, special squares are only generated by layers of pyramids.

▶ Lemma 47. All pyramids P(F, F ′) can be grouped by their types in O(n/ logσ n) time.

Proof. Recall that the type of a pyramid P(F, F ′) is type(F, F ′) = (ov, X, Y ) where ov = |F ∩
F ′|, X is a length-p suffix of run F , Y is a length-p prefix of run F ′ and p = per(F ) = per(F ′).
By Proposition 36, if p ≤ 2

⌊ 1
18 logσ n

⌋
, we know the Lyndon roots of F, F ′, and otherwise,

we know their sparse-Lyndon roots.
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36:16 Counting Distinct Square Substrings in Sublinear Time

The Lyndon roots of F and F ′ are the same. We have X = rotcX
(λ) and Y = rotcY

(λ) for
the common Lyndon root λ and some values cX , cY that can be computed from the Lyndon
representations of F, F ′ in O(1) time. Instead of grouping pyramids by triads (ov, X, Y ),
it suffices to group them by quadruples (λ, ov, cX , cY ). Grouping by Lyndon roots λ is
performed in Proposition 36. The remaining elements of quadruples are integers in [0 . . n),
so we can bucket sort the quadruples by them in O(n/ logσ n) time in a stable way (so that
we do not break the grouping by Lyndon roots) using Fact 8.

The same argument, with sparse-Lyndon roots instead of Lyndon roots, applies for
grouping pyramids by types in case the period of runs F , F ′ is greater than 2

⌊ 1
18 logσ n

⌋
. ◀

▶ Lemma 48. The number of special squares in T can be computed in O(n/ logσ n) time.

Proof. We group the pyramids by their types using Lemma 47. By Lemma 42, special
squares generated by layers from each group can be considered separately. By Lemma 43(b),
we can remove all pyramids of the same type that are not of maximal size (in terms of the
number of layers). Among the remaining pyramids, all special squares generated by regular
layers are counted using Lemma 43(a). Special squares generated by max-layers are counted
by partitioning each max-layer into periodic fragments generating only special squares as in
the proof of Lemma 46 and then counting all squares generated by such periodic fragments
using Lemma 44. ◀

A combination of Lemmas 45, 46, and 48 implies our main result (Theorem 2).

8 Final Remarks

Any k squares, for positive k up to the number of distinct squares in T , can be listed as
follows. Lemma 44 allows to report subsequent squares. For special squares, we list squares
generated by subsequent runs in the tallest pyramid of each type.

▶ Theorem 49. Given a string T of length n over alphabet [0 . . σ) in packed form and integer
1 < k ≤ |squares(T )|, we can output k distinct squares in T in O(n/ logσ n + k) time.

Our algorithms generalize to powers with any given exponent t > 2 in the same time
complexity. In this case, we do not need to consider regular layers, as they generate no
powers of exponent greater than 2. Thus an analogue of Lemma 44 suffices.

▶ Theorem 50. Given a string T of length n over alphabet [0 . . σ) in packed form and integer
t > 2, we can compute in O(n/ logσ n) time the number of distinct t-th powers in T .
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