
Quantum Programming in Polylogarithmic Time
Florent Ferrari #

École Normale Supérieure de Lyon, France

Emmanuel Hainry # Ñ

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Romain Péchoux # Ñ

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Mário Silva # Ñ

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Abstract
Polylogarithmic time delineates a relevant notion of feasibility on several classical computational
models such as Boolean circuits or parallel random access machines. As far as the quantum paradigm
is concerned, this notion yields the complexity class fbqpolylog of functions approximable in
polylogarithmic time with a quantum random access Turing machine. We introduce a quantum
programming language with first-order recursive procedures, which provides the first programming
language-based characterization of fbqpolylog. Each program computes a function in fbqpolylog
(soundness) and, conversely, each function of this complexity class is computed by a program
(completeness). We also provide a compilation strategy from programs to uniform families of
quantum circuits of polylogarithmic depth and polynomial size, whose set of computed functions is
known as qnc, and recover the well-known separation result fbqpolylog ⊊ qnc.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases Quantum programming languages, Polylogarithmic time, Quantum circuits,
Implicit computational complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2025.47

Funding This work is supported by the the Plan France 2030 through the PEPR integrated project
EPiQ ANR-22-PETQ-0007 and the HQI platform ANR-22-PNCQ-0002; and by the European Union
through the MSCA SE project QCOMICAL (Grant Agreement ID: 101182520), project NEASQC
(Grant Agreement 951821), and project HPCQS (Grant Agreement 101018180).

1 Introduction

1.1 Motivation
Quantum computing is a field of research, which is drawing a great amount of interest as
it leverages quantum superposition and interference to obtain computational advantage.
The development of quantum programming languages is thus a key issue, which raises
major technical and conceptual challenges to ensure their physicality. In order to check
that quantum programs can be compiled and executed on a quantum computer, one has to
design restrictions and constraints implying that quantum programs do not break the laws of
quantum mechanics, for example, no-cloning of data and unitarity of operators. In addition,
there is a need to tame their complexity in order to ensure their feasibility. By feasibility, we
mean that quantum executions do not use too many ancillary qubits and run in tractable
time.

Taking inspiration from the classical world, this kind of issue has lead to the definition and
study of several quantum polynomial time classes. One of the most striking examples of such
classes is bqp, the quantum analog of the class of bounded-error probabilistic polynomial time

© Florent Ferrari, Emmanuel Hainry, Romain Péchoux, and Mário Silva;
licensed under Creative Commons License CC-BY 4.0

50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Paweł Gawrychowski, Filip Mazowiecki, and Michał Skrzypczak; Article No. 47; pp. 47:1–47:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florent.ferrari@ens-lyon.fr
https://orcid.org/0009-0009-7441-6037
mailto:hainry@loria.fr
https://members.loria.fr/EHainry
https://orcid.org/0000-0002-9750-0460
mailto:pechoux@loria.fr
https://members.loria.fr/RPechoux
https://orcid.org/0000-0003-0601-5425
mailto:mmachado@loria.fr
https://members.loria.fr/MMachadoDaSilva/
https://orcid.org/0000-0002-9886-8400
https://doi.org/10.4230/LIPIcs.MFCS.2025.47
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

47:2 Quantum Programming in Polylogarithmic Time

problems bpp. By Yao’s theorem [23], bqp corresponds exactly to what can be computed by
uniform families of quantum circuits of polynomial size. This class, as well as its extension
to functions, fbqp, have been characterized through various means, including function
algebras [19] and first-order programs [12].

A natural question is then to study subpolynomial complexity classes. As for classical
programs, it allows to express notions of parallel complexity, which is highly relevant in
the quantum setting where program superpositions can be viewed as a kind of parallelism
with interferences. Parallelization can be used to reduce the maximum number of operations
performed in total on each qubit. This is particularly challenging as qubit fidelity, i.e., the
ability of qubits to align with their intended states through time and unitary operations, is a
bottleneck of quantum computation [14]. While polynomial time algorithms performed in
sequence are useful in the fewer qubits, higher fidelity setting [12], parallelized computation
becomes more interesting in the case of more qubits, lower fidelity [15], as the total number
of operations on individual qubits, and their necessary coherence time, scale more slowly.
Moreover, separation results between those small complexity classes could lead to a proof of
the quantum advantage, as constant depth quantum circuits have been shown to be strictly
more powerful than their classical counterparts [5].

In the literature, polylogarithmic (polylog) time has been introduced and studied on
Quantum Random-Access Turing Machine (QRATM) [10]. As in the classical case, this
definition uses random-access machines, as opposed to standard quantum Turing machines,
because of the sub-linearity of time: although the machine cannot read its entire input,
it can access any input bit or qubit. On quantum models, polylog time corresponds to
problems that a QRATM can solve in a polylog number of steps, leading to the definition of
the complexity class fbqpolylog [20, 21] of functions computable with bounded-error in
quantum polylog time.

A main open problem is to design programming languages characterizing such a polylog
class abstracting from the low-level considerations (machines, uniformity conditions, etc.) [22].

1.2 Contributions

This paper makes a first step towards solving this problem. Towards that end, we introduce
a quantum programming language with first-order recursive procedures, named plp for
PolyLog Programs (Figure 1), on which we obtain the following results:

plp programs are terminating (Theorem 7) and reversible (Theorem 8).
plp is sound for fbqpolylog (Theorem 10), i.e., each plp program computes a function
in fbqpolylog. Soundness relies on the use of a bounded recursion scheme for procedures
to enforce the required polylog time properties, as illustrated by the binary search and
square-log examples of Figure 4.
plp is complete for fbqpolylog (Theorem 10), i.e., each function of this complexity
class is computed by a plp program. Completeness is shown by a direct encoding of
polylog QRATM in plp.
plp is also sound but not complete for qnc. For soundness, we outline a compilation
algorithm that from a plp program and its input size outputs a quantum circuit of
polylog depth and polynomial size, i.e., circuits computing functions in qnc (Theorem 13).
There is an implementation of this algorithm available at https://gitlab.inria.fr/
mmachado/pfoq-compiler, whose compiler works for programs even beyond the plp
fragment, namely non-polylog programs. Completeness does not hold (Theorem 19) as it
is well-known that fbqpolylog is strictly included in qnc.

https://gitlab.inria.fr/mmachado/pfoq-compiler
https://gitlab.inria.fr/mmachado/pfoq-compiler

F. Ferrari, E. Hainry, R. Péchoux, and M. Silva 47:3

(Integers) i ≜ x | k | i ± k | i/2 | |l|
(Booleans) b ≜ i ≥ i | . . . | b ∧ b | . . .
(Qubit lists) l ≜ q̄ | l ⊖ [i] | l⊟ | l⊞

(Qubits) q ≜ l[i]
(Statements) S ≜ skip; | q ∗= Ug(i); | S S | if b then {S} else {S}

| qcase q of {0 → S, 1 → S}
| call proc(l1, . . . , ln);

(Procedure decl.) D ≜ ε | decl proc(q̄1, . . . , q̄n){S}, D
(Programs) P ≜ D :: S

Figure 1 Syntax of programs.

1.3 Related Work
Different characterizations of quantum complexity classes have been obtained for polynomial
time using, non-exhaustively, lambda-calculus [8], function algebra [19], and a first-order
programming language [12]. A characterization of bqpolylog based on a function algebra
has been provided in [20, 21], where a fast quantum recursion scheme is used to ensure that
programs terminate in polylogarithmic time. Our work employs a similar bounded recursion
scheme, using a simple divide-and-conquer strategy on qubits. This characterization can
be seen as simpler and more natural approach since an imperative first-order programming
language is more accessible to the typical programmer. Similar divide-and-conquer strategies
have been explored in quantum computation not only for the purpose of finding quantum
advantage [5, 6] but also to leverage classically-inspired techniques in the quantum scenario,
where reversibility and unitarity must be satisfied [18, 17]. Our work is mostly focused on this
second aspect, where the objective is to balance the expressivity of a quantum programming
language with the statically-verifiable properties of its programs, namely unitarity, time
complexity, as well as circuit size and depth.

2 First-Order Quantum Programs

2.1 Syntax
The considered language is a quantum programming language with first-order recursive
procedures whose syntax is provided in Figure 1. There are four basic types τ for expressions:
1. Integer expressions are variables x, constant k ∈ N, arithmetic operations like i ± k or

i/2,1 as well as the size |l| of a list of qubits l.
2. Boolean expressions are defined in a standard way.
3. Qubit lists are lists of unique (i.e., non-duplicable) qubit pointers. A qubit list expression

l is either a variable q̄, the first (respectively second) half l⊟ (resp. l⊞) of the qubit list
l, or a list l ⊖ [i] where the i-th element of l has been removed. We will also use some
syntactic sugar for removing multiple elements of a list with l ⊖ [i1, . . . , ik].

4. Qubit expressions are of the shape l[i], which denotes the i-th qubit in l. We also define
syntactic sugar for pointing to the n-th last qubit in a list, by defining for any n ≥ 1,
q̄[−n] ≜ q̄[|q̄| − n+ 1].

1 The semantics of /2 will be defined as the ceiling of the result, hence it preserves the set of integers.

MFCS 2025

47:4 Quantum Programming in Polylogarithmic Time

Throughout the paper, e, d, . . . will denote arbitrary expressions of any type. Given a
syntactic object t, let V ar(t) be the set of qubit variables used in t, e.g., V ar(q̄ ⊖ [2, 3]) = {q̄}
is the set of qubit variables in the expression q̄ ⊖ [2, 3].

A program P ≜ D :: S is defined in Figure 1 as a list of (possibly recursive) procedure
declarations D, followed by a program statement S. We assume that V ar(S) ⊆ V ar(P)
holds. In what follows, it will be convenient to order the set V ar(P) = {q̄1, . . . , q̄m} by
q̄1 < . . . < q̄m to fix a precise memory representation of quantum states.

Let Procedures be an enumerable set of procedure names proc. We write proc ∈ P to
denote that proc appears in P. Each procedure of name proc ∈ P is defined by a unique
procedure declaration decl proc(q̄1, . . . , q̄n){S} ∈ D, which takes the lists of qubits q̄i as
parameters. It always holds that V ar(S) ⊆ {q̄1, . . . , q̄n}. We will sometimes write Sproc to
explicitly state that S is the statement of proc.

Statements include the no-op instruction, (single-qubit) unitary application, sequences,
conditional, quantum case, and procedure calls. For sake of universality [4], in a unitary
application q ∗= Ug(i);, the unitary transformation Ug(i) ∈ K2×2 can take an integer i and
a function g ∈ Z → [0, 2π) as optional arguments2, and we omit them when they are of no
use. As we shall see in next section, unitary transformations will be restricted to phase gate,
rotation gates, and NOT gate.

The quantum conditional qcase q of {0 → S0, 1 → S1} allows branching by executing
statements S0 and S1 in superposition according to the state of qubit q. When we want to
treat cases on multiple qubits, we will sometimes simplify the nested qcases, for example
qcase q1, q2 of {00 → S00, 01 → S01, 10 → S10, 11 → S11} is a shorthand notation for

qcase q1 of {
0 → qcase q2 of {

0 → S00,
1 → S01

},
1 → qcase q2 of {

0 → S10,
1 → S11

}
}

In each procedure call call proc(l1, . . . , ln);, the no-cloning theorem of quantum mechanics
imposes the restriction that ∀i ̸= j, V ar(li) ̸= V ar(lj).

The syntax of Figure 1 can be used to define typical quantum computing primitives such
as controlled-NOT, swap, as well as Toffoli gates, as syntactic sugar:

CNOT(q1, q2) ≜ qcase q1 of {0 → skip; , 1 → q2 ∗= NOT; }
SWAP(q1, q2) ≜ CNOT(q1, q2) CNOT(q2, q1) CNOT(q1, q2)

TOF(q1, q2, q3) ≜ qcase q1 of {0 → skip; , 1 → CNOT(q2, q3)}

2 In the case of quantum polynomial time, Adleman et al. [1] showed how the choice of amplitudes can
affect the expressivity of classes such as bqp, requiring the restriction of polynomial-time approximable
complex amplitudes. How the set of amplitudes influences the class fbqpolylog remains an open
question, as discussed in [20, 21], and so we abstain from the use of the entire set of complex numbers
and instead use a field K which may refer to, for instance, polynomial-time approximable complex
amplitudes.

F. Ferrari, E. Hainry, R. Péchoux, and M. Silva 47:5

∀i ≤ n, (ei, f) ⇓JτiK xi

(op(e1, . . . , en), f) ⇓Jop(τ1,...,τn)K JopK(x1, . . . , xn)

(l, f) ⇓L(N) [x1, . . . , xn]

(|l|, f) ⇓Z n

q̄ ∈ V ar(P)
(q̄, f) ⇓L(N) f(q̄)

(l, f) ⇓L(N) [x1, . . . , xm] (i, f) ⇓Z k ∈ {1, . . . ,m}

(l ⊖ [i], f) ⇓L(N) [x1, . . . , xk−1, xk+1, . . . , xm]

(l, f) ⇓L(N) [x1, . . . , xm] (i, f) ⇓Z k /∈ {1, . . . ,m}

(l ⊖ [i], f) ⇓L(N) []

(l, f) ⇓L(N) [x1, . . . , xm] m > 1

(l⊟, f) ⇓L(N) [x1, . . . , x⌈m/2⌉]

(l, f) ⇓L(N) [x1, . . . , xm] m > 1

(l⊞, f) ⇓L(N) [x⌈m/2⌉+1, . . . , xm]

(l, f) ⇓L(N) [x1, . . . , xm] (i, f) ⇓Z k /∈ {1, . . . ,m}

(l[i], f) ⇓N 0

(l, f) ⇓L(N) l |l| ≤ 1 ± ∈ {⊟,⊞}

(l±, f) ⇓L(N) []

(l, f) ⇓L(N) [x1, . . . , xm] (i, f) ⇓Z k ∈ {1, . . . ,m}

(l[i], f) ⇓N xk

Figure 2 Semantics of expressions.

2.2 Semantics
Let B ≜ {0, 1} denote the set of Booleans and L(N) denote the set of lists of natural numbers,
[] being the empty list. We interpret basic types as follows:

JIntegersK ≜ Z JBooleansK ≜ B JQubit listsK ≜ L(N) JQubitsK ≜ N

Qubits are interpreted as integers (pointers) and qubit lists are interpreted as lists of pointers.
Each op ∈ {±, /2,≥,∧, . . .} of arity n comes with a basic type signature op :: τ1 ×. . .×τn → τ

and computes a fixed total function JopK ∈ Jτ1K× . . .× JτnK → JτK. We set op(τ1, . . . , τn) ≜ τ .
For example, J/2K ≜ m 7→ ⌈m/2⌉. Constants k are treated as particular operators of arity 0.
Given a program P, for each basic type τ , the semantics of expressions is described standardly
in Figure 2 as a function

⇓JτK : τ × (V ar(P) → L(N)) → JτK.

(e, f) ⇓JτK v holds when expression e of type τ evaluates to the value v ∈ JτK under the
context f ∈ V ar(P) → L(N). The context f is just a map from each program input to a
list of qubit pointers taken into consideration when evaluating e. For instance, we have that
(q̄[2], q̄ 7→ [1, 4, 5]) ⇓N 4 (the second qubit is of index 4), (q̄ ⊖ [4], q̄ 7→ [1, 4, 5]) ⇓L(N) [] ([] is
used for errors on type L(N)), (q̄[4], q̄ 7→ [1, 4, 5]) ⇓N 0 (index 0 is used for error on type N),
and (q̄ ⊖ [3], q̄ 7→ [1, 4, 5]) ⇓L(N) [1, 4] (the third qubit has been removed).

Let H2n denote the Hilbert space C2n of n qubits with tensor product ⊗ and let P(N)
denote the powerset of N. Given a program P, let the length of P be a function mapping
each qubit variable q̄ ∈ V ar(P) to an integer len(q̄) ∈ N. We write lenP as a shorthand for∑

q̄∈V ar(P) len(q̄) and len<q̄
P as a shorthand for

∑
q̄′∈V ar(P), q̄′<q̄ len(q̄′).

A configuration c of program P over lenP qubits is of the shape

(S, |ψ⟩ , A, f) ∈ (Statements ∪ {⊤,⊥}) × H2lenP × (V ar(P) → P(N)) × (V ar(P) → L(N)),

where ⊤ and ⊥ are two special symbols denoting termination and error, respectively, where
|ψ⟩ ∈ H2lenP is a quantum state, and where, for each qubit list q̄ ∈ V ar(P), A(q̄) is the

MFCS 2025

47:6 Quantum Programming in Polylogarithmic Time

set of qubit pointers accessible from q̄ and f(q̄) is the list of qubit pointers assigned to q̄.
Given a qubit q such that V ar(q) = {q̄}, we write A(q) as a shorthand for A(q̄) and we
write Aq\{n} for the function A′ ∈ V ar(P) → P(N) defined by A′(q̄′) ≜ A(q̄′), ∀q̄′ ̸= q̄, and
A′(q̄) ≜ A(q̄)\{n}.

Given a program P ≜ D :: S, with n = lenP, let Confn be the set of configurations
over n qubits. The initial configuration in Confn on input state |ψ⟩ ∈ H2n is cinit(|ψ⟩) ≜
(S, |ψ⟩ , q̄ 7→ {1, . . . , len(q̄)}, q̄ 7→ [1, . . . , len(q̄)]). A final configuration can be defined in the
same way as cfinal(|ψ⟩) ≜ (⊤, |ψ⟩ , q̄ 7→ {1, . . . , len(q̄)}, q̄ 7→ [1, . . . , len(q̄)]).

Each unitary transformation U of a unitary application q ∗= Ug(i); comes with a function
JUK assigning a unitary matrix JUK(g)(n) ∈ K2×2 to each integer n and function g ∈ Z →
[0, 2π). We restrict ourselves to three kinds of gates: the phase gate Ph, rotation gate RY
and NOT gate NOT, whose semantics is defined as follows:

JPhK(g)(n) ≜
(

1 0
0 eig(n)

)

JRYK(g)(n) ≜
(

cos(g(n)) − sin(g(n))
sin(g(n)) cos(g(n))

)

JNOTK(·)(·) ≜
(

0 1
1 0

)
The big-step semantics · −→ · is defined in Figure 3 as a relation in

⋃
n∈N Confn × Confn.

The symbols ⊥ and ⊤ for error and termination, respectively, are terminal states: they
cannot appear on the left-hand-side of a rule. In Figure 3, the function A of accessible
qubits is used to ensure that unitary operations on qubits can be physically implemented.
For example, the statements S0 and S1 of a quantum branch qcase q of {0 → S0, 1 → S1}
cannot access the control qubit q to ensure reversibility. To avoid cumbersome use of nested
conditionals in the program syntax, each procedure call on a (at least one) empty qubit list
is semantically equivalent to a skip; (see Figure 3).

We write JPK(|ψ⟩) = |ψ′⟩, whenever cinit(|ψ⟩) −→ cfinal(|ψ′⟩) holds. If the program P
terminates on all inputs (i.e., always reaches a final configuration) then JPK is a total function
on quantum states. Note that if a program terminates then it is obviously error-free (i.e.,
does not reach a configuration with a ⊥) but the converse property does not hold. However,
every program P can be efficiently transformed into an error-free program P¬⊥ such that
∀ |ψ⟩, if JPK(|ψ⟩) is defined then JPK(|ψ⟩) = JP¬⊥K(|ψ⟩). This can be done, for instance, by
checking the size of qubit lists before accessing them. Hence we will restrict ourselves to
error-free programs in what follows.

When an input state is defined by different qubit lists, we denote them in subscript. For
instance, for x, y ∈ {0, 1}∗ and m ∈ N, we have that |x⟩q̄1

|y⟩q̄2
indicates state |x⟩ given as

input to qubit list q̄1, state |y⟩ given as input to qubit list q̄2.
▶ Example 1 (Binary search). Let x ∈ 0∗1∗2∗ be a sorted string and x̂ denote the encoding
of x as a binary given by 0̂ ≜ 00, 1̂ ≜ 01, and 2̂ ≜ 10. Program SEARCH in Figure 4 computes
the function JSEARCHK(|x̂⟩q̄1

|0⟩q̄2
) = |x̂⟩q̄1

|b⟩q̄2
, where b ∈ {0, 1} indicates whether x contains

a 1 or not.
▶ Example 2 (Square Log). Program SQLOG of Figure 4 defines two recursive procedures
f and g and its complexity is square logarithmic in the size of the first qubit list q̄1. The
procedure g has logarithmic complexity in |q̄1| as each recursive call to g divides the size of
the first argument by 2. Similarly, the procedure f calls itself a logarithmic number of times
and calls g each time, hence accounting for a O(log2(|q̄1|)) complexity.

F. Ferrari, E. Hainry, R. Péchoux, and M. Silva 47:7

(skip; , |ψ⟩ , A, f) −→ (⊤, |ψ⟩ , A, f)
(q, f) ⇓N n /∈ A(q)

(q ∗= Ug(j);, |ψ⟩ , A, f) −→ (⊥, |ψ⟩ , A, f)

(q, f) ⇓N n ∈ A(q) (i, f) ⇓N m j = len<q
P + n

(q ∗= Ug(i);, |ψ⟩ , A, f) −→ (⊤, I2j−1 ⊗ JUK(g)(m) ⊗ I2lenP−j |ψ⟩ , A, f)

(S0, |ψ⟩ , A, f) −→ (⊤, |ψ′⟩ , A, f) (S1, |ψ′⟩ , A, l) −→ (⋄, |ψ′′⟩ , A, f) ⋄ ∈ {⊤,⊥}

(S0 S1, |ψ⟩ , A, f) −→ (⋄, |ψ′′⟩ , A, f)

(S0, |ψ⟩ , A, f) −→ (⊥, |ψ⟩ , A, f)
(S0 S1, |ψ⟩ , A, f) −→ (⊥, |ψ⟩ , A, f)

(b, f) ⇓B b (Sb, |ψ⟩ , A, f) −→ (⋄, |ψ′⟩ , A, f) ⋄ ∈ {⊤,⊥}

(if b then {S1} else {S0}, |ψ⟩ , A, f) −→ (⋄, |ψ′⟩ , A, f)

(q, f) ⇓N n ∈ A(q) ∀k ∈ B, (Sk, |ψ⟩ , Aq\{n}, f) −→ (⊤, |ψk⟩ , Aq\{n}, f) j = len<q
P + n

(qcase q of {0 → S0, 1 → S1}, |ψ⟩ , A, f) −→ (⊤,
∑

k∈{0,1} |k⟩j ⟨k|j |ψk⟩ , A, f)

(q, f) ⇓N n ∈ A(q) ∃k ∈ B, (Sk, |ψ⟩ , Aq\{n}, f) −→ (⊥, |ψk⟩ , Aq\{n}, f)

(qcase q of {0 → S0, 1 → S1}, |ψ⟩ , A, f) −→ (⊥, |ψ⟩ , A, f)

(q, f) ⇓N n /∈ A(q)
(qcase q of {0 → S0, 1 → S1}, |ψ⟩ , A, f) −→ (⊥, |ψ⟩ , A, f)

∀j ≤ n, (lj , f) ⇓L(N) lj ̸= [] (Sproc{lj/q̄j}, |ψ⟩ , A, f) −→ (⋄, |ψ′⟩ , A, f) ⋄ ∈ {⊤,⊥}

(call proc(l1, . . . , ln); , |ψ⟩ , A, f) −→ (⋄, |ψ′⟩ , A, f)

∃j ≤ n, (lj , f) ⇓L(N) []

(call proc(l1, . . . , ln); , |ψ⟩ , A, f) −→ (⊤, |ψ⟩ , A, f)

Figure 3 Semantics of statements.

2.3 Polylogarithmic Time Restrictions
We now define some restrictions on the admissible programs to guarantee that they terminate
in polylogarithmic time (i.e., each procedure cannot perform more than a polylogarithmic
number of recursive calls in the input size) and that their total number of sequential procedure
calls (i.e., calls that are not in superposition) is bounded polylogarithmically.

Towards that end, we define a relation between procedures to account for recursion. Given
a program P ≜ D :: S, the call relation →P ⊆ Procedures × Procedures is defined for any
two procedures proc1, proc2 ∈ S as proc1 →P proc2 whenever proc2 ∈ Sproc1 . The relation
⪰P is then the transitive closure of →P. The relation ∼P is defined by proc1 ∼P proc2 if
proc1 ⪰P proc2 as well as proc2 ⪰P proc1 both hold. Finally, the relation ≻P is defined
as proc1 ≻P proc2 if proc1 ⪰P proc2 and proc1 ̸∼P proc2 both hold. A procedure proc
is recursive whenever proc ∼P proc holds. Two procedures proc and proc′ are mutually
recursive whenever proc ∼P proc′ holds

▶ Definition 3. A program P is said to be recursively halving, denoted P ∈ half, if for each
procedure proc ∈ P and for each procedure call call proc′(l1, . . . , ln); ∈ Sproc,

if proc ∼P proc′ then there are 1 ≤ i ≤ n and l such that l⊟ or l⊞ appears in li.

MFCS 2025

47:8 Quantum Programming in Polylogarithmic Time

SEARCH

1 decl search(q̄1, q̄2) {
2 if |q̄1| > 1 then {
3 qcase q̄1[|q̄1|/2, |q̄1|/2 + 1] of {
4 00 → call search(q̄⊞

1 ⊖ [1], q̄2); ,
5 01 → q̄2[1] ∗= NOT; ,
6 10 → call search(q̄⊟

1 ⊖ [−1], q̄2); ,
7 11 → skip; }
8 } else { skip; }
9 } ::

10 call search(q̄1, q̄2);

SQLOG

1 decl f(q̄1, q̄2) {
2 q̄1[1] ∗= Phλx.2π/x(|q̄1|);
3 call f(q̄⊞

1 , q̄2);
4 call g(q̄1, q̄2 ⊖ [1]); }
5 decl g(q̄1, q̄2) {
6 qcase q̄1[|q̄1|/2] of {
7 0 → call g(q̄⊟

1 , q̄2); ,
8 1 → q̄2[1] ∗= NOT;
9 }} ::

10 call f(q̄1, q̄2);

Figure 4 Examples of plp programs.

This restriction can be viewed as a recursion scheme, which implies a polylogarithmic time
bound on programs in half by ensuring that in every (mutually) recursive procedure call at
least one of the input qubit lists is cut in half.

Now we impose a further condition on the number of sequential (mutually) recursive
procedure calls. For that purpose, we define the width of a program P in the following way.

▶ Definition 4. Given a program P, the width of a procedure proc ∈ P is defined by
widthP(proc) ≜ wproc

P (Sproc) where wproc
P (S) is defined inductively on statements by:

wproc
P (skip;) ≜ 0

wproc
P (q ∗= Ug(i);) ≜ 0

wproc
P (S0 S1) ≜ wproc

P (S0) + wproc
P (S1)

wproc
P (if b then {S1} else {S0}) ≜ max(wproc

P (S0), wproc
P (S1))

wproc
P (qcase q of {0 → S0, 1 → S1}) ≜ max(wproc

P (S0), wproc
P (S1))

wproc
P (call proc′(l1, . . . , ln);) ≜

{
1, if proc ∼P proc′,

0, otherwise.

The width of a program width(P) is defined by width(P) ≜ maxproc∈P widthP(proc). Let
width≤1 be defined by width≤1 ≜ {P | width(P) ≤ 1}.

▶ Definition 5. The set plp of PolyLog Programs is defined by plp ≜ half ∩ width≤1.

As we will see in next Section (Theorem 10), the restriction to plp programs ensures that
they can be simulated by quantum random-access Turing machines running in polylogarithmic
time.

▶ Example 6. Both programs SEARCH and SQLOG of Figure 4 can be shown to be in plp.
Let us consider the case of SQLOG which has two recursive procedures: f and g. We have
f ∼SQLOG f ≻SQLOG g ∼SQLOG g. It is easy to check that SQLOG ∈ half as the procedure f

F. Ferrari, E. Hainry, R. Péchoux, and M. Silva 47:9

recursively calls itself on q̄⊞
1 and g recursively calls itself on q̄⊟

1 . Furthermore, we verify that:

width(SQLOG) = max(widthSQLOG(f),widthSQLOG(g))
= max(wf

SQLOG(Sf), wg
SQLOG(Sg))

= max(0 + wf
SQLOG(call f(q̄⊞

1 , q̄2);) + wf
SQLOG(call g(q̄1, q̄2 ⊖ [1]);),

max(wg
SQLOG(call g(q̄⊟

1 , q̄2);), wg
SQLOG(q̄2[1] ∗= NOT;)))

= max(0 + 1 + 0,max(1, 0)) = 1

2.4 Properties of PLP Programs
Because of the half condition, programs in plp can be shown to be terminating.

▶ Theorem 7. If P ∈ plp, then P terminates.

Proof. This is trivially ensured by the half condition, which shows that the size of arguments
is strictly decreasing in recursive calls whenever the arguments are not empty as seen in the
semantics of l⊟/l⊞ in Figure 2, and the program semantics of Figure 3, as procedure calls
terminate on empty list. ◀

As plp programs are quantum programs, they must be reversible. We show that we can
constructively define a plp program P−1 that computes the inverse of P.

▶ Theorem 8 (Reversibility). There exists a program transformation ·−1 such that, for any
P ∈ plp, JP−1K ◦ JPK is the identity and P−1 ∈ plp.

Proof. The program transformation can be constructively defined on program statements.
For instance, (q ∗= Ug(i);)−1 ≜ q ∗= (Ug(i))†; and (S0 S1)−1 ≜ S−1

1 S−1
0 . ◀

Note that Theorems 7 and 8 can also be obtained as corollaries of the fbqpolylog-
soundness that will be proved in Theorem 10. We consider the ensured properties (termination
and reversibility) as consistency checks before going into the complexity results.

3 A Characterization of Quantum Polylog Time

In this section, we will show that plp characterizes exactly the functions in fbqpolylog, the
class of quantum polylog time approximable functions. That is, programs in plp compute
functions in fbqpolylog (Soundness) and, reciprocally, for any function in fbqpolylog,
there exists a plp program that computes it (Completeness).

3.1 Quantum Random Access Turing Machines and Polylog Time
To define the class fbqpolylog, we introduce the computational model of quantum random-
access Turing machines (QRATMs) [20, 21]. fbqpolylog is not defined on standard quantum
Turing machines because, due to its sub-linear time complexity, such a machine would not be
able to access all of its input. Random-access machines solve part of the problem by allowing
the machine to jump over its input.

A QRATM has a random access input tape, a log-space index tape, and c work tapes and
is then defined as a triplet (Q,Σ, δ), where Q is a finite set of states containing an initial state
s0 and two (disjoint) subsets Qacc and Qrej for accepting and rejecting states, Σ = {0, 1,#}
is the tape alphabet, and the transition function δ is such that

δ : Q× Σ1+c → (Q× Σ1+c × {L,R,N}1+c → C).

MFCS 2025

47:10 Quantum Programming in Polylogarithmic Time

This transition maps the state and read symbols on the index tape and work tapes to a
function mapping each state, each written symbol, and each head move to an amplitude.
Note that the input tape does not have a tape head, hence is not taken into account in this
transition function.

To get access to any character of the input, a special transition of the machine is defined:
when the machine is in a special state squery, the cell of input tape corresponding to the
binary number written on the index tape is swapped with the cell under the work tape head,
and the machine transitions to a state saccept. Note that, in contrast with [20, 21], the input
tape is not read-only as we consider a class of functions rather than decision problems, hence
having the modified input be part of the output is necessary. This allows for example to
consider the identity function.

A pure configuration of a QRATM is a tuple (s, w,w0, w1, . . . , wc, z0, z1, . . . , zc) ∈ Q ×
Σ∗2+c × Z1+c where s is a state, w the word written on the input tape, assumed to begin in
cell 0, w0 is the word on the index tape, w1, ..., wc the words written on the work tapes,
z0 is the position of the index tape head, z1, ..., zc the tape head positions for the work
tapes, all positions are relative to the first character of the word. The initial configuration
for input x is γ(x) ≜ (s0, x, ϵ, . . . , 0, . . .). We call a superposition of pure configurations a
surface configuration. Surface configurations can be written as

∑
r αr |r⟩, with r ranging over

pure configurations, αr ∈ C is the amplitude associated with configuration r. QRATMs are
also required to satisfy reversibility and well-formedness condition: a configuration may have
only one predecessor, and the transition function must preserve the norm of configurations,
that means that for all reachable surface configurations,

∑
r |αr|2 = 1.

A QRATM halts in time t on input x if, starting from the initial configuration γ(x),
after t steps, its surface configuration is a superposition of pure configurations in accepting
states. If for all input x, a QRATM M halts on input x in time T (|x|), we say that M halts
in time T . In particular, if there exists k ∈ N such that M halts in time O(logk(n)), M
halts in polylog time. If a QRATM halts, its output is defined as the linear combination
of the words on the input tape and work tapes, using the previous notations, it corres-
ponds to

∑
r αr |wr, wr

0, w
r
1, . . . , w

r
c⟩. Given a function f : {0, 1}∗ → {0, 1}∗, we say that a

QRATM M approximates f with probability p if for all input x ∈ {0, 1}∗, starting from
the initial configuration γ(x), M halts with an output

∑
r αr |wr, wr

0, w
r
1, . . . , w

r
c⟩ such that∑

r∈Qacc×{f(x)}×Z2+c |αr|2 ≥ p.

▶ Definition 9. The class fbqpolylog is defined as the set of functions f : {0, 1}∗ → {0, 1}∗

such that there exists a QRATM approximating f with probability at least 2
3 in polylog time.

Although a natural theoretical model for describing polylogarithmic time, QRATMs are
problematic because they are too semantic in nature: to characterise their complexity, the
time bound must be given explicit and their halting condition depends on the inner state of
the machine, which is a semantic condition. This motivates the provided characterization in
the next section.

3.2 Main Result
We denote by JplpK the set of functions computed by programs in plp. That is JplpK ≜
{JPK | P ∈ plp}. A program P approximates function f : {0, 1}∗ → {0, 1}∗ with probability
p ∈ [0, 1] if ∀x ∈ {0, 1}∗, | ⟨f(x)|JPK(x)⟩ |2 ≥ p, in other words if for all input, the output of P
coincides with f with probability at least p. The set of functions that can be approximated
with probability at least p is denoted by JplpK≥p.

▶ Theorem 10 (Soundness & Completeness). JplpK≥ 2
3

= fbqpolylog.

F. Ferrari, E. Hainry, R. Péchoux, and M. Silva 47:11

Proof. Soundness is proved via the fact that the half and width≥1 restrictions imply
a polylogarithmic bound for the depth of the call tree and a logarithmic bound on the
degree of this tree. Then we show that if some plp program P approximates f , then
the poly-logarithmic time QRATM simulating P also approximates f and guarantees that
f ∈ fbqpolylog.

Conversely, for completeness, given a polylog time QRATM M , we define a plp program
that simulates M . To achieve this, we represent the input tape, the index tape and the work
tapes using qubit lists, the state of the Turing machine is encoded inside the work tape by
writing it to the left of the character under the tape head. To simulate the execution of M ,
we define the following procedures:

access_input: allows for QRATM-like access to the input tape by performing quantum
branching on each cell of the index tape. The correct cell on the input tape to be read is
determined by “splitting” in half the set of possible input tape addresses according to the
value of each index tape cell.
local_step: simulates a constant-time transition of M locally on three adjacent cells of
the index tape and the work tape, or calls access_input for the query step.
full_step: performs local_step iteratively to simulate a transition of M over the
entirety of the index and work tapes.
iterate: executes full_step a polylogarithmic number of times, simulating the entire
run of M .

These procedures can be combined to obtain a plp program simulating M , by encoding
M ’s tapes in a way that allows for a local evolution of the state. ◀

4 Circuit Compilation

In this section, we sketch an algorithm that compiles plp programs into circuits of polynomial
size and polylogarithmic depth. An implementation of this algorithm, that also works for
non-plp programs, is available at https://gitlab.inria.fr/mmachado/pfoq-compiler.
The two plp programs SEARCH and SQLOG displayed in Figure 4 are also provided in the
repository. Here, we describe the salient points of the compilation and show that the circuit
obtained indeed has polylogarithmic depth.

The compilation strategy takes inspiration from [12, 13] which in particular uses ancillas
to factorize the circuits representing procedure calls in branches so as to prevent exponential
blow-up of the circuit size. Their technique is called anchoring and merging as when a
procedure call is first encountered, an ancilla is associated to this call (anchoring), and when
a subsequent call to this procedure happens with an input of the same size, this second
call is then merged with the first (merging). This way, instead of doubling the size of the
circuit whenever recursive calls appear in separate branches of a qcase, as in programs
SEARCH and SQLOG of Figure 4, the size grows linearly in the number of nested recursive calls,
hence preventing the exponential blow-up in complexity from the use of the quantum control
statement [24].

Figure 5 exemplifies this phenomenon on the SEARCH program: the circuit on the left
represented by a grey and white box the circuit for the search procedure applied to q̄1, q̄2.
Since this procedure has two calls to itself, its natural compilation gives an in-depth duplication
of the calls. The anchoring/merging process entails a single recursive compilation at the
price of an overhead in terms of ancillary qubits and permutations.

MFCS 2025

https://gitlab.inria.fr/mmachado/pfoq-compiler

47:12 Quantum Programming in Polylogarithmic Time

4.1 Outline of the Compilation Algorithm
The compilation algorithm takes as input a program P ∈ plp together with a list of the sizes
s̄ ≜ [s1, . . . , sn] of its inputs. As in the semantics, the algorithm maintains a function that
maps qubit list variables to lists of pointers to their qubits. Since the values of this function
only depend on the size of the qubit variable, the generation of the circuit does not need to
take qubit values into account.

The main compilation algorithm works by induction on the structure of the program
statement. Compiling statements such as l[i] ∗= Ug(j); is straightforward: use the semantics
to compute the wire number and which quantum gate to put into the circuit. Compiling a
sequence is naturally done by composing the circuits obtained from compiling each statement.
For compiling an if statement, note that Booleans only depend on constants and the size of
qubit lists, and hence can be computed from the knowledge of list s̄.

A qcase statement is compiled using controlled operations: consider qcase l[i] of {0 →
S0, 1 → S1}, the circuit compiled for S0 should be controlled negatively on the wire computed
for l[i], the circuit compiled for S1 should be controlled positively on the same wire. To keep
track of those controls, a structure is maintained that lists the control qubits and their state.
The compilation of a non-recursive call consists in compiling the statement of the procedure
after substituting its arguments by their expressions provided the qubit lists are non empty.

The only case that introduces complexity is that of recursive calls. A naive compilation
strategy for recursive calls with a recursive procedure calling itself in both branches of a
qcase, which is allowed by the width≤1 restriction, would yield a number of gates in the
compiled circuit exponential in the recursion depth. To prevent this blow-up, the process
(anchoring and merging) maintains a dictionary of ancillaries that associates an ancillary
qubit to pairs of procedure names and sizes of the inputs: if the dictionary does not have
a key for the considered procedure call, an anchoring ancillary is created, this ancillary
is initialized through a multiple controlled-NOT (Toffoli gate) encoding the qcase control
considered and used to control the quantum circuit of the procedure statement; if the key
is present in the dictionary, this ancillary is updated with another Toffoli gate and the two
procedure calls are automatically merged as illustrated in Figure 5. This strategy is sound as
the width≤1 restriction ensures that two repeated calls always occur in orthogonal branches
and can be simply combined in the same ancillary qubit.

To show the polylogarithmic depth bound on circuits implementing plp programs, we
first need to demonstrate that merging in the context of plp can be done in polylogarithmic
depth. Second, we show that the width≥1 and half restrictions imply that the number of
nested recursive procedure calls is polylogarithmically bounded.

4.2 Compilation to a Circuit of Polylog Depth
In a plp program, a recursive procedure call always cuts one input qubit list in half. This
means that the procedure will work either on the first half or on the second half of the
qubit list. In the worst case, which is also the most typical, the procedure will be called
recursively on each half depending on some condition. To avoid doubling the treatment of
those calls, the anchoring and merging process merges those calls in such a way that the
subcircuit for the procedure on half as many qubits is able to work on both halves. This
implies conditionally swapping the two halves.

For instance, consider the SEARCH program in Figure 4 performing binary search. The
procedure body of search, in the recursive case (i.e. where the input q̄1 has size at least 4)
consists of three (non-trivial) quantum cases. According to the state of the control qubits, we

F. Ferrari, E. Hainry, R. Péchoux, and M. Silva 47:13

q̄1

q̄2

q̄1

q̄2

q̄1

q̄2

|0⟩
|0⟩

(a) in-depth

(b) merging

Figure 5 Compilation strategies for search defined in Figure 4.

either (1) perform a recursive call to search on the second half of q̄1, (2) apply a NOT gate
to q̄2, or (3) perform a recursive call to search on the first half of q̄1. Compiling these three
branches in sequence incurs a recursive doubling of instances of search, as shown on the left
circuit of Figure 5 where the circuit corresponding to the search procedure is symbolized
by a gray box and a white box. This doubling can be avoided by merging the two calls to
search in the same circuit, using controlled-swap gates (also called Fredkin gates). This new
circuit, given on the right of Figure 5, contains only a single call to search. Note that two
ancillas are used: one for controlling whether the recursive search is executed, the other
for controlling the swapping between the first and second half. This accounts for a constant
added cost for each recursive call. In addition, the cost of the controlled permutation between
the first and second halves of q̄1 should be taken into account.

▶ Lemma 11. A controlled permutation on n qubits can be performed by a quantum circuit
of size O(n) and depth O(logn).

Proof. Any permutation can be written as the composition of two sets of disjoint transpos-
itions, and therefore any permutation can be performed in constant time, using two time
steps [16]. To perform a controlled permutation, it suffices to create O(n) ancillas with the
correct controlled state, which can be done in O(logn) depth with O(n) gates. ◀

Note that the ancillas used to control the permutation are linear in number but can be
reused for nested recursive calls, hence the total number of ancillary qubits used for compiling
a program on n qubits will be linear in n.

In the case of Figure 5, we are able to merge the two instances of search since they
have the same input size and therefore encode precisely the same unitary operation, up to
a renaming of qubits. In a general program, one needs to account for the total number of
procedures that differ either in procedure name, input size and integer input. We prove that
this number is polylogarithmically bounded.

▶ Lemma 12. A procedure call occurring in an plp program on n input qubits results in
O(logn) calls to mutually recursive procedures with unique sizes.

MFCS 2025

47:14 Quantum Programming in Polylogarithmic Time

q̄1

q̄2

|0⟩ |0⟩
|0⟩ |0⟩
|0⟩ |0⟩
|0⟩ |0⟩

Figure 6 Quantum circuit resulting of compiling the SEARCH program.

In the above lemma, the number of input qubits is obtained by summing the sizes of (i.e., the
number of qubits in) each operand of the procedure call. From those results, we obtain that
the compilation process produces a quantum circuit of polynomial size and polylog depth in
the size of the inputs.

▶ Theorem 13 (Compilation). Given a plp program P, and input size n =
∑

q̄∈V ar(P) |q̄|,
the quantum circuit produced by the compilation process is of size O(n polylog(n)) and depth
O(polylog(n)).

▶ Example 14. To illustrate the compilation algorithm and the polylogarithmic depth bound,
consider the SEARCH program from Figure 4. The compilation of this program with |q̄1| = 14
gives the quantum circuit depicted in Figure 6. Each recursive call yields a constant number
of controlled gates and makes use of 2 ancillary qubits: 1 for anchoring and 1 to swap the first
and second half. Thus the circuit obtained has depth O(log |q̄1|) and a number O(log |q̄1|) of
ancillary qubits.

4.3 Limits of Quantum Polylogarithmic Time
Theorem 13 shows that programs in plp can be compiled to quantum circuits of polylog
depth and polynomial size, which means that they compute operators in qnc. In this section,
we show that plp is however not complete for qnc, thus recovering the known separation
between fbqpolylog and qnc.

qnc is defined in [16] as the union for all k ∈ N of the classes of quantum unitary
transformations that can be computed by a family of quantum circuits of depth O(logk n)
with a polynomial number of ancillas. To compare with fbqpolylog, we define fbqnc
(for Bounded-error qnc) as in [7] as the class of functions {0, 1}∗ → {0, 1}∗ that can be
approximated with probability at least 2/3 by a qnc transformation.

To study the relationship between plp and fbqnc, we use the query model of quantum
computation which is the scenario in which one wishes to compute a function by making use
of black boxes that are accessed via queries [2]. A black box performs a unitary transformation

F. Ferrari, E. Hainry, R. Péchoux, and M. Silva 47:15

on the quantum state according to some oracle function O : {0, 1}∗ → {0, 1}, where the
operation is usually defined as |x̄, y⟩ 7→ |x̄, y ⊕ O(x̄)⟩, which is considered to be performed in
a single step.

Given a function f , we denote by Q(f) : N → N the function that maps n ∈ N to the least
number of queries necessary for a quantum algorithm to approximate f with bounded-error
on inputs of size n. The function Q(f) gives a lower bound on the time complexity of
approximating f . For instance, for the OR, AND, and PARITY defined as

OR(x̄) ≜ maxi=1...n xi AND(x̄) ≜ mini=1...n xi PARITY(x̄) ≜
⊕n

i=1 xi

we have that, while Grover’s algorithm [11] allows for a quadratic speedup in the query
complexity of AND and OR, no speedup exists for PARITY.

▶ Lemma 15 ([25]). For f ∈ {AND,OR}, we have that Q(f) = Θ(
√
n).

▶ Lemma 16 ([9, 3]). Q(PARITY) = Θ(n).

In contrast to the lower bounds on the query complexity for AND, OR, and PARITY, we
can show that there is an upper bound on the query complexity of functions approximable by
programs in plp. This bound on quantum random-access Turing machines can be obtained
by viewing the read-input transition as an oracle query as in [20, 21] and noting that the
access to this oracle is bounded by the step-count of the QRATM.

▶ Lemma 17. Let f ∈ JplpK≥ 2
3
. There exists k ∈ N such that Q(f) = O(logk n).

Lemma 17 gives a polylogarithmic upper bound on the query complexity of functions in
JplpK≥ 2

3
. Lemmas 15 and 16 give lower bounds on the query complexity of AND, OR, and

PARITY that are bigger than polylogarithms, hence proving that those functions are not in
JplpK≥ 2

3
even though they can be approximated by circuits of polylogarithmic depth and

polynomial size.

▶ Lemma 18. AND, OR, PARITY ∈ fbqnc \ JplpK≥ 2
3
.

Combining this result with Theorem 13, we obtain a strict inclusion in fbqnc. Note that
this strict inclusion is mandated by the well-known result that fbqpolylog ⊊ fbqnc.

▶ Theorem 19. JplpK≥ 2
3
⊊ fbqnc.

5 Conclusion and Future Work

We presented a quantum programming language plp that captures exactly fbqpolylog,
that is functions approximated in polylog time by a QRATM. This characterization relies
on some restrictions, in particular on the arguments of recursive calls to guarantee the
complexity bound. We show a compilation procedure that produces quantum circuits of
polylog depth, hence recovering the inclusion in the class of quantum circuits of polylog
depth and polynomial size qnc.

Extending plp. The conditions imposed in the definition of plp are by no means hard to
extend while safeguarding most or even all the results presented here. For instance, the half
condition can be relaxed such that we consider halving of the input not at every procedure
call but in every closed loop of procedure calls within a given rank. Such an extension would
increase the expressive power of the language, thus allowing a programmer more flexibility.
In this paper we chose to have a streamlined language with restrictions that are simple to
check in order to obtain a more readable characterization.

MFCS 2025

47:16 Quantum Programming in Polylogarithmic Time

Characterizing qnc. To our knowledge, there are currently no implicit characterizations
of fbqnc. Extending plp to characterize this class would be particularly interesting. For
example, adding a statement for recursively forking on each half of the quantum state would
make it possible to capture AND, OR, and PARITY while still being sound for fbqnc.

References
1 Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. Quantum computability.

SIAM Journal on Computing, 26(5):1524–1540, 1997. doi:10.1137/S0097539795293639.
2 Andris Ambainis. Understanding quantum algorithms via query complexity. In Proceedings of

the International Congress of Mathematicians: Rio de Janeiro 2018, pages 3265–3285. World
Scientific, 2018. doi:10.1142/9789813272880_0181.

3 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald De Wolf. Quantum
lower bounds by polynomials. Journal of the ACM (JACM), 48(4):778–797, 2001. doi:
10.1145/502090.502097.

4 P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and Farrokh Vatan.
On universal and fault-tolerant quantum computing, 1999. doi:10.48550/arXiv.QUANT-PH/
9906054.

5 Sergey Bravyi, David Gosset, and Robert König. Quantum advantage with shallow circuits.
Science, 362(6412):308–311, 2018. doi:10.1126/science.aar3106.

6 Andrew M. Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram, and Daochen Wang.
Quantum divide and conquer, 2022. doi:10.48550/arXiv.2210.06419.

7 Richard Cleve and John Watrous. Fast parallel circuits for the quantum Fourier transform. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, SFCS-00, pages
526–536. IEEE Comput. Soc, 2000. doi:10.1109/sfcs.2000.892140.

8 Ugo Dal Lago, Andrea Masini, and Margherita Zorzi. Quantum implicit computational
complexity. Theoretical Computer Science, 411(2):377–409, 2010. doi:10.1016/j.tcs.2009.
07.045.

9 Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Limit on the speed
of quantum computation in determining parity. Physical Review Letters, 81(24):5442–5444,
December 1998. doi:10.1103/physrevlett.81.5442.

10 Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory.
Phys. Rev. Lett., 100:160501, April 2008. doi:10.1103/PhysRevLett.100.160501.

11 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pages
212–219, New York, NY, USA, 1996. Association for Computing Machinery. doi:10.1145/
237814.237866.

12 Emmanuel Hainry, Romain Péchoux, and Mário Silva. A programming language characterizing
quantum polynomial time. In Foundations of Software Science and Computation Structures,
pages 156–175. Springer, 2023. doi:10.1007/978-3-031-30829-1_8.

13 Emmanuel Hainry, Romain Péchoux, and Mário Silva. Branch sequentialization in quantum
polytime. In Formal Structures for Computation and Deduction, FSCD 2025, volume 337 of
LIPIcs, 2025.

14 W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen, R. C. C. Leon, M. A. Fogarty,
J. C. C. Hwang, F. E. Hudson, K. M. Itoh, A. Morello, A. Laucht, and A. S. Dzurak.
Fidelity benchmarks for two-qubit gates in silicon. Nature, 569(7757):532–536, May 2019.
doi:10.1038/s41586-019-1197-0.

15 Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for NISQ-
era quantum devices. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19,
pages 1001–1014, New York, NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3297858.3304023.

https://doi.org/10.1137/S0097539795293639
https://doi.org/10.1142/9789813272880_0181
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.48550/arXiv.QUANT-PH/9906054
https://doi.org/10.48550/arXiv.QUANT-PH/9906054
https://doi.org/10.1126/science.aar3106
https://doi.org/10.48550/arXiv.2210.06419
https://doi.org/10.1109/sfcs.2000.892140
https://doi.org/10.1016/j.tcs.2009.07.045
https://doi.org/10.1016/j.tcs.2009.07.045
https://doi.org/10.1103/physrevlett.81.5442
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-031-30829-1_8
https://doi.org/10.1038/s41586-019-1197-0
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1145/3297858.3304023

F. Ferrari, E. Hainry, R. Péchoux, and M. Silva 47:17

16 Cristopher Moore and Martin Nilsson. Parallel quantum computation and quantum codes.
SIAM Journal on Computing, 31(3):799–815, 2001. doi:10.1137/S0097539799355053.

17 Yasuhiro Takahashi and Noboru Kunihiro. A fast quantum circuit for addition with few qubits.
Quantum Information and Computation, 8(6):636–649, July 2008. doi:10.26421/QIC8.6-7-5.

18 Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elementary arithmetic
operations. Phys. Rev. A, 54:147–153, July 1996. doi:10.1103/PhysRevA.54.147.

19 Tomoyuki Yamakami. A schematic definition of quantum polynomial time computability. J.
Symb. Log., 85(4):1546–1587, 2020. doi:10.1017/jsl.2020.45.

20 Tomoyuki Yamakami. Expressing power of elementary quantum recursion schemes for quantum
logarithmic-time computability. In Logic, Language, Information, and Computation (WoLLIC
2022), pages 88–104. Springer, 2022. doi:10.1007/978-3-031-15298-6_6.

21 Tomoyuki Yamakami. Elementary quantum recursion schemes that capture quantum
polylogarithmic-time computability of quantum functions. Mathematical Structures in Com-
puter Science, 34(7):710–745, August 2024. doi:10.1017/s0960129524000264.

22 Tomoyuki Yamakami. Quantum first-order logics that capture logarithmic-time/space quantum
computability. In Ludovic Levy Patey, Elaine Pimentel, Lorenzo Galeotti, and Florin Manea,
editors, CiE 2024, pages 311–323. Springer, 2024. doi:10.1007/978-3-031-64309-5_25.

23 Andrew Chi-Chih Yao. Quantum circuit complexity. In Proceedings of 1993 IEEE 34th Annual
Foundations of Computer Science, pages 352–361, 1993. doi:10.1109/SFCS.1993.366852.

24 Charles Yuan and Michael Carbin. Tower: Data structures in quantum superposition. Pro-
ceedings of the ACM on Programming Languages, 6(OOPSLA2):259–288, October 2022.
doi:10.1145/3563297.

25 Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A, 60(4):2746,
1999. doi:10.1103/PhysRevA.60.2746.

MFCS 2025

https://doi.org/10.1137/S0097539799355053
https://doi.org/10.26421/QIC8.6-7-5
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1017/jsl.2020.45
https://doi.org/10.1007/978-3-031-15298-6_6
https://doi.org/10.1017/s0960129524000264
https://doi.org/10.1007/978-3-031-64309-5_25
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1145/3563297
https://doi.org/10.1103/PhysRevA.60.2746

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Related Work

	2 First-Order Quantum Programs
	2.1 Syntax
	2.2 Semantics
	2.3 Polylogarithmic Time Restrictions
	2.4 Properties of PLP Programs

	3 A Characterization of Quantum Polylog Time
	3.1 Quantum Random Access Turing Machines and Polylog Time
	3.2 Main Result

	4 Circuit Compilation
	4.1 Outline of the Compilation Algorithm
	4.2 Compilation to a Circuit of Polylog Depth
	4.3 Limits of Quantum Polylogarithmic Time

	5 Conclusion and Future Work

