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Abstract
We define generalized de Bruijn words as those words having a Burrows–Wheeler transform that is
a concatenation of permutations of the alphabet. We show that generalized de Bruijn words are
in 1-to-1 correspondence with Hamiltonian cycles in the generalized de Bruijn graphs, introduced
in the early ’80s in the context of network design. When the size of the alphabet is a prime p, we
define invertible necklaces as those whose BWT-matrix is non-singular. We show that invertible
necklaces of length n correspond to normal bases of the finite field Fpn , and that they form an
Abelian group isomorphic to the Reutenauer group RGn

p . Using known results in abstract algebra,
we can make a bridge between generalized de Bruijn words and invertible necklaces. In particular,
we highlight a correspondence between binary de Bruijn words of order d + 1, binary necklaces of
length 2d having an odd number of 1’s, invertible BWT matrices of size 2d × 2d, and normal bases
of the finite field F22d .
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1 Introduction

The Burrows–Wheeler matrix of a word w is the matrix whose rows are the conjugates
(rotations) of w in ascending lexicographic order. Its last column is called the Burrows–
Wheeler transform of w, and has the property of being easier to compress when the input
word is a repetitive text. For this reason, it is largely used in textual data compression, in
particular in bioinformatics [21, 19, 18]. But the Burrows–Wheeler transform also has many
interesting combinatorial properties (see [31, 12] for a survey). Since the Burrows–Wheeler
transform is the same for any conjugate of w, it can be viewed as a map from the set of
necklaces (conjugacy classes of words) to the set of words.

A de Bruijn word of order d over an alphabet Σ is a necklace of length |Σ|d such that
each of the |Σ|d distinct words of length d occurs exactly once in it, as a cyclic factor. Since
each of the |Σ|d−1 distinct words of length d − 1 occurs as a prefix of |Σ| consecutive rows
of the Burrows–Wheeler matrix of a de Bruijn word, the Burrows–Wheeler transform of a
de Bruijn word is characterized (among words that are images under the Burrows–Wheeler
transform) by the fact that it is a concatenation of |Σ|d−1 alphabet-permutations (de Bruijn
words of order 1). This motivates us to define a generalized de Bruijn word as one whose
Burrows–Wheeler transform is a concatenation of (any number of) alphabet-permutations.

As is well known, de Bruijn words are in 1-to-1 correspondence with Hamiltonian cycles
in de Bruijn graphs. We show that, analogously, generalized de Bruijn words are in 1-to-1
correspondence with Hamiltonian cycles in generalized de Bruijn graphs, introduced in the
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48:2 Generalized De Bruijn Words, Invertible Necklaces, and the BWT

early 80’s independently by Imase and Itoh [16], and by Reddy, Pradhan, and Kuhl [29] (see
also [10]) in the context of network design. The generalized de Bruijn graph DB(k, n) has
vertices {0, 1, . . . , n − 1} and for every vertex m there is an edge from m to km + i mod (n)
for every i = 0, 1, . . . , k − 1.

In particular, we provide a new and simple interpretation of the well-known correspondence
between de Bruijn words and Hamiltonian cycles in de Bruijn graphs in terms of the inverse
standard permutation of the Burrows–Wheeler transform, and we show that this interpretation
extends to the generalized case.

The other class of words we introduce is that of invertible necklaces. We call an aperiodic
necklace over an alphabet of prime size p invertible if its Burrows–Wheeler matrix is
nonsingular, i.e., has determinant nonzero modulo p. We show that each invertible necklace
of length n, as a set of vectors over the base field Fp, corresponds to a normal base of the
field Fpn . Invertible necklaces can also be represented by conjugacy classes of their circulant
matrices, and they form an Abelian group, called the Reutenauer group RGn

p [11]. The set
of invertible necklaces of a given length n can therefore be endowed with a multiplication
operation that makes it isomorphic to the n-th Reutenauer group.

Using a known result in abstract algebra [7], we show that every aperiodic necklace of
length n with non-zero weight modulo p (the weight of a word is the sum of its digits) is
invertible if and only if n is either a power of p or a p-rooted prime. However, it is an open
problem to decide whether there are infinitely many lengths n, different from a power of
p, for which every aperiodic necklace of length n with non-zero weight modulo p has an
invertible Burrows–Wheeler matrix. This seems to be a challenging problem, as it is related
to Artin’s conjecture on primitive roots.

In the last part of the paper, we show a connection between generalized de Bruijn words
and invertible necklaces. Chan, Hollmann and Pasechnik [5] proved that for every prime p

and any n, one has RGn
p

∼= K(DB(p, n)) ⊕ Zp−1, where K(G) denotes the sandpile group of
the graph G. Since the structure of the sandpile group of an Eulerian graph is determined
by the invariant factors of its Laplacian matrix, Chan et al. gave the precise structure of
sandpile groups of generalized de Bruijn graphs, and hence of Reutenauer groups.

In particular, when p = 2 and n = 2d, we show that there is a bijection between de Bruijn
words of order d and binary necklaces of length 2d−1 with an odd number of 1’s.

Our contributions

We introduce two new classes of circular words: generalized de Bruijn words and invertible
necklaces, both of which are defined in terms of the Burrows–Wheeler transform. We show
that generalized de Bruijn words correspond to those whose Burrows–Wheeler transform has
an inverse standard permutation that labels a Hamiltonian cycle in a generalized de Bruijn
graph (Theorem 9). This result allows us to derive a formula for counting the number of
generalized de Bruijn words using the BEST theorem (Theorem 12).

Next, we focus on alphabets of prime size p. We define invertible necklaces as those whose
Burrows–Wheeler matrix is non-singular. We demonstrate that the conjugacy classes of
invertible necklaces form an Abelian group, isomorphic to the Reutenauer group of invertible
circulant matrices. This leads to a characterization of the equivalence of various properties
of invertible necklaces (Theorem 16).

In the final section, we connect generalized de Bruijn words and invertible necklaces by
using a previously known isomorphism between the sandpile groups of generalized de Bruijn
graphs and Reutenauer groups. We further speculate on the implications of this isomorphism,
and end by showing a bijection between binary de Bruijn words, invertible necklaces, and
normal bases of finite fields (Theorem 26).
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Related work

Several generalizations of de Bruijn words (sequences) have been proposed in the literature [4,
1, 28], all based on the number of occurrences of factors (substrings) of some kind.

The relation between the BWT and de Bruijn words has been studied in several papers.
In [14], the author extended the BWT to multisets of necklaces and characterized de Bruijn
sets – generalizations of de Bruijn words – by their BWT image, leading to a BWT-based
characterization of de Bruijn words when the multiset has a single element. In [24], this
correspondence is used to design an efficient algorithm for constructing arbitrary de Bruijn
words.

Recently, the algebraic structures generated by invertible BWT matrices have also been
explored. In [35, 30], the authors showed that BWT matrices of Christoffel words are closed
under multiplication and described the multiplicative group of invertible BWT matrices of
Christoffel words. Christoffel words are the unbordered factors of aperiodic infinite words of
minimal complexity (Sturmian words) [3]. The conjugacy classes of Christoffel words are
precisely the binary aperiodic necklaces whose BWT has the minimal possible number of
equal-letter runs [27].

Paper organization

Our paper is structured as follows. In Section 2, we introduce the necessary preliminaries
on words, necklaces, and the Burrows–Wheeler transform. Section 3 defines generalized
de Bruijn words and establishes their graph-theoretic characterization using generalized de
Bruijn graphs, which extends the classical correspondence between de Bruijn words and de
Bruijn graphs. In Section 4, we introduce the concept of an invertible necklace and relate it
to circulant matrices and Reutenauer groups. Section 5 connects these concepts, using known
group isomorphisms to show a bijection between generalized de Bruijn words and invertible
necklaces in the context of prime-sized alphabets. Finally, in Section 6, we summarize our
findings and propose open problems and future directions.

2 Preliminaries

We begin by introducing some preliminary definitions related to strings and words. For a
thorough introduction, we refer the reader to [9], and [25].

Let Σk = {0, 1, . . . , k − 1}, k > 1, be a sorted set of letters.
A word over the alphabet Σk is a concatenation of elements of Σk. The length of a word

w is denoted by |w|. For a letter i ∈ Σk, |w|i denotes the number of occurrences of i in w.
The vector (|w|0, . . . , |w|k−1) is the Parikh vector of w.

Let w = w0 · · · wn−2wn−1 be a word of length n > 0. The weight of w is
∑n−1

j=0 wj . When
n > 1, the shift of w is the word σ(w) = wn−1w0 · · · wn−2.

For a word w, the n-th power of w is the word wn obtained by concatenating n copies of
w.

▶ Definition 1. We call an alphabet-permutation a word over Σk that contains each letter
of Σk exactly once, and an alphabet-permutation power a concatenation of one or more
alphabet-permutations over Σk.

▶ Example 2. The word w = 210201102102120 is an alphabet-permutation power over Σ3.

Notice that an alphabet-permutation power of length n has a balanced Parikh vector,
i.e., a Parikh vector of the form ( n

k , n
k , . . . , n

k ).

MFCS 2025
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In the binary case, a word w is an alphabet-permutation power if and only if w = τ(v),
where v is a binary word of length |w|/2 and τ is the Thue–Morse morphism, the substitution
that maps 0 to 01 and 1 to 10.

Two words w and w′ are conjugates if w = uv and w′ = vu for some words u and v. The
conjugacy class of a word w can be obtained by repeatedly applying the shift operator, and
contains |w| distinct elements if and only if w is primitive, i.e., for any nonempty word v

and integer n, w = vn implies n = 1. A necklace (resp. aperiodic necklace) [w] is a conjugacy
class of words (resp. of primitive words). Necklaces are also called circular words. Notice
that, given a word w, the weight of w is invariant under shift, hence we can define the weight
wt([w]) of the necklace [w] as the weight of any of its representatives.

For example, [1100] = {1100, 0110, 0011, 1001} is an aperiodic necklace, while [1010] =
{1010, 0101} is not aperiodic.

The number of aperiodic necklaces of length n over Σk is given by

N(k, n) = 1
n

∑
d|n

µ
(n

d

)
kd

where µ(n) is the Möbius function, defined by: µ(1) = 1, µ(n) = (−1)j if n is the product of
j distinct primes or 0 otherwise, i.e., if n is divisible by the square of a prime number.

The number of necklaces of length n over Σk is given by

N(k, n) =
∑
d|n

N(k, d) = 1
n

∑
d|n

ϕ
(n

d

)
kd

where ϕ(n) is the Euler’s totient function. Recall that the Euler’s totient function ϕ(n)
counts the number of positive integers less than or equal to n and coprime with n, i.e., the
order of the multiplicative group Z∗

n, and can be computed using the formula

ϕ(n) = n
∏
p|n

(
1 − 1

p

)

for n > 1, and ϕ(1) = 1, where the product is taken over the distinct primes dividing n.

The Burrows–Wheeler matrix (BWT matrix) of a necklace [w] is the matrix whose
rows are the |w| shifts of w in ascending1 lexicographic order. Let us denote by F and
L, respectively, the first and the last column of the BWT matrix of [w]. We have that
F = 0n01n1 · · · (k − 1)nk−1 , where (n0, . . . , nk−1) is the Parikh vector of [w]; L, instead, is
the Burrows–Wheeler Transform (BWT) of [w]. The BWT is therefore a map from the set
of necklaces to the set of words. As is well known, it is an injective map (we describe below
how to invert it). A word is a BWT image if it is the BWT of some necklace.

The standard permutation of a word u = u0u1 · · · un−1, ui ∈ Σk, is the permutation πu

of {0, 1, . . . , n − 1} such that πu(i) < πu(j) if and only if ui < uj or ui = uj and i < j. In
other words, in one-line notation, πu orders distinct letters of u lexicographically, and equal
letters by occurrence order, starting from 0. When u is the BWT image of some necklace,
the standard permutation is also called LF -mapping. As is well known, a word u is a BWT
image of an aperiodic necklace if and only if πu is a length-n cycle.

1 This is the standard convention in the literature. Of course, one can also choose the descending
lexicographic order, the properties are symmetric.
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The inverse standard permutation π−1
u of a word u, written in one-line notation, can be

obtained by listing in left-to-right order the positions of 0 in u, then the positions of 1, and
so on. The inverse standard permutation of a BWT image is also called FL-mapping.

An aperiodic necklace can be uniquely reconstructed from its BWT, using either of the
standard permutation or its inverse. To do this, it is convenient to write these permutations in
cycle form. Let L be the BWT of [w], and πL = (j0 j1 · · · jn−1) be the standard permutation
of L in cycle form, with j0 = 0. Then, Ljn−1Ljn−2 · · · Lj0 is the first row of the BWT matrix
of [w], i.e., the lexicographically least element of the necklace [w]. This is also equal to
Fi0Fi1 · · · Fin−1 , where π−1

L = (i0 i1 · · · in−1) is the inverse standard permutation of L in
cycle form, with i0 = 0.

The following remark will be used in later sections:

▶ Remark 3. In the case of a balanced Parikh vector ( n
k , n

k , . . . , n
k ), then, one can reverse the

BWT from its inverse standard permutation in cycle form π−1
u = (i0 i1 · · · in−1), i0 = 0, by

mapping iℓ to
⌊

iℓ

n/k

⌋
for ℓ = 0, 1, . . . , n − 1.

For example, the BWT of [w] = [220120011] is the word u = 202001121, whose inverse
standard permutation in cycle form is π−1

u = (0 1 3 5 8 7 2 4 6). Mapping: 0, 1, 2 to 0; 3, 4, 5 to
1; 6, 7, 8 to 2, one obtains the word 001122012, the first row of the BWT matrix of [w].

Necklaces that are not aperiodic can also be reconstructed from their BWT, as a conse-
quence of the following result:

▶ Proposition 4 ([27, Proposition 2]). For any c ≥ 1, u = u1u2 · · · un is the BWT of an
aperiodic necklace [w] if and only if uc

1uc
2 · · · uc

n is the BWT of [wc].

Let G = (V, E) be a finite directed graph, which may have loops and multiple edges (in
this case, it is also called a multigraph in the literature). Each edge e ∈ E is directed from
its source vertex s(e) to its target vertex t(e).

The directed line graph (or edge graph) LG = (E, E′) of G has as vertices the edges of G,
and as edges the set

E′ = {(e1, e2) ∈ E × E | s(e2) = t(e1)}.

An oriented spanning tree of G is a subgraph containing all of the vertices of G, having
no directed cycles, in which one vertex, the root, has outdegree 0, and every other vertex
has outdegree 1. The number κ(G) of oriented spanning trees of G is sometimes called the
complexity of G.

A directed graph is Hamiltonian if it has a Hamiltonian cycle, i.e., one that traverses
each node exactly once, while it is Eulerian if it has an Eulerian cycle, i.e., one that traverses
each edge exactly once. As is well known, a directed graph is Eulerian if and only if
indeg(v) = outdeg(v) for all vertices v. If a graph is Eulerian, its line graph is Hamiltonian.

3 Generalized de Bruijn graphs and generalized de Bruijn words

We start by briefly discussing (ordinary) de Bruijn graphs and de Bruijn words, and relating
them to the inverse standard permutation of the Burrows–Wheeler transform.

Recall that the de Bruijn graph DB(Σk, kd) of order d is the directed graph whose vertices
are the words of length d over Σk and there is an edge from aiw to v, where ai is a letter, if
and only if v = waj for some letter aj . As is well known, de Bruijn graphs are Eulerian and
Hamiltonian. One has L DB(Σk, kd) = DB(Σk, kd+1).

MFCS 2025
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A de Bruijn word of order d over Σk is a necklace over Σk containing as a circular factor
each of the Σd

k words of length d over Σk exactly once. De Bruijn words correspond to
Hamiltonian cycles in DB(Σk, kd), as they can be obtained by concatenating the first letter
of the labels of the vertices it traverses.

Now, since the vertex labels of DB(Σk, kd) are the base-k representations of the integers in
{0, 1, . . . , kd −1} on d digits (padded with leading zeroes), the de Bruijn graph of order d over
Σk can be equivalently defined as the one having vertex set {0, 1, . . . , kd − 1} and containing
an edge from m to km + i mod (kd) for every i = 0, 1, . . . , k − 1. We let DB(k, kd) denote
this equivalent representation of the de Bruijn graph of order d. A Hamiltonian cycle in
DB(k, kd) is then a cyclic permutation of {0, 1, . . . , kd − 1}. The relation between a de Bruijn
word of order d over Σk, i.e., a Hamiltonian cycle in DB(Σk, kd), and the corresponding
Hamiltonian cycle in DB(k, kd), is given in the following lemma.

▶ Lemma 5. Let [w] = [w0 · · · wkd−1] be the necklace encoding a Hamiltonian cycle in
DB(Σk, kd), and let [u] = [u0 · · · ukd−1] be the corresponding Hamiltonian cycle in DB(k, kd),
namely, the one such that wi is the k-ary expansion on d digits of ui for each i = 0, . . . , kd −1.
Then [u] is the inverse standard permutation of the Burrows–Wheeler transform of [w], in
cycle form. In particular, one has wi = ⌊ui/kd−1⌋ for every 0 ≤ i ≤ kd − 1.

Proof. For a given integer n in {0, . . . , kd −1}, the first digit of n in its base-k representation
on d digits is ⌊ n

kd−1 ⌋. The claim then follows directly from Remark 3 and the fact that de
Bruijn words have a balanced Parikh vector. ◀

▶ Example 6. In DB(Σ2, 8), the de Bruijn word [w] = [00010111] corresponds to the
Hamiltonian cycle obtained by visiting the nodes 000, 001, 010, 101, 011, 111, 110, 100; and to
the Hamiltonian cycle (0, 1, 2, 5, 3, 7, 6, 4) in DB(2, 8). Indeed, one has BWT([w]) = 10011010,
and π−1

BWT([w]) = (0 1 2 5 3 7 6 4), in cycle notation. By applying the mapping i 7→ ⌊ i
4 ⌋, one

retrieves [w] = [00010111].

We now introduce generalized de Bruijn words. In [14], Higgins showed that a word w

of length kn over Σk is a (ordinary) de Bruijn word if and only if its BWT is an alphabet-
permutation power. This motivates us to introduce the following definition:

▶ Definition 7. A necklace of length kn over Σk is a generalized de Bruijn word if its BWT
is an alphabet-permutation power over Σk.

For example, [02201331] is a generalized de Bruijn word since its BWT is 21302031.
Notice that, in the literature, there already exist several other definitions of generalized

de Bruijn words (see, e.g., [4, 1, 28]).
The generalized de Bruijn graph DB(k, n) has vertices {0, 1, . . . , n − 1} and for every

vertex m there is an edge from m to km+ i mod (n) for every i = 0, 1, . . . , k−1. Generalized
de Bruijn graphs have been introduced independently by Imase and Itoh [16], and by Reddy,
Pradhan, and Kuhl [29] (see also [10]). They are Eulerian and Hamiltonian. By definition, a
generalized de Bruijn graph DB(k, n) is an ordinary de Bruijn graph when n = kd for some
d > 0. As an example, the generalized de Bruijn graph DB(3, 6) is displayed in Fig. 1.

The line graph of DB(k, n) is DB(k, kn) [22]. The Eulerian cycles of DB(k, n) correspond
to the Hamiltonian cycles of DB(k, kn).

In Theorem 9, we give a characterization of generalized de Bruijn words in terms of
generalized de Bruijn graphs, which generalizes Lemma 5.
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Figure 1 The generalized de Bruijn graph DB(3, 6).

▶ Lemma 8. Let u be a word of length kn over Σk, with Parikh vector (n, n, . . . , n). The
following statements are equivalent:
1. The word u is an alphabet-permutation power;
2. For each 0 ≤ j < k, 0 ≤ i < n, one has π−1

u (i + jn) ∈ [ki, k(i + 1) − 1];
3. For each 0 ≤ ℓ < kn, there is an edge from ℓ to π−1

u (ℓ) in DB(k, kn).

Proof. We first observe that (3) ⇐⇒ (2). By definition, the edges of the de Bruijn graph
DB(k, kn) are of the form (ℓ, kℓ + i′ mod kn) for 0 ≤ i′ < k. In particular, for any ℓ = i + jn

with 0 ≤ i < n and 0 ≤ j < k, we have k(i + jn) + i′ mod kn ∈ [ki, k(i + 1) − 1]. Thus,
π−1

u (ℓ) lies in this interval if and only if there is an edge from ℓ to π−1
u (ℓ) in DB(k, kn). Next,

we show that (1) implies (2). We start with the following general remark: for a word u and
an integer 0 ≤ ℓ ≤ |u| − 1, one has π−1

u (ℓ) = p if p is the position of the ℓth letter in u,
according to the order defined by π−1

u , which is the lexicographic order with equal letters
sorted by occurrence position. Suppose u is an alphabet-permutation power, so u consists
of n consecutive blocks of length k, each of which is a permutation of Σk. In particular,
each letter appears exactly n times in total. Let i < n and j < k. The index π−1

u (i + jn)
corresponds to the (i + 1)th occurrence of the letter j in u. Since u is a concatenation of
n blocks, and each block is a permutation of Σk, the (i + 1)th occurrence of letter j must
appear within the (i + 1)th block of u, i.e., within positions [ki, k(i + 1) − 1]. Therefore,
π−1

u (i + jn) ∈ [ki, k(i + 1) − 1], as required. This proves that (1) =⇒ (2).
It remains to show that (2) implies (1). Assume that for all 0 ≤ j < k and 0 ≤ i < n,

we have π−1
u (i + jn) ∈ [ki, k(i + 1) − 1]. Fix any i < n. Then the k values π−1

u (i + jn) for
j = 0, . . . , k − 1 all lie in [ki, k(i + 1) − 1]. Since π−1

u is a permutation, these values must be
distinct. Therefore, {π−1

u (i), π−1
u (n + i), . . . , π−1

u ((k − 1)n + i)} = [ki, k(i + 1) − 1].
Let us now examine the content of these positions in u. The value u[π−1

u (i+jn)] is the j-th
letter in this collection. But π−1

u (i+jn) is the position of the (i+1)th occurrence of the letter j,
hence u[π−1

u (i+jn)] = j. It follows that {u[π−1
u (i)], u[π−1

u (n+ i)], . . . , u[π−1
u ((k −1)n+ i)]} =

Σk, which means that the substring u[ki .. k(i + 1) − 1] is a permutation of Σk. Since this
holds for every 0 ≤ i < n, the word u is a concatenation of n permutations of Σk, i.e., an
alphabet-permutation power. This completes the proof. ◀

MFCS 2025
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As a consequence, we have:

▶ Theorem 9. A necklace is the label of a Hamiltonian cycle of a generalized de Bruijn
graph DB(k, kn) if and only if it is the inverse standard permutation, in cycle form, of the
BWT of a generalized de Bruijn word of length kn over Σk.

Proof. The fact that every Hamiltonian cycle of DB(k, kn) corresponds to the inverse
standard permutation of some length n word over k letters follows from condition (2) of
Lemma 8 and from the fact that a permutation π is the standard permutation of a word
over k letters if and only if there are at most k − 1 indices i such that π(i + 1) < π(i) [8,
Theorem 1]. We use the fact that generalized de Bruijn words are aperiodic necklaces: indeed,
if w = ur is a power (with r > 1), then its BWT can be derived from the BWT of u by
repeating each letter r times (Proposition 4). Consequently, the BWT of a periodic necklace
cannot be an alphabet-permutation power and, conversely, a periodic necklace cannot have a
BWT that is an alphabet-permutation power. We now conclude from Lemma 8, and from
the fact that a word is a BWT image of an aperiodic necklace if and only if its (inverse)
standard permutation is a cycle. ◀

Therefore, the generalized de Bruijn words of length kn over the alphabet Σk can be
constructed from the Hamiltonian cycles of the generalized de Bruijn graph DB(k, kn) by
mapping i 7→ ⌊i/n⌋ for every i = 0, . . . , kn − 1.

▶ Example 10. The Hamiltonian cycles in DB(3, 6) are: (0, 1, 3, 5, 4, 2), (0, 1, 5, 3, 4, 2),
(0, 2, 1, 3, 5, 4), and (0, 2, 1, 5, 3, 4). Applying the mapping i 7→ ⌊i/2⌋, one obtains the ternary
generalized de Bruijn words of length 6: [001221], [002121], [010122], and [010212].

Thanks to the characterization given in Theorem 9, we can obtain a formula for counting
generalized de Bruijn words. We make use of the BEST theorem for directed graphs, together
with the fact that the number of Hamiltonian cycles in DB(k, kn) is equal to the number of
Eulerian cycles in DB(k, n).

▶ Theorem 11 (BEST theorem [34]). The number of distinct Eulerian cycles in a Eulerian
directed graph G = (V, E) is given by

e(G) = κ(G)
n∏

j=1
(dvj

− 1)! (1)

where dvj is the outdegree of vj.

By definition, the outdegree of every node in the generalized de Bruijn graph DB(k, n) is
k, therefore

∏n
j=1(dvj

− 1)! = ((k − 1)!)n. So, we have the following result.

▶ Theorem 12. For every n ≥ 1, the number of generalized de Bruijn words of length kn

over Σk is

DBWk(kn) = ((k − 1)!)nκ(DB(k, n)). (2)

The number of spanning trees can be computed by means of a determinant, as an
application of the matrix-tree theorem below. Recall that the Laplacian matrix of a directed
graph G is the n × n matrix LG = DG − AG, where DG and AG are the degree matrix and
the adjacency matrix of G, respectively. It can be defined by

(LG)ij =
{

dvi
− dvivi

if i = j

−dvivj
if i ̸= j

where dvivj
is the number of edges directed from vi to vj , and dvi

=
∑

j dvivj
is the outdegree

of vi, so that dvi − dvivi is the outdegree of vi minus the number of its self loops.
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Table 1 The first few values of DBW2(2n) and DBW3(3n) (resp. sequence A027362 and A192513
in [32]).

n 2 3 4 5 6 7 8 9 10 11
DBW2(2n) 1 1 2 3 4 7 16 21 48 93
DBW3(3n) 4 24 64 512 1728 13312 32768 373248 1310720 10903552

▶ Theorem 13 (Matrix-Tree Theorem for Eulerian graphs [17]). Let G be an Eulerian graph.
The number κ(G) is equal to the determinant of the matrix obtained from the Laplacian
matrix of G after removing the last row and the last column.

The matrix L0
G obtained by removing the last row and column from LG is sometimes

called the reduced Laplacian matrix of G.
We now discuss the relations between generalized de Bruijn words and sandpile groups,

algebraic objects capturing important properties of directed Eulerian graphs, which can be
defined in terms of the reduced Laplacian matrix of the graph. We start by giving some
standard results and definitions from [33]. Recall that any integer matrix A can be written
in a canonical form A = PDQ, where both matrices P , Q are integer matrices and D is an
integer diagonal matrix with the property that if d1, . . . , dn are the nonzero entries of the
main diagonal of D, then di|di+1 for every i. The matrix D is called the Smith Normal Form
of A. The di are called the invariant factors of the matrix A.

Let G = (V, E) be a finite strongly connected directed graph, that is, for any v, w ∈ V

there are directed paths in G from v to w and from w to v. Then associated to any vertex v

of G is an Abelian group K(G, v), the sandpile group (also known as critical group, Picard
group, Jacobian, and group of components, see [33] for the detailed definition). When G is
Eulerian, the groups K(G, v) and K(G, u) are isomorphic for any v, u ∈ V , and we let K(G)
denote the sandpile group of G, and one has:

K(G) ∼=
n−1⊕
i=1

Zdi
(3)

where d1, . . . , dn−1 are the invariant factors of L0
G, or equivalently, d1, . . . , dn−1, 0 are the

invariant factors of LG.
By the matrix-tree theorem, the order of the sandpile group |K(G)| = κ(G) is equal to

det(L0
G), the determinant of the reduced Laplacian matrix of G.

▶ Example 14. Consider the generalized de Bruijn graph DB(3, 6) (Fig. 1). Its Laplacian
matrix is

LDB(3,6) =



2 −1 −1 0 0 0
0 3 0 −1 −1 −1

−1 −1 2 0 0 0
0 0 0 2 −1 −1

−1 −1 −1 0 3 0
0 0 0 −1 −1 2


and its Smith Normal Form is

SNF(LDB(3,6)) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 0


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Hence, by (3), we have K(DB(3, 6)) ∼= Z3
3. The matrix SNF(LDB(3,6)) has determinant

33 = 27, so κ(DB(3, 6)) = 27. Thus, by Theorem 12, there are 27 · 26 = 1728 ternary
generalized de Bruijn words of length 18 – the same as the number of distinct Eulerian cycles
in DB(3, 6) and Hamiltonian cycles in DB(3, 18).

As another example, the Laplacian matrix of DB(2, 6) is

LDB(2,6) =



1 −1 0 0 0 0
0 2 −1 −1 0 0
0 0 2 0 −1 −1

−1 −1 0 2 0 0
0 0 −1 −1 2 0
0 0 0 0 −1 1


whose Smith Normal Form is

SNF(LDB(2,6)) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 0


We have K(DB(2, 6)) ∼= Z2

2, and in fact there are 4 · (1!)6 = 4 binary generalized de
Bruijn words of length 12, namely [000010111101], [000011101101], [000100101111], and
[000100111011].

For ordinary de Bruijn graphs over a binary alphabet, the general structure of the sandpile
group was described by Levine [20]:

K(DB(2, 2d)) ∼=
d−1⊕
i=1

(Z2i)2d−1−i

. (4)

In the case of generalized de Bruijn graphs, Chan, Hollmann and Pasechnik gave the
structure of K(DB(k, n)) for arbitrary k and n [5, Theorem 3.1]. We refer the reader to [5, 6]
for further details.

In the next sections, we focus on the case where the alphabet size is a prime number p,
allowing us to connect generalized de Bruijn words to necklaces having a BWT matrix that
is invertible over Zp.

4 Invertible necklaces and Reutenauer groups

In this section, we define invertible necklaces and highlight their connections with abstract
algebra.

In [35] (see also the related paper [30]), the authors used BWT matrix multiplication to
obtain a group structure on important classes of binary words (namely, Christoffel words
and balanced words) that have an invertible BWT matrix. Following this idea, we define
invertible necklaces:

▶ Definition 15. Let p be a prime. A necklace [w] over the alphabet Σp = {0, 1, . . . , p − 1} is
called invertible if its BWT matrix is non-singular, i.e., has nonzero determinant modulo p.
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As observed in [35], the product of two BWT matrices is not, in general, a BWT matrix;
but the author suggests replacing BWT matrices by circulant matrices. As we will see, using
circulant matrices, we can define the product between any two invertible necklaces.

Let w be a word over Σk. The circulant matrix of w is the square matrix Cw whose

(i + 1)th row is σi(w). For example, the circulant matrix of 011 is C011 =

0 1 1
1 0 1
1 1 0

.

One can immediately observe that, since the circulant matrix of a word can be obtained
by permuting the rows of its BWT matrix, a necklace is invertible if and only if any (and
then, every) of its associated circulant matrices is invertible.

Recall that for every prime p and any positive integer n, there is a unique finite field with
pn elements, denoted Fpn , and its multiplicative group F∗

pn is cyclic. The set of invertible
n × n-circulant matrices over Fp forms, with respect to matrix multiplication, an Abelian
group C(p, n). We consider the group C(p, n)/⟨Qn⟩, where Qn is the permutation matrix of
the cycle (0 1 . . . n − 1). This group is called the Reutenauer group RGn

p in [11]. Intuitively,
an element of the Reutenauer group corresponds to an equivalence class of invertible circulant
matrices, where two circulant matrices are equivalent if and only if they are the circulant
matrices of two conjugated words. Thus, RGn

p is in natural bijection with the set of invertible
necklaces of length n over Σp, and one can write C[w] = {Cv, v ∈ [w]} ∈ RGn

p for the class
of circulant matrices associated with a given invertible necklace [w] of length n over Σp. In
particular, this induces a group structure on the set of such invertible necklaces, isomorphic
to RGn

p , namely with respect to the multiplication defined by [u] · [v] = [w] where [w] is such
that C[u] · C[v] = C[w]. This multiplication does not depend on the choice of representatives
for each necklace (equivalently, for each matrix). The trace of a matrix is defined as the sum
of its diagonal coefficients. For a word w, one can observe that Cw has trace wt(w). Since
wt(w) is invariant under rotation, one can define the trace of a class of circulant matrices
C[w] as Tr C[w] = wt([w]) mod p.

As shown in [11], the Reutenauer group acts on the set of all aperiodic necklaces as
follows: Let [v] be an aperiodic necklace of length n over Σp. For any C[w] ∈ RGn

p , we define
C[w] ·[v] as the necklace of Cw ·vT . In particular, this operation does not depend on the choice

of a representative. For example, C[11010] ·[11000] = [11110] since


1 1 0 1 0
0 1 1 0 1
1 0 1 1 0
0 1 0 1 1
1 0 1 0 1

 ·


1
1
0
0
0

 = 01111.

The orbit of an aperiodic necklace [v] is therefore O[v] = {[C[w] ·[v]] | C[w] ∈ RGn
p }.

We now recall some classical results and definitions in abstract algebra (see, for exam-
ple, [23] for a more detailed presentation), which have a strong connection with circulant
matrices and invertible necklaces.

It is well known that the number of irreducible polynomials over Fp of degree n is equal
to the number of aperiodic necklaces of length n over Σp, but there is no known canonical
bijection between the two sets. The minimal polynomial of a nonzero element α of Fpn is
the (unique) monic polynomial f ∈ Fp[X] with the least degree for which α is a root. This
polynomial has as roots all the m distinct elements of the form α, αp, . . . , αpm−1 , where m

is the least integer such that αpm = α, i.e., the distinct roots of f are the orbit of α under
the application of the Frobenius automorphism α 7→ αp. Thus, f has degree m and can be
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factored as

f = (x − α)(x − αp) · · · (x − αpm−1
).

The sum of all roots of f is called the trace of f .
But Fpn is also a vector space over Fp. An element γ of Fpn is called normal if

{γ, γp, . . . , γpn−1} forms a vector space basis for Fpn over Fp, called a normal basis.
The minimal polynomial of a normal element of Fpn over Fp is called a normal polynomial.

Normal polynomials have non-zero trace (modulo p).
If γ is a normal element of Fpn , every element of Fpn can be written as a linear combination

of elements in the normal basis {γ, γp, . . . , γpn−1}. That is, we can write all the elements of Fpn

as n-length words, or n-length vectors. More precisely, if α = w0γ + w1γp + . . . + wn−1γpn−1 ,
wj ∈ Fp for every j = 0, . . . , n − 1, we can represent α with the word w = w0w1 · · · wn−1.
The application of the Frobenius automorphism to an element of the field corresponds to the
shift of the corresponding word, and an orbit to a conjugacy class, i.e., to a necklace. This
necklace is aperiodic if and only if the orbit is maximal, i.e., has size n.

Table 2 The finite field F24 as a vector space over F2, where the elements are grouped by orbits
with respect to a normal element γ.

orbit orbit as vectors (words) normal
{0} {0000} no
{γ, γ2, γ4, γ8} {1000, 0100, 0010, 0001} yes
{γ + γ2, γ2 + γ4, γ4 + γ8, γ + γ8} {1100, 0110, 0011, 1001} no
{γ2 + γ8, γ + γ4} {0101, 1010} no
{γ + γ2 + γ4, γ2 + γ4 + γ8, γ + γ4 + γ8, γ + γ2 + γ8} {1110, 0111, 1011, 1101} yes
{γ + γ2 + γ4 + γ8} {1111} no

Fixing a normal element γ and writing elements of Fpn in the induced normal basis, the
orbit of γ corresponds to the necklace [10n−1]. There may be other orbits constituted by
normal elements. For example, the orbit corresponding to the necklace [1110] is another
orbit of normal elements in F24 .

The number of normal elements of Fpn is counted by Φp(n), the generalized Euler’s
totient function. Equivalently, Φp(n) counts the number of polynomials over Fp of degree
smaller than n and coprime with Xn − 1. It can be computed using the formula

Φp(n) = pn
∏

d|(n/λp(n))

(
1 − 1

pordp(d)

) ϕ(d)
ordp(d)

for n > 1, where λp(n) is the largest power of p dividing n, and ordp(d) is the multiplicative
order of d modulo p. The first mention of this formula seems to come from [13], and a more
recent study can be found in [15].

The first few values of the sequences Φ2(n) and Φ3(n) are presented in Table 3.

Table 3 First few values of Φ2(n) and Φ3(n) (resp. sequence A003473 and A003474 in [32]).

n 1 2 3 4 5 6 7 8 9 10 11 12
Φ2(n) 1 2 3 8 15 24 49 128 189 480 1023 1536
Φ3(n) 1 4 18 32 160 324 1456 2048 13122 25600 117128 209952

Let p be a prime, and consider words in Σn
p as vectors in the vector space Fpn .
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An n × n-circulant matrix over Fp is in C(p, n) if and only if it is invertible (or non-
singular), if and only if its determinant is non-zero modulo p; or, equivalently, if its rows
form a normal basis of Fpn .

Since every element of a normal basis can be chosen as the first row of a corresponding
invertible circulant matrix, the order of C(p, n) is Φp(n), and the order of RGn

p (hence, the
number of invertible necklaces) is Φp(n)/n.

We therefore arrive at the following characterization:

▶ Theorem 16. Let [w] be a necklace over Σp, p prime. The following are equivalent:
1. The necklace [w] is invertible;
2. Any word in [w] has an invertible circulant matrix over Fp;
3. C[w] belongs to the Reutenauer group RGn

p ;
4. Any word in [w] is a vector corresponding to a normal element of Fpn ;
5. Every word of length n over Σp can be written in a unique way as a sum (modulo p) of

words in [w].

▶ Example 17. Let p = 2 and n = 4. We have three aperiodic binary necklaces, namely
[1000], [1100], and [1110]. Out of them, the first and the last are invertible, while the second

is not, since det


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 = 0. Indeed, 1100 + 0110 + 0011 = 1001 in F24 , so the elements

are not linearly independent as vectors, and therefore do not form a basis of F24 .
The Reutenauer group RG4

2 is therefore constituted by the classes of matrices Id = C[1000]
and C[1110].

So, the set of aperiodic necklaces of length n over Σp with invertible BWT matrix forms
an abelian group isomorphic to the Reutenauer group RGn

p , but the multiplication has to
be carried out with the circulant matrices rather than with BWT matrices. This was also
speculated in a remark we recently found at the end of [35] (see also the related paper [30]).

▶ Lemma 18. Let [w] be a necklace over Σp and let f be the minimal polynomial of w, seen
as a vector. Then, f has trace (m, . . . , m), where m = wt([w]) mod p. If [w] is invertible,
then m = Tr C[w] ̸= 0.

Proof. Since the roots of f are, as vectors, shifts of w, the trace of f is the vector (m, . . . , m).
Furthermore, if w is normal, all elements of C[w] are invertible, and the trace Tr C[w] must be
nonzero. ◀

In particular, binary invertible necklaces have an odd number of 1’s. However, note that,
in general, having a non-zero trace is not a sufficient condition for an element to be normal.

Recall that a prime q is called p-rooted if p is a generator of the cyclic group F∗
q . For

example, 5 is 2-rooted since {2i mod 5 | i = 1, . . . , 4} = F∗
5, while 7 is not 2-rooted since {2i

mod 7 | i = 1, . . . , 6} = {1, 2, 4}.
In [7], the authors obtained the following result:

▶ Theorem 19 ([7]). Let n be a positive integer. Every monic irreducible polynomial of
degree n over Fp with nonzero trace is normal if and only if n is either a power of p or a
p-rooted prime.

The latter result, together with Lemma 18, immediately implies the following:
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▶ Corollary 20. Let n be a positive integer. Every aperiodic necklace of length n over Σp with
non-zero weight modulo p is invertible if and only if n is either a power of p or a p-rooted
prime.

For example, the sequence of 2-rooted primes is A001122 in OEIS [32]. Therefore, by
Corollary 20, this sequence precisely corresponds to the lengths n (excluding powers of 2)
for which all binary necklaces of non-zero weight modulo 2 are invertible. This latter is also
the sequence of numbers of the form 2m + 1 such that (10)m is a BWT image (see [2, 26]),
i.e., lengths for which one can have a BWT with the largest possible number of runs (which
could be considered as the worst case of the BWT). Notice that words having BWT of the
form (10)m are, by definition, generalized de Bruijn words.

However, we do not know whether there exist infinitely many n, different from a power
of p, for which every aperiodic necklace of length n over Σp with non-zero weight modulo p

is invertible. This seems to be a difficult problem, since it is related to the famous conjecture
of Emil Artin stating that a given integer a that is neither a square number nor −1 is a
primitive root modulo infinitely many primes p.

5 Generalized de Bruijn words and invertible necklaces

In this section, we further explore the connection between the content of Sections 3 and 4.
Specifically, we show that over an alphabet whose size is a prime number, generalized de
Bruijn words and invertible necklaces are linked not only through their relationship with the
Burrows–Wheeler transform, but also via an isomorphism of abelian groups.

First, recall that every finite abelian group G is isomorphic to the direct sum of cyclic
groups, i.e., G ∼=

⊕
i Zdi . One has, for example, RG4

2
∼= Z2 and RG8

2
∼= Z2

2 ⊕ Z4 (remember
that the order of RGn

p is Φp(n)/n).
Chan, Hollmann and Pasechnik [5] proved that the structure of Reutenauer groups can

be found by means of an isomorphism with the sandpile groups of generalized de Bruijn
graphs, as reported in the next theorem.

▶ Theorem 21 ([5]). Let K(DB(p, n)) be the sandpile group of the generalized de Bruijn
graph DB(p, n), p prime. Then

K(DB(p, n)) ⊕ Zp−1 ∼= RGn
p ,

where RGn
p

∼= C(p, n)/⟨Qn⟩ is the n-th Reutenauer group over Fp.
Thus, for p prime, K(DB(p, n)) ∼= C(p, n)/(Zp−1 × Zn), and therefore κ(DB(p, n)) =

Φp(n)
n(p − 1) .

As a consequence of Theorem 21, we arrive at a remarkable fact: the structure of the
Reutenauer groups is entirely determined by the structure of the generalized de Bruijn graphs.
An illustrative example is provided in Table 4. We point out that the (reduced) Laplacian
matrix of a generalized de Bruijn graph (as well as its Smith Normal Form and invariant
factors) can be derived directly from the arithmetic definition of the graph, without the need
to construct it explicitly.

We thus obtain the following formula for the number of generalized de Bruijn words over
an alphabet of prime size:
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Table 4 The invariant factors of the reduced Laplacian matrix of the generalized de Bruijn graphs
for k = 3, which give the structure of the sandpile groups K(DB(3, n)) and Reutenauer groups RGn

3 .

n di K(DB(3, n)) RGn
3

3 (1, 3) Z3 Z3 ⊕ Z2

4 (1, 1, 4) Z4 Z4 ⊕ Z2

5 (1, 1, 1, 16) Z16 Z16 ⊕ Z2

6 (1, 1, 3, 3, 3) Z3
3 Z3

3 ⊕ Z2

7 (1, 1, 1, 1, 1, 104) Z104 Z104 ⊕ Z2

8 (1, 1, 1, 1, 2, 8, 8) Z2
8 ⊕ Z2 Z2

8 ⊕ Z2
2

9 (1, 1, 1, 3, 3, 3, 3, 9) Z9 ⊕ Z4
3 Z9 ⊕ Z4

3 ⊕ Z2

10 (1, 1, 1, 1, 1, 1, 1, 16, 80) Z80 ⊕ Z16 Z80 ⊕ Z16 ⊕ Z2

11 (1, 1, 1, 1, 1, 1, 1, 1, 22, 242) Z242 ⊕ Z22 Z242 ⊕ Z22 ⊕ Z2

12 (1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 12) Z12 ⊕ Z6
3 Z12 ⊕ Z6

3 ⊕ Z2

▶ Theorem 22. Let p be a prime. For every n ≥ 2, the number of generalized de Bruijn
words of length pn over Σp = {0, 1, . . . , p − 1} is

DBWp(pn) = ((p − 1)!)n

p − 1
Φp(n)

n
= ((p − 1)!)n

p − 1 N̂p(n) (5)

where N̂p(n) is the number of invertible necklaces of length n over Σp.

Proof. By Theorem 21, we have κ(DB(p, n)) = Φp(n)/(n(p − 1)). The result then follows
from (2). ◀

▶ Remark 23. When n is a power of a prime p (which corresponds to the case of ordinary
de Bruijn words), the precise structure of the sandpile group (and hence of the Reutenauer
group) can be easily given in terms of p and n. Indeed, from the results in [5], one can derive:

K(DB(p, pn)) ∼=
[ n−1⊕

i=1
(Zpi)pn−1−i(p2−2p+1)] ⊕ Zp−2

pn , (6)

and hence, by Theorem 21,

RGn
p

∼=
[ n−1⊕

i=1
(Zpi)pn−1−i(p2−2p+1)] ⊕ Zp−2

pn ⊕ Zp−1. (7)

Note that, as expected, for p = 2 we obtain (4).

▶ Remark 24. Let pn = pd, d > 1, i.e., n = pd−1. Since Φp(pd−1) = ppd−1 p − 1
p

, from (5) we
get

DBWp(pd) = ((p − 1)!)pd−1
ppd−1

ppd−1 = (p!)pd−1

pd

i.e., the number of (ordinary) de Bruijn words of order d over Σp.
In the special case p = 2, we have, by Theorem 21, that K(DB(2, n)) ∼= RGn

2 . As a
consequence, we have the following:
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▶ Theorem 25. For every n ≥ 1, the following sets are in bijection:
The set of binary generalized de Bruijn words of length 2n;
The set of binary invertible necklaces of length n;
The set of (unordered) normal bases of F2n .

In particular, when n = 2d for some d, we have a bijection between the set of binary
de Bruijn words of length 2d+1 and the set of binary necklaces of length 2d having an odd
number of 1’s. This follows from Corollary 20. Indeed, notice that we do not need to add
the hypothesis that the necklaces are aperiodic, since their lengths are a power of 2.

▶ Theorem 26. For every d ≥ 1, the following sets are in bijection:
The set of binary de Bruijn words of order d + 1;
The set of binary necklaces of length 2d having an odd number of 1’s;
The set of (unordered) normal bases of F22d .

▶ Remark 27. Any constructive bijection would allow one to derive algorithms for inter-
changing between these objects. One could, for example, use such a bijection to generate
every binary de Bruijn word with uniform probability, a problem that is still open – in [24]
the authors presented an efficient algorithm to generate every binary de Bruijn word with
positive probability. Moreover, this could be made efficient in practice since the sum in F2 is
nothing else than the XOR.

6 Conclusions and Open Problems

As emphasized in the introduction, the central motivation of our work is to present a new
formalism, based on combinatorics on words, that bridges various algebraic structures. This
approach builds on known results relating sandpile groups of (generalized) de Bruijn graphs
and groups of invertible matrices over finite fields (Reutenauer groups). The new classes
of words we introduce in this paper – generalized de Bruijn words on the one hand, and
conjugacy classes of words (necklaces) with invertible Burrows–Wheeler matrix on the other
hand – offer a fresh reinterpretation of these connections in terms of words. The key advantage
of the new framework is its foundation in the Burrows–Wheeler transform, which not only
clarifies links to longstanding open problems in elementary number theory but also opens
new avenues for further research.

We expect that different research communities, including those focused on combinatorics
on words, commutative algebra, combinatorial algorithms, finite fields, and cryptography,
will build upon the new constructions introduced in this paper. For instance, it would be
interesting to develop combinatorial characterizations of the newly introduced classes of
words. Another compelling direction is to gain a deeper understanding of the group operation
on invertible necklaces and investigate its relationship to the one recently introduced by
Zamboni in the context of Christoffel words [35], and further explored in [30].
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