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Abstract
We consider the Ideal Proof System (IPS) introduced by Grochow and Pitassi and pose the question
of which tautologies admit symmetric proofs, and of what complexity. The symmetry requirement
in proofs is inspired by recent work establishing lower bounds in other symmetric models of
computation. We link the existence of symmetric IPS proofs to the expressive power of logics such
as fixed-point logic with counting and Choiceless Polynomial Time, specifically regarding the graph
isomorphism problem. We identify relationships and tradeoffs between the symmetry of proofs and
other parameters of IPS proofs such as size, degree and linearity. We study these on a number of
standard families of tautologies from proof complexity and finite model theory such as the pigeonhole
principle, the subset sum problem and the Cai-Fürer-Immerman graphs, exhibiting non-trivial upper
bounds on the size of symmetric IPS proofs.
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1 Introduction

A central project within the subject of proof complexity [2, 32, 25] is to define ever more
powerful proof systems for propositional logic for which it is possible to establish super-
polyonomial lower bounds on the size of proofs. The Ideal Proof System (IPS), introduced
by Grochow and Pitassi in [21], is a powerful algebraic proof system that subsumes many
previous algebraic and propositional proof systems such as the polynomial calculus and Frege
proof systems. No superpolynomial lower bounds are known for the unrestricted IPS and
it has been shown, for instance, that it efficiently simulates powerful proof systems such as
extended Frege, for which such lower bounds are a long-standing open problem. On the
other hand, lower bounds have been shown for interesting restrictions of IPS.
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40:2 Symmetric Proofs in the Ideal Proof System

In IPS, like other algebraic proof systems, propositional formulas are coded as polynomial
equations and a proof (or refutation) is a certificate showing that a given equation system has
no solution. Equivalently, the certificate shows that the input polynomials, or axioms, have
no common zero. In IPS, the certificate is an algebraic circuit which witnesses that the unit
polynomial 1 is in the ideal generated by the axioms, and we measure the complexity of the
certificate in terms of the size of the circuit. Here, an algebraic circuit is a representation of a
polynomial as a circuit with constants and variables as inputs and addition and multiplication
gates. In order to make progress on showing lower bounds for IPS, it has been suggested [21]
to study fragments of IPS given by restrictions on the circuits considered. A successful
recent line of work has established super-polynomial lower bounds for fragments such as
bounded-depth circuits, multilinear formulas and so-called read-once oblivious algebraic
branching programs (roABPs) [17, 18, 23]. The common method behind these results has
been named the functional lower bound technique.

In the present paper, we consider a natural restriction on IPS proofs based on symmetric
circuits. Non-trivial lower bounds for symmetric algebraic circuits have recently been
established [15, 16, 13] and this raises the question of whether, when the input polynomials
have natural symmetries, the corresponding proof can also be made symmetric. Or, perhaps
more interestingly, whether the lower bound methods for symmetric algebraic circuits can
be possibly combined with functional lower bound techniques to obtain lower bounds for
symmetric IPS proofs.

The present paper lays the foundations for this. We formalise the symmetry requirement
in IPS proofs and show that any proof can be symmetrised though the interaction with
linear IPS and other natural fragments is subtle. Beyond this, our work has two main
contributions. First, we show how the study of symmetric IPS fits into the context of a
larger project that investigates the role of symmetry in lower bounds in a number of areas
of complexity theory (see [9]). This project is centred around the concept of symmetric
computation in the sense of symmetric circuits and logics from finite model theory [10, 12].
Specifically, it seeks to lift game-based methods from finite model theory which are used to
show inexpressiveness results in logic to lower bounds in other models of computing. There is
a well-established connection between the expressive power of such logics and propositional
proof complexity. In particular, it has been shown that, by encoding propositional axioms as
relational structures in a suitable way, the problem of the existence of a resolution refutation
of a given width, or of a polynomial calculus refutation of a fixed degree are expressible in
existential fixed-point logic and fixed-point logic with counting (FPC) respectively and are
indeed complete for these logics under weak, symmetry-preserving reductions [29]. Hence, in
a precise sense these logics exactly characterise the power of the corresponding proof systems
and from lower bounds on the expressive power of the logics we can extract lower bounds
in proof complexity. Moreover, the stronger logic Choiceless Polynomial Time (CPT) can,
in a symmetry-preserving way, be simulated in the bounded-degree extended polynomial
calculus [27]. CPT is of great importance in descriptive complexity as a candidate logic for
capturing PTIME [28, 19].

As the results we show in Section 5 establish, symmetric IPS proofs offer a suitable
unifying formalism in which the results from [29, 27] can be recast. The expressive power
of FPC corresponds to the bounded-degree symmetric IPS proofs, and the stronger logic
CPT can only be simulated by symmetric IPS proofs of unbounded degree. Importantly, the
symmetries of the IPS proofs we consider are the inherent symmetries of the input structure,
which are the symmetries under which the corresponding FPC or CPT computation is
invariant.
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The second focus of this paper is upper bounds for the size of symmetric IPS refutations
of various families of instances that possess natural symmetries. One example, where upper
(and lower) bounds actually follow from results in finite model theory, is a formulation of the
graph isomorphism problem as a system of polynomial equations [3] over Q. The equations
expressing that two graphs G and H are isomorphic are symmetric under the automorphism
groups of G and H. We show that the complexity of symmetric IPS refutations with these
symmetry groups matches the descriptive complexity of distinguishing G and H: Graphs that
are distinguishable in FPC, or equivalently by the k-dimensional Weisfeiler-Leman algorithm
[24] for fixed k, admit bounded-degree polynomial-size symmetric IPS refutations. Graphs
that are distinguishable in the stronger logic CPT, but not in FPC, admit polynomial-size
symmetric IPS refutations, but not of bounded degree. This separates in particular the
bounded-degree fragment of symmetric IPS from its unbounded-degree version (Theorem
13).

A related family of instances we consider is a system of linear equations over the finite
field F2 that expresses the isomorphism problem on Cai-Fürer-Immerman (CFI) graphs [6, 1]
which is known to be inexpressible in FPC. Even though the instances exhibit a large number
of interesting symmetries and are the core of numerous finite model theory lower bounds, it
turns out quite surprisingly that they do admit polynomial-size symmetric IPS refutations.
However, we are not able to exhibit a linear symmetric IPS refutation of the CFI equations
of less than exponential size, making them a candidate for separating the linear fragment
from the full symmetric IPS. Here the linear (or Hilbert-like) fragment is as defined in [21]
(see also Section 3.2).

Besides the CFI equations, we consider standard hard examples from proof complexity,
namely the pigeonhole principle (PHP) and the subset sum problem. The former is the classic
tautology asserting that there is no injective function from a set of n+ 1 elements to a set of
n elements. The latter is simply the equation

∑n
i=1 xi − β = 0, together with the equations

x2
i − xi = 0 for all i, which is unsatisfiable when β > n. The pigeonhole principle has been

used to obtain lower bounds for resolution [22] and bounded-degree polynomial calculus [30].
This is again a promising candidate for showing lower bounds on the size of symmetric IPS
proofs as the tautologies are rich in symmetries and we know of no sub-exponential size
symmetric IPS refutations for PHP.

In contrast, for subset sum, we do obtain polynomial size symmetric IPS refutations, which
is significant because subset sum and its variations are the key instances where the functional
lower bound method [17, 18, 23] has been used to obtain lower bounds. Thus, symmetry
alone is a limitation of a rather different nature than others, e.g. multilinear-formula, constant
depth or roABP-IPS where functional lower bounds have been established.

Our upper bounds on proof sizes are summarised in the table below. In this table, the
entry “none” indicates that no proofs with the given restrictions exist. In the first row,
k is an arbitrary positive integer and c is a function of k. In the other rows c is a fixed
constant. Our upper bounds for the graph isomorphism problem depend on the graphs:
We consider graphs that are distinguishable by the k-dimensional Weisfeiler Leman (WL)
algorithm versus graphs that are distinguished by CPT; the latter distinguishes strictly more
graphs [14]. It should be noted that even the exponential lower bounds are non-trivial as the
trivial bound for a symmetric circuit may be n!.
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40:4 Symmetric Proofs in the Ideal Proof System

Proof System FPC-definable
problems

Graph
isomorphism CFI Subset sum Pigeonhole

principle

degk-sym-IPS O(nc) O(nc) if k-WL-
distinguishable none none none

sym-IPSLIN O(nc) O(nc) if CPT-
distinguishable O(2n) O(nc) O(3n · n)

sym-IPS O(nc) O(nc) if CPT-
distinguishable O(nc) O(nc) O(3n · n)

2 Preliminaries

We denote by [n] the set {1, ..., n}. We call a set X, with the action of a group Γ on it a
Γ-set. The action of Γ on X has a natural extension to a number of other sets defined from
X. In particular, the following are Γ-sets: Xk for any k ∈ N (π ∈ Γ takes (x1, . . . , xk) to
(π(x1), . . . , π(xk)); the set AX of functions from X to any set A (here π ∈ Γ takes f : X → A

to f ◦ π−1); and the collection F[X] of polynomials over X with coefficients from a field F.
If X is a Γ-set and p ∈ F[X] a polynomial, then we say that p is Γ-symmetric or Γ-

invariant if π(p) = p for every π ∈ Γ. A set of polynomials F ⊆ F[X] is Γ-invariant if
{π(f) | f ∈ F} = F for every π ∈ Γ. We write Sym(X) for the symmetric group on X and
for a finite relational structure A we write Aut(A) for the automorphism group of A.

In what follows, X denotes a finite set of variables, F denotes a field, and F[X] is the
corresponding ring of polynomials in the variables X. Instances for the algebraic proof systems
we consider are systems of polynomial equations. A system of polynomial equations is a finite
set F ⊆ F[X], and a solution for F is an assignment s : X → F such that f(s(x⃗)) = 0 for
each f(x⃗) ∈ F . We say that F is satisfiable if it has a solution, and unsatisfiable otherwise.
If we wish to encode Boolean satisfiability problems, where the assignments are in {0, 1}
only, then we include in F the Boolean axioms x2 − x for each x ∈ X.

For a system of polynomial equations F , the degree deg(F) of F is the maximum degree
of any polynomial in F . The size |F| of F is the total number of variables and equations, i.e.
if F = {fj ∈ F[X] | 1 ≤ j ≤ m}, then |F| := m+ |X|.

2.1 (Symmetric) Algebraic Circuits

We study the complexity of a polynomial not only in terms of its degree or its number of
monomials but also via the size of the smallest algebraic circuit representing it.

▶ Definition 1 (Algebraic circuit). An algebraic circuit over variables X and a field F is a
connected directed acyclic graph C = (D,W ) with a labelling λ : D → {+,×} ∪X ∪ F such
that λ(g) ∈ X ∪ F if g has in-degree 0, and λ(g) ∈ {+,×}, otherwise.

The nodes in D are called gates and the edges in W are called wires. Gates with in-degree
0 are called input gates and gates with out-degree 0 are called output gates. Unless stated
otherwise, there is only one output gate. Every gate that is not an input gate is an internal
gate. The size of a circuit C is |C| := |D|.

We view an algebraic circuit C over X and F as computing a polynomial C(x⃗) ∈ F[X] by
evaluating gates to polynomials and treating +,× as ring operations. We write C for the
circuit and C(x⃗) for the polynomial it computes.

The semantic degree of an algebraic circuit is the maximum degree of a polynomial
computed by any of its subcircuits: deg(C) := max({deg(Cg(x⃗)) | g ∈ D}).
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We are mostly concerned with symmetric algebraic circuits, as they are studied for
example in [15]. If Γ is a group acting on a variable set X, then a circuit C over X is
Γ-symmetric if we can extend the action of Γ on the input gates to automorphisms of the
whole circuit. An automorphism of a circuit is a permutation of the gates that preserves its
structure as a DAG, as well as all labels. Formally, π ∈ Γ extends to an automorphism of
C = (D,W ) if there is a σ ∈ Sym(D) such that σ is an automorphism of the DAG C that
preserves labels of internal gates, and for every input gate g ∈ D with label λ(g) ∈ X ∪ F,
we have λ(σ(g)) = π(λ(g)). Here, the action of Γ on F is trivial, i.e. if λ(g) ∈ F, then
π(λ(g)) = λ(g). It is easy to check that the polynomial computed by a Γ-symmetric algebraic
circuit is itself invariant under the action of Γ on its variables.

2.2 Logics from finite model theory
Fixed-point logic with counting

Formulas of fixed-point logic with counting (FPC) are evaluated in finite structures expanded
with a numeric sort as the domain for counting terms. For every finite structure A, let
A∗ := A ⊎ (N, <,+, ·, 0, e), where e is interpreted as |A|. The variables in FPC are typed so
that each variable either has as its domain the point sort (i.e. A) or the numeric sort of A∗.
Point variables are denoted with Roman letters and numeric variables with Greek letters.

The syntax of FPC is that of first-order logic with the following extensions:
Quantifiers over numeric variables: If µ is a numeric variable, then quantification over µ
is only allowed in the form Qµ < t.φ, where Q ∈ {∃,∀} and t is a numeric term. This
ensures that every numeric variable has a fixed range of polynomial size (with respect to
the size of the point sort) – otherwise, it would not be possible to evaluate FPC-formulas
in polynomial time.
Counting quantifiers: If φ(x⃗, µ⃗) is an FPC-formula, y a point variable and t a numeric term,
then ∃≥tyφ(x⃗µ⃗) is a formula which is true in A∗ if the number of satisfying assignments
to y is at least the value of t.
Fixed-point operators: Let Z be a second-order variable, φ an FPC-formula in which
Z occurs only positively, and t a numeric term. Then [lfp Zx⃗µ⃗<t.φ(Z, x⃗, µ⃗)](x⃗µ⃗) is a
formula of FPC. It is satisfied in (A∗, x⃗µ⃗ 7→ a⃗⃗b) if a⃗⃗b is in the least fixed-point of the
sequence defined by Z0 = ∅, Zi+1 = {c⃗d⃗ | A∗ |= φ(Zi, c⃗, d⃗)}.
There also exists the dual operator [gfp Zx⃗µ⃗<t.φ(Z, x⃗, µ⃗)](x⃗, µ⃗), which computes the
greatest fixed-point.

This is one way to present FPC – there are other equivalent presentations, for example
where the numeric sort in A∗ is finite, or where counting terms instead of counting quantifiers
are used. For more details and background on FPC, we refer to [26] or [8].

Choiceless Polynomial Time

Choiceless Polynomial Time (with counting) can be viewed as an extension of FPC with
higher-order data structures. It properly extends the expressive power of FPC and it remains
an open question whether it can express all polynomial-time decidable properties of finite
structures. It seeks to overcome the limitation of FPC that the stages of a fixed-point
computation are relations of a fixed-arity. In CPT, the computation stages are much more
expressive objects, namely hereditarily finite sets. These are arbitrarily nested finite sets
whose atoms are elements of the respective input structure. CPT has an iteration mechanism
with definable state-updates similar to FPC, with the difference that in each step, new

MFCS 2025



40:6 Symmetric Proofs in the Ideal Proof System

hereditarily finite sets may be constructed. Thus, computations are not guaranteed to reach
a fixed-point. To guarantee polynomial time evaluation, every CPT-sentence Π comes with
an explicit polynomial bound p(n) : N → N. On an input structure A, the evaluation of Π
is aborted if it takes longer than p(|A|) many steps. Likewise, the constructed h.f. sets are
required to have size at most p(|A|). In this article, we write CPT(p(n)) for the fragment
of CPT consisting of sentences whose explicit polynomial bound is p(n). Since CPT is a
logic and the state-updates are definable, the h.f. sets constructed during a computation are
naturally symmetric under the automorphisms of the input structure.

We refrain from giving a formal definition of CPT, since the details are not needed
here and it would be quite lengthy. A concise survey can be found in [19]. The work that
originally introduced CPT as an abstract state machine model is [4]; for a more “logic-like”
presentation of CPT, see BGS-logic [31].

3 Algebraic Proof Systems

Algebraic proof systems are formalisms for refuting the satisfiability of polynomial equa-
tion systems. A refutation is a certificate of unsatisfiability checkable in deterministic or
randomized polynomial time. Usually, the certificate is based on Hilbert’s Nullstellensatz:
It states that for any polynomial system of equations over an algebraically closed field F,
F ⊆ F[X], F is unsatisfiable if, and only if, 1 is in the ideal generated by F , which means
that there are g1, g2, ..., gm ∈ F[X] such that

∑
i≤m figi = 1. Thus, a refutation of F in an

algebraic proof system is typically a systematic proof of the existence of such g1, g2, ..., gm.
The proof systems we are concerned with are (variants of) the polynomial calculus (PC) and
the Ideal Proof System (IPS). In the following, whenever we consider unsatisfiable polynomial
systems of equations over a field F and their refutations, we always implicitly mean the
algebraic closure of F – otherwise the algebraic proof systems are not complete because the
Nullstellensatz does not hold.

The efficiency of different proof systems is compared using the standard notion of p-
simulation: Let P1, P2 be two proof systems and µ1, µ2 be complexity measures for them,
that is, functions that map refutations to natural numbers. Then we write P2 ≤p P1 (with
respect to the measures µ1, µ2, which will usually be clear from the context) if for every
system of polynomial equations F , and every P2-refutation R2, there exists a P1-refutation
R1 of F with µ1(R1) ≤ poly(µ2(R2)). We write P1 ≡p P2 if P2 ≤p P1 and P1 ≤p P2.

3.1 Polynomial Calculus
The polynomial calculus [7] predates the IPS as an algebraic proof system. Unlike the IPS,
the PC is a more classical rule-based system consisting in a set of sound inference rules for
systematically deriving the polynomials in the ideal generated by the input F .

▶ Definition 2 (Polynomial Calculus (PC)). Let F ⊆ F[X] be a system of polynomial equations
over a field F with variables in X.
The inference rules of the polynomial calculus are:

Axiom:
f

for all f ∈ F .

Multiplication: f
xf

for any f ∈ F[X], x ∈ X.

Linear Combination: f g
af + bg

for any f, g ∈ F[X], a, b ∈ F.
A PC refutation of F is a sequence (p1, p2, ..., pn = 1) of polynomials such that pn is the
1-polynomial, and each pi is either a Boolean axiom, an axiom from F , or is the result of
the application of a proof rule to one or two polynomials pj , pj′ with j, j′ < i.
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The PC is a sound and complete proof system, that is, a polynomial equation system F is
unsatisfiable if, and only if, there exists a refutation for F . The complexity of this refutation
may in general be super-polynomial.

We consider two complexity measures for the PC. The number of lines of a PC refutation
R = (p1, p2, ..., pn = 1) is n, i.e. the length of the derivation sequence. The degree deg(R) of
R is the maximum degree of any of the pj , for 1 ≤ j ≤ n. For k ∈ N, we denote by degk-PC
the restriction of the PC where only refutations of degree ≤ k are allowed. This is no longer
a complete proof system; for instance, it cannot prove the pigeon hole principle [30].

3.2 Ideal Proof System
The Ideal Proof System (IPS) introduced by Grochow and Pitassi [21] is a more general
formalism for proving in a verifiable way that 1 is in the ideal generated by a set F of axioms.
In this proof system, there exist no derivation rules, just a certificate. This takes the form of
an algebraic circuit. IPS in particular p-simulates the polynomial calculus [21, Proposition
3.4].

▶ Definition 3 (Ideal Proof System (IPS), [21]). Let F be the polynomial equation sys-
tem {f1(x⃗), f2(x⃗), . . . , fm(x⃗)} in F[X] and let F be the algebraic closure of F. Let Y =
{y1, y2, ..., ym} be a fresh set of variables. An IPS certificate of unsatisfiability of F over F
is a polynomial C(x⃗, y⃗) ∈ F[X ⊎ Y ] such that (1) C(x⃗, 0⃗) = 0, and (2) C(x⃗, f⃗) = 1.
An IPS proof of unsatisfiability (i.e. a refutation) of F is an algebraic circuit C with variables
X ⊎ Y and constants F computing an IPS-certificate of unsatisfiability.

Condition (1) ensures that C(x⃗, f⃗) is in the ideal generated by F . The unrestricted IPS is
sound and complete, i.e. there is an IPS refutation of F if, and only if, F is unsatisfiable
[21]. Note that this is not necessarily a proof system in the sense of Cook and Reckhow as it
is not clear that certificates can be verified in polynomial time. Verifying that a given circuit
indeed computes a valid certificate requires polynomial identity testing (PIT), which is in
randomized polynomial time (but not known to be in P).
We define the size |C| of an IPS proof C = (D,W ) as |C| := min(|D|, |X| + |Y |). That is,
we define the size of a refutation to be at least the instance size. This would be inadequate
for sublinear size refutations but in the symmetric setting that we study here, the smallest
possible proof size is generally |X| + |Y |.

For families (Fn)(n∈N) of instances and corresponding refutations (Cn)(n∈N), we are
mainly interested in IPS refutations of polynomial size |Cn| ≤ p(|Fn|). When we speak of
the complexity of IPS proofs, we usually mean this complexity measure.

For every k ∈ N, degk-IPS denotes the restriction of the IPS in which the semantic degree
deg(C) (see Section 2.1) of any refutation C is at most k.

Other natural restrictions of the IPS are obtained by allowing only circuits from certain
circuit classes, such as bounded depth, or as in our case, symmetric circuits. By the
Nullstellensatz, there always exists a y⃗-linear (also called Hilbert-like in [21]) IPS refutation
C(x⃗, y⃗) for every unsatisfiable F , i.e. C(x⃗, y⃗) =

∑m
i=1 yigi(x⃗) for some g⃗ ∈ F[X]. In other

words, the y⃗-linear IPS is a sound and complete fragment of the general IPS. We denote
it IPSLIN. It is shown in [21] that IPSLIN p-simulates the general IPS on instances that are
themselves representable with polynomial-size algebraic circuits. For fragments of the IPS
with restricted circuit classes, it is however not clear that every proof can efficiently be
simulated by a y⃗-linear one. Indeed, for symmetric proofs, as we show, IPSLIN turns out to
be a true restriction.

MFCS 2025



40:8 Symmetric Proofs in the Ideal Proof System

The unrestricted IPS is remarkably powerful: It is shown in [21, Theorem 3.5] that IPS
over any field of characteristic q p-simulates any Frege proof system with MODq-connectives.
This is even true for Extended Frege, where extension axioms may be used as in the Extended
Polynomial Calculus. Frege systems are standard textbook propositional proof systems such
as the sequent calculus.

4 Symmetric IPS Proofs

We now introduce the symmetry restriction on IPS proofs. That is to say, we consider when
a set F of polynomials that is Γ-invariant for a group Γ acting on its variables, admits a
Γ-symmetric circuit as an IPS refutation. We start with a formal definition.

▶ Definition 4 (Symmetric IPS). Let Γ be a group and X a Γ-set of variables. Let F =
{f1(x⃗), ..., fm(x⃗)} ⊆ F[X] be a Γ-invariant set of polynomials and let Y = {y1, ..., ym} be a
Γ-set of variables with the following action: For every π ∈ Γ and i ∈ [m], π(yi) = yj for the
j with π(fi) = fj.
A Γ-symmetric IPS proof of unsatisfiability of F is a Γ-symmetric algebraic circuit with
variables X ⊎ Y computing an IPS certificate C(x⃗, y⃗) of F .

Note that if Γ = {id}, then any IPS refutation of F is also a Γ-symmetric IPS refutation of
F . The complexity of a symmetric IPS refutation in general heavily depends on the choice of
Γ. The bigger Γ is and hence the more symmetric the circuits are required to be, the bigger
we can expect the proof size to be.

We generally write Γ-sym-IPS to mean the proof system allowing only Γ-symmetric
proofs. Of course, this only makes sense for sets F of polynomials that are Γ-invariant. For
these, as we show below, Γ-sym-IPS is a complete proof system. Where Γ is clear from
context, we may write just sym-IPS.

Let Γ and Γ′ be groups acting on X with Γ ≤ Γ′. We say that Γ′-sym-IPS p-simulates Γ-
sym-IPS if for every Γ′-invariant F and a Γ-sym-IPS refutation C of F , there is a Γ′-sym-IPS
refutation of F with size polynomial in the size of C. We also use this notion of p-simulation in
the context of restricted proof systems, such as linear or bounded degree systems. For instance,
in Theorem 7 below, we show that (in suitably defined cases) degk-IPS ≤p degk -sym-IPS.
This means that for each k, there is a fixed polynomial p such that whenever a Γ-invariant
F has any (i.e. {id}-symmetric) IPS proof of size n and degree k, it also has a Γ-symmetric
IPS proof of size p(n) and degree k.

4.1 Completeness of symmetric IPS
A first natural question that arises when we restrict ourselves to symmetric proofs is whether
it is the case that every Γ-symmetric collection F of polynomials has a Γ-symmetric proof.
We show that this is indeed the case, in the sense that any IPS proof can be suitably
symmetrised, though this may entail an exponential blowup in the size of the proof. On the
other hand, there are F for which there is no symmetric linear proof, which contrasts with
the fact that linear IPS (without symmetry requirements) is complete.

We first prove the completeness of the symmetric IPS and then provide a simple counter-
example for completeness for sym-IPSLIN.

▶ Theorem 5. Let F be a Γ-symmetric system of polynomial equations. If F is unsatisfiable,
then there is a Γ-symmetric IPS refutation of F .
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Proof. Since IPS is complete, there is a certificate C(x⃗, y⃗) of unsatisfiability of F , computed
by some algebraic circuit C. We construct a Γ-symmetric circuit Csym with the same
semantics: For every π ∈ Γ, we introduce a copy of π(C) in such a way that all these
π(C), for all π ∈ C, are identified at their input gates and otherwise disjoint. To finish
the construction, we add a multiplication gate g× as the output of Csym. It multiplies
the outputs of all circuits π(C), for all π ∈ Γ. The resulting circuit Csym is Γ-symmetric
by construction because every π ∈ Γ extends to a circuit automorphism that maps each
subcircuit π′(C) to (π ◦ π′)(C). We can also verify that Csym is again a refutation:

Csym(x⃗, 0⃗) =
∏
π∈Γ

π(C(x⃗, 0⃗)) =
∏
π∈Γ

C(πx⃗, π0⃗)︸ ︷︷ ︸
=0

= 0. (1)

Csym(x⃗, f⃗) =
∏
π∈Γ

π(C(x⃗, f⃗)) =
∏
π∈Γ

C(πx⃗, πf⃗)︸ ︷︷ ︸
=1

= 1. (2)

In the last equality of (1) and (2) we used that 0 and 1 are Γ-symmetric polynomials, so if
C(x⃗, 0⃗) = 0, then also C(πx⃗, π0⃗) = 0 for every π ∈ Γ (and likewise for 1). In the penultimate
equality of (2), we also use the Γ-invariance of F and the fact that the action of Γ on Y is
exactly as given by the lift of its action on X to F . ◀

This relatively naive construction blows up the size of the circuit by a factor of |Γ|, which
may be as large as |X|! · |Y |!. So even though there always exists a symmetric refutation,
this may in general be much larger than the smallest asymmetric refutation.

The following example shows that there are cases where symmetric linear refutations do
not exist, regardless of the circuit size.

▶ Example 6. Let the variable set be X = {x1, x
∗
1, x2, x

∗
2} and let Γ ≤ Sym(X) be the group

that is generated by {π, π∗} defined as follows: π = (x1 x2)◦(x∗
1 x

∗
2), and π∗ = (x1 x

∗
1)◦(x2 x

∗
2).

Note that this is the Klein 4 group. That is, π exchanges 1 and 2, and π∗ exchanges non-star
with star. Consider the following equations over F2:

(1) x1 + x2 = 1 (3) x∗
1 + x2 = 1 (5) x1 + x∗

1 = 1
(2) x∗

1 + x∗
2 = 1 (4) x1 + x∗

2 = 1 (6) x2 + x∗
2 = 1

The equations are partitioned into three Γ-orbits. Equation (1) and (2) form an orbit,
equation (3) and (4) as well, and equation (5) and (6). The system is unsatisfiable over
F2 (and its algebraic closure) because (1) + (4) + (6) is an IPS certificate of unsatisfiability.
Nonetheless, there is no linear Γ-symmetric refutation C(x⃗, y⃗): Every monomial in such
a certificate C(x⃗, y⃗) would contain exactly one y⃗-variable. In order to have C(x⃗, f⃗) = 1,
there must be a degree-1 monomial in C(x⃗, y⃗), i.e. consisting only of a single y⃗-variable yi.
But then, the entire orbit of yi must appear in C(x⃗, y⃗) due to symmetry. As each orbit of
equations has even size and the field has characteristice 2 the constant terms in C(x⃗, f⃗) sum
up to 0. Hence, there is no symmetric y⃗-linear polynomial with C(x⃗, f⃗) = 1.

On the other hand, we can show that as long we are working over a field F of characteristic
either 0 or coprime with the order of Γ, then any Γ-invariant set F of polynomials has a
Γ-symmetric linear refutation. This follows from Corollary 9 below.

4.2 Symmetry in Bounded-Degree IPS
Recall that for any constant k ∈ N, degk-IPS is the restriction of IPS where the polynomials
computed at each gate have degree at most k. This bounded-degree fragment is of special
interest because of its relation to the bounded-degree polynomial calculus, whose expressive
power is related to important logics from finite model theory and also to the well-known
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Weisfeiler-Leman graph isomorphism algorithm (see Section 5). We show that constant-degree
IPS proofs can be symmetrised efficiently, under certain assumptions on the field and the
symmetry group (which are satisfied in most interesting cases). Thus, in the bounded-degree
regime, requiring proofs to be symmetric is essentially no restriction.

▶ Theorem 7. Let F be a field and let Γ be a group such that either char(F) = 0, or F has
positive characteristic and |Γ| and char(F) are coprime. Let k ∈ N be a constant. Then for
every Γ-invariant polynomial equation system F ⊆ F[X] that possesses a degk-IPS refutation
C, there also exists a Γ-symmetric refutation Csym with |Csym| ≤ O(|F|k) ≤ O(|C|k). If C
is y⃗-linear, then so is Csym.

Proof. Let C(x⃗, y⃗) be a certificate of unsatisfiability of the polynomial equation system F ,
computed by a circuit with semantic degree k. Let M ⊆ F[X ∪ Y ] be the set of monomials
appearing in C(x⃗, y⃗). Then the certificate C(x⃗, y⃗) can be written as

∑
m∈M cm · m(x⃗, y⃗),

where cm ∈ F and every m ∈ M has degree at most k. We define Csym(x⃗, y⃗) := |Γ|−1 ·∑
π∈Γ πC(x⃗, y⃗). This polynomial Csym(x⃗, y⃗) is also an IPS certificate of unsatisfiability of F

since
(1) Csym(x⃗, 0⃗) = |Γ|−1 ·

∑
π∈Γ πC(x⃗, 0⃗) = 0, and

(2) Csym(x⃗, f⃗) = |Γ|−1 ·
∑
π∈Γ πC(x⃗, f⃗) = |Γ|−1 · |Γ| · 1 = 1.

Note that |Γ|−1 is defined in F since either the characteristic of F is zero, or it is coprime
with |Γ|. Let ΓM be the closure of M under the action of Γ, i.e. ΓM :=

⋃
π∈Γ π(M). Now

Csym(x⃗, y⃗) has the form

Csym(x⃗, y⃗) = |Γ|−1
∑
π∈Γ

∑
m∈M

cm · π(m(x⃗, y⃗)) = |Γ|−1
∑

m∈ΓM

( ∑
π∈Γ

cπ−1(m)

)
·m

The number of distinct monomials in Csym(x⃗, y⃗) is at most O((|X| + |Y | + 1)k) because all
monomials have degree at most k. Thus, the circuit that just expresses Csym(x⃗, y⃗) as a sum
of monomials has polynomial size, and it it also symmetric because Csym(x⃗, y⃗) is symmetric
by construction. By our convention (see Section 3.2), |C| ≥ |X| + |Y |, so |Csym| ≤ poly(|C|).
If C is y⃗-linear, then so is Csym because if M contains only y⃗-linear monomials, then this is
still true for ΓM . ◀

▶ Corollary 8. Let F be a field and let Γ be a group such that either char(F) = 0, or F has
positive characteristic and |Γ| and char(F) are coprime. Let k ∈ N be a constant. Then for
this field and symmetry group, degk-PC ≤p degk-sym-IPSLIN.

Proof. Any degree-k PC refutation can be translated in a straightforward way into a degree-k
IPSLIN-refutation (see [21, Proposition 3.4]). This can be efficiently Γ-symmetrised using
Theorem 7. ◀

▶ Corollary 9. Let F be a field and let Γ be a group such that either char(F) = 0, or F has
positive characteristic and |Γ| and char(F) are coprime. Then, any Γ-invariant unsatisfiable
set of polynomials F over this field has a Γ-symmetric linear refutation.

Proof. If F is an unsatisfiable polynomial equation system, then it has a PC refutation by
the completeness of polynomial calculus. Let k be its degree. By Corollary 8, there exists a
Γ- degk -sym-IPSLIN-refutation. ◀
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5 Applications in Finite Model Theory and Graph Isomorphism

We now turn to other well-studied symmetry-invariant formalisms and show that they are
subsumed by the symmetric IPS in a certain sense. These formalisms are logics from finite
model theory, specifically fixed-point logic with counting (FPC) and Choiceless Polynomial
Time (CPT). Drawing on previous work [29, 27], we show how their expressive power relates
to the power of sym-IPS, specifically with respect to the graph isomorphism problem.

5.1 Simulating fixed-point logic with counting in sym-IPS
The evaluation of any sentence ψ in fixed-point logic with counting in a given finite structure
A can be simulated by a bounded-degree symmetric IPS proof over Q in the following sense.
For every fixed FPC-sentence ψ and structure A, there is an axiom system Fψ(A) that
expresses the existence of a winning strategy in the model-checking game for A |= ψ. This is
an instance of a threshold safety game [20]. An IPS refutation of Fψ(A) is then a witness for
the fact that A |= ψ. The axiom system Fψ(A) is FOC-interpretable in A, meaning that it is
FO-definable in A extended with a numeric sort (see Section 2.2). In total, the problem of
deciding the existence of a bounded-degree sym-IPS refutation for a given axiom system is
complete for FPC under efficient symmetry-preserving reductions:

▶ Theorem 10. For every FPC-sentence ψ with signature τ , there exists an FOC-definable
mapping Fψ that takes every finite τ -structure A to a polynomial equation system Fψ(A)
over Q such that:
1. |Fψ(A)| ≤ poly(|A|).
2. Aut(A) has a natural action on the variables of Fψ(A), and Fψ(A) is Aut(A)-invariant.
3. Fψ(A) is unsatisfiable if, and only if, A |= ψ.
4. If Fψ(A) is unsatisfiable, then Fψ(A) has an Aut(A)-symmetric deg2 -IPSLIN refutation

of size poly(|Fψ(A)|).
This is mainly a consequence of Theorem 4.4 in [29]. There, the desired mapping Fψ is
constructed and it is shown that Fψ(A) has a degree-2 PC refutation R over Q if and only
if A |= ψ. By Corollary 8, there also exists a Aut(A)-symmetric deg2 -IPSLIN-refutation of
size poly(|R|), and even of size poly(|Fψ(A)|) (see Theorem 7). This proves Item 4 from the
theorem. The first two items follow from the properties of FOC-interpretations and the third
item is due to the construction in [29].

5.2 Symmetric IPS proofs of graph non-isomorphism
Now we pass on from FPC to a stronger logic, namely Choiceless Polynomial Time (CPT)
and show that this, too, can in a certain sense be simulated insym-IPSLIN. The greater
model-theoretic expressiveness of CPT is reflected on the proof system side in the fact that
we (provably) need to go beyond the bounded-degree regime. Another difference to the
simulation of FPC is that we now consider a fixed problem, namely graph isomorphism. We
show thatsym-IPSLIN efficiently distinguishes all graphs (using their natural symmetries as
the symmetry group) that are also distinguishable in CPT.

Distinguishing graphs in an algebraic proof system

Whenever we speak of graphs in this section, they may be vertex and edge coloured. Given
two graphs G and H, there is a standard system of polynomial equations Fiso(G,H) [3, 27]
whose solutions encode isomorphisms between G and H. Thus, G and H are non-isomorphic

MFCS 2025



40:12 Symmetric Proofs in the Ideal Proof System

if, and only if, Fiso(G,H) is unsatisfiable. The variable set of Fiso(G,H) is X := {xvw | v ∈
V (G), w ∈ V (H), v ∼ w}, where ∼ ⊆ V (G) × V (H) is the relation that contains all (v, w)
such that v and w have the same colour. The polynomials of Fiso(G,H) are:∑

v∈V (G):v∼w

xvw − 1 for each w ∈ V (H)

∑
w∈V (H):v∼w

xvw − 1 for each v ∈ V (G) and

xvwxv′w′
for all v, v′ ∈ V (G), w, w′ ∈ V (H) with v ∼ w, v′ ∼ w′

such that vv′ 7→ ww′ is not a local isomorphism.

The Boolean axioms x2 − x for all x ∈ X are also part of Fiso(G,H). The idea behind
this formulation is that a satisfying Boolean assignment to the variables in X encodes
an isomorphism from G to H in the sense that v ∈ V (G) is mapped to V (H) if, and
only if, xvw is assigned to 1. Note that Aut(G) × Aut(H) acts naturally on X: Let
(πG, πH) ∈ Aut(G)×Aut(H). Then (πG, πH)(xvw) = xπG(v)πH (w). It is not hard to see that
Fiso(G,H) is invariant under this group action: The polynomials associated with vertices in G
and H are clearly symmetric and the polynomials xvwxv′w′ that forbid local non-isomorphisms
depend on the edges and non-edges, which are preserved by Aut(G) × Aut(H).

When we say that an algebraic proof system distinguishes two graphs G and H, we mean
that it admits a refutation of Fiso(G,H). If K is a class of graphs, then we say that sym-IPSLIN
efficiently distinguishes all non-isomorphic graphs in K if there exists a polynomial p(n) such
that for any two non-isomorphic G,H ∈ K, there exists an Aut(G) × Aut(H)-symmetric
IPSLIN-refutation C of Fiso(G,H) of size |C| ≤ p(|Fiso(G,H)|) over the field Q.

Distinguishing graphs in Choiceless Polynomial Time

For any pair of non-isomorphic graphs G and H, there is some formula (say of first-order
logic) that distinguishes them. For a class of graphs, we are interested in obtaining bounds
(say on the number of variables or other parameters) of the minimum distinguishing formulas
for pairs of non-isomorphic graphs from the class. Here we are particularly interested in the
number of variables of an FPC formula, or the resource bounds of a CPT sentence. And, we
relate these to bounds on the IPS refutation of Fiso(G,H).

▶ Definition 11 (Distinguishing graphs in CPT, [27]). Let K be a class of graphs. We say that
CPT distinguishes all graphs in K if there exists a polynomial p(n) and a constant k ∈ N
such that for any two non-isomorphic G,H ∈ K, there exists a sentence Π ∈ CPT(p(n)) with
≤ k variables such that G |= Π and H ̸|= Π.

Recall from Section 2.2 that CPT(p(n)) is the fragment of CPT whose sentences have resource
bound at most p(n). Similarly, the k-variable fragment of FPC distinguishes all graphs in K
if there exists a distinguishing FPC-sentence with ≤ k variables for all G ̸∼= H in K.

▶ Theorem 12. Let K be a graph class.
1. If there is a k ∈ N such that the k-variable fragment of FPC distinguishes all non-

isomorphic graphs in K, then so does symmetric degk -IPS.
2. If CPT distinguishes all non-isomorphic graphs in K, then sym-IPSLIN efficiently distin-

guishes them.
Note that the situation in the first statement is equivalent to the non-isomorphic graphs
in K being distinguishable by the well-known k-dimensional Weisfeiler Leman algorithm
[24]. The first part then follows from [3, Theorem 4.4], which states that k-Weisfeiler-Leman-
distinguishable graphs can also be distinguished in the degree-k PC. This can be p-simulated
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by degk -sym-IPS by Corollary 8. To prove the second part, we use Theorem 1 from [27].
It shows that if all non-isomorphic graphs in K are CPT-distinguishable in the sense of
Definition 11, then they are also distinguishable in the degree-3 extended polynomial calculus
(EPC), and the refutations have polynomial size. As discussed in the conclusion of [27], this
EPC refutation is symmetric in the sense that its extension axioms are closed under the
action of Aut(G) × Aut(H). To conclude the second item of Theorem 12, we show that any
symmetric bounded-degree EPC refutation can be simulated efficiently in sym-IPSLIN. The
proof can be found in the full version [11, Theorem 22].

Another result from [27] immediately gives us the following separation between the
bounded-degree (symmetric) IPS and its unbounded version.

▶ Theorem 13. There exists a sequence (Gn, Hn)n∈N of pairs of non-isomorphic graphs such
that Fiso(Gn, Hn) has a polynomial-size Aut(G) × Aut(H)-symmetric IPSLIN-refutation but
there is no k ∈ N such that for all n ∈ N, Fiso(Gn, Hn) has a degk-sym-IPS-refutation.

Proof. Theorem 3 in [27] yields exactly this statement for the symmetric degree-3 EPC and
the degree-k PC. By [11, Theorem 22], the symmetric degree-3 EPC can be p-simulated
bysym-IPSLIN. Now suppose for a contradiction that Fiso(Gn, Hn) had a degree-k sym-IPS-
refutation for some constant k, for all n ∈ N. This is in particular a degree-k IPS refutation.
Using existing results, it can be shown that on instances of constant degree (which we have
here), bounded-degree IPS refutations can be simulated in bounded-degree PC. A proof of
this is given in Theorem of the full version [11]. This yields a contradiction to [27, Theorem
3], which states that the bounded-degree PC cannot refute Fiso(Gn, Hn) for all n ∈ N. ◀

The graphs (Gn, Hn) that are used as hard instances for the bounded-degree IPS are the
well-known Cai-Fürer-Immerman (CFI) graphs [3, 6], equipped with a linear order on their
base graphs. These are standard examples of graphs that are indistinguishable in bounded-
variable counting logic and hence FPC. The above theorem tells us that these graphs are in
fact efficiently distinguishable in sym-IPSLIN. This is because there is a CPT-sentence which
can tell Gn and Hn apart, for all n ∈ N – that sentence uses a sophisticated “circuit-like”
construction due to [14]. Via Theorem 12, this translates into a polynomial-sizesym-IPSLIN-
refutation. In the next section, we also study a well-known formulation of the CFI graph
isomorphism problem as a system of linear equations and show that also that presentation of
the problem admits polynomial-sizesym-IPSLIN-refutations.

6 Upper bounds

6.1 The Cai-Fürer-Immerman equations
The algebraic formulation of the isomorphism problem of Cai-Fürer-Immerman graphs is the
following system of equations over F2 (see e.g. [1]).

▶ Definition 14 (CFI equations). Let G = (V,E) be a 3-regular undirected connected graph.
Let u ∈ V (G) be some fixed distinguished vertex and let a ∈ {0, 1}. The variable set is
X = {xei | e ∈ E, i ∈ F2}. The equations are

xei + xfj + xgk = i+ j + k mod 2 for every v ∈ V \ {u}, {e, f, g} = E(v),

and every i, j, k ∈ F2

xei + xfj + xgk = i+ j + k + a mod 2 for vertex u, {e, f, g} = E(u),

and every i, j, k ∈ F2

xe0 + xe1 = 1 for every e ∈ E
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This, together with the Boolean axioms for every variable, is the linear equation system
FCFI(G, u, a) over F2.

This system is satisfiable if, and only if, a = 0 [1]. The typical symmetries that are associated
with CFI graphs (over linearly ordered base graphs) are called “edge flips”. With regards to
the equation system, this means the following. Let Γ be the subgroup of the Boolean vector
space (FE2 ,⊕) which consists only of those vectors π such that

∑
e∈E(v) π(e) = 0 mod 2 for

every v ∈ V . The action of this group on X is given by π(xei ) = xei+πe
, where addition is in

F2, and πe denotes the entry of π at index e ∈ E. It is easy to check that FCFI(G, u, a) is
Γ-invariant.

▶ Theorem 15. Let (Gn)n∈N be an arbitrary family of 3-regular graphs, and let Γn be the
subgroup of FE(Gn)

2 defined above. For every n ∈ N, there exists a non-y⃗-linear Γn-symmetric
F2-sym-IPS-refutation of the unsatisfiable equation system FCFI(Gn, un, 1) (regardless of the
choice of un ∈ V (Gn)), which has size at most poly(|FCFI(Gn, un, 1)|).

In particular, the theorem is true if (Gn)n∈N is a family of unbounded treewidth. Such families
of graphs are the ones for which the equation systems FCFI(Gn, un, 1) are not distinguishable
from their satisfiable counterparts FCFI(Gn, un, 0) in bounded-variable counting logic [1].
This also means that FCFI(Gn, un, 1) has no bounded-degree PC refutation: The existence
of such a refutation is definable in bounded-variable counting logic [29], and hence, bounded-
variable counting logic would be able to distinguish FCFI(Gn, un, 1) from FCFI(Gn, un, 0)
if bounded-degree PC could refute FCFI(Gn, un, 1). Thus, this theorem provides another
example for the separation of the bounded-degree PC/IPS from the unbounded-degree
version.

The construction of the refutation is quite involved, so we have to defer the proof of
Theorem 15 to the full version. We just remark that the circuit for the IPS certificate is
deeply nested and computes polynomials of linear degree, so it is challenging to ensure
that each gate only has a small number of automorphic images under the action of Γ. In
fact, we have not been able to accomplish this with a y⃗-linear certificate, so the smallest
possiblesym-IPSLIN-refutation we know is exponential:

▶ Theorem 16. Let the setting be as in Theorem 15. For every n ∈ N, there exists a
Γn-symmetric F2-sym-IPSLIN-refutation of the unsatisfiable equation system FCFI(Gn, un, 1),
which has size at most O(2|En|).

It is an interesting open question whether the CFI equations provide an exponential separation
betweensym-IPS andsym-IPSLIN, that is, whether the upper bound in the above theorem can
be improved or not. As discussed in the previous section, the graph isomorphism formulation
of the CFI equations does admit a smallsym-IPSLIN-refutation but it may well be that this is
not the case for FCFI(Gn, un, 1).

6.2 Subset sum
▶ Definition 17 (Subset sum, [17]). Let n ∈ N, let F be a field with char(F) > n, and let
β ∈ F\{0, ..., n}. The subset sum instance Fsum(x⃗)(n,F, β) has variable set X = {x1, ..., xn},
and the axiom

∑n
i=1 xi − β = 0, along with the Boolean axioms x2

i − xi = 0 for all i ∈ [n].
The lifted subset sum instance Fsum(x⃗y⃗)(n,F, β) has variable set X ∪ {y1, ..., yn} and the
axiom

∑n
i=1 xiyi − β = 0, along with the Boolean axioms for all variables in X ∪ Y .

It is clear that Fsum(x⃗)(n,F, β) and Fsum(x⃗y⃗)(n,F, β) are unsatisfiable for any choice of n,F, β
as required in the definition. Moreover, Fsum(x⃗)(n,F, β) is Symn-symmetric with respect
to the obvious action on X, and Fsum(x⃗y⃗)(n,F, β) is Symn-symmetric with respect to the
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simultaneous action on X ∪ Y . It is proven in [17, Proposition 5.3] that Fsum(x⃗)(n,F, β) has
no degk -IPSLIN refutation for any k < n. Moreover, [17] shows Fsum(x⃗)(n,F, β) to be hard for
sparse IPS (where circuits are just allowed to be sums of monomials) and Fsum(x⃗y⃗)(n,F, β)
to be hard for roABPs with a fixed variable order, and depth-3 powering formulas.

Subset sum and its liftings are thus a natural starting point in the quest for sym-IPS
lower bounds, especially because the variable set is “maximally symmetric” and so it might
be expected that the size of any symmetric refutation must be large. However, it turns
out that at least for the two subset sum variants we study here, polynomial-size symmetric
refutations do in fact exist. There are more complex liftings of the subset axiom that have
been used for lower bounds against stronger fragments of IPS such as bounded product-depth
circuits [18, 23], and these may be promising candidates for sym-IPS lower bounds, too.

▶ Theorem 18. The polynomial equation system Fsum(x⃗)(n,F, β) has asym-IPSLIN-refutation
of size at most poly(|Fsum(n,F, β)|), for all n,F, β such that the system is unsatisfiable. The
same is true for Fsum(x⃗y⃗)(n,F, β). Moreover, there is no constant k ∈ N such that degk -IPS
can refute Fsum(x⃗)(n,F, β) and Fsum(x⃗y⃗)(n,F, β) for all n ∈ N.

The proof of the theorem can be found in the full version. In short, we show that the
refutation given in Proposition B.1 in the appendix of [17] can be realised with polynomial-
size symmetric circuits. The key ingredient are the elementary symmetric polynomials
Sn,k =

∑
S⊆[n]
|S|=k

∏
i∈S xi. They admit efficient symmetric circuits by [33].

6.3 Pigeonhole principle
▶ Definition 19. For n,m ∈ N, the n-to-m pigeonhole principle is the polynomial equation
system FPHP(n,m). Its variable set is X = {xij | i ∈ [n], j ∈ [m]} and its equations are the
Boolean axioms together with:∑

j∈[m]

xij − 1 = 0 for every i ∈ [n]

xijxi′j = 0 for every j ∈ [m], i ̸= i′ ∈ [n]

Any {0, 1}-valued solution to this system gives an injective function from [n] to [m] that maps
i to j if xij = 1. The equation

∑
j∈[m] xij − 1 = 0 guarantees that each value i is mapped to

exactly one j and xijxi′j = 0 ensures that distinct i and i′ are not mapped to the same value.
Whenever n > m, FPHP(n,m) is thus unsatisfiable. This is the case over Q, but also over
every finite field. It is easy to see that FPHP(n,m) is invariant under Symn × Symm, where
the group action on X is: (π, σ)(xij) = xπ(i)σ(j). In this section, we focus on the pigeonhole
principle FPHP(n+ 1, n). It can be checked that over finite fields, FPHP(n+ 1, n) does not
admit a symmetric y⃗-linear refutation for all n (analogous to Example 6). Therefore, we only
consider FPHP(n+ 1, n) over Q.

With no symmetry restriction in place, it is – not surprisingly – possible to refute
FPHP(n+ 1, n) efficiently in the IPS. Indeed, the IPS p-simulates any Frege proof system [21],
and the pigeonhole principle, formulated in propositional logic has a polynomial-size Frege
proof [5]. The proof constructed in [5], however, proceeds along a linear order on [n]. Thus,
a naive symmetrisation of it would require size O(n!). We show that we can do much better
than that, although we do not obtain a symmetric refutation of subexponential size. It
is plausible that this is impossible, and we leave the precise complexity of symmetrically
refuting the pigeonhole principle as an intriguing open problem.
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▶ Theorem 20. There is a (Symn+1 × Symn)-sym-IPSLIN refutation of FPHP(n+ 1, n) of
size O(3n · n) over the field Q.

The key part of the refutation is to compute, for every subset D ⊆ [n+ 1] the sum over all
monomials that encode injections from the pigeons in D to the holes. Formally, let BD(x⃗) :=∑
γ : D↪→[n]

∏
i∈D xiγ(i). The polymnomials BD(x⃗) can also be viewed as the sums of certain

permanents. The permanent of an n × n-matrix is the polynomial
∑
π∈Symn

∏
i∈[n] xiπ(i).

The polynomial BD(x⃗) is the sum over the permanents of all |D|× |D|-submatrices of D× [n].
This hints at the potential hardness of symmetric refutations for the PHP because we know
that the permanent admits no symmetric circuit representation of subexponential size [15].
In the proof of Theorem 20 in the appendix, we construct an O(3n)-size symmetric circuit for
computing the BD for all D ⊆ [n+1] and show how this yields a refutation for FPHP(n+1, n).

7 Conclusion and future work

This article initiates the study of how symmetry in IPS proofs affects their complexity. We
identify the following promising directions for future research: Firstly, we would like to obtain
matching lower bounds for the exponential upper bounds we have established – that is, for
linear symmetric IPS refutations of the CFI equations (which would show an exponential
gap between linear and non-linear refutations), and for the pigeonhole principle. Secondly,
the question in how far the functional lower bound method [17, 18, 23] can be combined
with our framework deserves a deeper investigation. We have shown that the subset sum
axiom and one of its liftings do admit small symmetric proofs but this does not rule out
a lower bound via more complex subset sum variants such as in [18, 23]. Also, it is worth
studying if the symmetry restriction we consider here, combined with the functional lower
bound method from [18, 23] can extend the scope of that technique. So far, the functional
lower bound method has only been applied to instances with a single axiom, and it provably
fails on encodings of Boolean formulas [23]; can these limitations of the functional lower
bound method be overcome by restricting to symmetric refutations? Finally, we ask if the
connection between IPS lower bounds for Boolean CNFs and the separation of VP and
VNP established by Grochow and Pitassi [21] also holds in a symmetric sense. That is, for
suitably defined symmetric analogues of VP and VNP, would super-polynomial lower bounds
against symmetric refutations of Boolean CNFs entail a separation of “symmetric VNP” from
”symmetric VP”?
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