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—— Abstract
Scheduling of independent jobs with release dates so as to minimize the total weighted completion
time is a well-known scheduling problem. Here, we study it for the classic machine environment of
uniformly related machines. An efficient polynomial time approximation scheme (an EPTAS) is a
family of (1 + £)-approximation algorithms where the running time is bounded by a polynomial in
the input size times a function of € > 0. For problems that are NP-hard in the strong sense, as it is
the case for the problem studied here, an EPTAS is the best possible approximation scheme. We
design an EPTAS for the problem by employing known techniques and introducing a large collection
of new methods.
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1 Introduction

In this work, we study scheduling on uniformly related machines with release dates, which is
a standard multiprocessor scheduling problem. Here, the objective is to minimize the sum of
weighted completion times of jobs, also called the total weighted completion time. In this
problem, we are given a set of n jobs. Each job has a positive size and a positive weight, and
a non-negative release date (also called release time) associated with it. There is a set of
m parallel machines, such that each machine has a positive speed, and the jobs are to be
assigned to the machines. We consider non-preemptive schedules, where every job is assigned
to a machine and scheduled to a single (continuous) time slot (or interval) on that machine,
such that the length of this interval with respect to time is equal to the processing time of
4 on the machine that received it. The processing time of j on machine i is the size of j
divided by the speed of i.

The assignment has to fulfill the following requirements. First, as it is already explained
above, the length of the time interval assigned to job j (on one of the machines) is the time
required for processing j on that machine. Second, the time interval assigned to job j has a
starting point that is no earlier than the release date of j. Finally, a machine cannot run
more than one job at each time, and therefore we require that the time intervals allocated
for two jobs on a common machine will intersect only at endpoints. We are interested in
schedules of this structure, sometimes called valid schedules. The completion time of job j is
equal to the right endpoint of the time interval of job j. The weighted completion time of j
is defined by multiplying the weight of j by its completion time. In this algorithmic problem,
the goal is to find a (valid) schedule for which the sum of the weighted completion times
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over all jobs is minimized, that is, the goal is minimization of the total weighted completion
time. We use the term density of a job which is defined as the ratio between its weight and
its size. For previous work on this problem, see [26, 5, 28, 1, 8, 12, 29, 20].

In order to explain our result, we start with discussing concepts of approximation
algorithms and the concepts of the main types of approximation schemes. We focus on
minimization problems and define all concepts for them. An R-approximation algorithm is a
polynomial time algorithm that computes a solution whose cost never exceeds R multiplied
by the cost of an optimal solution for the same input. The smallest value or the infimum
value of R for which a given algorithm is an R-approximation is called the approximation
ratio of the algorithm. A polynomial time approximation scheme (a PTAS) is a class of
approximation algorithms containing a (1 + €)-approximation algorithm for any value £ > 0.
In the running time of a PTAS the parameter ¢ is seen as a constant. An efficient polynomial
time approximation scheme (an EPTAS) is a PTAS whose running time complexity has the
form f (%) multiplied by a polynomial function of the length of the (binary) encoding of
the input. The difference with a PTAS is that in an EPTAS ¢ (or é) cannot appear in the
exponent of n. A fully polynomial time approximation scheme (an FPTAS) is an EPTAS
for which the function f is polynomial in é In this work, we are interested in EPTAS’s.
This intermediate concept of an EPTAS has relation to the FPT (fixed parameter tractable)
literature (see for example [7, 20, 22, 21, 23, 25]). It can be argued that FPTAS’s can be
used in practice while PTAS’s (with small values of €) are too slow. On the other hand, many
scheduling problems cannot have FPTAS’s unless P=NP, which gave rise to the design of
EPTAS'’s for such problems. In this paper, we design an EPTAS for the scheduling problem
defined above. This is one of the well-motivated scheduling problems for which an FPTAS
cannot be found (unless P=NP).

For a single machine without release dates, the problem of scheduling jobs so as to
minimize the total weighted completion time is well understood. Smith [31] showed that
sorting jobs by non-increasing densities and scheduling them in this order without any idle
time starting from time zero gives an optimal solution. This sorted order is sometimes
called Smith’s ratio, and a trivial exchange argument implies its optimality. We can use this
argument for a specific machine that already received its jobs, and it is required to schedule
jobs to time slots after the last release time. Even the problem without release dates and
m > 2 machines is NP-hard. Specifically, for constant m, it is NP-hard in the ordinary sense,
and the variant where the number of machines is a part of the input is strongly NP-hard [14].
Interestingly, there are polynomially solvable special cases, where one example is the case of
equal weights without release dates [18]. Problems with release dates are known to be much
harder than those where all jobs are available at time zero, and they are strongly NP-hard
for any constant number of machines, even with equal weights. Already the problem with
release dates on a single machine and equal weights is strongly NP-hard [27]. The property
that our problem is strongly NP-hard excludes the possibility to design an FPTAS for the
problem that we consider in this work. Thus, as explained above, since the assumption P #
NP is standard, EPTAS’s are probably the best possible results.

Approximation algorithms for the problem studied here and its special cases were found
in a relatively late stage. Till twenty-five year ago there were only approximation algorithms
for which the approximation ratio was a constant for min-sum scheduling problems as the
one that we study (for information on these results see [30, 1, 8]). We discuss approximation
schemes for our problem and its special cases in more detail. A PTAS which is also an
EPTAS for identical machines without release dates was provided by Skutella and Woeginger
[30]. Afrati et al. [1] designed PTAS’s for identical machines with release dates, for the
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problem with a constant number of unrelated machines (also with release dates), and for
uniformly related machines (without release dates). Chekuri and Khanna [8] developed a
PTAS for the problem studied here. That is, they studied the case of uniformly related
machines with release dates, where the number of machines is not seen as a constant (see also
[2]). The schemes of [1, 8] for non-constant numbers of machines are not EPTAS’s, and it is
not possible to modify them into EPTAS’s (using known methods). Recently, we developed
an EPTAS for the model of uniformly related machines without release dates [13].

Approximation schemes for load balancing problems (like the makespan objective) on
identical machines and uniformly related machines were studied as well in the past. Load
balancing problems deal with minimizing functions of completion times vectors of machines
(and not on job completion times, which we study here). Hochbaum and Shmoys presented
the dual approximation framework and used it to show that the makespan minimization
problem (the maximum of the machine completion times vector) has a PTAS for identical
machines and for uniformly related machines [16, 17, 15] (for identical machines the PTAS is
in fact an EPTAS). Jansen [19] designed an EPTAS for the makespan minimization problem
on uniformly related machines (see [6] for an alternative EPTAS for this problem). The ¢,
norm minimization problem (of the vector of machine completion times) has an EPTAS
for identical machines [3, 4], and a PTAS and an EPTAS for uniformly related machines
[9, 10, 24]. This last objective for the case p = 2 is equivalent to our objective in the
special case where the weight of each job is simply its size, which was noted by Skutella and
Woeginger [30].

Previous directions. The equivalence for identical machines noted in [30] (which holds also
for the case with release dates) follows from the next property. An optimal solution to one
problem is also an optimal solution to the other problem, since the two values of the objective
functions differ by an additive constant which is common to all feasible solutions, where
this constant depends on the input. Using this idea, they proved that in the case where the
ratio between the maximum density and the minimum density of input jobs is not larger
than a constant, it is possible to convert methods of Alon et al. [3, 4] to obtain an EPTAS
for this restricted setting. In [13], we have used the approach of [30] and we developed new
approaches (used later by [24] for the £, norm minimization problem on uniformly related
machines) in order to present an EPTAS for the problem without release dates. These ideas
fail to work when release dates are present. Afrati et al. [1] were successful in overcoming
difficulties in the design of approximation schemes by rounding the input parameters and

then structuring the input in a way that a job is processed promptly after its release date.

Using this structure, each machine has a constant number of states (where a state of a
machine is the next time in which it becomes available for processing another job), and one
can apply dynamic programming on the time-horizon to schedule the jobs while keeping
track of the number of machines in each state, and the number of unscheduled jobs of each
large size that were released at any given time in the last few release dates (and similarly,
for the total volume of unscheduled jobs seen as small that were released in those last few
release dates). Chekuri and Khanna [8] extended these techniques of [1] to the setting of
uniformly related machines (with release dates). The time complexity of the time-horizon
dynamic programming is too large if one seeks for an EPTAS due to the following. The
number of possible states of machines is clearly a constant dependent on ¢, and we need to
recall the number of machines in each state, and thus the degree of m in the polynomial
of the running time depends on ¢, which violates the conditions on the running time of an
EPTAS. Thus, the methods of [1, 8] fail completely when one tries to obtain an EPTAS for
these problems with release dates (even for identical machines).

44:3
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Paper outline. In the main part of the paper we prove our result which is an EPTAS for
the non-preemptive scheduling problem with release dates on uniformly related machines so
as to minimize the total weighted completion time of the jobs. Before presenting the detailed
description of the scheme, we present an overview. Omitted proofs can be found in the full
version of this work.

2 An Overview of the EPTAS

In a simpler EPTAS that we designed for the special case without release dates [11, 13],
the instance was split into separate job sets based on densities. Specifically, every instance
consisted of all machines together with a subset of jobs of a bounded class of densities. This
turned out to be a useful strategy for the purpose of obtaining an EPTAS. Here, we will
additionally need to require that the number of distinct values of release dates in each such
bounded instance is a constant, which complicates the partition and the solution to different
parts of the partition have to be synchronized carefully. After applying the partition, it is
fairly easy to obtain an EPTAS that can be used for such instances.

Thus, the approach that we will take is to transform and reduce the original instance
multiple times, using a variety of methods and tricks, until we obtain sufficiently simpler
instances for which we will be able to employ the configuration based MILP method. This
method is only used for the final instances. That is, we are interested in reducing the
problem into a polynomial set of subproblems, where each subproblem which we create can
be solved using a mixed-integer linear program (MILP). The solutions of the MILP’s need
to be coordinated using global information that we are able to guess. We will round the
solutions of these MILP’s, and then we will be able to integrate the different solutions for
the different instances without increasing the total cost of the solutions to these MILP’s
significantly.

We start the scheme with rounding the input parameters. We round job sizes, job weights,
and speeds of machines to integer powers of 1 4+ § (where J depends on ). For release dates
there are two rounding steps. First, we slightly increase the release dates of some jobs so a
job is released no earlier than § times its minimum processing time (the processing time that
it would have on the fastest machine), and later we round the (modified) release dates up to
integer powers of 1+ §. In particular, for such a rounded instance, no release date will be
equal to zero. Release dates are never rounded down, so that a job cannot start running
before its release date even if the schedule is constructed based on the rounded release dates.
This type of rounding of the input parameters was done also in [1, 8], and nowadays it is
considered as a standard tool.

Next, we use an iterative procedure, which we call job shifting, where we delay the release
dates of some of the jobs. More specifically, we consider situations where the total number
of jobs (for relatively large jobs that have similar properties) or the total size of jobs (for
sub-classes of relatively small jobs that have similar properties) that are being released at a
given release date is too large compared to the amount that can run until the next possible
release date (where possible release dates are powers of 1+ ¢ that are not smaller than the
first such release date in the input). When it is impossible to schedule such a large number
or such a large total size of those jobs to start running by the next possible release date, the
release date of some jobs can be altered without any damage to the set of possible schedules,
since large inputs contain many pairs and subsets of interchangeable jobs. We introduce a
suitable step, and show that as a result the following property will hold for the modified
input. This property is that the set of jobs of a common density whose release dates are
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all equal to T' (for some value of T') can be scheduled on the set of machines such that they
will be completed no later than a constant multiplied by T. Such a step was designed for
identical machines in [1], where the output of the corresponding step satisfies a stronger
property. Namely, the bound on the maximum completion times of jobs released at time T’
is defined for all jobs with this release time and not only for jobs of a common density.

We could certainly use the procedure of [1] if we were dealing only with identical machines,
but once speeds are present, the situation becomes fairly complicated. A similar step was
claimed in [8] for uniformly related machines. Unfortunately, the case of uniformly related
machines is significantly more difficult because in the exchange argument for uniformly
related machines, a small job that is delayed to a later time interval need not remain small,
because the machine that will receive it as a result of an exchange could be slower. This
difficulty was not observed by Chekuri and Khanna [8], and thus the description and analysis
of their job shifting procedure as it has appeared in the conference proceeding version has
significant gaps. Therefore, in order to overcome this difficulty, we provide a new procedure
that handles each density separately. Our procedure uses a fine partition of the jobs of each
density, and we can prove the required bound (per density). This fine partition of the job

set is according to their sizes: we consider a constant number of divisible sequences of sizes.

For each such subsequence and for each speed and density we do as follows. We keep the
largest jobs of this density out of the jobs of the subsequence that are still considered to be
small for machines of this speed, and we also keep some jobs that are considered to be large
on machines with that speed. Keeping jobs means that their release dates are unchanged
in this phase of the algorithm. If a job is not “kept” (after we process all machines), we
postpone its release date (we move its release date to a later time which is the next integer
power of 14 0). The property of divisible sequences that we use in the exchange argument is
that if a job j is large during some future time interval, and we need to schedule it earlier
because the jobs scheduled in the optimal solution are postponed, we can pick a subset of
these postponed jobs whose total size is ezactly the size of j (with one possible exception
per machine, density, and subsequence), and swap the positions of the larger job and the set
of selected smaller jobs. Applying such transformations on all densities require additional
considerations. The reason that our bound on the job set with a given release date is per
density is that we do not know in advance if we want to prioritize (among small jobs for the
current speed) larger jobs with smaller density or smaller jobs with higher density. These
two subsets of jobs are incomparable. The existence of those incomparable sets is exactly
the point missed in [8].

While in these first two steps we used the approach of [1, 8], in the main part of our
scheme we deviate dramatically from previous approaches by providing original methods to
face our problem. These new methods are needed even if we were able to mimic the shifting
claim of [8].

Shifting steps. We apply two different shifting steps. The first shifting step is on the release
dates. In this step we increase release dates of a small portion of the jobs (the amount of
jobs is selected based on contribution to cost), but the increase is by a very large (constant)
multiplicative factor. The goal of this increase of some release dates is to create large time
differences between groups of release dates, so that sub-inputs of very different release dates

could be solved almost independently, though they are not really independent instances.

Our bound on the total size of jobs with a common release date is per density, and it is
often not really possible to schedule all jobs quickly after their release dates. Thus, it can
happen that jobs of much smaller release dates should be combined into a solution for later
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release dates. In these cases, the assignment of such jobs can be restricted to gaps of the
schedule (a specific type of idle time), rather than treating these jobs similarly to jobs whose
release dates are recent. By slightly stretching time [1], there are suitable gaps with sufficient
frequency in any schedule. Since we have an upper bound on the total size of jobs with a
common density, and because we will solve each sub-input (of all jobs with similar release
dates after this shifting step) by solving a series of bounded instances (with bounded ratios
of densities), we will maintain a property that after the last release date of a sub-input, the
density of jobs assigned to a common machine deteriorates geometrically (along time). Thus,
postponing jobs by some constant multiplicative factor can be charged to the total cost of
the earlier jobs on that machine (in the solution to the sub-input) that have much higher
densities than the postponed jobs, and it does not increase the cost significantly. Therefore,
in time intervals where the solutions to different sub-inputs contradict (i.e., two or more
solutions try to schedule jobs at the same time) the jobs corresponding to earlier sub-inputs
will be delayed to the gaps of the latest sub-input (among the gaps of the sub-inputs with
the contradicting solutions) and this delay is charged to the jobs of these earlier sub-inputs
that are not delayed.

Later, we will apply shifting on densities. The goal is to create inputs with small
numbers of possible parameters, such that there is a major difference between parameters of
subproblems. Unlike the variant without release dates where solutions of different densities
were concatenated, which was possible due to large differences between the sets of densities
for subproblems (see [11, 13]), combining solutions of very different densities is extremely
challenging in the case with release dates that we study here. Jobs cannot run before their
release dates, and if one solution is sparse in some time interval (a large part of this interval
consists of idle time), we would like another solution to take over, in order to exploit that time,
and to avoid postponing all jobs (which could result in increasing their costs significantly).
Yet, that solution is still not sufficiently good in some cases, as the schedule of jobs with very
high densities must be done carefully, and they cannot be delayed (compared to their schedule
in optimal solutions) in any solution (as such a delay may cause a major increase in the total
cost). On the other hand, it harms the solution to delay multiple jobs (even if their densities
are not very large) due to a sparse time slot (with high density jobs). Thus, the schedule of
different subproblems needs to be coordinated, and these subproblems must be taken care of
delicately. To overcome this notoriously difficult task, we apply a series of guessing steps
and transformations on the solutions to ensure that these bad cases simply do not happen.
Intuitively, we will ensure that for every pair of solutions, every relatively fast machine, and
every time interval, the following will hold. If one solution is a sparse solution during a given
time interval (in which case the solution cannot be charged for postponing starting times of
other solutions till later), the second solution will be such that no job occupies (at least) the
entire time interval. We employ gaps in schedules to combine unassigned jobs, and to allow
the application of modifications of solutions.

More precisely, given a solution to a sub-input (resulting from the step of release dates
shifting) we define a color of a machine to be the subset of intervals between consecutive
times of release dates (of jobs of that sub-input) in which the machine has either some idle
time or a starting time of at least one job. Using time stretching, we have small gaps in this
time interval in each one of the two cases. A machine is a pink machine if its color is the
set of all intervals between consecutive times that are release dates. A palette of a schedule
is the vector of colors of its (constant number of) its fastest machines. We show that we
can restrict ourselves to solutions that have (at least one) pink machine among their fastest
machines, and we guess the palette of a near optimal solution with the property that it has
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a pink machine (observe that the number of possible palettes is a constant and thus we can
emulate this guessing step via exhaustive enumeration). In what follows we will restrict
ourselves to solutions corresponding to this guessed palette. This guessed palette will allow
us to coordinate the different subproblems resulting from the shifting on the densities step
as we discuss next.

After the step of guessing of the palette, we apply the shifting method on the densities,
in order to partition the sub-input of similar release dates into several subproblems with
the property that in each such subproblem the ratio between the maximum density of a
job and the minimum density of a job is bounded from above by a constant (and by the
rounding step, this means that the number of distinct densities in such subproblem is a

constant), and for two jobs belonging to distinct subproblems, the two densities are not close.

Using the existence of a pink machine, we show that we can restrict ourselves further to
solutions satisfying that for every machine (which is not one of the constant number of fastest
machines) and every time interval between consecutive release dates, either the machine is
completely idle, or it is busy for a large portion of the time interval (and thus can be charged
for postponing jobs of subproblems with much lower density after the last release date of
this sub-input), and we say that this machine has no sparse interval. Therefore, in such
solutions for every machine and every time interval, either no solution of a subproblem has a
sparse interval, or all of them have either gaps or starting times in this time interval (this
can happen only on a constant number of fast machines). In this way, we solve the issue of
sparse versus fully occupied time intervals.

Then, we can build a solution for a sub-input from the solutions to its subproblems by
processing one machine at a time, and this is carried out by processing the solutions from
higher densities subproblems to lower densities subproblems. The embedding of one solution
in another solution is done by uniting the set of jobs starting at a given time interval greedily
until there is no space for additional jobs (the remaining jobs are postponed to later time
intervals). When a time interval has no space for additional jobs, it is not a sparse time
interval, and it can be charged for postponing the jobs of lower densities to later starting
time (due to the large difference in densities between subproblems, which was achieved by
shifting).

The next step processes the job set of each such subproblem, and in cases where there
is a release date for which the set of jobs with this release date can be processed on one of
the (constant number of) fastest machines without consuming too much of its processing
time (and without violating its color), then we do that and remove this set of scheduled jobs
from the subproblem. This step has a minor impact on the cost of the resulting solution,
and it will help us to bound the additional cost due to rounding of the solution for the
MILP in the last step. Finally, we use the mized-integer linear program (MILP) paradigm
to approximate each subproblem. Here, we use time-dependent configurations. Each such
time-dependent configuration encodes the speed of the machine (and its index if it is one of
the machines whose color is encoded in the palette), and defines the set of large jobs (or an
approximated total size of small jobs) of every given density that starts running in every
time interval. Since we consider instances with a constant number of release dates and a
constant number of densities, we get that for every speed, the number of configurations with
this encoded speed is a constant. In the MILP, we will require the variables of configurations
of the (constant number of) fastest machines to be integral as well as configurations with
a constant number of speeds (of speeds close to those of the fastest machines). All other
variables are fractional, and thus the number of integral variables will be a constant.
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The rounding of the solution for the MILP (to obtain an actual schedule) is carried
out in several steps. The first one is similar to the case without release dates [11, 13] (in
which every machine is slightly overused by increasing the total length of small jobs assigned
to it), and schedule all the remaining jobs (there are such jobs due to rounding down the
variables of machine configurations corresponding to slow machines) to start in the same
time interval on the pink machine. This will be possible by time stretching of the schedule on
that machine using the large ratio between the speed of the pink machine and the machines
whose configuration variables are allowed to be fractional.

We argue that the rounded solution of the MILP satisfies the property that the maximum
load of any machine is bounded from above by a constant multiplied by the maximum
release date. In turn, this means that the solution obtained for each sub-input (with a
bounded number of release dates but with an unbounded number of densities) satisfies that
the densities of jobs deteriorate geometrically. This is exactly the property that we use to
bound the impact of uniting the solutions to the sub-inputs into one solution.

We provide further details regarding the approximation scheme in what follows. A
complete version of the description of the approximation scheme explained here is given in
the full version of this work.

3 An EPTAS

We design an EPTAS for our problem. Here, in the original instance A, a job j has a
size a; > 0 and a release time p; > 0 associated with it, such that j cannot be executed
before time p; > 0. The (strictly positive) speed of machine 7 is denoted by v;. A solution
or a schedule is not only a partition of the jobs among the machines, but it also states
the completion time of each job, which is sufficient, since the schedule is non-preemptive
(an alternative way to define a schedule is by defining the starting times, but we will use
the former option). A schedule (or a valid schedule) must comply with the property that
no machine runs more than one job at a time, except for times when one job completes
its processing and another one starts its processing. In order to avoid this special case,
we will assume in what follows that the time slot that a job runs on a machine is half
open, that is, if j runs on machine i, its time slot is [C; — %:, C;). Note that an optimal
schedule may have idle times due to the presence of release times. Using scaling (sorting the
machines and dividing all speeds and sizes by the largest machine speed), we assume that
l=v1>v3>-->0v, >0 Let 0< 6 < % be an accuracy factor, which is a function of ¢,
where < € and such that % is an integer.

Standard rounding steps. As a first step, we convert input A (which consists of m machines
with their speeds and n jobs with their attributes) into a rounded instance A’. Let amin =
mini<j<n a;. Let § = 82 - amin- The sets of jobs and machines are the same as in A (possibly
with different attributes). Let 77 = (1 + ) Mog1+5(Pi+8)1 be the release date of job j. Note
that p; + 8 > 0, so r} is well-defined for any j (even if p; = 0) and 7} > p; + 3 > p;. Let
si = (149) logiysvi) < 4, be the speed of machine i in instance A’, where s; > 0 since
v; > 0. Let w; = (1+)108145«31 >, and p; = (1+8)1°81+5 %1 > g, be the weight and size
(respectively) of job j in instance A’. It will also hold that r; < (1+4) - (p; + B), si > 155,
w; < (1+9) - wj, and p; < (14 6) - a;. Using the new notation, for a given schedule, the
completion time of j is still denoted by C;, and its weighted completion time is w; - C;. Note
that 1 =81 > s9 > -+- > s,,, > 0 (the sorted order of machines is preserved and the largest
speed is unchanged). Let O and O’ denote optimal solutions for A and A’ respectively.
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» Lemma 1. Every solution SOL for A’ is also a solution for A, and SOL(A) < SOL(A’).

Given a schedule (a solution) SOL defined for a given input, let the time-augmented
solution TA(SOL,v) for some v > 1 and the same input (the same set of jobs and the same
set of machines) be the solution where each job is assigned to the same machine as in SOL,
and the completion time of each job is v times its completion time in SOL. In the next
lemma we show that if SOL is a solution for A, then TA(SOL,v) is a solution for A as well.

A schedule SOL" for A" is called timely if for every job j, the starting time of j is at least
(1+9) Mogy.45(8 3] , where 4 is the machine that runs j in SOL”. In particular, the starting
time of j in a tlmely schedule is at least § - p L1 To prove that SOL" is timely, it is suﬂiment
to prove that for every job j, the starting tlme of 7 in SOL" is at least 0 - (1 + ) - 2

Given a solution SOL for A, we will be able to use TA(SOL,v) as a solution for the
rounded instance A’ for certain values of v. The next lemma specifies cases such that this is
indeed a valid schedule for A’, and moreover it is a timely schedule. This condition on v will
be a sufficient one.

» Lemma 2. Given a schedule SOL for A andv > 1, let SOL' = TA(SOL,v). The schedule
SOL’ is a schedule for A such that SOL'(A) = v - SOL(A). If v > (1 +0)*, then SOL' is a
schedule for A’, and it is timely.

In what follows, when we are given a solution SOL for A, we let SOL = TA(SOL, (1+9)*).
We use SOL as a solution for A’ and not only for A.

> Lemma 3. We have (1 + 0)* - SOL(A) < SOL(A) < (1 + 6)° - SOL(A), O(A") <
(1+0)% - O(A), and O(A) < O'(A') < (1+6)° - O(A).

In what follows, we will only consider timely (and valid) schedules for A’. Let O” denote
an optimal timely schedule for A’.

» Lemma 4. We have O"(A’) < (1+46)° - O'(4).

» Corollary 5. If a solution SOL for A’ satisfies SOL(A") < (1 + ko) - O"(A") for some
k> 1, then SOL(A) < (1+ (3k/2 +15)d) - O(A).

In the analysis of algorithms for A’, we will use pseudo-costs which we will define now,
rather than actual costs. The completion time of any job is strictly positive, and we use
this property in the definition. The pseudo-cost of job j whose completion time C; satisfies
C; €[(1+6)% (1 +0)"t) is defined as w;(1 + §)*! (that is, we round its completion time
up to the next power of 1+ ¢ for the calculation of its pseudo-cost such that the completion
time is increased even if it is already an integer power of 1+ 6). Let Opc denote an optimal
timely solution for A’ with respect to pseudo-cost (that is, the total pseudo-cost of all jobs is
minimized). Let PC(SOL(A’)) denote the pseudo-cost of SOL for input A’.

» Lemma 6. For a solution SOL for input A’, we have PC(#{;M’)) < SOL(4) <
PC(SOL(A"), and PC(Opc(A")) < PC(O"(A") <(1+40)-O"(A").

If SOL satisfies PC(SOL(A")) < (1 4+ k" -0) - PC(Opc(A")) for some k' > 1, then
SOL(A) < (1 + (2K +17) - 6) - O(A).

Given the last lemma we find that in order to obtain an approximate (within a factor of
1+ O(¢)) schedule for A with respect to the total weighted completion time, it is sufficient
to consider timely schedules and pseudo-costs, and find an approximate schedule (within a
factor of 14 O(e)) for the latter problem.
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Preliminaries. Before presenting the next steps of our scheme, we define some procedures
for modifying a solution. These procedures that we develop here will be invoked throughout
the further steps of our algorithm.

A simple representation of schedules. We consider input A’ and timely schedules. In what
follows we only discuss pseudo-costs. As we saw, a resulting approximate solution can be
used as an approximate solution for A.

We slightly abuse notation and use SOL(A’) to denote the pseudo-cost of SOL for A’
Let J; ¢ denote the time interval [(1+6)%, (1 + §)*!) on machine £. The total size of jobs for
which both the starting time and completion time are within this interval (on machine ¢) is
at most s; - § - (1 + )%, which is called the length of this interval. In what follows we let 6
denote the smallest value of i such that (1 + )% is a release date of some job of A’.

» Lemma 7. Consider a timely schedule. If job j is assigned to run on machine ¢ and has a
starting time in J; ¢, then p; < 3 - (1 + 8)i*L. If the completion time of j is in the same
interval, then p; < sp-0-(1+0)°.

Since we use pseudo-costs, we will represent schedules by specifying for each job j the
machine that runs it, the interval where j starts, and the interval that contains the completion
time of the job (both being time intervals of the same machine where for a time interval, both
the start point and the endpoint are integer powers of 1+ §). Note that if the completion
time of j is (1 +d)® (on some machine ), which is the right endpoint of the previous interval
and the start endpoint of 7; ¢, then we say that the completion time of j belongs to J; ; even
though the time slot that j runs in is [(1+6)" — %Z’ (146)") (so j is completed just before 7; ¢
starts, but the completion time of j is (1 + d)*, and this is a point of 7; ;). Alternatively, it
is possible to state, for each interval, the list of jobs whose starting times are in this interval,
and the list of jobs whose completion times are in this interval. The cost of the schedule
can be computed by computing the total cost of all intervals. The cost of J; ; is (1 + &)™
times the total weight of jobs whose completion times are in J; ;. Obviously, additional
conditions are required for such lists to ensure that a list originates in a valid schedule (where
an exact completion time is assigned to each job), and a complete schedule of the same cost
(i.e., pseudo-cost) can be constructed. For example, if job j has a starting time in J;, ¢ and
completion time in J;, ¢, where iz — iy > 2, then for any i3 < ¢/ < iz, no job can have a
starting time or a completion time in Jy . Moreover, the total size of jobs that have to run
in a sequence of consecutive intervals cannot exceed the total length of the intervals. We say
that a schedule defined by such a list is timely if for every job j with starting time in J; ; it
holds that ¢ - % < (1+0)%, that is, if the minimum starting time that it may receive satisfies
the condition for timely schedules for this job. This is equivalent to the original definition,
since the thresholds for starting times in that definition are integer powers of 1 4+ §. In the
next lemma we formulate necessary and sufficient conditions for a list to represent a valid
timely schedule.

» Lemma 8. Consider the following conditions on a list.

1. For every job j, that has a starting time in J; ¢ and a completion time in Jy ¢, it holds
that ¢/ =4, v > 1, and 7"3- < (1+9)%

2. Forany 1 <{<m,i>60 (where (1+6)° was defined as the minimum release date in
A’), and 0" such that § < 0" <, the total size of jobs for which both the completion times
and starting times are in Jpr o U Jor11,0 U~ - - U J; ¢ s strictly smaller than the total length
of the intervals Jo o, Jor+1,0+-- - Jie-
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3. For any j whose starting time and completion time are in the intervals J;, o and J;, ¢
respectively, such that io > i1, any interval Jyr o with i1 < 1! < iy has mo starting times
of jobs and no completion times of jobs.

4. For any Jie, there is at most one job whose starting time is in this interval and its
completion time is not, and at most one job whose completion time is in this interval, but
its starting time s not.

FEvery schedule has these properties, and for every list that has these properties, there exists

a schedule of the same cost that obeys the requirements on starting times and completion

times of jobs of this list in the sense that the schedule is valid, starting times are in the

required intervals and completion times are no later than the required intervals (and every
job is assigned to the machine that should receive it).

We will have that for every timely schedule that is given as a list, every schedule that is
created from the list (i.e., choosing a permutation of the jobs that start and complete in a
common interval) results in a timely schedule.

Shifted schedules. For a job j of size (14 4)¢, let its stretched size be (14 6)**1. We define
a stretched input A’ where the size of each job is stretched and its processing time is exactly
1+ 6 times larger. The other properties of the stretched input are unchanged compared to
the original input in the sense that it consists of the same machines and jobs as A’, each
machine has the same speed in both inputs, and each job has the same release date in both
inputs.

Given a schedule SOL for A’, we define a schedule S(SOL), called the shifted schedule of
the schedule SOL, which is defined for A’. If job j has a starting time in Ji, ¢ and completion
time in 7;, ¢ (where iz > 1) in SOL, we define its starting time and its completion time in
S(SOL) to be in the intervals J;, +1,¢ and J;,+1,¢, respectively.

» Lemma 9. If SOL is a valid timely schedule (for A'), then so is S(SOL) (for A’), and
the costs satisfy S(SOL)(A’) = (14 6)SOL(A").

Schedule S(SOL) can obviously be used also as a schedule for an input where the size of
each job in A’ is stretched by some factor in [1,1 + 6] (the need to use this property is one of
the reasons that we consider S(SOL) as an assignment of a machine and completion time
for each job), and it remains timely since jobs can only start later while their sizes can only
decrease. This argument is valid even if the stretch factors of different jobs may be different,
and also if all stretch factors are equal to 1 (that is, the input is simply A’).

Time stretched schedules. Given a timely schedule S for an input A’, we do not modify
the input, but we define a new schedule called the schedule obtained from S by time stretching
by a factor of 1+ 6, as follows. If j is assigned to run (in S) on machine ¢ during [t,#), we
obviously have p; = s,(t' —t). We reserve the time period [(1 + d)¢, (1 + 6)t’) on machine
¢ for job j (where (14 §)t is the reserved starting time of j, and (1 + )¢’ is the reserved
completion time of j). This interval is too long for the job, and we place the job in the
middle. Specifically, we assign j to start at time (1 + ) -t + 52'5;,
called the basic starting time of j. Scheduling the job in the middle of the interval allows
us to keep the time where exactly half of the job is completed unchanged (but stretched
together with the schedule). Obviously, no job will start running before its release date, and

the schedule remains timely. The basic completion time of j will be (1+4) -t + ‘;f L

where this time will be
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that is,

pj opj _ / 0pj _ ;) 0p;
(1+5)-t+5—e(1+5)—2—w =(146)-t+ (¢ —t)(1+6)—2—5€—(1+5)~t T2,
If j originally completed during J; o in S(A’), then both its reserved and basic completion
times will be no later than in the interval [J;;1 ¢, so the cost increases by at most a
multiplicative factor of 1 4 4.
Next, for any interval J; ¢, such that there is no job whose reserved time interval contains
Ji ¢, shift all jobs that start and end during this time interval such that they run continuously
as early as possible, that is, either starting at the beginning of J; ¢, or just at the basic
completion time of a job that starts in an earlier time interval and completes in J; ¢ (jobs
are reassigned to run without idle time, ignoring the time that was reserved before jobs are
started or after they are completed). Moreover, if there is a job whose reserved starting time
is during J; ¢, its reserved completion time is in another time interval, but it is small for
Jie, where we define small for J; ¢ such that its size is smaller than 6'0 times the length
of the interval, it is also shifted to start as early as possible. The set of these jobs, that we
call the jobs of J; ¢, can be processed in any order, as long as the length of the interval is
sufficient to accommodate all of them such that their completion times are within this time
interval. The new starting times and completion times will be called (with a slight abuse of
notation) actual starting times and actual completion times, respectively. For jobs whose
time slots are not modified, the actual starting times and actual completion times are equal
to the basic starting times and basic completion times, respectively.

Analysis. Let U denote the total size of the jobs whose reserved starting times and reserved
completion times are in J; ¢. If there is a job whose reserved starting time is in this time
interval but its reserved completion time is not, consider this job and denote it by x. The
basic starting time of x is in J; ¢ or in a later interval (this may happen because the basic
starting time is larger than the reserved starting time), and the basic completion time is
larger than its basic starting time. Let U, denote the total size of  that can run during J; ¢
between its basic starting time and the minimum between its basic completion time and the
end of the interval (this value can be zero even if x exists). Let U} be the size that can be
run between the reserved starting time of x and the minimum between the basic starting
time of = and the end of the interval (letting Us = U4 = 0 if no such job exists). Similarly, if
there is a job with a reserved starting time in an earlier time interval on the same machine
and a reserved completion time in J; ¢, let U; denote the total size of this job that can run
during 7; » until its basic completion time, and let U] the size that can run in J; ¢ after the
basic completion time and until the reserved completion time (where Uy = U] = 0 if no such
job exists).
For a fixed interval J; ¢ let Z = s;- 8- (1 +0)" denote its length.

» Lemma 10. Assume that there is no job with a reserved time interval that contains J ¢.
Then, the total size that is available for jobs of Jie (in the time stretched schedule) is at least
U+ 6% Z, and the current total size of the jobs of Ji s (after the modifications concerning
shifting jobs, as described above) is at most U + 610 - Z.

Consider a (timely) schedule S for A’ and the solution S obtained from S by time
stretching by a factor of 1+ 4. Let J; ¢ be an interval that is not contained in a reserved time
interval of any job. By the last claim, this interval contains an idle time of length at least §°
times the length of the interval, and such idle time in an interval J; ¢ is called a gap in J; ;.
The lower bound on the length is found by (U +62-Z) — (U+6'°-Z) =§2(1-6%)-Z > 63 - Z
for 6 < 3—16.
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Observe that there might be other time intervals containing idle time which are not gaps.

This happens in the case that the time interval is contained in a reserved period of some job
and at least one of the basic starting time and the basic completion time is an inner point of
that interval.

» Corollary 11. Given a timely schedule S, the schedule S obtained from S by time stretching
by a factor of 1+ 8 can be constructed in polynomial time and the cost (that is, pseudo-cost)
of this solution is at most 1+ 6 times the cost (pseudo-cost) of S. Consider S and an interval
Jie for which one of the following holds for S: the entire time interval is idle, or there is
a job with a reserved starting time in this time interval, or there is a job with a reserved
completion time in this interval. For this interval, S satisfies that the interval contains idle
time of length at least 5 - Z where Z = s,-6 - (14 6) is the length of J; ¢. Moreover, for any
job that is small for the interval that contains its basic starting time, its basic completion
time is in the same interval.

Consider the solution S obtained from a timely schedule S by time stretching by a factor
of 1 4+ 4, and let j be a job whose starting time in S is in the interval Jie- The reserved
starting and completion time of j in S are not larger than 1 + ¢ multiplied by the starting
time and completion time of j in S. The processing time of j on machine ¢ is at most %
since S is timely, and since the starting time of j in S is Ji¢. Thus, the completion time of

jin Sis at most (1 +68)% + “%ﬁi = % In S, the reserved completion time of j is at

i4+2
most %, and the end of the time interval containing the reserved completion time of
i+3 3
this job is at most %. Therefore, using % < 6% we conclude the following.

» Lemma 12. If S is obtaz'zzed frorr} a timely schedule S by time stretching by a factor of
1490, and Ji ¢ has a gap in S, then S has another gap on machine £ during the time interval
[(140)F, (1+6)"- ).

In what follows, given a time-stretched schedule, we refer to basic starting times and
basic completion times simply as starting times and completion times, respectively.

A job shifting procedure. We now return to focusing on the design of our EPTAS, and we
consider the rounded input A’ resulting from the standard rounding steps. Recall that the
density of job j in A’ is the ratio Z—j

Our next goal is to create a new input from A’ by increasing the release date of some of
the jobs while keeping all other parts of the input unchanged, such that the following holds.
There is a positive constant z, such that for every integer value of ¢, the set of jobs released
at time (1 + 6)* of a common density can be scheduled on the m machines to complete no
later than time z(1 + §)*. This goal was achieved for identical machines by Afrati et al. [1]
using a fairly straightforward exchange argument. The case of uniformly related machines is
significantly more difficult because in the exchange argument for uniformly related machines
(as opposed to the situation for identical machines), a small job that is delayed to a later
time interval need not stay small since it may be assigned to a different (slower) machine.
This difficulty was not observed by Chekuri and Khanna [8], and thus we cannot use their
procedure. Therefore, in order to overcome this difficulty, we provide a new procedure that
handles each density separately, and uses a fine partition of the jobs of each density for which
we are able to show such a bound.

First, we define divisions of job sizes as follows. Let A = [log;,;2]. We have A < }
as (1+6)3 > 2 (which can be verified since 5 is an integer). For a job size (1 + 6), let k;
be an integer such that 2% - (1 +6)* € (1,2]. Let k} = [logy 52" + i, where k] < A as
2ki . (14 6)* < 2, and therefore [log; ,5(2% - (14 0)")] < [log,,52]. Additionally, &} > 1, as
2k (1+0) > 1.
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The division of a job of size (1+6)? is defined to be &/, and its subdivision is k;. The pseudo-
size of such a job is defined to be m; = (1;# Since logy 452" < ki —i <log; 52" +1, we
have (14 6)%~% > 2% and (14 0)% i1 < 2% Thus, we have (1+6)! < m; < (1+68)"! (so
the pseudo-size is not smaller than the size, but it is not much larger). Since every job has a
value k}, and 1 < k} < A, the divisions 1,2,..., A form a partition of [1,2).

More intuitively, the division of a size of a job (a power of 1+ 0) is the part of [1,2) that it
belongs to when it is multiplied by an appropriate integer power of 2. The subdivision is this
last power of 2. For example, a job of size (1 + §)~! has the subdivision 1, as 1 < % <2.
Its division is [log,,52] —1 = A — 1, which means that once the size is multiplied by the
appropriate power of 2 (which is 2! for this example), it becomes relatively close to 2 (and
indeed ﬁ is not much smaller than 1). Two other examples are jobs of sizes 1 and 1+ §.
The subdivisions of these jobs are 1 and 0, respectively, their divisions are A and 1 (and
indeed the second size is not much larger than 1).

Let A” be A’ such that the size of a job of size (1 + J)? is replaced with the pseudo-size
m;. The values 7; of one division form a divisible sequence, and more specifically, given two
such distinct values of one division, the larger one divided by the smaller one is a positive
integral power of 2. In what follows we will schedule the jobs of A” in some cases. Let O be
an optimal timely solution for A” and recall that O" is an optimal timely schedule for A’.

» Corollary 13. We have O (A") < O(A”) < (1 +5)0"(A").

Recall that any job of size below 610 -s,-3(1+6)" = 511 - 54+ (1+6)" is defined to be small
for interval J; ;. We also say that any job of size in [§11 - s, - (14 0)%, 5,8 (1+6)?) is called
medium for this time interval, any job of size in [s; - § - (14 6), 2 - (14 6)*™1) is called large
for this time interval, and larger jobs (of size at least 3¢ - (1 + &)**!) are called huge for the
interval. Recall that a job that is huge for a given time interval cannot start during this time
interval in a timely schedule, and a large job cannot be assigned to run only in the interval
(it is not possible that both its starting time and completion time are in the interval due to
the length of the interval). We say that a job is big for an interval if it is either medium or
large for it. The following definition uses the pseudo-sizes of jobs that are their sizes in A”.

» Definition 14. A schedule for A" is called organized if it is timely, and it has the following
properties. 1. Let j be a job whose starting time is in J; . If 7 is small for this interval,
then its completion time is in the same interval.

2. Consider two jobs, ji,j2, of a given division k and the same density, such that the
starting time of ji is in interval T, o,, and the starting time of ja is in interval Ji, ¢,, where
19 > 11 or both is = i1 and €y > £1. Moreover, assume that r;-2 < (14 9).

a. If mj, < mj,, then ja is not small for Jiy e, b. If w5, = 7j,, then v’ > 1% . c. If both

=mj, and v}, =1} hold, then the index of the second job is smaller, i.e., j2 < j1.

T J1

1

Since the considered schedule A” is timely, jobs ji, jo are not huge for J;, ¢, and J;, ¢,
respectively. This means that for j, (¢ = 1,2), if it is not small for J;, ¢, , it has to be big
for this interval. Note that in the case m;, < m;,, if i1 = i» = 7, the case where j; is big for
Ji,e, while jo is small for J; ¢,, cannot occur since speeds are sorted (so machine ¢5 is not
faster than ¢;).

This definition specifies fixed priorities on jobs. For jobs of equal sizes and densities, a job
of a smaller release date has higher priority, and out of two such jobs with the same release
date, the one of the higher index has a higher priority. For a fixed time interval, there are
also priorities between jobs of one division that are small for it in the sense that the interval
will contain jobs that are prioritized while jobs with a lower priority are assigned to start
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during a later interval or to a parallel interval (during the exact same time) on a machine of
a higher index. The priority between two jobs of one size remains the same, and additionally,
a larger job has a higher priority than a smaller job (this is defined per time interval, and
only for jobs of the instance that are small for it). Obviously, given a time interval J; ¢, all
jobs that are released at time (1 + §)**! or later are irrelevant for it and have no priority.
Let O denote an optimal organized schedule for A” (in particular, © must be timely).

» Lemma 15. O(A”) < (1+26) - O(A").

We apply an additional transformation on release dates to obtain the instance A from
A" where the release date of j is denoted by 7; (and satisfies r; > r%). Other than modified
release dates for some of the jobs, A and A’ have the same machines and the same jobs. The
instance A may contain release dates that do not exist in A’, but all release dates are integer
powers of 1+ § and the smallest release date will remain (1+§)?. Thus, any (timely) solution
for A is a (timely) solution for A’ as well. In order to use a solution of A’ for A, one has to
show that each job j that has a starting time in J; , has r; < (1+6)? (while other aspects of
feasibility follow from the feasibility for A’). In particular, we can use an organized schedule
for A” as a schedule for A’ and thus for A. In A, for every type of jobs, if too many (in
terms of the number or the total size) pending jobs exist at time (1 + §)?, the release date of
some of them is increased. This can be done when it is impossible to schedule all these jobs
due to the lengths of intervals. We need to take into account jobs that have starting times
in an interval J; ¢ even if their completion times are in later time intervals. Jobs with this
property are called special. The total size of jobs that are not special will be at most the
total lengths of time intervals. The process is applied separately and independently on every
possible density.

We will define A using a process that acts on increasing values of i and at each step
applies a modification on release dates of jobs whose current release date is (1 + ). For
a given density d, initialize r; = r; for every job j of density d. For each possible size,
create a list of preferences. In this list, jobs are ordered by non-decreasing release dates
in A’, and within every release date, by decreasing indices. In what follows, for any job j
we will refer to ré» as the initial release date of j, and to the values r; as modified release
dates. As these values will be changed during a modification process that we define (they
can possibly be changed a number of times for each job), when we discuss such a value, we
will always refer to the current value even if it will be changed later. We apply the process
fori=60,041,.... The stopping condition will be the situation where for some ¢ there are
no jobs whose modified release dates are at least (1 + 6). If during the process for some i
there are no jobs with modified release date (1 + §)¢, but there exist jobs with larger release
dates (in this case these are both initial and modified release dates of those jobs), we skip
this value of i and move to the next value.

Recall that our goal is to increase some (modified) release dates of jobs where these jobs
will not be started before the next possible release date, and to break ties consistently, we do

this for jobs that would not be started before the next release date in an organized schedule.

Since we are interested in organized schedules that are, in particular, timely, jobs that are
huge for a given interval should not be scheduled a starting time in this interval.

For a given value of i, and a fixed density d, we consider jobs whose modified release
date is (1 + 6)’. Out of these jobs we will select a subset, and for every such j in the subset,
the current value of r; will remain (1 + §)* and will not change later. For every job j that
is not selected (after applying the process to all machines), we modify its modified release
date into rj = (14 §)"*!. Initially, no job is selected. For every time interval J; , (for some
1 < ¢ <m), for every size that is big (large or medium) for this interval and every density,
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select the unselected highest priority job j such that r; = (1 + )¢, For sizes that no such
job exists obviously no job is selected. So far we selected at most one job for every size and
density among sizes that are not huge for the interval (for which we do not choose jobs) and
sizes that are not small for the interval. We proceed to choosing additional medium jobs and
to choosing small jobs.

For every size that is medium for this interval and every density, select an additional
unselected 5%0 highest priority jobs of this size (selecting all such jobs if less than 5%0 such
jobs exist). For every division k and every density, consider the job sizes of this division
that are small for this time interval in non-increasing order. For each size (that is small for
the interval), unselected jobs of one size are selected according to priorities. Keep selecting
unselected jobs according to priorities, moving to the next size if all jobs of one size have
been selected, until the total size of selected jobs of division k (and density d, that are small
for Ji¢) is at least s,6(1 + &) (and thus their total size is at most s¢6(1 4 6)*(1 + §'9), since
any such job is small for J; ;). If the total size of all these jobs is smaller than s, - §(1 + §)°,
all of them are selected. For a given triple d, 4, ¢, letting Z = s, - 6(1 + §)*, the total size of
selected jobs is as follows. There are at most log, 1%25 +1< 5%, + 2 sizes of large jobs, each
having a size of at most 1%25 - Z. There are at most log, 5 5% +1< 5% + 1 sizes of medium
jobs, each having a size of at most Z. To find an upper bound on the total size of small
jobs that are selected, recall that there are at most % divisions. The total size of selected
large jobs is at most Z(55 + 2)(15%5) < Z. The total size of selected medium jobs is at most
(14 515) (5 + 1)Z < %. The total size of small jobs is at most Z - 3(1 + 6'°). The total
size is therefore at most 5%.

» Lemma 16. In an organized schedule for A", every job j is assigned a starting time in a
time interval that is no earlier than r;. Thus, any organized solution for A" is a valid timely
schedule for A with the same cost.

» Lemma 17. If the input belongs to at most §j densities (where § is a function of 0), then the
jobs of modified release date r can be all scheduled during [t,t"), where t > v, and t' < t4 555
Given a set of § densities, the set of jobs with modified release date at most r and these

densities, can be all scheduled during a time interval [t,t") where t > r and t' <t + TQ(;;{‘;).

Proof. Let ¢ > r, and schedule the jobs whose modified release date is r starting at time ¢, such
that the jobs scheduled on machine £ are those that were selected for J; ¢ (where r = (1+4)°).
The total size of the jobs of one density is at most 6% = Sf(gjg‘w = %z so the jobs of §
densities will be completed (on a machine of speed sy) within a time interval not longer than

;Tg. To prove the second claim, note that the total size of jobs of one density and modified

. . . . log, s7—6 1 145
release date at most 7 that will run on machine £ is at most Sz -, " ey < 5 e,

since previous interval lengths are smaller by a multiplicative factor which is a positive

integral power of ﬁ dependent on the distance to r. |

» Corollary 18. Consider an instance A, obtained from A by keeping jobs belonging to only
§ given densities, and that are released by time R (including R, for a fited R > 0). There
exists an optimal timely schedule Oy for Ag where no job is completed after time é’TE.

Proof. Consider an optimal schedule O, and let R’ = (?TIZ. We define T as follows. Let
R' < T < (14 0)R be such that T'= (1 + §)* for an integer ¢. Consider the jobs released by
time R whose completion times are above T' (and thus in their pseudo-costs, their weights
are multiplied by at least T'(1 + ¢)). By Lemma 17, it is possible to schedule these jobs
during [T, T + RT%) We have (%2 = dR' < 6T, and therefore it is possible to remove
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all these jobs from O, and schedule them within the time interval [T, (1 4+ §)T). As all
jobs that are still running at time T (jobs whose starting times are smaller than T' but
their completion times are larger than T') are also removed, before the jobs are assigned
again, the time interval [T, (1 + 6)T) is idle on all machines. No reassigned job has an
increased cost, and therefore the resulting schedule, Oy is optimal as well. We are done since
(L+0)T < (1+0)2R = (1+6)24% < 22 <

This concludes the initial steps of our scheme. Together with later steps (see the full
version of this work) we derive an EPTAS for our problem.
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