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Abstract
Alternating parity automata (APAs) provide a robust formalism for modelling infinite behaviours and
play a central role in formal verification. Despite their widespread use, the algebraic theory underlying
APAs has remained largely unexplored. In recent work [10], a notation for non-deterministic finite
automata (NFAs) was introduced, along with a sound and complete axiomatisation of their equational
theory via right-linear algebras. In this paper, we extend that line of work to the setting of infinite
words. In particular, we present a dualised syntax, yielding a notation for APAs based on right-linear
lattice expressions, and provide a natural axiomatisation of their equational theory with respect to
the standard language model of ω-regular languages. The design of this axiomatisation is guided by
the theory of fixed point logics; in fact, the completeness factors cleanly through the completeness
of the linear-time µ-calculus.
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1 Introduction

1.1 A half century of ω-automata theory
ω-automata, i.e. finite state machines running on infinite inputs, are useful for modelling
behaviour of systems that are not expected to terminate, such as hardware, operating systems
and control systems. The prototypical ω-automaton model, Büchi automaton, is widely used
in model checking [30, 15, 14, 17].

The theory of ω-regular languages, i.e. languages accepted by ω-automata, have been
studied for more than half a century. Büchi’s famous complementation theorem [7] for his
automata is the engine underlying his proof of the decidability of monadic second-order logic
(MSOL) over infinite words. Its extension to infinite trees, Rabin’s Tree Theorem [24], is
often referred to as the “mother of all decidability results”.

McNaughton [23] showed that, while Büchi automata could not be determinised per se, a
naturally larger class of acceptance conditions (Muller or parity) allowed such determinisation,
a highly technical result later improved by Safra [26]. A later relaxation was the symmetrisa-
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39:2 Right-Linear Lattices

tion of the transition relation itself: instead of only allowing non-deterministic states, allow
co-nondeterministic ones too. This has led to beautiful accounts of ω-regular language theory
via the theory of positional and finite memory games. The resulting computational model,
alternating parity automaton (APA), is now the go-to model in textbook presentations,
e.g. [16]. Indeed, their features more closely mimic those of logical settings where such
symmetries abound, e.g. linear-time µ-calculus [29] and MSOL over infinite words.

1.2 An algebraic approach
In the world of finite words, the theory of regular languages have been axiomatised as Kleene
Algebras (KAs). In fact, KAs are part of a bigger cohort of regular algebras and they have
been studied for several decades and completeness proofs for different variants have been
obtained [27, 21, 20, 3, 4]. KAs and various extensions have found applications in specification
and verification of programs and networks [1].

Note that KAs and other regular algebras axiomatise the equational theory of regular
expressions. An alternative (and arguably more faithful) notation for NFAs may be given
by identifying them with right-linear grammars. Recall that a right-linear grammar is a
CFG where each production has RHS either aX or ε. They may also be written as right-
linear expressions, by choosing an order for resolving non-terminals. Formally, right-linear
expressions (aka RLA expressions), written e, f, . . . , are generated by:

e, f, . . . ::= 1 | X | e+ f | a · e | µXe

for a ∈ A, a finite alphabet and X ∈ V , a countable set of variables. Indeed [10] takes this
viewpoint seriously and proposed an alternative algebraic foundation of regular language
theory, via right-linear algebras (RLAs). Notably, RLAs are strictly more general than KAs, as
they lack any multiplicative structure. In particular, this means that ω-languages naturally
form a model of them (unlike KAs). This is the starting point of the current work.

In this work, we investigate the algebraic structures induced by the theory of APAs. To
do so, we dualise the (1-free)1 syntax of RLA expressions to obtain right-linear lattice (RLL)
expressions, formally generated by:

e, f, . . . ::= X | a · e | e+ f | e ∩ f | µXe(X) | νXe(X)

Compared to RLA expressions, RLL expressions enjoy more symmetric relationships to
games and consequently, are a notation for APAs. Our main contribution is a sound and
complete axiomatisation RLLL of the theory of RLL expressions for the language model.

1.3 Related work
Two kinds of variations of KAs are relevant to this work. Firstly, the generalisation of
regular algebras to ω-regular algebras [31, 8, 22, 9], by axiomatising the theory of ω-regular
expressions, a generalisation of regular expressions admitting terms of the form eω. Secondly,
following the idea of dualisation from KAs leads to action lattices, an extension with meet
(dual to the sum), and residuals (adjoint to the product). Since RLA does not have products
we do not consider residuals, – so perhaps Kleene lattices [6, 12], the extension of KAs with
meet is the closest cousin of our proposed right-linear lattices.

1 This restriction imposed to so that the intended interpretation is over ω-words only, not ≤ ω-words.
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1.4 Roadmap
In Section 2, we recall right-linear algebras and define RLL expressions, a notation for
APAs. We identify several principles governing their behaviour in the standard model
L of ω-languages; namely, their interpretations satisfy a theory of bounded distributive
lattices, certain lattice homomorphisms and least and greatest fixed points (of definable
operators). In Section 3 recover a syntactic form of complements, and we present our ultimate
axiomatisation in Section 4. In Section 5, we prove the completeness of the axiomatisation
by reducing it to the completeness of linear time µ-calculus. We conclude with some remarks
on the axiomatisation and comparison with existing literature in Section 6. Further examples
and detailed proofs can be found in an accompanying preprint [11].

2 Right-linear lattice expressions for ω-regular languages

Let us fix a finite set A (the alphabet) of letters, written a, b, etc., and a countable set V
of variables, written X,Y, etc.

2.1 RLL expressions and ω-regular languages
RLL expressions, written e, f, . . . , are generated by:

e, f, . . . ::= X | a · e | e+ f | e ∩ f | µXe(X) | νXe(X)

for a ∈ A and X ∈ V . We usually just write ae instead of a · e. A variable X is said to occur
freely in an expression e if it not under the scope of any binder µX or νX. An expression is
said to be closed if it has no occurrences of free variables.
▶ Remark 1 (0). The original presentation of right-linear expressions includes a symbol 0
that was always interpreted as a unit for + in structures over this syntax. Here we shall
more simply just write 0 := µXX, and remark on the consequences of this choice as we go.

The intended interpretation of an RLL expression is a language of ω-words over A.

▶ Definition 2 (Interpretation). Let us temporarily expand the syntax of RLL expressions to
include each language A ⊆ Aω as a constant symbol. We interpret each closed expression (of
this expanded language) as a subset of Aω as follows:

L(A) := A

L(e+ f) := L(e) ∪ L(f)
L(e ∩ f) := L(e) ∩ L(f)
L(ae) := {aσ | σ ∈ L(e)}
L(µXe(X)) :=

⋂
{A | A ⊇ L(e(A))}

L(νXe(X)) :=
⋃

{A | A ⊆ L(e(A))}
Note that Remark 1 is justified by this interpretation: indeed L(µXX) is just the empty
language. Furthermore:
▶ Remark 3 (⊤). Dual to 0 := µXX, we define ⊤ := νXX, that denotes the universal
language in L.

To justify that µ and ν are indeed interpreted as fixed point operators, we will first
recall some terminology. For (S,⩽S) a complete lattice, x ∈ S is a prefixed (postfixed
respectively) point of a map f : S → S if f(x) ⩽S x (x ⩽S f(x) respectively). If x is both a
pre and postfixed point, it is called a fixed point of f .

MFCS 2025
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Figure 1 An alternating parity automaton. Blue and grey nodes are of parity 0 and 1 respectively.

▶ Theorem 4 (Knaster-Tarski theorem [19, 28]). Let (S,⩽S) be a complete lattice and
f : S → S be monotone. The set of fixed points of f forms a complete lattice under ⩽S.

Let us now point out that P(Aω) indeed forms a complete lattice under ⊆, and closed under
concatenation with letters on the left. Since all the operations are monotone, L(µXe(X))
and L(νXe(X)) are indeed the least and greatest fixed points, respectively, of the operation
A 7→ L(e(A)), by the Knaster-Tarski theorem.

▶ Example 5. Let us consider some examples of RLL expressions and the languages they
compute in L, over the alphabet {a, b}:

ia := νXµY (aX + bY ) computes the language Ia of words with infinitely many as:
First note that, for any language A, we have that µY (A+ bY ) computes b∗A.
Now let us show that Ia is a postfixed point of X 7→ µY (aX+bY ). By the above point,
it suffices to show that Ia ⊆ b∗aIa, which holds since every word w with infinitely
many as can be written w = b∗aw′, where w′ has infinitely many as too.
Now suppose B is another postfixed point, i.e. that B ⊆ b∗aB. Then we have
B ⊆ b∗aB ⊆ b∗ab∗aB ⊆ · · · ⊆ (b∗a)ω = Ia.

fb := µX(bX + aX + aνY aY ) computes the language Fb of words with finitely many bs:
First note that, νY aY computes aω.
By a similar argument as above, Fb is a prefixed point of X 7→ bX + aX + aaω,
contained in any other prefixed point.

ia ∩fb computes the language Ia ∩Fb of words with infinitely many as and at most finitely
many bs.

As the reader might have expected, the range of L(·) is just the ω-regular languages.

▶ Proposition 6. A language L ⊆ Aω is ω-regular if and only if there is a closed RLL
expression e such that L(e) = L.

One direction, exhaustion of all ω-regular languages, follows swiftly from the inductive
definition of the set of all ω-regular languages and was established in previous work [10],
without making use of ∩. One way to prove the converse is to introduce a game-theoretic
mechanism for deciding word membership in L(e). This was introduced in [10] without ∩
and can be straightforwardly lifted to our setting. We will illustrate with an example.

▶ Example 7. Consider ia ∩ fb as defined in Example 5. We will consider each variable
as a state. So, ia = νX1µX3(aX1 + bX3) gives us two states q1 and q3 such that q1

a−→ q1,
q1

b−→ q3, q3
a−→ q1, and q3

b−→ q3. To model the priority, we assign colours to states such that
χ(q1) is even, χ(q3) is odd, and χ(q1) < χ(q3). So, let χ(q1) = 0 and χ(q3) = 1.
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Similarly, fb = µX2(bX2 + aX2 + aνX4aX4) gives us two states q2 and q4 such that
q2

b−→ q2, q2
a−→ q2 ∨ q4, and q4

a−→ q4 with χ(q2) = 1 and χ(q4) = 0.
Finally, we model the meet with an initial state q0 with arbitrary colour and q0

ε−→ q1 ∧ q2.
This gives us an alternating parity automaton (see Figure 1) computing exactly the set of
words with finitely many as and infinitely many bs.

▶ Remark 8 (ε). Note that we have allowed ε-transitions in our APAs in order to mimic
the RLL syntax as closely as possible. This choice does not affect the class of ω-languages
represented by APAs (see, e.g., [5] for a similar exposition).

2.2 Some properties of the intended model
Let us take a moment to remark upon some principles valid in the intended interpretation L
of RLL expressions, in order to motivate the axiomatisation we introduce later. As usual we
write e ≤ f for e+ f = f , equivalently e = e ∩ f (so in L, ≤ just means ⊆). First:

(0,⊤,+,∩) forms a bounded distributive lattice:2

e+ 0 = e

e+ (f + g) = (e+ f) + g

e+ f = f + e

e+ e = e

e+ (e ∩ f) = e

e+ (f ∩ g) = (e+ f) ∩ (e+ g)

e ∩ ⊤ = e

e ∩ (f ∩ g) = (e ∩ f) ∩ g

e ∩ f = f ∩ e

e ∩ e = e

e ∩ (e+ f) = e

e ∩ (f + g) = (e ∩ f) + (e ∩ g)

(1)

Each a ∈ A is a (lower) semibounded lattice homomorphism:

a0 = 0
a(e+ f) = ae+ af

a(e ∩ f) = ae ∩ af

(2)

In particular, of course L ̸|= a⊤ = ⊤, so in this sense 0 and ⊤ do not behave dually in L.
Instead we have a variant of this principle, indicating that the homomorphisms freely factor
the structure:

The ranges of a ∈ A partition the domain:

ae ∩ bf = 0 whenever a ̸= b

⊤ =
∑

a∈A
a⊤ (3)

Finally, L is a complete lattice and so interprets the least and greatest fixed points as
such. Being a complete lattice is a second-order property, but we have the following first
order (even quasi-equational) consequences:

µXe(X) is a least prefixed point of X 7→ e(X):

(Prefix) e(µXe(X)) ≤ µXe(X)
(Induction) e(f) ≤ f =⇒ µXe(X) ≤ f

(4)

νXe(X) is a greatest postfixed point of X 7→ e(X):

(Postfix) νXe(X) ≤ e(νXe(X))
(Coinduction) f ≤ e(f) =⇒ f ≤ νXe(X) (5)

2 Some of these axioms are redundant, but we include them all to facilitate the exposition.

MFCS 2025
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Note that Induction and Coinduction are axiom schemas, as one might expect (e.g. as in
Peano Arithmetic).

▶ Example 9 (0). Recall 0 := µXX and ⊤ := νXX. Indeed 0 ≤ e (i.e. 0 + e = e) is a
consequence of the axioms (4) above: it follows by Induction from e ≤ e. Dually e ≤ ⊤
follows from (5).

The principles above also suffice to derive some basic properties of the operators defined
by RLL expressions:

▶ Proposition 10 (Functoriality). Equations (1)–(5) ⊢ f ≤ g =⇒ e(f) ≤ e(g).

As an immediate corollary of functoriality, we have:

▶ Example 11 (Fixed points are fixed points). By a standard argument mimicking the
proof of the Knaster-Tarski theorem, RLLL ⊢ µXe(X) ≤ e(µXe(X)) and dually, RLLL ⊢
e(νXe(X)) ≤ νXe(X). We will show the first one. By Induction it suffices to show that
e(µXe(X)) is a prefixed point, i.e. e(e(µXe(X))) ≤ e(µXe(X)). Now, by the functors of
Proposition 10 above it suffices to show e(µXe(X)) ≤ µXe(X), which is just the Prefix
axiom.

Recall that RLA expressions are notation for NFAs and thus can be duly interpreted
as regular languages over finite words. In previous work [10] we showed soundness and
completeness of a subset of the above mentioned axioms for RLA expressions with respect to
the language interpretation (also written L hedging the risk of confusion). Writing RLA for
the subset of axioms from Equations (1)–(5) not involving ∩,⊤, ν, we have:

▶ Theorem 12 ([10]). For RLA expressions e, f , RLA ⊢ e = f ⇐⇒ L(e) = L(f).

The goal of the present work is to establish a similar sort of result for RLL expressions,
in the ω-regular world rather than the (finitely) regular world.

3 Boolean subalgebra of RLL expressions

As the ω-regular languages are closed under complementation, we actually have that the
initial term submodel of RLL expressions in L forms a Boolean algebra. In this section, we
shall inline this structure axiomatically.

3.1 Complements
We can define complements of the RLL expressions, wrt L, quite simply, thanks to closure of
the syntax under duality:

▶ Definition 13 (Complement). Define ec by induction on an expression e:
(ae)c := aec +

∑
b ̸=a

b⊤

Xc := X

(e+ f)c := ec ∩ f c

(e ∩ f)c := ec + f c

(µXe)c := νXec

(νXe)c := µXec
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▶ Proposition 14. e and ec are complementary in L, i.e. L(ec) = Aω \ L(e) for any closed
expression e.

Thus the set of RLL expressions denote a Boolean subalgebra of L, a fact subsumed
by adequacy for ω-regular languages, Proposition 6. Of course duality of +,∩ hold in any
bounded distributive lattice. The homomorphism axioms also guarantee that our definition
of (ae)c is well-behaved:

▶ Example 15. Let L be a bounded distributive lattice (i.e. a model of (1)) satisfying
Equations (2) and (3), and suppose A has a complement Ac in L.3 Then aA has complement
(aA)c = aAc +

∑
b̸=a

b⊤:

0 = A ∩Ac =⇒ 0 = aA ∩ aAc by (2)
=⇒ 0 = (aA ∩ aAc) +

∑
b ̸=a

(aA ∩ b⊤) by (3)

=⇒ 0 = aA ∩ (aAc +
∑
b̸=a

b⊤) by distributivity

=⇒ 0 = aA ∩ (aA)c by definition

Similarly, one can show ⊤ = A+Ac =⇒ ⊤ = aA+ (aA)c.

However, the issue with the principles thusfar, Equations (1)–(5), is that they do not
guarantee such duality of µ and ν. Let us address this issue now.

3.2 Incompleteness strikes!
Not all models of Equations (1)–(5) interpret e and ec as complements. Indeed it is well known
that there are even completely distributive lattices, let alone models of Equations (1)–(5),
that are not even Heyting algebras, let alone Boolean algebras. Still, this does not quite
yet give unprovability of the complementary laws for closed expressions (which carve out
a substructure of a model). Indeed in even complete distributive lattices µ and ν are at
least dual, in the sense that they preserve complements. Let us develop an appropriate
counterexample, exploiting the incompleteness of the lattice structure:

▶ Example 16 (Incompleteness). Consider the Cantor topology C on Aω: A ⊆ Aω is open if
it is a (possibly infinite) union of sets of form a1 · · · anAω. C is closed under finite meets and
infinite joins, as it is a topology, so it forms a (bounded) join-complete lattice. So we have:

C satisfies (1), under the usual set-theoretic union and intersection; and,
We can interpret least and greatest fixed points in C by setting, for monotone open
operators F :

C(µF ) :=
⋃

α∈Ord
Fα(∅); and,

C(νF ) :=
⋃

A⊆F (A)
A.

where Fα(X) is defined by transfinite induction on α as follows:
F 0(X) := X;
Fα+1(X) := F (Fα(X)); and,
Fλ(X) :=

⋃
β<λ

F β(X) for limit ordinals λ.

3 Recall that complements are unique in distributive lattices.

MFCS 2025
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It is not difficult to see that these interpretations of µF and νF are always least/greatest
pre/post fixed points, respectively, in C, as long as F is monotone. Thus C furthermore
satisfies Equations (4) and (5).

Now define the homomorphisms a ∈ A in C just as in L: aA := {aw : w ∈ A}. Clearly this
is an open map and, under this interpretation, C satisfies Equations (2) and (3) as it is a
substructure of L.

However the denotation of greatest fixed points in C may be smaller than in L, as its
definition as a union of postfixed points ranges over only open sets, not all languages. Indeed
we have:

C(νX(aX)) = ∅. For this, reasoning in C, note that surely νX(aX) ≤ ⊤ by boundedness,
and so νX(aX) ≤ an⊤ for all n ∈ N, by monotonticity and since νX(aX) is a fixed point
of X 7→ aX. The only nonempty subset of Aω satisfying this property is {aω}, but this
is not open and so does not belong to C. On the other hand, evidently a∅ = ∅.
C(νX(aX))c ̸= Aω. Reasoning in C, we have that (νX(aX))c = µX(aX +

∑
b ̸=a

b⊤), which

(necessarily) has the same denotation in C as in L: the set of words with at least one
letter b ̸= a.

Thus νX(aX) and (νX(aX))c are not complementary in C. Since C is a model of Equa-
tions (1)–(5), it is immediate that this set of axioms is incomplete for L: it does not prove
⊤ = νX(aX) + (νX(aX))c.

The issue for Equations (1)–(5), towards completeness for L, is that, in the absence of
completeness of the lattice, it is not immediately clear that µ and ν are dual. Duality is
derivable for + and ∩ from Equation (1), but the infinitary nature of the fixed points means
that it does not follow as a consequence of Equations (1)–(5).
▶ Remark 17. In [10] it was asked whether an axiomatisation νRLA for ∩-free expressions
is complete over L. νRLA is essentially the ∩-free part of Equations (1)–(5) (see [10] for a
formal definition), and so the structure C in Example 16 above also models νRLA. Since the
equation ⊤ = νX(aX) + (νX(aX))c is ∩-free, we thus have that νRLA is in fact incomplete
with respect to L.

4 An axiomatisation

In this section, we will develop an axiomatisation RLLL for equations over RLL expressions
that are valid in L. Towards a definition of our ultimate axiomatisation, let us give a final
property in L:

µ and ν are dual:

∀X,Y (⊤ ≤ X + Y =⇒ ⊤ ≤ e(X) + f(Y )) =⇒ ⊤ ≤ µXe(X) + νY f(Y )
∀X,Y (X ∩ Y ≤ 0 =⇒ e(X) ∩ f(Y ) ≤ 0) =⇒ µXe(X) ∩ νY f(Y ) ≤ 0 (6)

It is not difficult to see that the above principles hold in any completely distributive
lattice, not just in L, by induction on the closure ordinals of fixed points. However, unlike
completeness, the principle above is first-order, not second-order. Note also that the principle
above does not state the existence of complements, just that µ and ν behave well wrt
complements in the same way that + and ∩ do. For all these reasons it is quite natural to
include (6) natively within any “right linear lattice axiomatisation” for L. We are now ready
to axiomatise the right-linear lattice theory of L.

▶ Definition 18. Write RLLL for the theory axiomatised by Equations (1)–(6).
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Our main result is that this axiomatisation is indeed sound and complete for the RLL
theory of L:

▶ Theorem 19 (Soundness and completeness of RLLL). L |= e = f ⇐⇒ RLLL ⊢ e = f .

Let us point out that the soundness direction, ⇐= , follows from the discussion of
each of the axioms Equations (1)–(5) in Section 2.2 and Equation (6) above. For the
completeness direction, =⇒ , we shall reduce to the completeness result for the fixed point
logic µLTL. Section 5 is dedicated to proving this formally.

For completeness a key result is the provable correctness of the syntactic notion of
complementation we introduced at the beginning of this section:

▶ Proposition 20 (Complementation). RLLL proves the following, for all closed e:

⊤ ≤ e+ ec

e ∩ ec ≤ 0 (7)

To prove this we need a more general intermediate result, establishing “complement
functoriality” (cf. Proposition 10 earlier):

▶ Lemma 21. RLLL proves

∀X⃗, Y⃗ (
∧

i ⊤ ≤ Xi + Yi =⇒ ⊤ ≤ e(X⃗) + ec(Y⃗ ))
∀X⃗, Y⃗ (

∧
i Xi ∩ Yi ≤ 0 =⇒ e(X⃗) ∩ ec(Y⃗ ) ≤ 0)

(8)

Note that Proposition 20 follows immediately by setting X⃗ and Y⃗ to be empty in
Lemma 21 above.

Proof sketch of Lemma 21. By induction on e(·). When the outermost connective of e is a
+ or ∩ we appeal to the induction hypothesis by duality of + and ∩ more generally in bounded
distributive lattices. The case when e has form af is handled similarly to Example 15, only
with the presence of free variables. It remains to check the fixed point cases.

Suppose e(X⃗) has form µXf(X, X⃗). Reasoning in RLLL, suppose ⊤ ≤ Xi + Yi and
Xi ∩ Yi ≤ 0 for all i. We have:

∀X,Y (⊤ ≤ X + Y =⇒ ⊤ ≤ f(X, X⃗) + f c(Y, Y⃗ )) by IH
∴ ⊤ ≤ µXf(X, X⃗) + νXf c(X, Y⃗ ) by (6)

∀X,Y (X ∩ Y ≤ 0 =⇒ f(X, X⃗) ∩ f c(Y, Y⃗ ) ≤ 0) by IH
∴ µXf(X, X⃗) ∩ νXf c(X, X⃗) ≤ 0 by (6)

The argument for the case when e(X⃗) has form νXf(X, X⃗) is symmetric. ◀

We end this section with some remarks on models of RLLL.
In Section 3 we defined a complement expression ec of each RLL expression e, and

Proposition 20 showed that e and ec are provable complementary in RLLL. This means that
any model of RLLL has a substructure, namely the denotations of RLL expressions, that
forms a Boolean algebra. The same holds for Kleene Algebras, as each regular expression can
also be associated with one computing its complement, with respect to the regular language
model. Just like KA, this does not mean that all models of RLLL are Boolean algebras
themselves.

▶ Example 22 (RLLL model without general complements). Fix the alphabet {0, 1}. Consider
the substructure K of L that is the smallest

⋃
-complete lattice containing every ω-regular

language and Q := (0, 1) ∩ Q. First, note that indeed K |= RLLL:

MFCS 2025
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Equations (1)–(3) hold as K ≤ L.

For (4), we define (µXe(X))K :=
⋃

α∈Ord
eα(∅). This is well defined and coincides with

L(µXe(X)) by
⋃

-completeness and the approximant definition of the latter.

For (5), we define (νXe(X))K :=
⋃

{A ⊆ e(A)}. Since, in particular, L(νXe(X)) is a
postfixed point and an ω-regular language, it must coincide with (νXe(X))K.

However it is not hard to see that Q does not have a complement in K, i.e. that (0, 1) \Q
does not belong to K. For this note that, as powerset lattices are completely distributive
(and therefore so are their (semi)complete sublattices), we can write any element A of K
as an infinite union of finite intersections of ω-regular languages and Q, i.e. of the form⋃
i∈I

Ai1 ∩ · · · ∩ Aini , where each Aij is ω-regular or Q. Now, if A ̸= ∅, then also some

Ai := Ai1 ∩ · · · ∩ Aini
̸= ∅ as well. However, since ω-regular languages are closed under

intersection, Ai must contain the rational part of some nonempty ω-regular language. Since
any non-empty ω-regular language must contain some ultimately periodic word, this means
that A ∩ Q ⊇ Ai ∩ Q ̸= ∅, and so A cannot be a complement of Q in K.

5 Completeness via µLTL

In this section, we will prove the completeness of RLLL. Our completeness proof relies on
the completeness of an axiomatisation of the linear-time µ-calculus called µLTL. We show
several syntactic and semantic simulations between RLLL and µLTL. For the sake of brevity,
we only give the directions necessary to recover completeness of RLLL wrt. L. Key to this
reduction is our recovery of syntactic complements in RLLL, Proposition 20, which allows
RLLL to simulate the Boolean reasoning available in classical modal logics like µLTL.

5.1 A (very quick) recap of µLTL

Linear temporal logic (LTL) is a modal logic with modalities referring to time. In LTL, one
can encode formulas about the future of paths. In particular, we have formulas of the form
⃝φ and φUψ that are (informally) interpreted as “at the next time step φ holds” and “φ
holds until ψ holds.” Naturally they are interpreted over discrete linear orders.

We can construe φUψ as a fixed point νX(ψ ∨ (φ ∧ ⃝X)). Generalising this idea leads
to µLTL, the extension of LTL with arbitrary fixed points.

We shall write P,Q, . . . for propositional symbols. µLTL formulas, written φ,ψ, . . . , are
generated by:

φ,ψ, . . . ::= ⊥ | ⊤ | P | P̄ | X | φ ∨ ψ | φ ∧ ψ | ⃝φ | µXφ | νXφ

Formulas are interpreted over infinite words. To this end, we shall assume that the
propositional symbols P,Q, . . . are from some finite set P, and henceforth fix an alphabet
A = P(P).
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Axioms
All propositional tautologies

⃝(φ ∨ ψ) ↔ ⃝φ ∨ ⃝ψ ⃝(φ ∧ ψ) ↔ ⃝φ ∧ ⃝ψ

φ(µXφ(X)) → µXφ(X) νXφ(X) → φ(νXφ(X))

Rules
φ φ → ψ

MP
ψ

φ
⃝

⃝φ

φ(ψ) → ψ
µ

µXφ(X) → ψ

ψ → φ(ψ)
ν

ψ → νXφ(X)

Figure 2 A Hilbert-style axiomatisation of µLTL.

▶ Definition 23 (Semantics of µLTL). Let us temporarily expand the syntax of formulas by
a constant symbol α for each subset α ⊆ ω. For ω-words σ ∈ Aω ( i.e. σ ∈ P(P)ω) and
formulas φ, we define φσ ⊆ ω by:

⊥σ := ∅ ⊤σ := ω

Pσ := {n ∈ ω : P ∈ σn} P̄σ := {n ∈ ω : P /∈ σn}
ασ := α (⃝φ)σ := {n ∈ ω : n+ 1 ∈ φσ}
(φ ∧ ψ)σ := φσ ∩ ψσ (φ ∨ ψ)σ := φσ ∪ ψσ

(µXφ(X))σ :=
⋂

{α ⊇ φ(α)σ} (νXφ(X))σ :=
⋃

{α ⊆ φ(α)σ}

Write σ |= φ if 0 ∈ φσ. We say φ is valid, written |= φ, if for all σ ∈ Aω we have σ |= φ.

µLTL enjoys a sound and complete axiomatisation, due to Kaivola [18] (see also [13]). To
recast this axiomatisation in the current logical basis, let us point out that we can extend
negation to all µLTL formulas by defining φ̄ exploiting De Morgan duality of ⊥,⊤ and ∨,∧
and µ, ν, and finally self-duality of ⃝: ⃝φ := ⃝φ̄. Therefore, we may freely use other
propositional connectives such as ¬,→,↔ as suitable macros. The following axiomatisation
is equivalent to that of [18], only adapted to our negation normal syntax.

▶ Definition 24 (Hilbert-style axiomatisation of µLTL). µLTL4 is the logic defined by the
axioms and inference rules in Figure 2.

▶ Theorem 25 ([18]). µLTL is sound and complete i.e. µLTL ⊢ φ ⇐⇒ |= φ.

Note that the self-duality of ⃝, semantically, is reflected in the axioms too, with ⃝
distributing over both ∧ and ∨.

▶ Example 26. Write φUψ := νX(ψ ∨ (φ ∧ ⃝X)). We will prove the LTL tautology
⃝(φUψ) → ⃝φU ⃝ ψ. First note that the following modal rule is derivable,

φ → ψ
(⋆)

⃝φ → ⃝ψ

as φ → ψ := φ̄ ∨ ψ. Thus we have:

⃝(φUψ) → ⃝(ψ ∨ (φ ∧ ⃝(φUψ))) by (⋆) and ν-unfolding
→ ⃝ψ ∨ ⃝(φ ∧ ⃝(φUψ)) by distributing ⃝ over ∨
→ ⃝ψ ∨ (⃝φ ∧ ⃝ ⃝ (φUψ)) by distributing ⃝ over ∧

Applying the ν rule, we are done.

4 By abuse of notation, we refer to both the language and the axiomatisation as µLTL.
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5.2 Interpreting RLLL in µLTL, semantically
Our aim is to reduce the completeness of RLLL to that of µLTL. For this reason we need to
embed RLLL into µLTL.

▶ Definition 27. For (possibly open) RLL expressions e we define a µLTL formula e◦ by
induction on the structure of e as follows:

X◦ := X

(ae)◦ :=
∧

P ∈a

P ∧
∧

P /∈a

P̄ ∧ ⃝e◦

e+ f◦ := e◦ ∨ f◦

e ∩ f◦ := e◦ ∧ f◦

(µXe)◦ := µXe◦

(νXe)◦ := νXe◦

We need to show that the translation above is faithful wrt. the two semantics we have
presented, for RLL expressions and for µLTL formulas. Writing L(φ) := {σ |= φ} for closed
µLTL formulas φ, we have:

▶ Proposition 28 (Semantic adequacy). L(e) ⊆ L(e◦), for closed expressions e.

To prove this, we must first address the fact that our two semantics interpret syntax as
different types of sets, and duly have different types of constant symbols. To this end, let
us temporarily introduce into the language of µLTL a constant symbol A for each language
A ⊆ Aω. We extend the definition of −◦ by the clause A◦ := A and duly extend the definition
of −σ by the clause Aσ := {n ∈ ω : σn ∈ A} where σn is the nth tail of σ, i.e. we set σ0 := σ,
and σn+1 to be the tail of σn. Now we can establish a sort of substitution lemma that relates
our two semantics:

▶ Lemma 29 (Mixed substitution). φ(L(χ))σ ⊆ φ(χ)σ, for µLTL formulas χ, φ(X) (all free
variables indicated).

Proof sketch. By Induction on the size of φ(X), i.e. its number of symbols. We will only
exhibit the fixed point case. Suppose φ(X) = µY ψ(X,Y ).

ψ(L(χ), (µY ψ(χ, Y ))σ)σ ⊆ ψ(χ, (µY ψ(χ, Y ))σ)σ by Induction hypothesis
⊆ ψ(χ, µY ψ(χ, Y ))σ by substitution property of −σ

⊆ (µY ψ(χ, Y ))σ since µσ is a prefixed point
∴ (µY ψ(L(χ), Y ))σ ⊆ (µY ψ(χ, Y )σ by µσ-induction

The case for φ(X) = νY ψ(X,Y ) is symmetric. ◀

Now, semantic adequacy is readily proved:

Proof sketch of Proposition 28. We proceed by induction on the size of e. Again, we will
only exhibit the fixed point cases. If e is µXf(X) then:

L(f(L((µXf(X))◦))) ⊆ L(f(L((µXf(X))◦)◦) by Induction hypothesis
∴ L(f(L(µXf◦(X)))) ⊆ L(f◦(L(µXf◦(X))) by definition of −◦

⊆ L(f◦(µXf◦(X))) by Lemma 29
⊆ L(µXf◦(X)) since L(µ) is a prefixed point

∴ L(µXf(X)) ⊆ L(µXf◦(X)) by L(µ)-induction
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If e is νXf(X) then:

L(f(L(νXf(X)))) ⊆ L(f(L(νXf(X)))◦) by Induction hypothesis
⊆ L(f◦(L(νXf(X)))) by definition of −◦

L(νXf(X)) ⊆ since L(ν) is a postfixed point
∴ L(νXf(X))σ ⊆ L(f◦(L(νXf(X))))σ by monotonicity property of −σ

⊆ f◦(L(νXf(X)))σ by Lemma 29
⊆ f◦(L(νXf(X))σ)σ by substitution property of −σ

∴ L(νXf(X))σ ⊆ (νXf◦(X))σ by νσ-coinduction
⊆ (νXf(X))◦σ by definition of −◦

So in particular, σ ∈ L(νXf(X)) =⇒ 0 ∈ L(νXf(X))σ =⇒ 0 ∈ (νXf(X))◦σ =⇒ σ |=
(νXf(X))◦ =⇒ σ ∈ L(νXf(X)). ◀

5.3 Interpreting µLTL in RLLL, syntactically
In order to leverage the completeness of µLTL within RLLL, we need to simulate its reasoning,
for which we must embed µLTL back into RLLL. As mentioned at the beginning of this
section, a key component here is our recovery of syntactic complements, Proposition 20,
allowing for Boolean reasoning on RLL expressions in RLLL.
▶ Definition 30. For (possibly open) µLTL formulas φ we define an RLL expression φ• by
induction on the structure of φ as follows:

⊥• := 0 ⊤• := ⊤

P • :=
∑
a∋P

a⊤ P̄ • :=
∑
a ̸∋P

a⊤

X• := X (⃝φ)• :=
∑
a∈A

aφ•

(φ ∨ ψ)• := φ• + ψ• (φ ∧ ψ)• := φ• ∩ ψ•

(µXe)• := µXe• (νXe)• := νXe•

We can again establish the adequacy of this interpretation, though this time we need a
syntactic result rather than a semantic one:
▶ Theorem 31 (Syntactic adequacy). µLTL ⊢ φ =⇒ RLLL ⊢ φ• = ⊤.
Proof. By induction on µLTL proofs.

All the propositional axioms are handled by the fact that RLL expressions RLLL-provably
form a Boolean Algebra (cf. Section 3), and since • is defined directly as a homomorphism
(⊥,⊤,∨,∧) → (0,⊤,+,∩). We also need duality of P • and P̄ • in RLLL:

P • + P̄ • =
∑

a∋P

a⊤ +
∑

a̸∋P

a⊤

=
∑

a∈A
a⊤

= ⊤

P • ∩ P̄ • =
∑

a∋P

a⊤ ∩
∑

b∋P

b⊤

=
∑

a∋P

∑
b ̸∋P

a⊤ ∩ b⊤

= 0
For normality of ⃝ wrt ∨, it suffices by Boolean reasoning in RLLL to derive:

(⃝(φ ∨ ψ))• =
∑

a∈A
a(φ• + ψ•) by definition of −•

=
∑

a∈A
(aφ• + aψ•) ∵ a is a +-homomorphism

=
∑

a∈A
aφ• +

∑
a∈A

aψ• by commutativity and associativity of +

= (⃝φ ∨ ⃝ψ)• by definition of −•
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Similarly for normality of ⃝ wrt ∧.
The simulation of axioms for µ and ν are immediate, by functoriality, as −• commutes
with µ and ν.
Obtaining the rules is mostly straightforward. Modus ponens reduces to transitivity
of ≤, under Boolean reasoning. Necessitation is simulated by ⊤ =

∑
a∈A

a⊤. Simulating

(co)induction rules are immediate as −• commutes with µ and ν. ◀

5.4 Compatibility of interpretations and completeness

To complete our reduction of RLLL completeness to µLTL completeness, as well as simulating
µLTL reasoning, we need compatibility of the two translations.

▶ Proposition 32 (Compatibility). RLLL ⊢ e◦• = e

Proof. By induction on the structure of e. Almost all cases are immediate, as −◦• commutes
with X,+,∩, µ, ν. For the remaining homomorphism case, we reason in RLLL:

(ae)◦• =
( ∧

P ∈a

P ∧
∧

P /∈a

P̄ ∧ ⃝e◦

)•

by definition of −◦

=
⋂

P ∈a

∑
b∋P

b⊤ ∩
⋂

P /∈a

∑
b ̸∋P

b⊤ ∩
∑

c∈A
ce◦• by definition of −•

= a⊤ ∩
∑

c∈A
ce◦• by set theoretic reasoning

=
∑

c∈A
(a⊤ ∩ ce◦•) by distributivity

= a⊤ ∩ ae◦• since ae ∩ bf = 0 when a ̸= b

= a(⊤ ∩ e◦•) as a is a ∩-homomorphism
= ae◦• as ⊤ is a ∩-unit
= ae by induction hypothesis

To explain a little further the third line above, note that any b ̸= a is distinguished from a

by either some P ∈ a \ b or some P ∈ b \ a. ◀

We can finally assemble our main completeness result, the =⇒ direction of Theorem 19:

▶ Theorem 33 (Completeness of RLLL). L(e) = L(f) =⇒ RLLL ⊢ e = f .

Proof. By Boolean reasoning in RLLL it suffices to show that L(e) = Aω =⇒ RLLL ⊢ e = ⊤:

L(e) = Aω =⇒ |= e◦ by Proposition 28
=⇒ µLTL ⊢ e◦ by Theorem 25
=⇒ RLLL ⊢ e◦• = ⊤ by Theorem 31
=⇒ RLLL ⊢ e = ⊤ by Proposition 32

◀

6 Concluding remarks and future work

In this work, we introduced RLL expressions, a notation for APAs and gave a sound and
complete axiomatisation for their equational theory. We make some observations about our
choice of axioms and compare with existing literature.
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6.1 Alternative axiomatisation(s)
Our axiomatisation RLLL for L is first-order, avoiding second-order axioms such as complete-
ness of lattices. Still, stating the duality of µ and ν, Equation (6), requires quantifiers.

Let us point out that the completeness argument for RLLL only used the principles (7),
an equational consequence of (6) under Equations (1)–(5). In fact, Equations (1)–(5) and (7)
axiomatises the same first-order theory as RLLL.5

▶ Proposition 34. Equations (1)–(5) and (7) proves Equation (6).

Of course, (7) is an axiom schema. For what it is worth, let us also point out that we
can present (6) as quantifier-free rules rather than an axiom:

⊤ ≤ X + Y ⇒ ⊤ ≤ e(X) + f(Y )
X,Y fresh

⊤ ≤ µXe(X) + νY f(Y )
X ∩ Y ≤ 0 ⇒ e(X) ∩ f(Y ) ≤ 0

X,Y fresh
µXe(X) ∩ νY f(Y ) ≤ 0

Following from the presentation of (6) as sequent rules above, we may consider an alternative
but equational rule for duality of µ and ν, now given in sequent style:

Γ, X + Y ⇒ ∆, e(X) + f(Y )
Γ ⇒ ∆, µXe(X) + νY f(Y )

(9)

One can also show that these rules suffice to establish (7) under Equations (1)–(5), and so
is also complete for the equational theory of L. One way to distinguish the above mentioned
formulations of the RLL theory of L is to conduct a proof theoretic analysis, investigating
which (if any) of the formulations behave well under cut-elimination.

Note that it is not clear whether it is even possible to finitely quantifier-free axiomatise
the RLL theory of L. For comparison, it is known that regular expressions do not have
a finite equational axiomatisation [25], though it does have a finite quantifier-free (even
quasi-equational) axiomatisation [20, 21].

6.2 Comparison with ω-algebras
Recall that ω-regular expressions are an extension of regular expressions with terms of the
form eω that are adequate to capture all ω-regular languages. The intended interpretation
is L(eω) = {u0u1u2 · · · | ui ∈ L(e),∀i ∈ ω}. Surprisingly, the algebraic theory of ω-regular
expressions has not been explored until recently. Wagner [31] gave a two-sorted axiomatisation
that was proved complete in [9]. Cohen [8] proposed an axiomatic theory with ω-regular
expressions but not with the intension of proving completeness for L. In fact, it is indeed
incomplete for the language model because it cannot prove identities like eωf = eω. In [9]
Cohen’s axiomatic theory was extended to be complete for L.

It would be interesting to compare various ω-regular algebras to RLLL presented in
this work. For comparison, in the finite world, every “left-handed” Kleene Algebra is an
right-linear algebra, but not vice versa [10].

6.3 Axiomatising relational models
KAs admit relational models interpreting product as composition, sum as union, and the
Kleene star as reflexive, transitive closure. It is well-known that the class of relational models
satisfies the same equational theory of regular expressions as L. Similarly, interpreting each

5 Nonetheless, note that it is possible that RLLL does not have the same first-order theory as its extension
by a native negation operator.
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a· as pre-composition by some fixed binary relation aR and µ as the least fixed point, the
class of relational models of RLA satisfies the same equational theory over RLA-expressions
as L.

However, in Kleene lattices, relational and language models start to differ: ef ∩ 1 =
(e∩ 1)(f ∩ 1) is valid in L but not in the relational interpretations [2]. Analogously relational
structures, when interpreting letters as relations, do not model RLLL (in general). The
interpretations aR are not necessarily lattice homomorphisms: we have a(e ∩ f) ≤ ae ∩ af

but not the converse. Thus this interpretation refutes Equation (2). At the same time this
interpretation does not necessarily satisfy Equation (3) either: for instance aR and bR may
intersect, even when a ̸= b. On the other hand, aR⊤ = ⊤ as soon as aR ̸= ∅. It is therefore
a natural question if there is a natural restriction of RLLL that is complete for the relational
interpretation. Conversely, it might be interesting to explore an alternative interpretation of
letters, as certain homomorphisms on lattices of relations.
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