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Abstract
Regular transductions over finite words have linear input-to-output growth. This class of transduc-
tions enjoys many characterizations, such as transductions computable by two-way transducers as
well as transductions definable in MSO (in the sense of Courcelle). Recently, regular transductions
have been extended by Bojańczyk to polyregular transductions, which have polynomial growth,
and are characterized by pebble transducers and MSO interpretations. Another class of interest is
that of transductions defined by streaming string transducers or marble transducers, which have
exponential growth and are incomparable with polyregular transductions.

In this paper, we consider MSO set interpretations (MSOSI) over finite words, that were introduced
by Colcombet and Loeding. MSOSI are a natural candidate for the class of “regular transductions
with exponential growth”, and are rather well behaved. However, MSOSI for now lacks two desirable
properties that regular and polyregular transductions have. The first property is to have an automata
description. This property is closely related to a second property, that of being regularity preserving,
meaning preserving regular languages under inverse image.

We first show that if MSOSI are (effectively) regularity preserving then any automatic ω-word
has a decidable MSO theory, an almost 20 years old conjecture of Bárány.

Our main contribution is the introduction of a class of transductions of exponential growth,
which we call lexicographic transductions. We provide three different presentations for this class:
first, as the closure of simple transductions (recognizable transductions) under a single operator
called maplex; second, as a syntactic fragment of MSOSI (but the regular languages are given by
automata instead of formulas); and third, we give an automaton based model called nested marble
transducers, which generalize both marble transducers and pebble transducers. We show that this
class enjoys many nice properties including being regularity preserving.
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1 Introduction

Before discussing lexicographic transductions, the central notion of this article, we give some
context on transduction classes and connections to automatic structures.
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50:2 Lexicographic Transductions of Finite Words

MSOSI and the connection to automatic structures. MSO set interpretations (MSOSI)
were introduced in [11], as a generalization of automatic structures (as well as ω-automatic,
tree automatic and ω-tree automatic structures). Indeed an automatic structure can be
seen as an MSOSI whose domain is a single structure with decidable MSO theory such as
(N,≤). Using a framework of transformations turns out to be very fruitful, and most of the
properties of automatic structures already hold for set-interpretations over structures with
decidable MSO theory. The core property of automatic structures (and their generalizations)
is that they have a decidable FO theory. More generally, MSOSI have what we call the FO
backward translation property, meaning that the inverse image of an FO definable set by
an MSOSI is MSO definable. This property is obtained via simple, yet powerful, syntactic
formula substitution. This technique actually allows to show more generally that MSOSI are
closed under post-composition by FO interpretations (FOI).

Generally speaking, automatic structures do not have a decidable MSO theory. This has
motivated a line of research that looks for interesting structures with a decidable MSO theory.
For instance, morphic ω-words, as well as two generalizations called k-lexicographic ω-words [2]
and toric ω-words [4], have been shown to have a decidable MSO theory. Morphic ω-words
and k-lexicographic ω-words are particular cases of automatic ω-words1. An automatic
ω-word is an automatic structure with unary relations and a single binary relation that
is a total order isomorphic to (N,≤) (it is crucial that the structure be given by its order
relation and not by the successor). To the best of our knowledge, it is not known whether an
automatic ω-word with an undecidable MSO theory exists, raising the next conjecture.

▶ Conjecture 1 ( [2], Section 9). Any automatic ω-word has a decidable MSO theory2.

In [2, Corollary 5.6], the author even shows that k-lexicographic ω-words are closed under
sequential transductions. As we show in Proposition 11 this property is deeply connected to
preserving MSO definable sets by inverse image (which we call regularity preserving3) and is
stronger than having a decidable MSO theory.

A different setting where one can obtain regularity preserving transductions, is provided
in [8] where it is shown that MSO interpretations (MSOI) from finite words to finite words
characterize the polyregular transductions. Once again, as for automatic ω-words, the output
structure must be defined by its order and not by the successor.

This calls for a more unifying argument and systematic study of MSOSI whose output
structures are linearly ordered, that we phrase as a conjecture4:

▶ Conjecture 2. MSOSI from finite words to finite words are regularity preserving.

In this article, we focus on transductions from finite words to finite words for two main
reasons: it is already challenging, and it captures part of the difficulty of ω-words. We show
in Proposition 14 that a positive answer to Conjecture 2 entails that Conjecture 1 holds.

On regular transductions with exponential growth. The theory of finite word transducers
has a long history (in fact as long as automata theory) and is still actively studied.

Various classes of transductions have been introduced, most notably (and ordered inclusion-
wise): sequential (Seq), rational (Rat), regular (Reg) and the more recent polyregular
transductions (PolyReg) as well as transductions defined by streaming string transducers
(SST), which subsume Reg but are incomparable to PolyReg. For a recent survey, see [23].

1 Not to be confused with automatic sequences.
2 Bárány actually conjectures that any automatic ω-word has a so-called canonical presentation.
3 It follows the terminologiy of [3]. This property is sometimes called regular continuity [10].
4 One could state stronger conjectures extending the structures to trees, ω-words or infinite trees.
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These classes are rather well-known and enjoy nice regularity properties, including being
closed under composition (except for SST which is still closed under post-composition by
Seq) which entails5 being regularity preserving. However some important questions remain
open, such as equivalence of PolyReg transductions, which is not known to be decidable.

The two classes of Reg and PolyReg enjoy natural logical characterizations, namely
word-to-word MSO transductions (MSOT) and MSOI, respectively. The fact that MSOT are
regularity preserving is again obtained by simple formula substitution and holds for arbitrary
structures. In contrast in the case of MSOI, the only known proof is via a translation into an
automaton model called pebble transducers. This raises a natural question for MSOSI:

▶ Question 1. Can we get an automaton model corresponding to MSOSI over finite words?

A positive answer to this question would hopefully provide a proof of Conjecture 2, since
natural automata models are usually closed under post-composition by Seq 5. While hope
plays an important part in research, we have good reasons to think this is a hard problem:
as mentioned above this would solve a long standing open problem on automatic structures.

It is rather clear that PolyReg captures the “right” notion of regular transductions with
polynomial growth. While MSOSI seems like a natural candidate, not enough is known
about this class yet to say that it captures the “right” notion of regular transductions with
exponential growth. Let us more humbly describe what should be, in our view, a nice class of
regular transductions with exponential growth: this class should be characterized by different,
somewhat natural6, computation models which subsume the well-behaved classes of PolyReg
and SST. It should be regularity preserving and potentially5 have extra closure properties
by pre- or post-composition with smaller classes. In this article we introduce the class of
lexicographic transductions (Lex) which meets all the above criteria.

Contributions. The first contribution of the article is a hardness result: showing that word-
to-word MSOSI are regularity preserving is at least as hard as showing that any automatic
ω-word has a decidable MSO theory (Proposition 14). To obtain this result we define
automatic transduction (AT) which are naturally equivalent to MSOSI but formulated in a
way that makes the connection with automatic structures clearer. That way we obtain a
one-to-one correspondence between automatic ω-words and automatic transductions over a
unary alphabet which define a total function.

The main contribution of the article is the introduction of a new class of transductions,
called lexicographic transductions (Lex). We give three different characterizations of this class
and show that it enjoys many nice properties, including being regularity preserving.

The first definition of Lex is in the spirit of list functions of [5, 7]: we start with simple
functions which are recognizable transductions whose range contains words of length at
most 1 only. Then we close the class under a single type of operator called maplex which
works as follows: maplex f maps a word u to the concatenation f(u1)f(u2) . . . f(un) where
u1, . . . , un are all the labellings of u over some fixed and totally ordered alphabet, enumerated
in lexicographic order.

Secondly, we show that this class can be expressed as a syntactic restriction of AT,
which we call lexicographic automatic transductions (ATLex). These two characterizations are
actually syntactically equivalent but quite different in spirit. We leverage the aforementioned
correspondence between automatic ω-words and automatic transduction, as well as a result
of Bárány to show that the nesting of maplex operators generates a strict hierarchy of
transduction classes (Proposition 27).

5 In Proposition 11 we see that the two are closely related.
6 As opposed to an artificial model like the union of PolyReg with SST.
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50:4 Lexicographic Transductions of Finite Words

Lexk

ATk-Lex

k-lex automatic ω-words

k−NMT

state-passing free k−NMT

Prop. 26

Prop. 46 in [18]
Thm 36

Thm 33
Thm 37

Figure 1 Overview of the different equivalent models, with the transformations between them.
The dotted arrow denotes an equivalence with a semantic restriction of ATk-Lex (see [18] for details).

Thirdly, we introduce an automaton model called nested marble transducers (NMT).
Nested marble transducers are quite expressive: they generalize marble transducers [12,15]
which are known to coincide with SST, they also naturally generalize PolyReg. Informally,
a level k nested marble transducer can annotate its input as a marble transducer (i.e. it
drops a marble whenever moving left and lifts a marble whenever moving right), and call a
level k−1 nested marble transducer to run on this annotated configuration. This call returns
both an output string and a state which the top-level transducer can use to take its next
transition. This passing of information from the lower levels to the higher levels is what
allows to prove closure under post-composition with a sequential transducer. This is the
key ingredient to show that NMT have regular domains, are regularity preserving, and more
generally are closed under post-composition by PolyReg.

Regarding expressiveness, Lex can be expressed by NMT in a rather direct way (The-
orem 36). In the other way, transductions expressed in Lex do not have such a state-passing
mechanism, hence showing that NMT is included in Lex constitutes the technical heart of
this article (Theorem 37). An important step consists in showing that one can remove the
state-passing mechanism in NMT (Theorem 33). On top of being technical, we show it is
computationally costly: there is an unavoidable non-elementary blow-up to transform a
nested marble transducers into nested marble transducers without state-passing. This allows
to prove the equivalence between the different models. In addition, as shown in Figure 1,
this equivalence holds at each level of the aforementioned hierarchy.

2 Word languages and transductions

Words and languages. Given an alphabet Σ, a Σ-word u (or just word if Σ is clear from
the context) is a sequence of letters from Σ. We denote by ϵ the empty word, and by |u| the
length of a word u. In particular |ϵ| = 0. For all integers n ≥ 0, we let Σn (resp. Σ≤n) be the
set of words of length n (resp. at most n). We let Pos(u) = {1, . . . , |u|} be the set of positions
of u, and for all i ∈ Pos(u), u[i] ∈ Σ is the i-th letter of u. We write Σ∗ for the set of words
over Σ, and Σ+ for the set of non-empty words. An ω-word is defined similarly, with a set of
positions equal to N. A word language over Σ is a subset of Σ∗. In this paper, we let | be a
symbol called separator, assumed to be distinct from any alphabet symbol. Let Σ1,Σ2 be two
alphabets, ℓ ∈ N and u1 ∈ Σℓ

1, u2 ∈ Σℓ
2 be two words of length ℓ. The convolution u1 ⊗ u2 of

u1 and u2 is the word in (Σ1 × Σ2)ℓ such that for all 1 ≤ i ≤ ℓ, (u1 ⊗ u2)[i] = (u1[i], u2[i]).

Finite automata. A (non-deterministic) finite automaton (NFA) over an alphabet Σ is
denoted as a tuple A = (Q, q0, F,∆) where Q is the set of states, q0 the initial state, F ⊆ Q the
final states, and ∆ ⊆ Q× Σ ×Q the transition relation. We write q u−→A q′ when there exists
a run of A from state q to state q′ on u, and denote by L(A) = {u∈Σ∗ | q0

u−→A qf ∈ F} the
language recognized by A. When A is a deterministic finite automaton (DFA), the transition
relation is denoted by a (partial) function δ : Q× Σ ⇀ Q.
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Word transductions. A word transduction (or just transduction for short) over Σ,Γ two
alphabets is a (partial) function f : Σ∗ ⇀ Γ∗. We denote by dom(f) its domain. Given two
transductions f1, f2 : Σ∗ ⇀ Γ∗ with disjoint domains, we let f1 + f2 be the transduction of
domain dom(f1) ∪ dom(f2) such that (f1 + f2)(u) = fi(u) if u ∈ dom(fi). Given f : Σ∗ ⇀ Γ∗,
g : Γ∗ ⇀ Λ∗, we write (g f) : Σ∗ ⇀ Λ∗ the composition g ◦ f . Given h : Λ∗ ⇀ ∆∗, (h g f)
stands for (h (g f)). For u ∈ Σ∗, we also write (h g f u) for (h g f)(u).

A transduction f has exponential growth if there exists c ∈ N such that for all u ∈ dom(f),
|f(u)| ≤ 2c|u| holds. A transduction f has polynomial growth if there exist c, k ∈ N such that
for all u ∈ dom(f), |f(u)| ≤ c|u|k holds.

▶ Example 3 (Reverse, copy and square). Let Σ be an alphabet. The transduction rev : Σ∗ →
Σ∗ takes as input any word u = σ1 . . . σn and outputs its reverse σn . . . σ1, for all σi ∈ Σ.
The transduction copy takes u and returns uu.

Let Σ be an alphabet and Σ = {σ | σ ∈ Σ}. Given a word u = σ1 . . . σn and a position i ∈
Pos(u), we let underi(u) = σ1 . . . σi−1σiσi+1 . . . σn. The transduction square : Σ∗ → (Σ ∪ Σ)∗

is defined as square(u) = under1(u) . . . under|u|(u). For example square(abc) = abcabcabc.

▶ Example 4 (Subwords). Let sub : Σ∗ → Σ∗ be the transduction which enumerates all the
subwords of a word in lexicographic order (with rightmost significant bit). For example
sub(abc) = a.b.ab.c.ac.bc.abc. Note that sub has exponential growth.

▶ Example 5 (Map). Let Σ be some alphabet and | ̸∈ Σ be some separator symbol. Let
Σ| = Σ∪{|}. Let f : Σ∗ ⇀ Γ∗. The transduction map f : Σ∗

| ⇀ Σ∗
| takes any input word of the

form u = u1|u2| . . . |un where ui ∈ Σ∗ for all i ∈ {1, . . . , n}, and returns f(u1)|f(u2)| . . . |f(un)
(if all the f(ui) are defined, otherwise (map f)(u) is undefined.

Sequential and rational transductions. Sequential transductions are transductions recog-
nized by sequential transducers. A sequential transducer over some alphabets Σ and Γ
(not necessarily disjoint) is a pair T = (A,µ) where A = (Q, q0, F, δ) is a DFA over Σ and
µ : dom(δ) → Γ∗ is a total function. We write q u/v−−→T q′ whenever there exists a sequence of
states q1 = q, q2, . . . , qn+1 = q′ such that q1

u[1]−−→A q2 . . . qn
u[n]−−→A qn+1 where n = |u|, and

v = µ(q1, u[1]) . . . µ(qn, u[n]). The transduction fT recognized by T is defined for all u ∈ L(A)
by fT (u) = v such that q0

u/v−−→ qf ∈ F . Note that dom(fT ) = L(A). We denote by Seq the
class of sequential transductions. Like sequential transducers, a (non-deterministic, func-
tional) finite state transducer is defined as a pair T = (A,µ) but A can be non-deterministic,
with the functional restriction: for all words u ∈ L(A), the outputs of all the accepting
runs over u are all equal. With this restriction, T recognizes a transduction fT . A rational
transduction is a transduction fT for some T , and we denote by Rat the class of rational
transductions [21].

Regular and polyregular transductions. The class of regular (resp. polyregular) transduc-
tions is the smallest class of transductions which is closed under composition of transductions
and map, and contains the sequential transductions, copy and rev (resp. the sequential trans-
ductions, rev and square) [5, 9]. We denote by PolyReg the class of polyregular transductions.

MFCS 2025



50:6 Lexicographic Transductions of Finite Words

3 MSO set interpretations, properties and limitations

MSO set interpretations
Signatures, formulas and structures. A relational signature (or simply signature) is a
set S of symbols together with a function arity : S → N. We consider a set of first-order
variables denoted by lower case letter x, y, z, . . . as well as a set of second-order variables
denoted by upper case letter X,Y, Z . . .. The MSO-formulas over signature S, denoted by
MSO[S], are denoted by the grammar ϕ ::= ∃xϕ | ∃Xϕ | ϕ ∧ ϕ | ¬ϕ | X(x) | R(x1, . . . , xr),
where x, x1, . . . , xr are first-order variables, X is a second-order variable and R ∈ S with
arity(R) = r. We denote by FO[S] the formulas which do not use second-order variables.

A relational structure u over signature S is a set U called the universe of the structure,
together with, for each symbol R ∈ S of arity r, an interpretation Ru ⊆ Ur.

Regularity preserving. A function from S-structures to T -structures is called regularity
preserving if the inverse image of an MSO[T ] definable set is MSO[S] definable. We say that
a class of functions is regularity preserving if all functions in the class are.

Word structures. The word signature over Σ is the tuple SΣ = ((σ(x))σ∈Σ,≤ (x, y)) where
σ(x) are unary predicate symbols and ≤ (x, y), usually written x ≤ y, is a binary predicate
symbol. Any word u can be naturally associated with an SΣ-structure ũ = (U, (σũ)σ∈Σ,≤ũ)
where U = Pos(u), σũ is a set of positions labeled σ, for all σ ∈ Σ, and ≤ũ is the natural
(linear) order on Pos(u). We write u instead of ũ if it is clear from the context that u is an
SΣ-structure. A word structure over Σ is an SΣ-structure isomorphic to some ũ. Note that
being a word structure is FO definable.

▶ Definition 6 (MSO set interpretations [11]). An MSO set interpretation (MSOSI) T from
S-structures to T -structures, is given by k ∈ N \ {0} called the dimension, a domain formula
ϕdom ∈ MSO[S], an output universe formula ϕuniv(X) ∈ MSO[S], and for each symbol R ∈ T
of arity r a formula ϕR(X1, . . . , Xr) ∈ MSO[S], where X,X1, . . . are k-tuples of variables.

The semantics of T is a partial transduction fT from S-structures to T -structures. The
domain of fT is the set of structures u such that u |= ϕdom. Given such a u with universe
U , we define its image v = fT (u) as the structure with universe V = {P ∈ (2U )k | u |=
ϕuniv(P )}, and for each R ∈ T of arity r, the interpretation Rv = {(P1, . . . , Pr) ∈ V k | u |=
ϕR(P1, . . . , Pr)}.We say that an MSOSI is (finite) word-to-word if its domain and co-domain
only contain word structures over some respective alphabets Σ,Γ.

▶ Remark 7. Given an MSOSI from SΣ-structures to SΓ-structures, one can restrict the
domain formula to word structures whose image are word structures. This is because being
a linear order is FO-definable.

▶ Example 8. The transduction sub of Example 4 is definable by the MSOSI T = (k =
2, ϕdom = ⊤, ϕuniv(X,Y ), (ϕσ(X,Y ))σ∈Σ, ϕ≤(X,Y )). The main idea is to let X range over
all possible subsets, and Y range over all possible singletons {y} such that y ∈ X. Let
sing(Y, y) = Y (y) ∧ ∀y′(Y (y′) → y′ = y). It holds true iff Y = {y}. Then, ϕuniv(X,Y ) =
∃y(sing(Y, y) ∧ X(y)). The label of an output position (X, {y}) is the label of the input
position y, i.e. ϕσ(X,Y ) = ∃y(sing(Y, y)∧σ(y)). Finally, any two output positions (X1, {y1}),
(X2, {y2}) are ordered lexicographically (with rightmost significant bit): if X1 = X2, then
y1 ≤ y2, otherwise, the smallest mismatching position x (i.e. a position in the symmetric
difference of X1 and X2) must be in X1. Those properties are easily expressible in MSO.



E. Filiot, N. Lhote, and P.-A. Reynier 50:7

MSO transductions, MSO and FO interpretations. An MSO interpretation (MSOI) is an
MSOSI whose free set variables are restricted to be singleton sets. This can be syntactically
enforced in the universe formula ϕuniv, as being a singleton is an MSO definable property.
Equivalently, MSOI are defined as MSOSI but instead the free variables are first-order. Note
that transductions realized by MSOI have only polynomial growth. An FO interpretation
(FOI) is an MSOI whose formulas are all FO-formulas. Finally an MSO transduction (MSOT)
is (roughly7 speaking) an MSO interpretation of dimension 1. MSOT capture exactly the
class of regular transductions [1, 13,16,23].

The following theorem is at the core of the theory of set interpretations, and automatic
structures. It holds in all generality, and furthermore the compositions can be done by simple
formula substitutions.

▶ Theorem 9 ( [11, Proposition 2.4]). MSO set interpretations are effectively closed under
pre-composition by MSOT and post-composition by FOI.

Exponential versus polynomial growth. There is a dichotomy for the growth of set inter-
pretations over words, deeply connected to the similar dichotomy for the automata ambiguity,
between exponential and polynomial growths. Moreover for polynomial growth transductions,
the level of growth exactly coincides with the minimum dimension of an MSOSI defining the
transduction. The result holds in the more general case of trees.

▶ Theorem 10 ( [20, Theorem 1.5], [6, Theorem 2.3]). A set interpretation over words has
growth either 2Θ(n), or Θ(nk) for some k ∈ N, and this can be computed in PTime. In the
latter case8, one can compute an equivalent MSOI of dimension k.

Quite a lot is known about word-to-word set interpretations with polynomial growth, which
are called polyregular transductions and enjoy many different characterizations [8, Theorem 7].

Regularity preserving. An open question on word-to-word MSOSI is whether they are
regularity preserving. This can actually be formulated in terms of closure properties.

▶ Proposition 11. The following are equivalent:
Word-to-word MSOSI are regularity preserving,
The class of word-to-word MSOSI is closed under post-composition with transductions
computed by Mealy machines (see [24] for a definition of Mealy machines),
The class of word-to-word MSOSI is closed under post-composition with polyregular trans-
ductions.

Automatic transductions
We describe an automata-based presentation of MSOSI, which we call automatic transductions.
Algorithmically speaking, it is more amenable to efficient processing, as it is based on
automata instead of MSO, and it makes the connection between automatic structures and
set interpretations more obvious.

▶ Definition 12. An automatic transduction (AT for short) from Σ∗ to T -structures is
described as a tuple T = (Σ, B,Adom, Auniv, (AR)R∈T ) where:

B is a finite alphabet describing a work alphabet

7 Classically, one adds a bounded number of copies of the input to get the full class of MSOT.
8 Note that to get this tight correspondence, we need to allow a bounded number of copies of the input,

see [20, Definition 4.3].

MFCS 2025



50:8 Lexicographic Transductions of Finite Words

Adom is an automaton over Σ recognizing the domain of the transduction,
Auniv is an automaton over Σ ×B. Words accepted by Auniv are called configurations,
for each R ∈ T of arity r, AR is an automaton over Σ × Br describing tuples of the
relation R.

Given a word u ∈ Σ∗, the output T -structure v = fT (u) is defined, whenever u ∈ L(Adom),
as follows: its universe is the set V = {x ∈ B∗| u⊗ x ∈ L(Auniv)}; a predicate symbol R ∈ T
of arity r is interpreted as Rv = {(x1, . . . , xr) ∈ V r|u⊗ x1 ⊗ . . .⊗ xr ∈ L(AR)}.

▶ Remark 13. Automatic transductions are essentially identical to MSOSI, except restricted
to input word structures, where one can leverage the classical equivalence between MSO
and automata. They can be naturally generalized to work over input structures such as
ω-words, trees and infinite trees, giving rise to the notions of ω-automatic, tree-automatic
and ω-tree-automatic transductions. Note that an ω-automatic structure is precisely an
ω-automatic transduction whose domain is a single infinite word aω.

Transduction/structure correspondence. In [18], we show a correspondence between word-
to-word automatic transductions and automatic ω-words (defined therein), thanks to which
we obtain the following proposition.

▶ Proposition 14. If word-to-word MSOSI are effectively regularity preserving, then automatic
ω-words have a decidable MSO theory9.

This entails that a positive answer to Conjecture 2 would provide a positive answer to
Conjecture 1, which has been open since [2].

4 Lexicographic transductions

As explained in the latter section, we do not know whether MSOSI are regularity preserving,
and as a consequence of Proposition 14, proving that it enjoys this property would prove
a long-standing conjecture of the theory of automatic structures [2]. In this section, we
introduce a subclass of MSOSI which enjoys this property, called lexicographic transductions.

Definition of lexicographic transductions

We first define this class in terms of closure of basic transductions, called simple transductions,
under a lexicographic map operation. The connection with MSOSI is done at the end of this
section (Subsection 4), via a corresponding subclass of automatic transductions.

Simple transductions. A regular constant (partial) transduction of type Σ∗ ⇀ Γ∗ is an
expression of the form L▷w, where L is a regular language over Σ and w is a word in Γ∗,
such that for all u ∈ Σ∗, (L▷w)(u) is defined only if u ∈ L, by (L▷w)(u) = w. A simple
transduction10 f is a finite union of regular constant transductions whose codomain only
contains words of length at most 1. A simple transduction f : Σ∗ ⇀ Γ∗ is denoted by
f =

∑n
i=1 Li▷wi such that L1, . . . , Ln ⊆ Σ∗ are pairwise disjoint regular languages, and

w1, . . . , wn ∈ Γ≤1.

9 One could actually prove the stronger implication that any automatic ω-word has a canonical presentation,
as in [2].

10 It is a restriction of the known class of recognizable transduction to output words of length at most 1.
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Lexicographic enumerators. An ordered alphabet is a pair λ = (B,≺) such that B is finite
set and ≺ is a linear order over B. The order ≺ is extended lexicographically (using the
same notation) to words of same length over B, with most significant letter to the right:
for all n and all u, v ∈ Bn, u ≺ v if there exists a position i ≤ n such that u[i] ≺ v[i] and
for all i < j ≤ n, u[j] = v[j]. Note that ≺ is a total order over Bn, for all n. We denote
succλ : B∗ ⇀ B∗ the successor function on B∗ induced by ≺.

Remind that | is a fixed separator symbol. The λ-lexicographic enumerator is the function

lex-enumλ :
⋃

Σ,Γ alphabets Σ∗ → ((Σ ×B)∗|)∗(Σ ×B)∗

w 7→ (w ⊗ u1)|(w ⊗ u2)| . . . |(w ⊗ uk)

where |w| = |u1| = · · · = |uk|, u1 is minimal for ≺, uk is maximal for ≺ and for all 1 ≤ i < k,
ui+1 = succλ(ui). Note that k = |B||w|.

▶ Example 15. Let Σ = {a, b} let λ = (B,≺) be a finite order with B = {0, 1} and 0 ≺ 1.
For all σ ∈ Σ and b ∈ B, we write σ

b instead of (σ, b) and Σ
b to denote the set of pairs (σ, b)

for all σ ∈ Σ. Then lex-enumλ(abb) = a
0

b
0

b
0 | a

1
b
0

b
0 | a

0
b
1

b
0 | a

1
b
1

b
0 | a

0
b
0

b
1 | a

1
b
0

b
1 | a

0
b
1

b
1 | a

1
b
1

b
1 .

MapLex combinator. Let λ = (B,≺) be an ordered alphabet. We define the function

maplexλ :
⋃

Σ,Γ alphabets((Σ ×B)∗ → Γ∗) → Σ∗ → Γ∗

such that for all Σ,Γ alphabets, all f : (Σ ×B)∗ → Γ∗ and u ∈ Σ∗,

maplexλ f u = f(v1)f(v2) . . . f(vk)

where lex-enumλ(u) = v1|v2| . . . |vk. Note that u is in the domain of maplexλ f if and only if
v1, . . . , vk are all in the domain of f . We write maplex when λ is clear from the context.

▶ Definition 16 (Lexicographic transductions). Lexicographic transductions, denoted by Lex,
are defined inductively by Lex0 the class of simple transductions and Lexk+1 = {maplexλ f |
f ∈ Lexk, λ ordered alphabet }. Elements of Lexk are called k-lexicographic transductions.

▶ Lemma 17. For all f ∈ Lex, its domain dom(f) is regular.

Proof. Any Lex transduction f : Σ∗ ⇀ Γ∗ is equal to maplexλ1 (maplexλ2 . . . (maplexλk
s) . . . )

for some k ≥ 0, some ordered alphabets (λi = (Bi,≺i))i and some simple transduction
s : (Σ × B1 × · · · × Bk)∗ ⇀ Γ∗. Then, f is defined on u ∈ Σ∗ iff for all 1 ≤ i ≤ k and all
bi ∈ B

|u|
i , s(u⊗ b1 ⊗ · · · ⊗ bk) is defined. Now, observe that dom(f) is the complement of the

Σ-projection of the complement of dom(s). This entails the result as dom(s) is regular and
regular languages are closed under morphisms (and complement). ◀

▶ Remark 18. A simple transduction s ∈ Lex0, has growth O(1), and maplexλ s has growth
O(|B|n), for λ = (B, λ). One application of maplex can thus cause an exponential blowup.
Note however that these exponentials don’t compose, but multiply with extra applications of
maplex. Using the same notations as in the above proof, f has growth O(|B1× · · · ×Bk|n).

▶ Example 19 (Identity and Reverse). Take λ = (B,≺) and λ′ = (B,≺′) with B = {0, 1},
0 ≺ 1, and 1 ≺′ 0. For all σ ∈ Σ, let Lσ = ( Σ

0 )∗( σ
1 )( Σ

0 )∗ and Lϵ = (Σ ×B)∗ \ (
⋃

σ Lσ).

id = maplexλ (Lϵ▷ϵ+
∑

σ∈Σ Lσ▷σ) rev = maplexλ′ (Lϵ▷ϵ+
∑

σ∈Σ Lσ▷σ)
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This is illustrated below on input abc, with the output of the simple function below every
word of the enumeration.

id a
0

b
0

c
0︸ ︷︷ ︸

ϵ

| a
1

b
0

c
0︸ ︷︷ ︸

a

| a
0

b
1

c
0︸ ︷︷ ︸

b

| a
1

b
1

c
0︸ ︷︷ ︸

ϵ

| a
0

b
0

c
1︸ ︷︷ ︸

c

| a
1

b
0

c
1︸ ︷︷ ︸

ϵ

| a
0

b
1

c
1︸ ︷︷ ︸

ϵ

| a
1

b
1

c
1︸ ︷︷ ︸

ϵ

rev a
1

b
1

c
1︸ ︷︷ ︸

ϵ

| a
0

b
1

c
1︸ ︷︷ ︸

ϵ

| a
1

b
0

c
1︸ ︷︷ ︸

ϵ

| a
0

b
0

c
1︸ ︷︷ ︸

c

| a
1

b
1

c
0︸ ︷︷ ︸

ϵ

| a
0

b
1

c
0︸ ︷︷ ︸

b

| a
1

b
0

c
0︸ ︷︷ ︸

a

| a
0

b
0

c
0︸ ︷︷ ︸

ϵ

▶ Example 20 (Morphisms). Let ϕa : u ∈ {a, b}∗ → a∗ be the morphism defined by ϕa(a) = a

and ϕa(b) = ϵ. We have ϕa ∈ Lex1. It suffices to take B = {0, 1} with 0 ≺ 1. Then, let
La = ( Σ

0 )∗( a
1 )( Σ

0 )∗, and Lϵ = La. Then ϕa = maplex (La▷a + Lϵ▷ϵ). More generally, if
ψ : Σ∗ → Γ∗ is an arbitrary morphism, we show that ψ ∈ Lex1. Note that ψ may transform
a single letter into several letters, while simple transductions output at most one letter. To
overcome this difference, we consider a larger linearly ordered set. Let M = maxσ∈Σ|ψ(σ)|.
If M = 0, then ψ is the constant transduction which outputs ϵ, so ψ ∈ Lex0. Otherwise, let
λM = (BM , <) with BM = {0, 1, . . . ,M} naturally ordered. Let I : Γ → 2Σ×N such that
for all γ ∈ Γ, I(γ) is the set of pairs (σ, i) such that ψ(σ)[i] = γ. Note that for all γ ∈ Γ,
I(γ) ⊆ Σ × {1, . . . ,M}. Define Lγ as the set given by the regexp

⋃
(σ,i)∈I(γ)( Σ

0 )∗( σ
i )( Σ

0 )∗

and Lϵ the complement of the union of all Lγ . Then ψ = maplexλM
(Lϵ▷ϵ +

∑
γ∈Γ Lγ▷γ).

Example 20 can be generalized to sequential transductions.

▶ Lemma 21. Seq ⊆ Lex1.

▶ Example 22 (Domain restriction). Let k ≥ 0. Given f : Σ∗ → Γ∗ a transduction in Lexk

and L ⊆ Σ∗ a regular language, the transduction f|L : u 7→ f(u) if u ∈ dom(f) ∩ L is in
Lexk. We show this inductively on k: it is clear for f ∈ Lex0. Assume f = maplexλ g

with λ = (B,≺) and let πΣ : (Σ × B)∗ → Σ∗ be the natural projection morphism. Then
f|L = maplexλ g|π−1

Σ (L), which proves that Lexk is closed under domain restriction.

▶ Example 23 (Subwords). We show that sub ∈ Lex2 (see Example 4 for the definition of sub).
We take λ = (B,<), with B = {0, 1} and define the following morphism del0 : (Σ×B)∗ → Σ∗

by del0(σ, 0) = ϵ and del0(σ, 1) = σ. We can then show sub = maplexλ del0. From Ex. 20,
morphisms are in Lex1, so sub ∈ Lex2.

▶ Example 24 (Square, illustrated on Fig. 2). The transductions square and underi have
been defined in Ex. 3. We show that square ∈ Lex2. Let λ = (B,<) with B = {0, 1}
and let f : (Σ × B)∗ → (Σ ∪ Σ)∗ such that for all u ∈ Σ∗ of length n, for all 1 ≤ i ≤ n,
f(u ⊗ (0i−110n−i)) = underi(u), and for b ̸∈ 0∗10∗, f(u ⊗ b) = ϵ. It holds that square =
maplexλ f , because 0i−110n−i < 0j−110n−j for all i < j. It remains to show that f ∈ Lex1.
It is because f = maplexλ g for g : (Σ ×B2)∗ → Σ∗ the following simple transduction: for all
u⊗ b1 ⊗ b2 ∈ (Σ ×B2)∗, if b1 ̸∈ 0∗10∗ or b2 ̸∈ 0∗10∗, g(u⊗ b1 ⊗ b2) = ϵ, otherwise let i be the
unique position at which 1 occurs in b1 and j the unique position at which a 1 occurs in b2.
If i = j, then g(u⊗ b1 ⊗ b2) = u[j], otherwise g(u⊗ b1 ⊗ b2) = u[j]. Since those properties
are regular, g is a simple transduction.

Presentation as automatic transductions

We give an alternative presentation in terms of automatic transductions. Let k ≥ 1 be a
positive integer, and λ = ((B1,≺1), . . . , (Bk,≺k)) be a k-tuple of ordered alphabets and let
B = B1 × · · · × Bk. We define the associated k-lexicographic order for words of the same
length over B∗ by u ≺λ v if u = u1 ⊗ · · · ⊗ uk, v = v1 ⊗ · · · ⊗ vk, and there is i ∈ {1, . . . , k}
such that ui ≺i vi and for all j < i, uj = vj .
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a
0
0

b
0
0︸︷︷︸

ϵ

|
a
0
1

b
0
0︸︷︷︸

ϵ

|
a
0
0

b
0
1︸︷︷︸

ϵ

|
a
0
1

b
0
1︸︷︷︸

ϵ

|
a
1
0

b
0
0︸︷︷︸

ϵ

|
a
1
1

b
0
0︸︷︷︸

a

|
a
1
0

b
0
1︸︷︷︸

b

|
a
1
1

b
0
1︸︷︷︸

ϵ

|
a
0
0

b
1
0︸︷︷︸

ϵ

|
a
0
1

b
1
0︸︷︷︸

a

|
a
0
0

b
1
1︸︷︷︸

b

|
a
0
1

b
1
1︸︷︷︸

ϵ

|
a
1
0

b
1
0︸︷︷︸

ϵ

|
a
1
1

b
1
0︸︷︷︸

ϵ

|
a
1
0

b
1
1︸︷︷︸

ϵ

|
a
1
1

b
1
1︸︷︷︸

ϵ

Figure 2 Equality square = (maplexλ maplexλ g) illustrated on input ab, with the results of
applying g underneath.

▶ Definition 25. Let λ = ((B1,≺1), . . . , (Bk,≺k)) be a k-tuple of ordered alphabets, let
B = B1 × · · · ×Bk and let ≺λ be the associated k-lexicographic order.

A k-lexicographic automatic transducer over the alphabet B is an automatic transducer
with work alphabet B such that the order is exactly ≺λ. A transduction is said to be k-
lexicographic automatic if it can be defined by a k-lexicographic automatic transducer. We
denote by ATk-Lex the class of k-lexicographic automatic transductions and by ATLex the union
of these, which we call lexicographic automatic transductions.

The next proposition is rather immediate.

▶ Proposition 26 (ATk-Lex = Lexk). For all k ≥ 1, a transduction is k-lexicographic iff it is
k-lexicographic automatic.

In [18], we make a connection between k-lexicographic automatic transductions and
k-lexicographic automatic ω-words [2]. In [2, Theorem 6.1], the author shows that k-
lexicographic automatic ω-words form a strict hierarchy and provides explicit witnesses for
each level of the hierarchy. As a consequence of Proposition 26, we obtain that k-lexicographic
transductions form a strict hierarchy, as stated by the following proposition.

▶ Proposition 27. For all k ≥ 1, Lexk ⊊ Lexk+1.

5 Nested marble transducers

We introduce in this section a transducer model, called nested marble transducers, and show
that the class of transductions it recognizes is exactly the class of lexicographic transductions.
Nested marble transducers generalize marble transducers [12, 15]. A marble transducer
belongs to the family of transducers with an unbounded number of pebbles (of finitely many
colours), with the following restriction: whenever it moves left, it has to drop a pebble, and
whenever it moves right, it has to lift a pebble. The term marble is meant to emphasize
this restriction. A nested marble transducer of level k ≥ 1 behaves like a marble transducer
which can call, when reading the leftmarker ⊢, a nested marble transducer of level k−1. A
nested marble transducer of level 0 is what we call a simple transducer. It is just a DFA with
an output function on its accepting states, so it realizes a transduction whose range is finite.

▶ Definition 28 (Simple transducers). Let Σ,Γ be finite sets (not necessarily disjoint). A
(Σ,Γ)-simple transducer is a pair T = (A,µ) where A = (Q, q0, F, δ) is a DFA over Σ∪{⊢,⊣}
and µ : F → Γ≤1 is a total function.

We define two semantics for T , an operational semantics fop
T : Q× Σ∗ ⇀ Γ∗ × F which

takes as input a word and also a state from which the computation starts, and returns a
word and the state reached when the computation ends, if it is accepting. Otherwise fop

T is
not defined. Formally, fop

T (q, u) is defined for all u such that q ⊢u⊣−−→A qf for some qf ∈ F , by
fop

T (q, u) = (µ(qf ), qf ).
From the operational semantics, we also define the transduction fT : Σ∗ ⇀ Γ∗ recognized

by T by applying the operational semantics from the initial state, and projecting away the
final state, i.e. fT (u) = π1(fop

T (q0, u)), where π1 is the projection on the first component.
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50:12 Lexicographic Transductions of Finite Words

▶ Definition 29 (Nested marble transducers from Σ to Γ). A (0,Σ,Γ)-nested marble transducer
is a (Σ,Γ)-simple transducer. For k ≥ 1, a (k,Σ,Γ)-nested marble transducer is a tuple
T = (Σ,Γ, C, c0, QT , q0, FT , δ, δcall, δret, µ, T

′) where:
C is a finite set of (marble) colors, c0 is an initial color;
QT is a finite set of states, q0 is an initial state, and FT a set of accepting states;
T ′ is a (k−1,Σ×C,Γ)-nested marble transducer with set of states QT ′ and set of accepting
states FT ′ ;
δ : QT × (Σ ∪ {⊣}) × C → (C ∪ {⊥}) ×QT is a transition function;
δcall : QT × C → QT ′ is a call function; δret : QT × C × FT ′ → QT is a return function;
µ : dom(δ) → Γ∗ is an output function.

We use (k,Σ,Γ)-NMT (or just k-NMT if Σ,Γ are clear from the context) as a shortcut for
(k,Σ,Γ)-nested marble transducer. T ′ is the assistant NMT and k the level of T . Finally,
we often say marble instead of marble colour.

We now define the semantics informally. The reading head of T is initially placed on
the rightmost position labeled ⊣, marked with a marble of color c0, in state q0. Transitions
work as follows: suppose the current state is q and the reading head is on some position i

labeled by σ ∈ Σ ∪ {⊣,⊢} and by some marble of color c ∈ C. Whatever transition in δ can
be applied, some output word is produced by T according to µ. Then there are three cases:
1. if σ ∈ Σ ∪ {⊣} and δ(q, σ, c) = (c′, q′) where c′ ∈ C, then the reading head moves to

position (i−1) in state q′ and a marble of color c′ is placed (on position i−1);
2. if σ ∈ Σ and δ(q, σ, c) = (⊥, q′), then T lifts the current marble and moves its reading

head to position i+ 1 in state q′;
3. if σ = ⊢ then T calls T ′ initialized with state δcall(q, c), on the input word annotated with

marbles. When T ′ finishes its computation in some accepting state q′, T lifts marble c,
moves its reading head to position 1 and continues its computation from state δret(q, c, q′).

The (operational) semantics of T is a function fop
T : QT × Σ∗ → Γ∗ × FT , that we

define inductively. The case k = 0 has been defined after Definition 28. If k ≥ 1 and
T = (Σ,Γ, C, c0, QT , q0, FT , δ, δcall, δret, µ, T

′) then we assume fop
T ′ : QT ′ ×(Σ×C)∗ → Γ∗×FT ′

to be defined inductively. Let us now define fop
T . A configuration of T over a word u ∈ Σ∗

is a triple (q, i, v) such that q is the current state, i ∈ Pos(u) ∪ {0, n + 1} is the current
position (where n = |u|), and v ∈ C∗ is an annotation of the suffix (⊢u⊣)[i:n+1]. We define
a labeled successor relation (q, i, cv) w−→T (q′, i′, v′), between any two configurations where
c ∈ C, labeled by w ∈ Γ∗, whenever one of the following cases hold:
1. 1 ≤ i ≤ n+ 1, δ(q, c) = (c′, q′), i′ = i−1, v′ = c′cv and w = µ(q, c);
2. 1 ≤ i ≤ n, δ(q, c) = (⊥, q′), i′ = i+ 1, v′ = v and w = µ(q, c);
3. i = 0, fop

T ′ (δcall(q, c), (⊢u⊣) ⊗ cv) = (w, p), q′ = δret(q, c, p), i′ = 1 and v′ = v.

The function fop
T : QT × Σ∗ ⇀ Γ∗ × FT recognized by T is defined, for all q ∈ QT and all

u ∈ Σ∗ such that there exists a sequence of configurations over u: ν0 = (q, n+ 1, c0) w1−−→T

ν1
w2−−→T ν3 . . . νk−1

wk−−→T νk where the state qf of νk is accepting (i.e. in F ) and the states
of configurations νi, i < k, are non-accepting, by fop

T (q, u) = (w1 . . . wk, qf ).
The transduction fT : Σ∗ ⇀ Γ∗ recognized by T is defined as the projection of fop

T (q0, u)
on Σ and Γ, i.e. if fop

T (q0, u) = (v, qf ) then fT (u) = v. We denote by NMT the class of
transductions recognizable by some (k,Σ,Γ)−NMT. The local size of an NMT is the number
of its transitions, states and marbles. Its size is its local size plus the size the lower level NMT
it calls. We similarly define the number of (resp. local number of) states/marbles/transitions.
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▶ Example 30. We describe a 2-NMT T2 computing the transduction sub of Example 23.
We recall that sub = maplexλ del0 where λ = (B = {0, 1}, <) and del0 is a morphism. The
transducer T2 behaves as a marble transducer which computes the λ-lexicographic enumerator
lex-enumλ, and whenever a full annotation of its input has been computed, it calls a 1-NMT
T1 which computes del0. Let us explain how T2 computes the next annotation in lexicographic
order (which corresponds to the binary addition with most significant bit to the right). When
the reading head of T2 is on the left marker, all input positions are marked with some pebble
in B = {0, 1}. Then, T2 scans its input to the right (lifting all the pebbles it sees) until it
reads a 0, replaces it by 1 and moves again to the left marker, dropping pebble 1 all the way
back to the left marker. Only three states are needed. Initially, T2 drops pebble 0 on all
positions, from right to left. We explain now how T1 works: it scans its input from right to
left, and, whenever it reads an input (σ, b) with b = 1, outputs σ. Whenever T1 reaches the
leftmarker, it calls a simple transducer T0 which does nothing but outputting ϵ.

The following result states that NMT are closed under post-composition with Seq. To
prove it, we strongly rely on the ability to pass state information through mappings δcall and
δret to adapt a classical product construction of automata.

▶ Lemma 31 (Seq ◦ NMT ⊆ NMT). For all k ≥ 0, all (k,Σ,Γ)-NMT T and all sequential
transducer S over Γ,Λ, one can construct, in polynomial time, a (max(k, 1),Σ,Λ)-NMT T ′

such that fT ′ = fS ◦ fT .

State-passing free nested marble transducers. In the definition of NMT, there are two
explicit forms of information-passing: state information can be passed from level k to level
k−1 through the function δcall, and state information can be passed from level k−1 to
level k via the function δret. In addition, there is an implicit one through the domain of
assistant transducers: indeed, the definition of the semantics requires that all calls to assistant
transducers do accept, hence the assistant transducer can influence the master transducer by
rejecting a word. In this subsection, we prove that information-passing can be removed while
preserving the computational power of k-NMT, however at the cost of increasing the size by
a tower of exponentials of height k. While state-passing was useful to prove the closure under
post-composition with sequential transductions (Lemma 31), it will be more convenient to
consider state-passing free nested marble transducers in the sequel, in particular to prove
that NMT recognize lexicographic transductions (Subsection 5).

▶ Definition 32. A state-passing free (k,Σ,Γ)-nested marble transducer ((k,Σ,Γ)-NMTspf
for short), is either a simple transducer if k = 0, or, if k > 0, a (k,Σ,Γ)-NMT T =
(Σ,Γ, C, c0, QT , q0, F, δ, δcall, δret, µ, T

′) such that
1. T ′ is a (k−1,Σ × C,Γ)-NMTspf with set of states QT ′ and initial state q′

0
2. δcall(q, c) = q′

0 for all q ∈ QT and c ∈ C

3. δret(q, c, q′) = q for all q ∈ QT , c ∈ C and q′ ∈ QT ′

4. calls to the assistant transducer T ′ always accept.
Since the functions δcall and δret play no role, we often omit them in the tuple denoting T .

▶ Theorem 33 (State-passing removal). For all k-NMT T , there exists an equivalent k-NMTspf
T ′ whose size is k−EXP in that of T . This non-elementary blow-up is unavoidable.

Before proving this result, we show a property on domains of NMT. A nested marble
automaton A of level k is a nested marble transducer T of level k whose output function µ is
the constant function that always returns ϵ. The language of A is defined as L(A) = dom(fT ).
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▶ Lemma 34. A language is recognizable by a nested marble automaton of level k and n

states iff it is recognizable by a finite automaton of size in k-EXP(n). This non-elementary
blow-up is unavoidable.

Proof sketch. It is clear that any regular language is the domain of some simple transduction.
Conversely, let A be a nested marble automaton of level k. If k = 0, it is obvious.If k ≥ 1, let
A = (Σ, C, c0, QA, q0, F, δ, δcall, δret, A

′) where A′ has level k−1 (in the tuple, we have omitted
the output alphabet and function, since they play no role). By IH, for all pairs (qc, qr) of
states of A′, the language of words accepted by A′ by a run starting in qc and ending in qr is
regular, and can be described by some finite automaton Dqc,qr of size in (k−1)-EXP(n).

We turn A into a marble automaton B (of level 1) such that L(B) = L(A). The marbles
of B are enriched with information on the states of automata Dqc,qr

, for all pairs (qc, qr),
ensuring that B knows the state of all the automata Dqc,qr after reading the current suffix.
B exploits this information to simulate A and whenever A calls A′ with some initial state
qc, instead, B knows, if it exists, the state qr of A′ such that the current marked input is
accepted by A′

qc,qr
. If such a state exists, then it is unique as A′ is deterministic, and B can

bypass calling A′ and directly apply its return transition. Otherwise, B stops.
The result follows as marble automata are known to recognize regular languages. The

conversion of a marble automaton into a finite automaton is exponential both in the number
of states and number of marbles (see e.g. [12,15], as well as Theorem 5.4 of [22] for a detailed
construction), yielding a tower of k-exponential inductively.

It can be shown that this non-elementary blowup is not avoidable, because first-order
sentences on word structures (with one successor) with quantifier rank r, can be converted in
an exponentially bigger nested marble automaton, while it is known that such sentences can
be converted into an equivalent finite automaton of unavoidable size a tower of exponential
of height r [19]. ◀

▶ Corollary 35. Transductions recognized by nested marble transducers have regular domains.

We are now ready to sketch the proof of Theorem 33.

Proof sketch of Theorem 33. There are two kinds of state-passing, through functions δcall
and δret. We deal with them separately. First, removal of δcall can be done by enriching
marbles with the current state, so as to pass this information to the assistant transducer.
Removal of δret is more involved, but can be done by induction using a technique similar to
the one used to prove Lemma 34. By induction hypothesis, the assistant transducer can be
replaced by an equivalent state-passing free NMT. In addition, its domain is regular thanks
to Lemma 34. Hence, one can enrich the marbles so as to precompute the final state reached
by the assistant transducer, and in turn simulate the function δret. This also allows to ensures
that all calls to the assistant transducer do accept.

Last, we justify the fact that the non-elementary blow-up is unavoidable. It is because the
domain of any state-passing free NMT S is recognizable by a finite automaton of exponential
size. Indeed, the calls to assistant transducers always terminate, so the domain of S does not
depend on assistant transducers, hence can be described by a marble automaton, hence by a
finite automaton of size exponential in the number of local states and marbles of S. Thus,
the existence of an elementary construction for state-passing removal would contradict the
non-elementary blow-up stated in Lemma 34. ◀

Equivalence with lexicographic transductions. In this subsection, we prove (Theorems 36
and 37) that a transduction is recognizable by a k-nested marble transducer iff it is k-
lexicographic. Consider some f ∈ LEXk. Then f = maplexλ1(maplexλ2 . . .maplexλk

s) . . . )
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for some λi = (Bi,≺i) and s a simple transduction. We call B1, . . . , Bk the ordered alphabets
of f and s the simple transduction of f . Given an ordered alphabet (B,≺), one can enumerate
the annotations of a word according to the lexicographic extension using a marble automaton.

▶ Theorem 36 (Lex ⊆ NMT). Any transduction f ∈ Lexk is recognizable by some NMT Tf of
level k. If B1, . . . , Bk are the ordered alphabets of f and s its simple transduction, represented
by a sequential transducer with m states, then Tf has O(k+m) states and

∑k
i=1 |Bi| marbles.

Conversely, we prove that the transductions recognized by NMTspf are lexicographic.

▶ Theorem 37 (NMTspf ⊆ Lex). Any transduction f recognizable by some NMTspf T of level
k is k-lexicographic.

The proof is rather involved. We provide high level arguments. The result is shown by
induction on k. It is trivial for k = 0. For k > 0, the main idea is to see the sequence of
successive configurations of T on some input as a lexicographic enumeration. This is possible
due to the stack discipline of marbles. By extending the marble alphabet with sufficient
information, we define a total order on marbles such that successive configurations of T ,
extended with this information, forms a lexicographically increasing chain.

6 Expressiveness and closure properties of lexicographic transductions

In this section, we prove that Lex contains all the polyregular transductions [5], and all the
transductions recognizable by (copyful) streaming string transducers [1,17]. We also show
that Lex is closed by post-composition under any polyregular transduction, and closed by
pre-composition under any rational transduction. We start by showing that lexicographic
transductions preserve regular languages under inverse image.

▶ Proposition 38. Transductions in Lex are regularity preserving.

Proof. It is an immediate corollary of the inclusion Lex ⊆ NMT (Theorem 36), that NMT
are closed by post-composition by a sequential transduction (Lemma 31), and that NMT
have regular domains (Corollary 35). ◀

We show that Lex subsumes both SST and PolyReg. More precisely that any transduction
recognizable by a (copyful) streaming string transducer (SST) is 1-lexicographic. We do not
give the definition of SST and refer the reader to [12] for more details. We also show that
NMT of level k subsume k-pebble transducers. Again we do not give precise definitions of
pebble transducers and refer the reader to [5].

▶ Theorem 39 (SST and PolyReg in Lex). The following hold:
SST = Lex1,
A transduction definable by a k-pebble transducer is in Lexk. In particular PolyReg ⊆ Lex.

Proof. It is already known that marble transducers (i.e. nested marble transducers of level
1) capture exactly the class of SST-recognizable transductions [12]. The result then follows
from Theorem 36 and Theorem 37. For the second statement, we note that single pebble
can be simulated by one level of marbles, with colors {0, 1} with the restriction that at most
one marble can have color 1 per level. ◀

Any polyregular transduction can be expressed as a composition of sequential transduc-
tions, square, map and rev [5]. We show that Lex is closed by post-composition by these
transductions (e.g. for sequential functions it has been shown in Lemma 31). As a consequence
we obtain that Lex is closed under post-composition by polyregular transductions.

MFCS 2025
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▶ Theorem 40. PolyReg ◦ Lex ⊆ Lex.

Finally, we show that lexicographic transductions are closed under pre-composition by
any rational transduction.

▶ Theorem 41 (Lex ◦ Rat ⊆ Lex). Let k ≥ 1. For any rational transduction g : Γ∗ ⇀ Λ∗ and
any k-lexicographic transduction f : Λ∗ ⇀ Γ∗, f ◦ g is k-lexicographic.

Proof. A rational transduction can be decomposed as a letter-to-letter rational transduction,
followed by a morphism. Example 20 shows that morphisms are lexicographic. Similar
ideas apply inductively to show that Lex is closed by pre-composition under morphisms and
letter-to-letter rational transductions. ◀

7 Discussion

We have introduced lexicographic transductions, a subclass of MSOSI, and provided three
characterizations: in terms of closure of simple functions by the maplex operator, as lexico-
graphic automatic transductions that can be seen as a syntactic restriction of MSOSI, and
through nested marble transducers. Thanks to these characterizations, this class is shown to
subsume both PolyReg and SST. Moreover, it is actually closed under post-composition by
PolyReg and thus is regularity preserving, which MSOSI is not known to be.

Open questions on MSOSI. We leave open whether MSOSI is regularity preserving. A
way to attack the problem is to try to obtain an equivalent automata-based model, as stated
in Question 1. However, as we have shown, a positive answer would entail that all automatic
ω-words have a decidable MSO theory, which has been open for almost 20 years.

Open questions on Lex. We have shown that Lex is a rather well-behaved class, however
some interesting questions remain open. Although we suspect that MSOSI strictly subsumes
Lex, this remains unproven. For example, we could not show that Lex is closed under
pre-composition with Reg, in particular, it is already unclear whether Lex ◦ rev ⊆ Lex holds.

The equivalence problem is central to transducer theory, but its decidability status is still
unknown for PolyReg transductions. It is also open for Lex, which subsumes PolyReg.

One can decide whether a Lex transduction is in PolyReg (Theorem 10), however we do
not know if the Lex hierarchy is decidable (already for its first level Lex1).

Possible extensions of Lex. While Lex has proven to be an interesting class, the zoo of
word-to-word transductions with exponential growth is relatively unknown. We propose
three possible extensions of Lex, in increasing expressiveness, all included in MSOSI.

The class Lex ◦ Reg may be an interesting class in itself and the first level Lex1 ◦ Reg
coincides with the rather natural class of two-way streaming string transducers.

A more general way of extending Lex is to generalize the operation lex-enum to allow
lexicographic orders where the significance of letters is given by an arbitrary MSO definable
order. This class subsumes Lex ◦ Reg however it is not clear that it is regularity preserving.

Another possible generalization is to replace marbles with the so-called invisible pebbles
of Engelfriet [14] and define nested invisible pebble transducers, where the nested levels can
see the pebbles of the previous levels but not the ones of their own. We believe that the
state-passing free version can be shown to be still included in MSOSI but it is not clear that
it is regularity preserving. However, we conjecture that the version with state-passing can
recognize non-regular languages, and hence is too expressive.
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