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—— Abstract

The low-rank matrix completion problem asks whether a given real matrix with missing values
can be completed so that the resulting matrix has low rank or is close to a low-rank matrix. The
completed matrix is often required to satisfy additional structural constraints, such as positive
semi-definiteness or a bounded infinity norm. The problem arises in various research fields, including
machine learning, statistics, and theoretical computer science, and has broad real-world applications.

This paper presents new NP-hardness results for low-rank matrix completion problems. We show
that for every sufficiently large integer d and any real number € € [270(‘1)7 %], given a partial matrix
A with exposed values of magnitude at most 1 that admits a positive semi-definite completion of
rank d, it is NP-hard to find a positive semi-definite matrix that agrees with each given value of A up
to an additive error of at most €, even when the rank is allowed to exceed d by a multiplicative factor
of O(m) This strengthens a result of Hardt, Meka, Raghavendra, and Weitz (COLT, 2014),
which applies to multiplicative factors smaller than 2 and to € that decays polynomially in d. We
establish similar NP-hardness results for the case where the completed matrix is constrained to have
a bounded infinity norm (rather than be positive semi-definite), for which all previous hardness
results rely on complexity assumptions related to the Unique Games Conjecture. Our proofs involve
a novel notion of nearly orthonormal representations of graphs, the concept of line digraphs, and
bounds on the rank of perturbed identity matrices.
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1 Introduction

In the matrix completion problem, the input is a partially observed real matrix, where
some entries are marked by 1 to indicate missing values. The goal is to fill in these
values in such a way that the completed matrix satisfies certain prescribed properties. This
algorithmic task is prevalent in various research fields, including machine learning, statistics,
and theoretical computer science, and is motivated by a range of real-world applications,
such as recommendation systems, medical imaging, computer vision, and signal processing.
Typically, the completed matrix is required to have low rank or to be a slight perturbation
of a low-rank matrix. In certain cases, the matrix may also need to be positive semi-definite
or constrained by a bounded infinity norm.
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A central objective in the study of low-rank matrix completion is to identify the conditions
under which the problem can be solved efficiently. A successful line of work, initiated by
Candeés and Recht [7], has applied convex optimization methods to efficiently recover a
low-rank matrix from the values of a subset of its entries (see also [8, 36]). The recovery is
guaranteed to succeed if (a) the number of given entries is sufficiently large, (b) the completed
matrix satisfies a certain incoherence condition (i.e., the row and column spaces of the matrix
are not aligned with the vectors of the standard basis), and (c) the subset of exposed entries
is drawn uniformly at random. In fact, these conditions further ensure that the solution is
unique. However, in most applications, the given entries cannot be chosen at random. It
is therefore of interest to determine the computational complexity of recovering a low-rank
incoherent matrix, when the observed entries are selected in a worst-case manner.

The hardness of low-rank matrix completion can be traced back to a 1996 paper by
Peeters [33], who explored the complexity of determining a graph quantity known as minrank,
introduced by Haemers [18] in the context of the Shannon capacity of graphs. Peeters’
work implies that for every integer d > 3, deciding whether a given partial matrix can be
completed to a matrix of rank at most d is NP-hard. His proof technique further implies
that the same NP-hardness result holds when the completed matrix is required to be positive
semi-definite, and this was extended to the case of d = 2 in 2013 by Eisenberg-Nagy, Laurent,
and Varvitsiotis [14]. This research avenue was then extended by Hardt, Meka, Raghavendra,
and Weitz [20], who explored two relaxations of the problem: first, allowing some slackness
in the rank of the completed matrix, and second, permitting a bounded additive error on
the given entries of the partial matrix. Specifically, they proved that for every integer d > 6,
given a partial matrix A whose observed entries have magnitude at most 1, it is NP-hard
to distinguish between the case where A admits a positive semi-definite completion of rank
at most d, and the case in which any positive semi-definite completion of A has rank at
least 2d. Moreover, they showed that the problem remains NP-hard, when the matrix in
the latter case is allowed to approximate each given value up to an additive error of ¢, as
long as € decays polynomially with the desired rank, namely, for e = O(d~°). More recently,
the paper [10] addressed the related problem of determining a graph measure known as the
orthogonality dimension. The results of [10] imply that for every sufficiently large integer
d, it is NP-hard to decide whether an input partial matrix can be completed to a positive
semi-definite matrix of rank at most d, or any positive semi-definite completion has rank at
least 2(1=0(1)-4/2 " with the o(1) term tending to 0 as d tends to infinity. It thus follows that
it is NP-hard to approximate to within any constant factor the minimum possible rank of a
positive semi-definite matrix that agrees with an input partial matrix. However, this hardness
result does not apply to the more tolerant setting that allows an additive perturbation in
each entry of the partial matrix.

Another version of the low-rank matrix completion problem considered by Hardt et
al. [20] imposes a fixed bound on the infinity norm of the completed matrix (rather than
requiring positive semi-definiteness). For this setting, their hardness results were not based
on the standard assumption P # NP, but on the hardness of appropriate gap versions of the
Coloring and Independent Set problems, the intractability of which is supported by certain
variants of the Unique Games Conjecture [12, 13]. Under these assumptions, they showed
that for all positive integers da > d; > 3 and real numbers ¢ € [0, %) and 6 > 1, there is no
efficient algorithm to decide whether an input partial matrix A can be completed to one
with an infinity norm at most 6 and rank at most dy, or any completion of A with an infinity
norm at most @ must have rank at least ds, even when an additive error of ¢ is allowed in
each entry. Remarkably, this hardness result persists when a constant fraction of the matrix
entries is revealed (as is the case for all the above hardness results) and, in addition, when
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the completed matrix is required to be incoherent (in instances admitting a valid completion).

In light of the aforementioned algorithmic results for the problem [7, 8, 36], these findings
highlight the worst-case choice of the revealed entries as a substantial obstacle to efficient
recovery.

1.1 Qur Contribution

This paper presents several new hardness results for low-rank matrix completion problems.

We begin by considering the case where the completed matrix is required to be positive
semi-definite. Specifically, we study the gap problem (d;,ds, €)-PSD-Completion, formally
defined below. Here, we let p(B) denote the coherence of a matrix B, a measure that is
always bounded from below by 1 (see Definition 9).

» Definition 1 (The (dy, da, £)-PSD-Completion Problem). For positive integers dy < da and
for a real number € € [0,1), the (dy,ds,e)-PSD-Completion problem asks, given a partial
matriz A € ([—1,+1] U {L})"*™, to distinguish between the following cases.

YES: There exists a positive semi-definite matriz B € R™*"™, such that A; ; = B, ; for all

i,j € [n] with A; j #1, u(B) =1, and rank(B) < d;.

NO: Every positive semi-definite matric B € R™*™, such that |A; ; — B, ;| < e for all

1,7 € [n] with A; ; #L, satisfies rank(B) > ds.

Note that the definition restricts the magnitudes of the values in the input partial matrix to
at most 1. Such a restriction is essential when allowing an additive error in the completed
matrix, as rank is invariant under scaling.

We first point out that, under plausible complexity assumptions related to the Unique
Games Conjecture [12, 13|, the (di,ds,e)-PSD-Completion problem is intractable for all
positive integers do > d; > 3 and real numbers ¢ € [0, %) Our primary contribution lies
in establishing hardness results based solely on the more standard assumption P ## NP, as
stated below.

» Theorem 2 (Simplified). For every sufficiently large integer d and any real e € [279(@), 1],
the (d, O(WM),E)—PSD-Completion problem is NP-hard.

For admissible values of d and ¢, Theorem 2 implies that given a partial matrix A with
exposed values of magnitude at most 1, which admits a positive semi-definite completion
with coherence 1 and rank d, it is NP-hard to find a positive semi-definite matrix that agrees
with each given value of A up to an additive error of at most €, even when the rank is allowed
to exceed d by a multiplicative factor of O(Wl(l/g)). The theorem encompasses various
parameter settings of interest. First, for any fixed approximation factor o > 1, there exists
some constant ¢ > 0, for which the (d, « - d, €)-PSD-Completion problem is NP-hard for any
sufficiently large integer d. Next, letting € decrease polynomially with d results in a hardness
of approximation factor that is polynomial in d. Finally, setting ¢ = 2-9(4 yields a hardness
of approximation to within a factor of the form 24, In fact, for an e that decays sufficiently
rapidly with d, we obtain the following refined hardness result.

» Theorem 3 (Simplified). For every sufficiently large integer d and any real & € [0,2~ @],
the (d,21=°W)d/2 Y. PSD-Completion problem is NP-hard.

Theorems 2 and 3 substantially strengthen the previously known NP-hardness results for
low-rank matrix completion in the positive semi-definite setting. As demonstrated above,
our results offer flexibility in the choice of parameters, enabling us to establish hardness
for several scenarios of interest. For comparison, the result of [20] is specific to € decaying
polynomially in the rank and achieves NP-hardness of approximation to within factors smaller
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than 2. In contrast, for this regime of €, Theorem 2 establishes NP-hardness of approximation
to within factors that grow polynomially in the rank. Furthermore, all our hardness results
hold even when the completed matrices of YES instances are required to have coherence 1, a
property not guaranteed by the NP-hardness result of [20]. Finally, while the hardness result
of [10] achieves the same gap as Theorem 3, it is restricted to the non-error setting of € = 0.

We turn to our NP-hardness results for the low-rank matrix completion problem, where the
completed matrix is constrained by a bounded infinity norm. Consider the gap (d1, ds, €, 6)-
Completion problem, defined as follows.

» Definition 4 (The (d;, ds, e, 0)-Completion Problem). For positive integers dy < da and real
numbers € > 0 and 0 > 1, the (d1,ds, €, 8)-Completion problem asks, given a partial matriz
A€ ([-0,40) U{L})™*", to distinguish between the following cases.
YES: There exists a matriz B € [—0,+0]"*", such that A; ; = B, ; for alli,j € [n] with
A;; #L, u(B) =1, and rank(B) < d;.
NO: Every matrizc B € [—0,+0]"*", such that |A; ; — B; ;| < € for all i,j € [n] with
A; ; #1, satisfies rank(B) > ds.

Our hardness results for this problem are stated as follows.

» Theorem 5 (Simplified). For every sufficiently large integer d and any real numbers
e 270, 1 and 0 € [1, 220(d)], the (d, O(ﬁﬂ/s)),e, 0)-Completion problem is NP-hard.

» Theorem 6 (Simplified). For every sufficiently large integer d and any real numbers
£€[0,27%4)] and 6 € [1722o(d)], the (d,2(1=°M)d/2 ¢ 0)_Completion problem is NP-hard.

As mentioned earlier, the previously known hardness results for the (di, dz, €, 8)-Completion
problem, given in [20], rely on complexity assumptions stronger than the standard conjecture
P £ NP.

Our NP-hardness results are obtained via an efficient reduction from a gap coloring
problem, whose hardness was proved by Krokhin, Oprsal, Wrochna, and Zivny [28]. Their
proof employed the concept of line digraphs, introduced by Harary and Norman [19] in 1960,
which lies at the heart of the present paper as well. Specifically, we introduce extensions of
the notions of orthogonality dimension and minrank of graphs (see Definitions 15 and 16),
and as our main technical contribution, we show that for line digraphs, these quantities are
intimately related to the chromatic number. The analysis involves bounds on the rank of
perturbed identity matrices that were proved by Alon [2] in 2003 and have found diverse
applications (see Theorem 12 and [3]). After establishing hardness results for our extensions
of orthogonality dimension and minrank, we derive our hardness results for low-rank matrix
completion problems. We believe that these novel graph quantities may be of independent
interest, and we encourage their further study by pointing out a close relation to the notion
of circular chromatic number, introduced by Vince [37] in 1988 (see Section 3.3).

1.2 Proof Technique

We provide here an overview of the techniques and ideas behind the proofs of our NP-hardness
results for the low-rank matrix completion problem. For concreteness, we focus on the PSD-
Completion problem, where the completed matrix is required to be positive semi-definite.
We then briefly discuss the setting of a bounded infinity norm.

Our hardness proofs are anchored in the classic gap coloring problem. Recall that the
chromatic number of a graph G, denoted x(G), is the smallest number of colors needed for
a vertex coloring of G in which adjacent vertices receive distinct colors. For fixed positive
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integers k1 < ko, the (k1, k2)-Coloring problem asks, given an input graph G, to distinguish
between the case where x(G) < k; and the case where x(G) > k2. This problem is known
to be intractable for all integers ko > k1 > 3, under complexity assumptions related to the
Unique Games Conjecture [12, 13]. However, identifying the values of k; and kg for which
the problem is NP-hard has long been considered notoriously difficult. The current state of
the art shows that for every integer k1 > 3, the problem is NP-hard for k; = 2k, as proved
by Barto, Bulin, Krokhin, and Oprsal [5], and for ke = (Lklf}%) — 9(—0M)k1 4 proved
by Krokhin, Oprsal, Wrochna, and Zivny [28]. The latter result, which improves upon the
former for all integers k; > 6, serves as the starting point of our hardness proofs.

The NP-hardness proof of Krokhin et al. [28] for the gap coloring problem is based on the
concept of line digraphs [19], which allows to efficiently shrink the chromatic number of a
given graph in a controlled manner. Specifically, for a graph G, let 4G denote the underlying
graph of the line digraph of G, namely, the graph whose vertices are all the ordered pairs of
adjacent vertices in G (whose number is twice the number of edges in ), where two vertices
(u1,usz) and (v1,ve) are adjacent in 0G if uy = vy or ug = vo (see Definition 20). A result of
Poljak and Rodl [34] shows that the chromatic number of the graph 0G is logarithmic in
that of G (see Theorem 21). The hardness result of [28] was derived by repeatedly applying
this transformation to instances of the (k, 2O(k1/3))—Coloring problem, the NP-hardness of
which was previously proved by Huang [25]. Since the appearance of [28], line digraphs have
been effectively utilized in several hardness proofs, e.g., in [17, 10, 24], and they also form a
key ingredient in the present paper.

To give a glimpse of the relationship between the chromatic numbers of a graph G and its
associated graph 4G, and as a gentle warm-up to our actual argument, let us briefly explain
why x(6G) < k implies that x(G) < 2¥. Indeed, given a proper k-coloring of §G, we define
a coloring of G by assigning to each vertex v the set ¢(v) of colors used at the vertices of
the form (-,v) in 6G (i.e., vertices whose head is v). Clearly, the number of colors used does
not exceed 2*. To verify that the coloring is proper, observe that if u and v are adjacent
vertices in G, the color of the vertex (u,v) in 0G lies in ¢(v) but not in ¢(u), ensuring that
c(u) # c(v). A slightly better upper bound on the chromatic number of G, along with a
matching lower bound, is provided in [34].

A natural extension of graph colorings, originally proposed by Lovéasz [31] in the intro-
duction of his renowned ¥-function, is that of orthonormal representations of graphs. A
d-dimensional orthonormal representation of a graph is an assignment of a unit vector in
R? to each vertex, such that the vectors assigned to adjacent vertices are orthogonal.® The
orthogonality dimension of a graph G, denoted &(G), is the smallest integer d for which G
admits a d-dimensional orthonormal representation (see Definition 15). Note that for every
graph G, it holds that

logs x(G) < &(G) < x(G). (1)

Indeed, for the upper bound on &(G), notice that a proper k-coloring of G yields a k-
dimensional orthonormal representation by assigning the ith vector of the standard basis
of R¥ to the vertices of the ith color class. For the lower bound, consider a k-dimensional
orthonormal representation of GG, and observe that replacing its vectors by their sign vectors
in {0, £1}* results in a proper coloring of G with 3 colors. For a construction of graphs for

L Strictly speaking, the definition in [31] requires vectors assigned to non-adjacent vertices to be orthogonal.
This corresponds to an orthonormal representation of the complement graph in our terminology, which
we adopt from, e.g., [33, 6] for convenience.
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which the left-hand side of (1) is tight up to a multiplicative constant, see, e.g., [23]. Now,
by associating with each orthonormal representation of G the Gram matrix of its vectors,
it follows that £(G) is the smallest possible rank of a positive semi-definite matrix with
ones on the diagonal and zeros in entries that correspond to pairs of adjacent vertices. This
formulation naturally connects the problem of determining the orthogonality dimension of a
graph to that of determining the minimum rank of a positive semi-definite completion of a
suitably defined partial matrix.

The computational hardness of determining the orthogonality dimension of graphs was
speculated by Lovéasz, Saks, and Schrijver [32] in 1989 and has been studied in several recent
works,; e.g., [6, 16, 10]. We first mention that one may combine the inequalities in (1) with
the hardness results of the gap coloring problem from [12, 13] to conclude that deciding
whether an input graph G satisfies £(G) < dy or £(G) > ds is intractable for all integers
dy > dy > 3, assuming some variant of the Unique Games Conjecture. This reasoning,
however, is insufficient to derive any NP-hardness result for orthogonality dimension, even
from the strongest known NP-hardness of gap coloring. Still, it was shown in [10] that for
every sufficiently large integer d, it is NP-hard to decide whether an input graph G satisfies
(@) < dor £(G) > 2070()d/2 Thig result was proved based on the hardness of the
(k,2(1=2(1)-k)_Coloring problem from [28] through the reduction that maps a given graph G
to the graph 6G. On the one hand, it follows from (1) that the orthogonality dimension of
0G does not exceed its chromatic number, which is logarithmic in X(G). To complete the
correctness of the reduction, it was shown in [10] that £(3G) < d implies that x(G) < dO(@).
This, in turn, leads to the NP-hardness of the d vs. 2(1=0(1))4/2 gap for the orthogonality
dimension problem, as well as for the PSD-Completion problem when no error is allowed.

The argument in [10] was based on the idea outlined below. Suppose that £(6G) < d, and
consider a d-dimensional orthonormal representation of G, which assigns to each ordered
pair e of adjacent vertices in G a vector z, € R?. Associate with each vertex v of G the
linear subspace c(v) C R? spanned by the vectors of the form (... Observe that if u and v
are adjacent vertices in G, their subspaces ¢(u) and ¢(v) are quite distant from each other,
in the sense that there exists a vector — the vector x(, ) associated with the vertex (u,v) in
dG — that lies in ¢(v) but is orthogonal to the entire subspace c¢(u). Now, every subspace of
R? can be represented by an orthonormal basis of at most d vectors. To obtain a coloring of
G with finitely many colors, the basis vectors are replaced by their representatives from a
sufficiently dense net of the unit sphere in R?, resulting in a proper coloring of G with do@)
colors, as desired.

In order to adapt this approach to the more tolerant setting of PSD-Completion, where
an additive error of ¢ is allowed at each entry of the input partial matrix, we introduce
the notion of d-dimensional e-orthonormal representations of graphs. Here, each vertex
of the graph G at hand is assigned a unit vector in R¢, such that the inner product of
vectors assigned to adjacent vertices is at most € in absolute value. Letting £, (G) denote the
smallest possible dimension of such an assignment, one can show that approximating the
value of £_(G) for an input graph G is efficiently reducible to approximating the smallest
rank of a positive semi-definite matrix that agrees with a given partial matrix, even when
an additive error of O(¢) is allowed per entry. To prove the NP-hardness of the former, we
apply again the reduction that transforms a graph G into the graph 5G. For correctness, we
aim to establish an upper bound on x(G) in terms of £_(6G). It turns out, though, that the
proof idea of [10], described above, does not extend to this setting. To see why, consider a
d-dimensional e-orthonormal representation of §G, which assigns to each ordered pair e of
adjacent vertices in G a vector ., € R%, and as before, associate with each vertex v of G the
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linear subspace c(v) C R? spanned by the vectors of the form T(.v)- Now, let v and v be
adjacent vertices in G. While the vector x(,,,) still lies in ¢(v), it is no longer guaranteed to
be orthogonal to the subspace c(u). In fact, this vector is only guaranteed to have an inner
product of at most € in absolute value with the vectors of a basis of ¢(u), which does not
even preclude the possibility that it lies in ¢(u), making it impossible to deduce that ¢(u) and
¢(v) are far apart. As an example, consider the two unit vectors e; and v1 — g2 - e +¢ - ea,
where e; denotes the ith vector of the standard basis of R?. Notice that the vector es has an
inner product of at most € in absolute value with each of the two vectors, yet it lies within
the subspace they span.

We overcome the above difficulty through a different coloring of G. Namely, for each
vertex v of G, we consider a maximal set c(v) C R? of vectors of the form T(. ) With pairwise
inner products of absolute value at most &', for some appropriately chosen ¢’ > . Now, if
u and v are adjacent vertices in G, then the vector x(, ,) has an inner product of at most
¢ in absolute value with each vector of ¢(u). However, by the maximality of ¢(v), there
must exist a vector in ¢(v) whose inner product with z, ) is larger than ¢’ in absolute

value: either () itself or some other vector that prevented it from being added to c(v).

This, in a sense, implies that the sets c¢(u) and ¢(v) are sufficiently far apart, so that they
remain distinct once their vectors are replaced by representatives from a sufficiently dense
net. Yet, the number of vectors in the sets ¢(v) has a significant effect on the number of
colors used. In contrast to the ¢ = 0 setting, here we do not handle bases of subspaces of R?,
and therefore, we cannot ensure that the size of each set ¢(v) is bounded by d. We do know
that the vectors of each set ¢(v) are nearly orthogonal to each other, with the absolute value
of their pairwise inner products at most ’. To bound their size, we apply bounds of Alon [2]
on the rank of perturbed identity matrices (see Theorem 12). When &’ is sufficiently small,
namely, ¢’ < O(1/V/d), it turns out that each set c(v) includes fewer than 2d vectors. For
larger values of &', the bound weakens, leading to the dependence of the hardness gap on the
error ¢, as stated in Theorem 2.

To extend our approach to the low-rank matrix completion problem with a bounded
infinity norm, we introduce an extension of the notion of graph-fitting matrices, proposed
by Haemers in [18]. Here, for a graph G, we consider matrices (not necessarily positive
semi-definite) that have ones on the diagonal and values of magnitude at most € in entries
corresponding to adjacent vertices (see Definition 16). Our main technical result provides an
upper bound on the chromatic number of a graph G, assuming that the graph 0G admits
such a matrix with a bounded rank and a bounded infinity norm (see Theorem 22). The
proof generalizes the technique described above, drawing on the fact that every matrix has
a rank factorization involving matrices with rows of bounded norm (see Lemma 8). The
detailed argument is presented in the subsequent technical sections.

1.3 OQutline

The rest of the paper is organized as follows. In Section 2, we collect several notations and
tools that will be used throughout the paper. In Section 3, we define and study nearly
orthonormal representations of graphs, with particular attention to line digraphs. In Section 4,
we apply our insights to establish the hardness of a problem we call Graph Fitness. This, in
turn, leads to the hardness of the (dy, ds, €)-PSD-Completion and (dy, da, €, §)-Completion
problems, thereby verifying Theorems 2, 3, 5, and 6. Due to space limitations, some proofs
and results are deferred to the full version of the paper.
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2 Preliminaries

Throughout the paper, we omit floor and ceiling signs when they are not essential, and all
logarithms are taken in base 2, unless otherwise specified. Graphs refer to undirected graphs,
and digraphs refer to directed graphs, with all graphs and digraphs being simple (i.e., with
no loops or parallel edges). For a positive integer n, we denote [n] = {1,...,n}.

2.1 Linear Algebra

For a positive integer d, let (-,-) and || - || stand for the standard inner product and Euclidean
norm on RY, respectively. As is customary, a vector x € R? with ||z|| = 1 is referred to as a
unit vector. The following simple claim will be used.

>> Claim 7. For every positive integer d and any three vectors z,y, z € R?, it holds that

[z, )] = [z 9| < llo— =]l - [yl

For a real matrix A = (a; ), let rank(A) denote its rank over R, and let ||A||o denote its
infinity norm, defined by || Al|cc = max; ; |a; ;|. It is well known that every matrix A € R"*"
of rank d can be expressed as A = X - Y? for some matrices X,Y € R"*¢, The following
lemma guarantees the existence of such a factorization with matrices X and Y whose rows
have bounded norms. Its proof relies on John’s classical theorem from Banach space theory
and can be found, e.g., in [35, Corollary 2.2].

» Lemma 8. Let d < n be positive integers. For every matriz A € R™*"™ of rank d, there
exist two matrices X,Y € R satisfying A = X - Y, such that every row of X and Y has
norm at most d'/* - ||A\|éé2

A matrix A € R™*" is said to be positive semi-definite if z*Ax > 0 for all vectors = € R™.
This condition is equivalent to the existence of a matrix X € R"*? such that A = X - X*
where d = rank(A). The coherence of a symmetric matrix measures the extent to which its
row (or column) space aligns with the vectors of the standard basis. It is formally defined as
follows.

» Definition 9 (Coherence). For positive integers d < n, let U be a d-dimensional subspace
of R™, and let Py be the orthogonal projection onto U. The coherence of U is defined as
p(U) =2 - max;epy || Puei|?, where e; stands for the ith vector of the standard basis of R™.
Note that u(U) € [1,%]. The coherence of a symmetric matriz A € R"*", denoted by pu(A),
is defined as the coherence of its row (or column) space.

2.2 Nets

For a positive integer d and a real number 6 > 0, let B;(60) denote the closed d-dimensional
ball of radius 6 centered at the origin, i.e., B4(0) = {x € R | |z|| < 6}. We define a net
for a closed ball as follows.

» Definition 10. For a positive integer d and real numbers n,0 > 0, an n-net for By(0) is a
set K C R such that for any x € By(0), there exists a point y € K satisfying ||z — y|| < n.

Note that Definition 10 requires every point in the ball to admit a point in the n-net at a
distance strictly smaller than 7. We need the following standard lemma on the existence of
bounded-size nets for balls (see, e.g., [15]).

» Lemma 11. For every positive integer d and any real numbers n,0 > 0, there exists an
n-net for Bq(0) of size at most (% +1)4.
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2.3 The Rank of Perturbed ldentity Matrices

It is well known and easy to verify that if a matrix A = (a; ;) € R™*™ satisfies a;; = 1
for all i € [m] and |a; ;| < - for all distinct 4, j € [m], then A has full rank. The following
theorem, proved by Alon [2], provides lower bounds on the rank of a symmetric matrix under
a weaker assumption on its off-diagonal entries. For a variety of applications of these bounds,
the reader is referred to [3] (see also [4]).

» Theorem 12 ([2]). There exists an absolute constant ¢ > 0 for which the following holds.
For positive integers d < m and for a real number ¢ € [0,1), let A = (a; ;) € R™*™ be a
symmetric matriz of rank d satisfying a;,; = 1 for all i € [m] and |a; ;| < € for all distinct
i,j € [m]. Then

1. d Z $, and

2. ife €[ Y], thend > ¢ iEr .

In light of Theorem 12, we introduce the quantities m(d, ), defined as follows.

» Definition 13. For a positive integer d and a real number £ € [0, 3], let m(d, ) denote the
mazimum integer m for which there exists a symmetric matriz A = (a; ;) € R™*™ of rank
(at most) d satisfying a;; =1 for all i € [m| and |a; ;| < € for all distinct i,j € [m].

Note that for all positive integers d and real numbers ¢ < ¢’, it holds that m(d,e) < m(d,¢e’).
As a direct corollary of Theorem 12, we obtain the following bounds on m(d,e). A proof
is provided in the full version of the paper.

» Corollary 14. There exists an absolute constant ¢ such that the following holds for all
positive integers d.

1. Ife €0, ﬁ), then m(d,e) < d- 11:(;22. In particular, if € < \/%71’ then m(d,e) < 2d.

2. Ife € [gg, 5], thenm(d,e) < ge-d-e?log(1/¢)

3 Nearly Orthonormal Representations of Graphs

A d-dimensional orthonormal representation of a graph is an assignment of a unit vector
in R? to each vertex, such that adjacent vertices receive orthogonal vectors (see [31]). We
introduce the following relaxation of this concept, where adjacent vertices receive vectors
that are nearly orthogonal.

» Definition 15. Let G = (V, E) be a graph. For a positive integer d and a real number
€ € [0,1), a d-dimensional e-orthonormal representation of G is an assignment of a unit
vector x,, € R? to each vertex v € V', such that for every pair of adjacent vertices u and v in
G, it holds that |(x,,x,)| < €. For any real number € € [0, 1), the e-orthogonality dimension
of G, denoted £_(G), is the smallest positive integer d for which G admits a d-dimensional
g-orthonormal representation. We omit € from the notation and terminology when ¢ = 0.

A well-studied extension of orthonormal representations, introduced in [18], is that of
graph-fitting matrices (see also [33]). We propose the following relaxation of this notion.

» Definition 16. Let G = (V,E) be a graph. For a real number ¢ € [0,1), a matriz
A=(ay,) € RIVIXIVI whose rows and columns are indexed by V', is said to e-fit the graph G
if ayy =1 for allv eV and |ay,| < € whenever w and v are adjacent vertices in G. When
e =0, A is said to fit G.
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For a given graph G and a real number ¢ € [0,1), we are concerned with the minimum
possible rank of a matrix that e-fits G. When € = 0, this quantity coincides with the minrank
of the complement of G over the reals (see [18, 33]).

» Remark 17. The notions of e-orthonormal representations and e-fitting matrices, given
in Definitions 15 and 16, are closely related. To see this, consider a graph G = (V, E), and
associate with each d-dimensional e-orthonormal representation (z,),cy of G the Gram
matrix A = (ay,v) € RIVIXIVI of its vectors, defined by Qyp = (Ty, Ty) for all u,v € V. Note
that such a matrix A is positive semi-definite, has rank at most d, and e-fits the graph G.
Therefore, d-dimensional e-orthonormal representations of a graph G may be regarded as
the special case of matrices of rank at most d that e-fit G, with the additional property of
positive semi-definiteness.

In the rest of this section, we relate the chromatic number of a graph to the rank of
matrices that nearly fit it. We first establish such relations for general graphs and then
proceed to the case of underlying graphs of line digraphs. Finally, we link the notion of
nearly orthonormal representations to the circular chromatic number.

3.1 Chromatic Number

For a positive integer k, a k-coloring of a graph G is a mapping from the vertex set of G
to a set of size k. A coloring ¢ of G is called proper if c¢(u) # c(v) whenever u and v are
adjacent vertices in G. The graph G is called k-colorable if it admits a proper k-coloring,
and the smallest integer k for which G is k-colorable is called the chromatic number of G
and is denoted by x(G). Observe that any proper k-coloring of G induces a k-dimensional
orthonormal representation of GG, in which the vertices of the ith color class are assigned the
ith vector of the standard basis of R¥. Consequently, every graph G satisfies £(G) < x(G) and
thus admits a positive semi-definite matrix of rank at most x(G) that fits it (see Remark 17).
The following simple lemma, whose argument is borrowed from [20], shows that a slight
modification of G ensures the existence of such a matrix with minimal coherence (recall
Definition 9). The proof is deferred to the full version of the paper.

» Lemma 18. For positive integers k and n, let G be a k-colorable graph on n vertices, and
let H denote the disjoint union of k copies of G. Then there exists a positive semi-definite
matriz B € {0, 1}F">kn that fits the graph H, such that rank(B) = k and u(B) =1 .

The following theorem relates the chromatic number of a graph to the rank of a matrix
that nearly fits it. A similar reasoning appears in [20]. The proof is given in the full version
of the paper.

» Theorem 19. Let G = (V,E) be a graph. For a positive integer d and real numbers
e €10,1) and 0 > 1, suppose that there exist two matrices X,Y € RIVIXd where each row of
X and Y has norm at most 0, such that the matriz X - Y e-fits the graph G. Then, it holds

that x(G) < (fi + 1)4. Furthermore, if X =Y, then x(G) < (jg +1)4.

3.2 Chromatic Number of Line Digraphs

The concept of line digraphs, introduced in [19], is defined as follows.

» Definition 20 (Line Digraph). For a digraph G = (V, E), the line digraph of G, denoted
0G, is the digraph on the vertex set E, where there is a directed edge from a vertex (u,us)
to a vertex (v1,vs) whenever ug = v1. For an (undirected) graph G, its line digraph 0G is
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defined as the line digraph of the digraph obtained from G by replacing each edge with two
oppositely directed edges. Let 0G denote the underlying graph of 0G, i.e., the graph obtained
from §G by ignoring the directions of the edges.

The following result, proved by Poljak and Rodl [34] (see also [21]), shows that the
chromatic number of a graph G determines the chromatic number of dG. The statement
involves the function b : N — N, defined by b(n) = (Ln72J)'

» Theorem 21 ([34]). For every graph G, x(6G) = min{n € N | x(G) < b(n)}.

The following theorem ties the chromatic number of a graph to the rank of a symmetric
matrix that nearly fits the underlying graph of its line digraph. It plays a crucial role in our
NP-hardness results. The statement involves the quantities m(d, <) given in Definition 13.

» Theorem 22. Let G = (V, E) be a graph, and let 6G = (V', E') be the underlying graph of
its line digraph. For a positive integer d and real numbers e € |0, %) and 0 > 1, suppose that
there exist two matrices X,Y € R‘V/‘Xd, where each row of X and Y has norm at most 6,
such that X - Y is a symmetric matriz that e-fits the graph 6G. Then, for any 1 € (0, 11925],
it holds that

Ui

Proof. Consider a graph G, an integer d, real numbers ¢, 6,7, and matrices X,Y as in the
statement of the theorem. By Lemma 11, there exists an n-net K for the closed d-dimensional
ball By(0) of radius 6, such that | K| < (277—9 + 1) Let f: By(f) — K be a function that
maps each point x € By(f) to a point in K that is closest to z. Since K is an n-net for
Ba(0), it holds that || f(x) — x| < n for every x € Bq(0).

Recall that every vertex of 4G is a pair e = (u,v) € V' of vertices u,v € V that are
adjacent in G. For each such vertex e, let z. and y. denote the rows associated with e in

d-m(d,2n0+¢)
2
X(G) < (9 + 1) .

the given matrices X and Y, respectively. By assumption, ||z.| < 6 and ||y.|| < 6 for every
e € V'. Since the matrix X - Y* e-fits 0G, it follows that (z.,.) = 1 for every e € V', and
that |(z.,ye)| < € whenever e and ¢’ are adjacent in 6G.

We define a coloring of G as follows. Set &/ = 210 + ¢ < % For every vertex v € V,
consider the set F, of vertices of §G whose head is v, that is,

E,={eeV'|e=(u,v) for some u € V}.

Let E! be a maximal subset of E, (with respect to containment), such that for all distinct
e,e’ € E!, it holds that |(x.,y. )| < . Equivalently, we require the sub-matrix of X - Y,
restricted to the rows and columns corresponding to the vertices of EJ, to have off-diagonal
values at most ¢’ in absolute value. Notice that X - Y is a symmetric matrix of rank at
most d, and thus so is each of its principal sub-matrices. Letting m = m(d,¢’), it follows
that |E!| < m. Now, we assign to each vertex v € V the color ¢(v), defined as the set of all
vectors f(z.) with e € E/. The number of colors used by the coloring ¢ does not exceed the
number of m-tuples of vectors from K, which is |K|™ < (% +1)@™, It remains to show that
the coloring c is proper.

Let u,v € V be adjacent vertices in G, and consider the vector y(,, ) associated with the
vertex (u,v) of 6G in the matrix Y. Since every vertex of E, is adjacent in 0G to the vertex
(u,v), it follows that every e € E, satisfies |(Z¢, Y(u,v))| < €. Using Claim 7, this yields that
every e € B!, C E, satisfies

[(F(@e)s Y| < He, Yeuw)) | + 1 F (@) = 2ell - [y uw | < &+ nb.
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We next argue that there exists a vertex e € E;, such that [(z¢,y(uv))| > €. Indeed, the
vertex (u,v) lies in E,. If (u,v) lies in E, then we have [(z(y.),Ywu,0))| = 1 > €', and
otherwise, the maximality of E! combined with the symmetry of X - Y* implies the existence
of the desired vertex e. Using Claim 7 again, it follows that this vertex e satisfies

(@), Y| Z [@es Yeuw))| = 1 (@e) = zell - [Yum | > " —nb =& +nb.

We conclude that some vector f(x.) in the set ¢(v) is different from all the vectors in the set
c(u), hence c¢(u) # c(v). Therefore, the coloring ¢ of G is proper, and we are done. <

3.3 Circular Chromatic Number

The circular chromatic number of graphs, introduced by Vince [37], has several equivalent
definitions, one of which is presented below. For a comprehensive introduction to the topic,
the reader is referred to the survey [38].

» Definition 23. The circular chromatic number of a graph G = (V, E), denoted x.(G), is
the infimum of all real numbers r > 1 that admit a mapping f : V — [0,1), such that for
every pair of adjacent vertices u and v in G, it holds that % <|flw)— flv)| <1-— %

It is known that the infimum in the definition of x.(G) is always attained (at a rational
number), hence the infimum can be replaced by a minimum. It is also known that any graph
G satisfies x(G) = [xc(G)]. The following observation relates the circular chromatic number
to 2-dimensional nearly orthonormal representations. Note that every graph G with at least
one edge satisfies x.(G) > 2.

» Proposition 24. For every graph G with at least one edge and for any real number e € [0, 1),

it holds that £_(G) < 2 if and only if € > cos(ixc’(ra)),

Proof. A 2-dimensional e-orthonormal representation of a graph G = (V, E) assigns a unit
vector z,, € R? to each vertex v € V, such that every pair of adjacent vertices u and v in G
satisfies |(x,, z,)| < e. We may assume that each vector x, lies in the upper half of the unit
circle, by multiplying some of the vectors by —1 if needed. Therefore, each vector x, can be
expressed by a real number «, € [0, 1), such that the angle between the vectors (1,0) and =z,
is ay, - m. In this language, the condition |[(x,, z,)| < € translates to | cos(m - (q, — aw))| < &,
or equivalently, %‘)S(g) <oy —ap| <1 - %‘)S(E) By the definition of circular chromatic

number, such a mapping v — «,, exists if and only if it holds that arccﬁs(s) <3 %G), that is,
s

e> cos(m). The proof is complete. <

As a concluding remark, we raise the question of determining the e-orthogonality dimension
of Kneser graphs. The Kneser graph K(n, k), defined for integers n and k with n > 2k,
has vertices corresponding to all k-subsets of [n] and edges between disjoint sets. Settling a
conjecture of Kneser [27], Lovasz [30] proved that x(K(n,k)) = n — 2k + 2 as an application
of the Borsuk—Ulam theorem from algebraic topology. This result has been strengthened in
various ways over time. For example, it was shown by Chen [11] that the chromatic number
of K(n,k) coincides with its circular chromatic number, resolving a conjecture of Johnson,
Holroyd, and Stahl [26] (see also [9, 29]). By Proposition 24, this result characterizes the
values of e € [0,1) for which £ (K (n,k)) < 2 holds. A more recent result [22, 1] asserts
that the chromatic number of K(n, k) coincides with its standard orthogonality dimension
(where e = 0). It would thus be intriguing to determine the quantities . (K (n, k)) for general
parameter choices.
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4 Hardness Results

This section presents our hardness results for low-rank matrix completion and for related
problems. The starting point of our hardness proofs is the gap coloring problem, defined as
follows.

» Definition 25 (The (k1, k2)-Coloring Problem). For positive integers ki < ko, the (ki,ka)-
Coloring problem asks to decide whether an input graph G satisfies x(G) < k1 or x(G) > k.

We rely on the following hardness result, proved by Krokhin et al. [28]. Recall that the
function b : N — N is defined by b(n) = (L7t72J)'

» Theorem 26 ([28]). For every integer k > 4, the (k,b(k))-Coloring problem is NP-hard.

In what follows, we reduce the gap coloring problem to an intermediate problem, termed
Graph Fitness, and establish its hardness via Theorem 26. While the definition of the Graph
Fitness problem may appear somewhat artificial, its hardness enables us to derive all our
hardness results in a unified framework. Due to space limitations, some of these implications,
including those concerning the Orthogonality Dimension problem, appear only in the full
version of the paper. The following figure summarizes the reductions used throughout the

paper.

Ortho-Dim
Coloring Lemma 28 » Graph-Fitness Lemma 33 PSD-Completion
Lemma 30
Lemma 33
Completion

Figure 1 Reductions map.

4.1 Graph Fitness

The Graph Fitness problem is defined as follows.

» Definition 27 (The (d1, da, ¢, 8)-Graph-Fitness Problem). For positive integers di < da and
real numbers e € [0,1) and 6 > 1, the (dy,ds, €, 0)-Graph-Fitness problem asks, given a graph
G on n vertices, to distinguish between the following cases.

YES: There exists a positive semi-definite matriz B € R™*"™ that fits the graph G, such

that p(B) =1 and rank(B) < d;.

NO: For any two matrices X,Y € R™? whose rows have norm at most @ and for which

X -Y? is a symmetric matriz that e-fits the graph G, it holds that d > ds.
Note that the condition on YES instances in the above definition implies the existence of a
matrix X € R"*% whose rows have norm 1, such that X - X* is a symmetric matrix that
fits the graph G. Therefore, the YES and NO instances of the problem do not overlap.

We state two efficient reductions from the (k1, k2)-Coloring problem to the (dy, ds, ¢, 0)-
Graph-Fitness problem for suitable choices of parameters. The proofs can be found in the
full version of the paper. The first reduction builds on Theorem 19.
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» Lemma 28. Let di < dy be positive integers, and let ¢ € [0,1) and 8 > 1 be real
2
(

numbers. Then there ezists a polynomial-time reduction from (di, ffg +1)42)-Coloring to
(di1,da, &, 0)-Graph-Fitness.

» Remark 29. It was proved in [12, 13] that certain variants of the Unique Games Conjecture
imply the hardness of the (k1,ks)-Coloring problem for all integers ko > k1 > 3. By
Lemma 28, it follows that the same complexity assumptions imply the hardness of the
(d1,da, €, 0)-Graph-Fitness problem for all integers ds > d; > 3 and real numbers ¢ € [0, 1)
and 0 > 1.

The next reduction between the problems relies on Theorem 22 and is crucial for deriving
our NP-hardness results from Theorem 26. Note that the reduction from Lemma 28 is
insufficient for this purpose. The statement involves the quantities m(d, €) from Definition 13
and the function b : N — N from Theorem 26.

» Lemma 30. Let k; < ko and dy < dy be positive integers, and let ¢ € |0, %), 0>1, andn
be real numbers, such that

1-9 20 do-m(ds,2n0+¢)
ne (0, g], ky <b(dy), and ks > (n n 1)

46
Then there exists a polynomial-time reduction from (ki,ks)-Coloring to (d1,ds, €, 8)-Graph-
Fitness.

We next state an NP-hardness result for the Graph Fitness problem. The (somewhat
tedious) proof, which is omitted here, integrates the hardness of the gap coloring problem
from Theorem 26, the reduction to Graph Fitness provided by Lemma 30, and the bounds
on the quantities m(d,e) from Corollary 14.

» Theorem 31. There exists an absolute constant ¢ > 0 for which the following holds. Let
d and g be positive integers with d sufficiently large and d < g, and let € and 6 > 1 be real

numbers. Suppose that either
1 1 24/2
- €€ [0’ m] d'/4.max(log0,d)1/2’
c-d
2.66[37\1/@,%],9S22 ,anngc-m.
Then the (d, g,¢,0)-Graph-Fitness problem is NP-hard.

and g < c- or

Theorem 31 establishes the NP-hardness of the Graph Fitness problem for general
parameter settings. To illustrate its applicability, we present three implications below. The
first provides an exponential gap in the rank for an exponentially small error, the second
offers a polynomial gap in the rank along with a polynomial decay of the error, and the third
shows a constant multiplicative gap in the rank for a constant error.

» Theorem 32. There exists an absolute constant ¢ > 0 for which the following holds.

1. There exists an absolute constant ¢’ > 0, such that for every sufficiently large positive
a/2 ’

integer d, the (d,c- (213%, 2=¢+d 24)_Graph-Fitness problem is NP-hard.

2. For every B > 1, there exists some ¢’ > 0, such that for every sufficiently large positive

integer d, the (d,d®,c - m, 226'd)—Gmph—Fitness problem is NP-hard.

3. For every a > 1, there exists some € € (0,1), such that for every sufficiently large positive
integer d, the (d,a - d, e, 220'd)—Gmph—Fz'tness problem is NP-hard.
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4.2 Low-Rank Matrix Completion

We finally turn to proving our hardness results for the low-rank matrix completion problems
described in Definitions 1 and 4, thereby strengthening the NP-hardness results of [20]. This
will be accomplished through the reductions outlined in the following lemma.

» Lemma 33. For all positive integers di < ds and real numbers € € [0,1), the following
holds.
1. There exists a polynomial-time reduction from (dy,ds,e,1)-Graph-Fitness to

€ .
(d1 ,do, 1—4_6) -PSD-Completion.

2. For every real number 0 > (1+4¢)'/? ~d;/4, ifdy < L%J then there exists a polynomial-time

reduction from (dy,ds,€,0)-Graph-Fitness to

d 62
<d1, {QJ , < , 73 ) -Completion.
21 1+e (1+¢)-dy

Proof. Fix integers dj,ds and real numbers ¢, 6 as in the statement of the lemma, and set

02
I+e (1+¢)-d,

Note that &’ € [0,1) and 6" > 1. Both parts of the lemma are established through the same
reduction, which is described next. For a given graph G = (V, E) on n vertices, the reduction
produces and returns the partial matrix A € {0,1, L}"*™, whose rows and columns are
indexed by V, defined by A, , =1ifu=v, A,, =0if {u,v} € E, and A, , =L otherwise.
This reduction can clearly be implemented in polynomial time (in fact, in logarithmic space).

We now prove the correctness of the reduction. We begin with the forward direction,
which applies to both parts of the lemma. Suppose that G is a YES instance of (dy, ds, ¢, 0)-
Graph-Fitness for some 6 > 1. Then, there exists a positive semi-definite matrix B € R"*"
that fits the graph G, such that u(B) = 1 and rank(B) < d;. Since B fits G, the diagonal
entries of B are all ones, and the entries of B associated with adjacent vertices are zeros.
This implies that A, , = By, whenever A, , #1. It follows that A is a YES instance of
both (d, da, e')-PSD-Completion and (dy, [%2],€’,6')-Completion, as needed.

For the reverse direction, we prove the contrapositive. For Item 1 of the lemma, we show
that if A is not a NO instance of (d,ds,e’)-PSD-Completion, then G is not a NO instance
of (dy,ds,¢€,1)-Graph-Fitness. Suppose that for some integer d < da, there exists a positive
semi-definite matrix B € R™*" of rank d, such that |A, ., — By| < &’ whenever A, , #L.
Since B is positive semi-definite and of rank d, one may write B = X - X for a matrix
X € R™*?, For each vertex v € V, let , denote the row of X associated with v. Notice that
for every vertex v € V, it holds that ||z, ||* = (x,,2,) = By, € [1 —¢',14¢'], and that for
every pair of adjacent vertices u and v in G, it holds that (x,,x,) = By € [—¢’,+€’]. For

Ty

each vertex v € V, let z/, = T It follows that for every v € V, 2! is a unit vector, and

that for every pair of adjacent vertices v and v in G, it holds that

() = Tl € €

= Tl o Tt o = [~¢, +e€].

Letting X’ € R™"*¢ denote the matrix in which the row associated with a vertex v is !, we
obtain that every row of X’ has norm 1 and that X’ - (X’)? is a symmetric matrix that e-fits
the graph G. By d < da, it follows that G is not a NO instance of (dy, ds, €, 1)-Graph-Fitness,
as desired.
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For Ttem 2 of the lemma, we show that if A is not a NO instance of (dy, % ],’,0")-
Completion, then G is not a NO instance of (dy,ds,¢,#)-Graph-Fitness. Suppose that
for some integer d < |% |, there exists a matrix B € [—6,+6']"*" of rank d, such that
|Ay » — Buw| <& whenever A, , #L. Put C = %-(B—}—Bt), and notice that C is a symmetric
matrix that lies in [—6', +6]"*™ and satisfies rank(C) < 2d < dp. By the symmetry of A,

we observe that for all u,v € V with A,,, #.L, it holds that

|Au,v - Cu7v| = % ' (Au,v - Bu,v) + % ' (Av7u - Bv,u)

S % . |Au,v - Bu,v| + % . |Av,u - Bv,u| S 5/- (2)

By Lemma 8, there exist two matrices X,Y € R"* (29 gatisfying C' = X - Y, such that every
row of X and Y has norm at most

0
(2d) /4 012 < @t g/2 = Troie = (1—e)2.0. (3)

For each vertex v € V, let x, and y, denote the rows associated with v in X and Y,
respectively. By (2), for every vertex v € V, it holds that (x,,y,) = Cy, € [1 — €', 1+ €],
and for every pair of adjacent vertices v and v in G, it holds that (@, y,) = Cy» € [—€, +€].
For each vertex v € V, let 2/, = W and y, = W, and observe using (3) that
|22 || < 6 and ||y, || < 0. For every v € V, we have (z, 3. ) = 1, and for every pair of adjacent
vertices u and v in G, it holds that

A (Tus Yo) _ e e o
(Ths Y) = (Z s ) /2 - (20, Yo ) /2 € 1 _5/’+1 — = [—¢, +e].

Let X', Y’ € R"*(24) denote the matrices in which the rows associated with a vertex v are
x) and y,, respectively. The above discussion implies that every row of X’ and Y’ has norm
at most 6 and that X’ - (Y')! is a symmetric matrix that e-fits the graph G. By 2d < da, it
follows that G is not a NO instance of (dy,ds, e, 0)-Graph-Fitness, completing the proof. <

By combining Theorem 31 with the first item of Lemma 33, we obtain the following result.
A similar consequence, omitted here, can be derived from the second item of the lemma.

» Corollary 34. There exists an absolute constant ¢ > 0 for which the following holds. Let
d and g be positive integers with d sufficiently large and d < g, and let € be a real number.
Suppose that either

1. e€g] 2

andggc-W,

O,ﬁ] or

Then the (d, g, ﬁ)—PSD—Completion problem is NP-hard.
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