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Abstract
We study networks of processes that all execute the same finite-state protocol and communicate
via broadcasts. We are interested in two problems with a parameterized number of processes: the
synchronization problem which asks whether there is an execution which puts all processes on a
given state; and the repeated coverability problem which asks if there is an infinite execution where a
given transition is taken infinitely often. Since both problems are undecidable in the general case, we
investigate those problems when the protocol is Wait-Only, i.e., it has no state from which a process
can both broadcast and receive messages. We establish that the synchronization problem becomes
Ackermann-complete, and the repeated coverability problem is in ExpSpace and PSpace-hard.
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1 Introduction

Distributed systems are at the core of modern computing, and are widely used in critical
applications such as sensor networks, or distributed databases. These systems rely on
protocols to enable communication, maintain coherence and coordination between the
different processes. Because of their distributed nature, such protocols have proved to
be error-prone. As a result, the formal verification of distributed systems has become
an essential area of research. Formal verification of distributed systems presents unique
challenges compared to fthe one of centralized systems. One of the most significant issue is
the state explosion problem: the behavior of multiple processes that execute concurrently
and exchange information often lead to state spaces that grow exponentially with the number
of processes, making the analysis highly challenging. When the systems are parameterized,
meaning designed to operate for an arbitrary number of processes, which is often the case
in distributed protocols, classical techniques are not useful anymore. The difficulty shifts
from state explosion to dealing with an infinite number of system configurations, which
leads to undecidability in the general case [1]. Despite these challenges, verification becomes
more tractable in certain restricted settings. For instance, in parameterized systems, the
behavior of individual processes needs not always to be explicitly represented, which can
mitigate state explosion. This has motivated researchers to focus on specific subclasses of
systems or communication models where decidability can be achieved without sacrificing too
much expressiveness. One such restriction involves protocols where processes are anonymous
(i.e., without identities), and communicate via simple synchronous mechanisms, such as
rendezvous [9], where two processes exchange a message synchronously. Several variants
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of this model have been studied, such as communication via a shared register containing
some value from a finite set [7], or non-blocking rendezvous [10, 4], where a sender is not
prevented from sending a message when no process is ready to receive it. In all these cases,
the processes execute the same protocol, which is described by a finite automaton.

A more expressive model is broadcast protocols, introduced by Emerson and Namjoshi [6].
In these protocols, a process can send a broadcast message that is received simultaneously
by all other processes (or by all neighboring processes in a network). Several key verification
problems arise in this context, including the coverability problem, which asks whether a pro-
cess can eventually reach a specific (bad) state starting from an initial configuration. Another
important property is synchronization, which asks whether all processes can simultaneously
reach a given state. Liveness properties, like determining whether infinite executions exist,
ensure that certain behaviors occur indefinitely. While broadcast protocols allow more
powerful communication than rendezvous protocols, this added expressiveness comes at
the cost of increased verification complexity. Indeed, rendezvous communication can be
simulated using broadcasts [8]. However, verification becomes significantly harder: while
coverability and synchronization can be solved in polynomial time for rendezvous proto-
cols [9], they become respectively Ackermann-complete [8, 20] and undecidable (we show it
in this paper) for broadcast protocols. Liveness properties are also undecidable for broadcast
protocols [8]. The challenge in verifying broadcast protocols can be understood through their
relationship with Vector Addition Systems with States (VASS). Rendezvous-based protocols
can be encoded in a VASS, where counters track the number of processes in each state. A
rendezvous is simulated by decreasing the counters corresponding to the sender and receiver
states and increasing the counters for their post-communication states. While using a VASS
for protocols using rendezvous is certainly not the way to go due to the complexity gap
between problems on VASS and the existing known polynomial time algorithms to solve
verification problems, it is interesting to note that this encoding fails for broadcast protocols
because a broadcast message must be received by all processes in a given state, requiring
a bulk transfer of a counter value – something not expressible in classical VASS without
adding powerful operations such as transfer arcs, which leads to an undecidable reachability
problem [21]. However, in some cases, verification of broadcast protocols can become easier,
complexity-wise. One example is the setting of Reconfigurable Broadcast Networks, in which
communication between processes can be lossy [5]. Liveness properties become decidable in
that case [5] and even polynomial time [2].

Another such case is given by a syntactic restriction known as Wait-Only protocols,
introduced in [10] in the context of non-blocking rendezvous communication. In Wait-Only
protocols, a process cannot both send and receive a message from the same state. From
a practical perspective, Wait-Only protocols were proposed to model the non-blocking
rendezvous semantics used in Java’s wait/notify/notifyAll synchronization mechanism
and C’s wait/signal/broadcast operations with conditional variables, commonly found in
multi-threaded programs. In both languages, threads can be awakened by the reception of a
message. This naturally leads to distinguishing between action and waiting states: a sleeping
thread cannot act on its own and can only be awakened by a signal. This restriction simplifies
the possible behaviours of the system, potentially reducing the complexity of the verification.
Actually, the coverability problem for Wait-Only broadcast protocols becomes PSpace-
complete [11]. Indeed, when processes are in a state where they can receive broadcasts,
they cannot send messages, meaning they will move together to the next state, reducing the
need for precise counting. Moreover, when a process is in a broadcasting state, it remains
there until it decides to send a message, simplifying execution reconstruction and enabling
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better verification algorithms. By leveraging these properties, we design algorithms for the
synchronization problem and liveness properties, obtaining new decidability results for these
challenging problems. Proofs omitted due to space contraints can be found in [12].

2 Model and Verification Problems

In this section, we provide the description of a model for networks with broadcast commu-
nication together with some associated verification problems we are interested in. First we
introduce some useful mathematical notations. We use N to represent the set of natural
numbers, N>0 to represent N \ {0}, and for n, m ∈ N with n ≤ m, we denote by [n, m] the
set {n, n + 1, . . . , m}. For a finite set E and a natural n > 0, the set En represents the
n-dimensional vectors with values in E and for v ∈ En and 1 ≤ i ≤ n, we use v(i) to represent
the i-th value of v. Furthermore, for such a vector v, we denote by ||v|| its dimension n.

Networks of Processes using Broadcast Communication. In the networks we consider,
all the processes execute the same protocol, given by a finite state machine. The actions
of this machine can either broadcast a message a to the other processes (denoted by !!a)
or receive a message a (denoted by ?a). For a finite alphabet of messages Σ, we use the
following notations: !!Σ def= {!!a | a ∈ Σ}, ?Σ def= {?a | a ∈ Σ} and OpΣ

def= !!Σ∪?Σ.

▶ Definition 2.1. A protocol P is a tuple (Q, Σ, qin, T ) where Q is a finite set of states, Σ
is a finite set of messages, qin ∈ Q is an initial state, and T ⊆ Q × OpΣ × Q is a set of
transitions.

For all q ∈ Q, we define R(q) as the set of messages that can be received from state
q, given by {a ∈ Σ | ∃q′ ∈ Q, (q, ?a, q′) ∈ T}. A protocol P = (Q, Σ, qin, T ) is Wait-
Only whenever for all q ∈ Q, either {q′ ∈ Q | (q, α, q′) ∈ T with α ∈?Σ} = ∅, or {q′ ∈
Q | (q, α, q′) ∈ T with α ∈!!Σ} = ∅. In a Wait-Only protocol, a state q ∈ Q such that
{q′ ∈ Q | (q, α, q′) ∈ T with α ∈?Σ} ≠ ∅ is called a waiting state. A state that is not a
waiting state is an action state. We denote by QW the set of waiting states and by QA the
set of action states (hence QA = Q \ QW ). Observe that if qin ∈ QW , then no process is ever
able to broadcast messages, for this reason we will always assume that qin ∈ QA.

For n ∈ N>0, an n-process configuration of a protocol P = (Q, Σ, qin, T ) is a vector
C ∈ Qn where C(e) represents the state of the e-th process in C for 1 ≤ e ≤ n. The
configuration is said to be initial whenever C(e) = qin for all 1 ≤ e ≤ n. The dimension
||C|| hence characterizes the number of processes in C. For a state q ∈ Q, we use C−1(q) to
represent the set of processes in state q, formally C−1(q) = {1 ≤ e ≤ ||C|| | C(e) = q}. For a
subset A ⊆ [1, ||C||] of processes, we use C(A) to identify the set of states of processes in
A, formally C(A) = {C(e) | e ∈ A}. We let C [resp. I] be the set of all configurations [resp.
initial configurations] of P .

We now define the broadcast network semantics associated to a protocol P = (Q, Σ, qin, T ).
For configurations C, C ′ ∈ C, transition t = (q, !!a, q′) ∈ T and e ∈ [1, ||C||], we write
C

e,t−−→ C ′ whenever ||C|| = ||C ′||, C(e) = q, C ′(e) = q′ and, for all e′ ∈ [1, ||C||] \ {e}, either
a reception occurs, i.e., (C(e′), ?a, C ′(e′)) ∈ T , or the process cannot receive a, in which case
(a ̸∈ R(C(e′)) and C(e′) = C ′(e′)). Intuitively, the e-th process of C broadcasts a message
a, which is received by all processes able to receive it, while the other processes remain
in their current state. We note C → C ′ if there exists e ∈ [1, ||C||] and t ∈ T such that
C

e,t−−→ C ′ and use →∗ [resp. →+] for the reflexive and transitive [resp. transitive] closure
of →. A finite [resp. infinite] execution is a finite [resp. infinite] sequence of configurations
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Figure 1 Example of a Wait-Only protocol P .

ρ = C0 . . . Cℓ [resp. ρ = C0 . . .] such that C0 ∈ I and Ci−1 → Ci for all 0 < i ≤ ℓ [resp. for
all i > 0]. Its length |ρ| is equal to ℓ + 1 [resp. ω]. We write Λ [resp. Λω] for the set of finite
[resp. infinite] executions. For an execution ρ = C0C1 . . . ∈ Λ ∪ Λω and 0 ≤ i < |ρ|, we use
ρi to denote Ci, the i-th configuration. We use #proc(ρ) to represent ||C0||, the number
of processes in the execution. For 0 ≤ i < j < |ρ|, we define ρi,j

def= ρi . . . ρj . We also let
ρ≥i

def= ρiρi+1 . . . and ρ≤i
def= ρ0 . . . ρi. For e ∈ [1, #proc(ρ)], we denote by ρ(e) the sequence

of states ρ0(e)ρ1(e) . . ..

▶ Example 2.2. Figure 1 illustrates an example of a Wait-Only protocol. The waiting states
are q1, q2, q5, q6, and q7, with R(q5) = {b, c}. Here is one of its execution with 3 processes:

(qin, qin, qin) 1,(qin,!!d,q1)−−−−−−−−→ (q1, qin, qin) 2,(qin,!!d,q1)−−−−−−−−→ (q1, q1, qin) 3,(qin,!!a,qin)−−−−−−−−→ (q5, q2, qin)
3,(qin,!!c,qin)−−−−−−−−→ (q3, q2, qin) 3,(qin,!!b,q7)−−−−−−−→ (q3, q3, q7).

Verification Problems. We investigate two verification problems over broadcast networks:
the synchronization problem (Synchro) and the repeated coverability problem (RepCover).
Synchro asks, given a protocol P = (Q, Σ, qin, T ) and a state qf ∈ Q, whether there exist
C ∈ I and C ′ ∈ C such that C →∗ C ′, and C ′(e) = qf for all e ∈ [1, ||C ′||]. RepCover
asks, given a protocol P = (Q, Σ, qin, T ) and a transition t = (q, !!a, q′) ∈ T , whether there
exist ρ ∈ Λω and e ∈ [1, #proc(ρ)], such that for all i ∈ N, there exists j > i verifying
ρj

e,t−−→ ρj+1.

▶ Theorem 2.3. Synchro and RepCover are undecidable.

We give the proof of the undecidability of Synchro in [12], while the undecidability of
RepCover was established in [8, Theorem 5.1]. In the remainder of the paper, we show
that by restricting to Wait-Only protocols, one can regain decidability.
▶ Remark 2.4. Throughout the remainder of this paper, we will consider protocols without
self-loop broadcast transitions of the form (q, !!a, q). Such transitions can be transformed into
two transitions (q, !!a, pq), (pq, !!$, q) where pq is a new state added to the set of states and $
is a new message added to the alphabet. This transformation of the protocol is equivalent to
the original one with respect to Synchro and RepCover.

Vector Addition System with States. In the following, we will extensively rely on the
model of Vector Addition Systems with States (VASS) which we introduce below. A VASS
is a tuple V = (Loc, ℓ0, X, ∆) where Loc is a finite set of locations, ℓ0 ∈ Loc is the initial
location, X is a finite set of natural variables, called counters, and ∆ ⊆ Loc × ZX × Loc is a
finite set of transitions. A configuration of V is a pair (ℓ, v) in Loc × NX where v provides a
value for each counter. The initial configuration is (ℓ0, 0) where 0(x) = 0 for all x ∈ X. Given
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two configurations (ℓ, v), (ℓ′, v′) and a transition (ℓ, δ, ℓ′) ∈ ∆, we write (ℓ, v) ∼∼∼�
δ (ℓ′, v′)

whenever v′(x) = v(x) + δ(x) for all counters x ∈ X. We simply use (ℓ, v) ∼∼∼� (ℓ′, v′) when
there exists (ℓ, δ, ℓ′) ∈ ∆ such that (ℓ, v) ∼∼∼�

δ (ℓ′, v′). We denote ∼∼∼�∗ for the transitive and
reflexive closure of ∼∼∼�. An (infinite) execution (or run) of the VASS is a (infinite) sequence
of configurations (ℓ0, v0), (ℓ1, v1), . . . , (ℓn, vn), starting with the initial configuration and such
that (ℓi, vi) ∼∼∼� (ℓi+1, vi+1) for all 0 ≤ i < n.

Reach, the well-known reachability problem for VASS, is defined as follows: given a
VASS V = (Loc, ℓ0, X, ∆) and a location ℓf ∈ Loc, is there an execution from (ℓ0, 0) to
(ℓf , 0)?

▶ Theorem 2.5 (Membership [18], Hardness [3, 17]). Reach is Ackermann-complete.

3 Solving Synchro for Wait-Only Protocols

To solve Synchro we show in this section that we can build a VASS that simulates the
behavior of a broadcast network running a Wait-Only protocol. An intuitive way to proceed,
inspired by the counting abstraction proposed for protocols communicating by pairwise
rendez-vous communication [9], consists in having one counter per state of the protocol, that
stores the number of processes that populate that state. Initially, the counter associated with
the initial state can be incremented as much as one wants: this will determine the number of
processes of the execution simulated in the VASS. Then, the simulation of broadcast messages
(q, !!a, q′) amounts to decrementing the counter associated to q and increment the counter
associated to q′. However, simulating receptions of the message (e.g. a transition (p, ?a, p′)),
requires to empty the counter associated to p and transfer its value to the counter associated
to q′. This transfer operation is not something that can be done in VASS unless the model is
extended with special transfer transitions, leading to an undecidable reachability problem [21].
To circumvent this problem, we rely on two properties of Wait-Only protocols: (1) processes
that occur to be in the same waiting state follow the same path of reception in the protocol,
and end in the same action state (we show how to take care of potential non-determinism in
the next section) and (2) processes in an action state cannot be influenced by the behaviour
of other processes as they cannot receive any message. Thanks to property (1), instead of
precisely tracking the number of processes in each waiting state, we only count the processes
in a “waiting region” – a connected component of waiting states populated by processes that
will all reach the same action state simultaneously. The waiting region allows us also to
monitor when the processes go out from a waiting region to an action state. We will explain
later how we use property (2) to handle the transfer of values of counters within the VASS
semantics, and thus simulating processes leaving a waiting region.

For the rest of this section, we fix P = (Q, Σ, qin, T ) a Wait-Only protocol (with QW

[resp. QA] the set of waiting states [resp. action states]) for which we assume w.l.o.g. the
existence of an uncoverable state qu ∈ Q verifying q ̸= qu and q′ ̸= qu for all (q, α, q′) ∈ T

and qu ̸= qin. Furthermore, we consider a final waiting state qf ∈ QW . To ease the reading,
we assume in this section that the final state qf is a waiting state, but our construction could
be adapted to the case where qf is an action state. Moreover, we show in the next section
that Synchro in this latter case is easier to solve.

3.1 Preliminary properties
We present here properties satisfied by Wait-Only protocols, which we will rely on for our
construction. We first show with Lemma 3.1 that if, during an execution, two processes fulfill
two conditions: (i) they are on the same waiting state qw, and (ii) the next action state

MFCS 2025
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they reach (not necessarily at the same time) is the same (namely qa), then one can build
an execution where they both follow the same path between qw and qa. This is trivial for
deterministic protocols (where for all q ∈ Q and α ∈ OpΣ, there is at most one transition of
the form (q, α, q′) ∈ T ) and is also true for non-deterministic protocols.

For an execution ρ ∈ Λ ∪ Λω of P , an index 0 ≤ j < |ρ|, a waiting state q ∈ QW and a
process number e ∈ [1, #proc(ρ)] such that ρj(e) = q, we define na-index(ρ, j, e) = min{k |
j ≤ k ≤ |ρ| and ρk(e) ∈ QA}, i.e. the first moment after ρj where the process e reaches an
action state (if such moment does not exist, it is set to |ρ|). We note na-state(ρ, j, e) def=
ρna-index(ρ,j,e)(e) the next action state for process e from ρj if na-index(ρ, j, e) ̸= |ρ| and
otherwise we take the convention that na-state(ρ, j, e) is equal to qu, the uncoverable state
of the protocol P . Finally, we let na(ρ, j, e) = (na-state(ρ, j, e), na-index(ρ, j, e)).

▶ Lemma 3.1. Let ρ ∈ Λ ∪ Λω be an execution of P . If there exist e1, e2 ∈ [1, #proc(ρ)]
and 0 ≤ j < |ρ| such that (i) ρj(e1) = ρj(e2) ∈ QW , (ii) na(ρ, j, e1) = (q, j1), and (iii)
na(ρ, j, e2) = (q, j2) with j1 ≤ j2 < |ρ|, then there exists an execution ρ′ of the form
ρ≤jρ′

j+1 . . . ρ′
j2

ρ≥j2+1 such that ρ′
k(e1) = ρ′

k(e2) = ρk(e1) for all j +1 ≤ k ≤ j1, and ρ′
k(e1) =

ρk(e1) and ρ′
k(e2) = q for all j1 < k ≤ j2. In particular na(ρ′, j, e1) = na(ρ′, j, e2) = (q, j1).

▶ Example 3.2. Consider the protocol P in Figure 1 and the execution ρ of Example 2.2.
We have ρ2(1) = ρ2(2) = q1 and na(ρ, 2, 1) = (q3, 4) and na(ρ, 2, 2) = (q3, 5). Applying
Lemma 3.1, we build: ρ′ = (qin, qin, qin) → (q1, qin, qin) → (q1, q1, qin) → (q5, q5, qin) →
(q3, q3, qin) → (q3, q3, q7) where process 1 and process 2 follow the same path between q1 and
q3. However, consider the following events from (q1, q1, qin): (q1, q1, qin) → (q2, q5, qin) →
(q3, q6, q7) → (q4, q4, q4), here we cannot apply the lemma as from q1, processes 1 and 2 reach
two different next action states (q3 and q4).

The above lemma enables us to focus on a specific subset of executions for Synchro, which
we refer to as well-formed. In these executions, at any moment, two processes in the same
waiting state and with the same next action state, follow the same path of receptions. Formally,
an execution ρ of a protocol P is well-formed iff for all 0 ≤ i < |ρ|, for all e1, e2 ∈ [1, #proc(ρ)]
such that ρi(e1) = ρi(e2) ∈ QW and na-state(ρ, i, e1) = na-state(ρ, i, e2) = q, it holds that
ρk(e1) = ρk(e2) for all i ≤ k ≤ na-index(ρ, i, e1). From Lemma 3.1, we immediately get:

▶ Corollary 3.3. There exists an execution ρ = C0 . . . Cn such that Cn(e) = qf for all
e ∈ [1, #proc(ρ)] iff there exists a well-formed execution from C0 to Cn.

We finally provide a result which will allow us to bound the size of the VASS that
we will build from the given Wait-Only protocol. Given an execution ρ ∈ Λ ∪ Λω of
P , an index 0 ≤ j < |ρ| and an action state qa ∈ QA, we define na-index-set(ρ, j, qa)
as the set of indices where processes in a waiting state at ρj will reach qa, if it is their
next action state: na-index-set(ρ, j, qa) def= {i | there exists e ∈ [1, #proc(ρ)] s.t. ρj(e) ∈
QW and na(ρ, j, e) = (qa, i)}.

▶ Lemma 3.4. For all well-formed executions ρ, for all 0 ≤ j < |ρ|, and for all qa ∈ QA, we
have |na-index-set(ρ, j, qa)| ≤ |QW |.

Proof. If we have |na-index-set(ρ, j, qa)| > |QW |, by pigeon hole principle there exist
e1, e2 ∈ [1, #proc(ρ)] such that ρj(e1) = ρj(e2) ∈ QW and such that na(ρ, j, e1) = (qa, i1)
and na(ρ, j, e2) = (qa, i2) with i1 < i2. Consequently ρi1(e1) = qa ∈ QA and ρi1(e2) ∈ QW

hence ρi1(e1) ̸= ρi1(e2), which contradicts the definition of well-formedness. ◀
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3.2 Building the VASS that Simulates a Broadcast Network

Summaries. We present here the formal tool we use to represent processes in waiting states.
We begin by introducing some notations. A print pr is a set of waiting states. Given a non
empty subset of states A = {q1, . . . , qn} ⊆ Q, we define a configuration

•
A ∈ Qn such that

•
A(e) = qe for all e ∈ [1, n]. When A = {q}, we write •

q ∈ Q1 instead of
•

{q}. Conversely, given
a configuration C, we define set(C) = {q ∈ Q | C−1(q) ̸= ∅}. For two configurations C ∈ Qn

and C ′ ∈ Qm, we let C ⊕ C ′ be the configuration C ′′ ∈ Qn+m defined by: C ′′(e) = C(e) if
1 ≤ e ≤ n and C ′′(e) = C ′(e − n) if n + 1 ≤ e ≤ m + n. A summary S is a tuple (pr, qa, k)
such that pr ⊆ QW is a print, qa ∈ QA is an exit state, and k ∈ [1, |QW | + 1] is an identifier.
The label of S is lab(S) = (qa, k) and we denote its print by print(S). Finally, we define a
special summary Done.

In our construction, each process in a waiting state is associated with a summary while
processes in action states are handled by the counters of the VASS. Intuitively, a summary
(pr, qa, k) represents a set of processes lying in the set pr ⊆ QW that will reach the same next
action state qa simultaneously (this restriction is justified by Lemma 3.1). Since the set of
waiting states pr evolve during the simulation, each summary must be uniquely identified.
To achieve this, we use an integer k ∈ [1, |QW | + 1]. Hence each summary is identified with
the pair (qa, k). We do not need more than |QW | + 1 different identifiers, because when a
process enters a new summary (i.e it arrives in a waiting state qw from an action state),
aiming for next action state qa, it either joins an existing summary with exit state qa, or
create a new one. In the latter case, well-formed executions ensure that no existing summary
S = (pr, qa, k) with exit state qa is such that qw ∈ pr. Otherwise two processes would be in
the same state qw, aiming for the same action state, but at different moments, contradicting
Lemma 3.1. Note that we need |QW | + 1 different identifers, and not |QW | for technical
reasons. Finally, the special summary Done is used to indicate when the processes described
by a summary reach the exit action state.

We now describe how summaries evolve with the sequence of transitions. Let S =
(pr, qa, k) and S′ = (pr′, qa, k) be two summaries (with the same exit state and identifier)

and t = (q, !!b, q′) ∈ T such that there exists a configuration C ′ verifying •
q ⊕ •pr 1,t−−→

•
q′ ⊕ C ′.

We then write S
t=⇒ S′ whenever set(C ′) = pr′ ⊆ QW . This represents the evolution of a

summary upon reception of message b, when the processes all stay in waiting states, and no
new process joins the “waiting region” of the given summary. We write S

t,+q′

===⇒ S′ whenever
q′ ∈ QW and set(C ′) ∪ {q′} = pr′ ⊆ QW . In that latter case, the process responsible for
the transition t joins the “waiting region” represented by S. This typically occurs when the
process’s next action state is qa, and it reaches qa simultaneously with the processes described
by S. Finally, we use S

t=⇒ Done whenever set(C ′) = {qa}. This represents the evolution
(and disappearance) of S when all the processes reach qa (they all reach it simultaneously).

▶ Example 3.5. Returning to the protocol P of Figure 1, consider the summary S0 =
({q1}, q3, 1). Observe that S0

(qin,!!a,qin)=======⇒ ({q2}, q3, 1) and S0
(qin,!!a,qin)=======⇒ ({q5}, q3, 1). How-

ever, by definition, we do not have S0
(qin,!!a,qin)=======⇒ ({q5, q2}, q3, 1). Indeed, processes sum-

marized in S0 are forced to all go either on q2 or on q5 upon receiving a: thanks to
Corollary 3.3, we consider only well-formed executions, where all processes summarized
in S0 choose the same next state. Additionnaly, we have ({q2}, q3, 1) (qin,!!b,q7)=======⇒ Done and
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({q1}, q4, 1) (qin,!!a,qin)=======⇒ ({q5}, q4, 1) (qin,!!b,q7),+q7=========⇒ ({q6, q7}, q4, 1) (qin,!!d,q1)=======⇒ Done. However,

note that we do not have ({q2}, q4, 1) (qin,!!b,q7)=======⇒ Done, since the action state q3 reached from
q2 upon receiving b is not the exit state q4.

Definition of the VASS. We now explain how we use the summaries in the VASS simulating
the executions in the network. First we say that a set S of summaries is coherent if for
all distinct pairs (pr1, q1, k1), (pr2, q5, k2) ∈ S such that q1 = q5, we have k1 ̸= k2 and
pr1 ∩ pr2 = ∅. We denote by CoSets the set of coherent sets of summaries. For a set of
summaries S we let lab(S) = {lab(S) | S ∈ S}. Observe that, when S is coherent, for a
label (q, k) ∈ lab(S), there is a unique S ∈ S such that lab(S) = (q, k).

We define the VASS VP simulating the protocol P as follows: VP = (Loc, s0, X, ∆), where
Loc = CoSets ∪ {s0} ∪ {sf }, the set of counters is X = {xq | q ∈ QA} ∪ {x(q,k) | q ∈ QA, k ∈
[1, |QW | + 1]}, and the set of transitions ∆ = ∆0 ∪ (

⋃
t∈T ∆t) ∪ ∆e, is defined as follows:

∆0 contains exactly the following transitions:
(s0, δ0, s0) where δ0(xqin) = 1 and δ0(x) = 0 for all other counters;
(s0, 0, ∅) where 0 is the null vector (note that the empty set is coherent);
({Sf }, 0, sf ) ∈ ∆ where Sf = ({qf }, qu, 1);
(sf , δf , sf ) ∈ ∆ where δf (x(qu,1)) = −1 and δf (x) = 0 for all other counters.

For t = (q, !!a, q′) ∈ T , we have (S, δ, S ′) ∈ ∆t iff one of the following conditions holds:
a. q′ ∈ QA and S = {S1, . . . , Sk}. Then, for all 1 ≤ i ≤ k, there exists S′

i such that
Si

t=⇒ S′
i and S ′ = {S′

i | 1 ≤ i ≤ k} \ {Done}. Moreover, δ(xq) = −1, δ(xq′) = 1 and
δ(x) = 0 for all x ∈ X \ {xq, xq′}. Here we simply update the sets of states populated
by processes in waiting states after the transition t. Some summaries may have
disappeared from S if the processes represented by this summary have reached their
exit action state when receiving a. For now, we only modify the counters associated
to the states q and q′. Note that this is well-defined, since we assume in Remark 2.4
that there is no self-loop of the form (q, !!a, q).

b. q′ ∈ QW , S = {S1, . . . , Sk}, and there exists 1 ≤ i ≤ k and S′
i such that Si

t,+q′

===⇒ S′
i.

For all j ̸= i, there exists S′
j such that Sj

t=⇒ S′
j . Then S ′ = {S′

j | 1 ≤ j ≤ k}\{Done}.
Moreover, δ(xq) = −1, δ(xlab(Si)) = 1 and δ(x) = 0 for all x ∈ X \ {xq, xlab(Si)}. In
that case, the process having performed the transition joins an existing summary
Si. We have then modified accordingly the counters associated to q and to the
appropriate summary.

c. q′ ∈ QW and S = {S1, . . . , Sk}. For all 1 ≤ j ≤ k, there exists S′
j such that

Sj
t=⇒ S′

j . Then S ′ = ({S′
1, . . . , S′

k} \ {Done}) ∪ {({q′}, qa, k)} for some qa ∈ QA and
k ∈ [1, |QW | + 1] such that (qa, k) ̸∈ lab(S). Moreover, δ(xq) = −1, δ(x(qa,k)) = 1,
and δ(x) = 0 for all x ∈ X \ {xq, x(qa,k)}. This case happens when the process having
sent the message a reaches a waiting state, and its expected next action pair (index
and state) does not correspond to any existing summary. In that case, it joins a new
summary, the counter associated to the state q is decremented and the counter of
this new summary is incremented.

Finally, ∆e allows to empty the counters associated to summaries that have disappeared
from the set of locations. It is defined as the set of transitions (S, δ, S ′) such that: S = S ′

and there exists (q, k) ̸∈ lab(S) with δ(xq) = +1 and δ(x(q,k)) = −1 and for all other
counters, δ(x) = 0.
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s0 ∅ {qf }, qu, 1 sf

CoSets

xqin ++ x(qu,1)- -

Figure 2 The structure of the VASS V.

{q2}, q3, 1
{q1}, q3, 2

{q1, q5}, q4, 1

{q1}, q3, 2
{q1, q6, q7}, q4, 1

xqin - -
x(q4,1)++ x(q3,1)- -

xq3 ++

Figure 3 One successor of location
{({q2}, q3, 1), ({q1}, q3, 2), ({q1, q5}, q4, 1)} (left
location) after the broadcast transition (qin, !!b, q7).

{q2}, q3, 1 {q2}, q3, 1
{q1}, q4, 1

{q2}, q3, 1
{q1}, q3, 2{q1, q2}, q3, 1

xqin - -
x(q4,1)++

xqin - -
x(q3,2)++

xqin- -
x(q3,1)++

Figure 4 Three successors of location
{({q2}, q3, 1)} (top left location) after the
broadcast transition (qin, !!d, q1).

Transitions from ∆e allow the transfer of counter values from summaries that have disappeared
to the counter of their exit action state. This transfer is not immediate, as it is done through
iterative decrements and increments of counters. In particular, it is possible for the execution
of the VASS to continue without the counter of a disappeared summary being fully transfered.
The processes represented by the counter of a disappeared summary behave in the same
way as processes in the exit action state that do not take any action. These counters can
be emptied later, but always from a location from where no summary with the same label
exists. This ensures that there is no ambiguity between processes in a waiting region and
those on an action state that have not yet been transferred to the appropriate counter.

▶ Example 3.6. Figures 2–4 illustrate the VASS VP built for the protocol P from Figure 1.
Figure 2 shows its overall structure: any run reaching (sf , 0) starts by incrementing the
counter of the initial state and ends by decrementing the counter of the summary (qf , qu, 1).
Here, qu is an artificial, unreachable state used to ensure that the counted processes must
end in qf (since they cannot be in qu). Figure 4 illustrates how message receptions and
summary creations are handled. The top-left location contains a single summary ({q2}, q3, 1),
representing configurations where all processes on QW are in q2, all progressing to q3. After
the broadcast (qin, !!d, q1), three behaviors may follow. In the first case (right), the sender
creates a new summary ({q1}, q4, 1) (pink). In the second (diagonal), it creates another
new summary ({q1}, q3, 2) (orange), indicating a different arrival time at q3. In the third
(below), it joins an existing summary, and q1 is added to the print. Well-formed executions
restrict the number of summaries with the same exit state, as there are at most |QW | distinct
moments where processes can reach a given action state (Lemma 3.4). Figure 3 illustrates
summary deletion. The transition (qin, !!b, q7) causes the sender to join the pink summary
(bottom one), incrementing its counter. Processes in the green summary ({q2}, q3, 1) receive
the message via (q2, ?b, q3), reaching their exit state q3. This summary is deleted in the next
location. From there, value of x(q3,1) is transferred to the counter xq3 with the loop transition.
If it is not taken enough times, x(q3,1) may remain non-zero. This does not affect correctness:
x(q3,1) will be decremented eventually from a state in which there is no summary labeled with
(q3, 1). Not decrementing soon enough only delay the moment the corresponding processes
will move from the action state q3.

▶ Remark 3.7. In the sequel of this paper, the size of VP will be of interest to us. Hence, observe
that |Loc| = |CoSets|+3 ≤ 2|QA|×(|QW |+1)×2|QW | +3 (as one summary is composed of a state in
QA, one label in [1, |QW |+1] and one set of waiting states), and |X| = |QA|+|QA|×(|QW |+1).
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Soundness of the construction. We show now that if there exists a run in the VASS VP

from (s0, 0) to (sf , 0), then in the network built from P , there exist C ∈ I and C ′ ∈ C such
that C →∗ C ′ and C ′(e) = qf for all e ∈ [1, ||C ′||].

We say that a configuration (ℓ, v) of VP is an S-configuration if ℓ = S for some S ∈ CoSets.
The implementation of an S-configuration λ = (S, v) is the set of network configurations
JλK ⊆ C defined as follows: C ∈ JλK if and only if there exists a function f : [1, ||C||] → X
such that |f−1(x)| = v(x) for all x ∈ X, and

CondImpl1 for all xq ∈ X with q ∈ QA, we have C(e) = q for all e ∈ f−1(xq),;
CondImpl2 for all x(q,k) ∈ X, if there exists (pr, q, k) ∈ S for some pr ⊆ QW , then

C(e) ∈ pr ∪ {q} for all e ∈ f−1(xq,k);
CondImpl3 for all x(q,k) ∈ X, if (q, k) /∈ lab(S), then C(e) = q for all e ∈ f−1(xq,k).
In an implementation of λ, the processes populate states according to the values of the

counters. All processes associated with a counter xq of an action state will populate this
exact state (CondImpl1). However, processes associated with a counter x(q,k) of a summary
do not necessarily populate waiting states. This occurs when the label (q, k) does not appear
in S while the associated counter remains strictly positive. Such a situation arises when
a summary has been previously deleted, but its counter has not been emptied. Since all
associated processes have already reached the exit action state, the processes associated to
the corresponding counter have to populate this active state (CondImpl3). If the summary
with label (q, k) is active (i.e. its label appears in S), the processes associated with x(q,k) will
be in the corresponding waiting region, or in the exit action state (CondImpl2). This may
seem contradictory, as all processes are supposed to reach their exit state simultaneously.
However, the processes already on the exit action state are “old” processes, that remained
after a previous deletion of this summary (cf. CondImpl3). These processes will be allowed
to send messages only when they are identified with the counter of the active state, meaning
when the corresponding transition in ∆e will be taken. The next lemma allows to build an
execution of the protocol P from an execution of the VASS VP .

▶ Lemma 3.8. Let λ, λ′ be two S-configurations of VP and C ∈ JλK. If λ ∼∼∼�
δ

λ′ in VP then
there exists C ′ ∈ Jλ′K such that C →∗ C ′ for P .

Sketch of Proof. Assume λ = (S, v) and λ′ = (S ′, v′). Then either (S, δ, S ′) ∈ ∆e or
(S, δ, S ′) ∈ ∆t for some t ∈ T . In the first case, we show that if C ∈ JλK, then C ∈ Jλ′K.
Otherwise, let t = (q, !!a, q′), there is a process e such that C(e) = q. The transition δ in the
VASS makes all the summaries and counters evolve according to the reception of the message
a. According to the different cases a., b. or c., one can build a configuration C ′ ∈ Jλ′K such
that C → C ′. ◀

▶ Lemma 3.9. If (s0, 0) ∼∼∼�∗ (sf , 0) in VP , then there exist C ∈ I and C ′ ∈ C such that
C →∗ C ′ and C ′(e) = qf for all e ∈ [1, ||C ′||].

Proof. From the definition of VP , any run from (s0, 0) to (sf , 0) is of the form (s0, 0) ∼∼∼�∗

(∅, vinit)∼∼∼�∗({Sf }, vf )∼∼∼�∗(sf , 0) where vinit(xqin) = n for some n ∈ N and vinit(x) = 0 for
all x ∈ X \ {xqin}, whereas vf (x(qu,1)) = vinit(xqin) = n and vf (x) = 0 for all x ∈ X \ {x(qu,1)}.
Define C as the initial configuration in I with n processes (i.e. ||C|| = n). Trivially,
C ∈ J(∅, vinit)K and with Lemma 3.8 and a simple induction, we get that there exists
C ′ ∈ J({Sf }, vf )K such that C →∗ C ′. Observe that by definition of vf , and since C ′ ∈
J({Sf }, vf )K, there exists f : [1, n] → X such that f−1(x(qu,1)) = [1, n]. Using CondImpl2,
we have C ′(e) ∈ {qf , qu} for all e ∈ [1, n] with n = ||C ′||. Since qu is unreachable by
construction, we deduce that C ′(e) = qf for all e ∈ [1, ||C ′||]. ◀
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Completeness of the construction. Let us first introduce some new definitions. Given a
well-formed execution ρ ∈ Λ ∪ Λω, two indices 0 ≤ i < j < |ρ| and an action state qa ∈ QA,
we define Eρ,i

qa,j , the set of processes in waiting states in ρi, and whose next action state is qa,
reached at ρj . Formally, Eρ,i

qa,j =
{

e ∈ [1, #proc(ρ)] | ρi(e) ∈ QW and na(ρ, i, e) = (qa, j)
}

.
Furthermore, an S-configuration λ = (S, v) is a representative of the configuration ρi in ρ iff
the following conditions are respected:

CondRepr1 for all q ∈ QA, v(xq) = |ρ−1
i (q)|, and

for all qa ∈ QA, there is an injective function rqa
: na-index-set(ρ, i, qa) → [1, |QW | + 1] s.t.:

CondRepr2 S = {(ρi(Eρ,i
qa,j), qa, rqa

(j)) | qa ∈ QA, j ∈ na-index-set(ρ, i, qa)}
CondRepr3 for all qa ∈ QA, we have v(x(qa,rqa (j))) = |Eρ,i

qa,j | for all
j ∈ na-index-set(ρ, i, qa) and v(x(qa,k)) = 0 for all k /∈ rqa

(na-index-set(ρ, i, qa)).
In a representative of the configuration ρi, the counters faithfully count the number of

processes on active states (CondRepr1), and on waiting regions. The set Eρ,i
qa,j gathers

exactly the set of processes that populate a same waiting region in a representative of
ρi in ρ: they all reach the same next action state qa at the same instant j. The set
na-index-set(ρ, i, qa) being bounded by |QW | (cf. Lemma 3.4), we can associate with each
of these indices a unique identifier, given by the injective function rqa

. We use a spare
identifier for technical reasons, to handle more easily situations when |QW | summaries exist
in the location of the VASS, and a new summary is created while one of the previous
summaries is deleted at the next step. Then, CondRepr2 and CondRepr3 require that
the counters corresponding to the summaries and the summaries themselves reflect faithfully
the situation in the configuration ρi with respect to ρ. Observe that such a representative is
tightly linked to the simulated execution, since we need to know the future behavior of the
different processes to determine the different summaries. Finally, if we let repr(ρ, i) be the
set of all S-configurations that are representatives of ρi in ρ, we establish the following result
before proving the main lemma of this subsection (Lemma 3.11).

▶ Lemma 3.10. Let ρ be a well-formed execution, and 0 ≤ i < |ρ|. For all λi ∈ repr(ρ, i),
there exists λi+1 ∈ repr(ρ, i + 1) such that λi ∼∼∼�∗ λi+1 in VP .

Sketch of Proof. From an S-configuration λi = (Si, vi) in repr(ρ, i), we can compute the
effect on Si of the transition t = (q, !!a, q′) taken in ρ to go from ρi to ρi+1, and find a
matching transition (Si, δ, Si+1) ∈ ∆t (according to whether q′ is a waiting state or not, and
in the latter case, whether it joins an existing summary or a new one, depending of the
execution ρ). We then obtain a new configuration λ′ = (Si+1, v′) such that λi ∼∼∼�

δ
λ′. Note

that λ′ is not necessarily in repr(ρ, i + 1): if some summaries have been deleted between
λi and λ′, the transition (Si, δ, Si+1) in VP has not updated the corresponding counters.
Hence we need to apply transitions from ∆e to empty counters corresponding to deleted
summaries and accordingly increase corresponding counters on matching action states to
obtain λi+1 = (Si+1, vi+1) in repr(ρ, i + 1) . ◀

▶ Lemma 3.11. If there exist C ∈ I, and C ′ ∈ C such that C →∗ C ′ in P and C ′(e) = qf

for all e ∈ [1, ||C ′||], then (s0, 0) ∼∼∼�∗ (sf , 0) in VP .

Proof. Thanks to Corollary 3.3, we know there exists a well-formed execution ρ from
C to C ′. Let K = ||C|| and n = |ρ| − 1. First, consider the sequence (s0, 0) ∼∼∼�∗

(s0, v0) ∼∼∼� (∅, v0) where v0(xqin) = K and for all other counters x, v0(x) = 0. Observe
that, since qin ∈ QA, (∅, v0) ∈ repr(ρ, 0). By applying inductively Lemma 3.10, we get
that (∅, v0) ∼∼∼�∗ (S1, v1) ∼∼∼�∗ · · · ∼∼∼�∗ (Sn, vn) with (Sn, vn) ∈ repr(ρ, n). By definition,
every time that na-state(ρ, i, e) = qu for some process e, then na-index(ρ, i, e) = n + 1,
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qin

q1

ℓ0

zero

ℓf ℓ′
f

qf err

unitx

z-end

err′

!!start

!!$
?start !!incx!!decx

!!verif?end

!!end

?verif
P ′

V

?start

?verif

?incx , ?decx x ∈ X

Figure 5 Protocol P associated to a VASS V. The dashed edge (ℓf , ?start, err) will only be
considered in Section 4.2.

ℓ ℓ′

/
for all m ∈

{incx′ , decx′ |
x′ ∈ X}

?incx

?m ?m

ℓ′′ ℓ′′′

/
for all m ∈

{incx′ , decx′ |
x′ ∈ X}

?decx

?m ?m

Figure 6 Part of P ′
V that simulates respectively the transition (ℓ, δ, ℓ′) ∈ ∆ with δ(x) = 1 at the

left, and (ℓ′′, δ, ℓ′′′) ∈ ∆ with δ(x) = −1 at the right.

hence there will always be at most one summary with exit state qu. So in the execution
we build, every time that some summary (pr, qu, k) ∈ Si, we chose k = 1. We then have
vn(xqu,1) = K and vn(x) = 0 for all other x ∈ X \ {xqu,1}. Hence, by construction of VP , we
have (Sn, vn) ∼∼∼� (sf , vn) ∼∼∼�∗ (sf , 0). ◀

Using Lemma 3.10 and Lemma 3.11 and the fact that the reachability problem for VASS
is decidable (see Theorem 2.5) we get the main theorem of this section.

▶ Theorem 3.12. Synchro restricted to Wait-Only protocols is decidable.

3.3 Lower Bound for Synchro in Wait-Only Protocols
In this subsection we reduce the reachability problem for VASS to Synchro. We fix a VASS
V = (Loc, ℓ0, X, ∆) and a final location ℓf ∈ Loc. W.l.o.g., we suppose that any transition
in ∆ either increments or decrements of 1 exactly one counter. Hence, for a transition
(ℓ, δ, ℓ′) ∈ Loc, we might describe δ by giving only δ(x) for the only x ∈ X such that δ(x) ̸= 0.

We explain how to build a protocol PV that simulates V: it is depicted in Figure 5 in
which we don’t consider the dashed edge. The states zero and {unitx | x ∈ X} represent the
evolution of the different counters of the VASS while the blue box P ′

V describes the evolution
of V with respect to its locations. Formally, P ′

V consists of a set of states QV = Loc ∪ {/}
and a set of transitions TV = {(ℓ, ?incx, ℓ′) | (ℓ, δ, ℓ′) ∈ ∆ and δ(x) = 1} ∪ {(ℓ, ?decx, ℓ′) |
(ℓ, δ, ℓ′) ∈ ∆ and δ(x) = −1} ∪ {(ℓ, ?m,/) | m ∈ {incx, decx | x ∈ X}}. Some transitions of
TV are depicted in Figure 6. We then obtain the following theorem.

▶ Theorem 3.13. Synchro with Wait-Only protocols is Ackermann-complete.

Sketch of Proof. The upper bound follows from Theorem 3.12 and Theorem 2.5. For the
lower bound, we give the ideas that prove that the reduction described above is correct. In
particular, there exist C0 ∈ I and Cf ∈ C such that C0 →∗ Cf in PV and Cf (e) = qf for all
e ∈ [1, ||Cf ||] if and only if (ℓ0, 0) ∼∼∼�∗ (ℓf , 0) in V.
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Assume that (ℓ0, 0) ∼∼∼�∗ (ℓf , 0) in V , and let K ∈ N be the maximum value of
∑

x∈X v(x)
reached during the run. We choose C0 such that ||C0|| = K + 1. The execution proceeds as
follows: all processes except one (the leader) broadcast a dummy message $. The leader then
broadcasts start and reaches ℓ0, while the others move to zero. These simulate the counter
values, and the leader simulates the VASS by moving through the states of P ′

V . The value
of counter x is represented by the number of processes in unitx. To simulate an increment
of x from (ℓi, vi) to (ℓi+1, vi+1), a process in zero sends incx, which the leader receives to
transition to ℓi+1. If the current configuration correctly represents (ℓi, vi), the new one
faithfully represents (ℓi+1, vi+1). At the end of the simulation, the leader reaches ℓf , and
the other processes remain in zero. They then broadcast end, and the leader (now in ℓ′

f )
broadcasts verif, gathering all processes in qf .

To prove the other direction, we must show that the processes cannot cheat in simulating
the VASS. First, note that reaching qf requires exactly one broadcast of verif, a second would
send the original sender to err. This ensures that only one process (the leader) simulates the
VASS by moving through PV . Second, counter updates must follow the VASS transitions:
any unauthorized update would cause the leader to receive an unexpected message and
transition to the losing state /. Finally, when the leader reaches ℓf , all other processes must
be in zero. If not, problems occur during the final steps: one process (the helper) broadcasts
end, which sends the leader to ℓ′

f . Then, all remaining processes must reach z-end before the
unique verif broadcast. If a process in unitx moves to z-end, it must broadcast decx, which is
received by other processes in z-end, sending them, including the helper, to err′. As a result,
the helper misses verif and cannot reach qf , preventing a successful execution. Thus, the
simulation must end with the leader in ℓf and all others in zero. ◀

4 Synchro is ExpSpace-complete when the Target State is an Action
State

Upper bound. We show that Synchro when qf ∈ QA can be reduced to the mutual
reachability problem on VASS, defined as follows: given a VASS V = (Loc, ℓ0, X, ∆) and
a location ℓf , do there exist a run from (ℓ0, 0) to (ℓf , 0) and one from (ℓf , 0) to (ℓ0, 0).
This problem is shown to be in ExpSpace [16]. More precisely, Leroux establishes the
ExpSpace-membership and provides a bound on the lengths of the runs, for the mutual
reachability problem in VAS (Vector Addition Systems). However, by applying the VASS-to-
VAS transformation presented in [14], we get the following result.

▶ Theorem 4.1 ([16] Corollary 10.6, Transformation of [14]). Given a VASS V = (Loc, ℓ0, X, ∆),
if there are two runs (ℓ0, 0) ∼∼∼�∗ (ℓf , 0) and (ℓf , 0) ∼∼∼�∗ (ℓ0, 0), then there are two
runs (ℓ0, 0) ∼∼∼�∗ (ℓf , 0) and (ℓf , 0) ∼∼∼�∗ (ℓ0, 0) whose lengths are bounded by 17(|X| +
3)2x15(|X|+3)|X|+5 where x = (1 + 2(|Loc| + 1)2)2.

Given a Wait-Only protocol P = (Q, Σ, qin, T ) and a target state qf ∈ QA, we explain
how to transform it into a VASS where mutual reachability is equivalent to Synchro. We
build the VASS VP = (Loc, X, s0, ∆) as described in Section 3.2, with some modifications.
The first two modifications simply encode the fact that the target state is not a waiting sate
anymore, while the third one ensures the mutual reachability.

We add a state s′
f and the transition ({Sf }, 0, sf ) is replaced by two transitions: (∅, δ, s′

f )
and (s′

f , δ′, sf ). Here, δ(xqf
) = −1, δ′(xqf

) = 1, and for all other counters x, δ(x) =
δ′(x) = 0. It prevents the reachability of (sf , 0) to be trivial with the run (s0, 0) ∼∼∼�

(∅, 0) ∼∼∼� (sf , 0).
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The transition (sf , δf , sf ) is replaced by (sf , δ′
f , sf ), where δ′

f (xqf
) = −1 and δ′

f (x) = 0
for all other counters x.
We add a transition (sf , 0, s0) to allow the resetting of VP to s0 after reaching sf .

▶ Lemma 4.2. There exists C ∈ I and C ′ ∈ C such that C →∗ C ′ and, for all e ∈ [1, ||C ′||],
C ′(e) = qf if and only if there are two runs (s0, 0) ∼∼∼�∗ (sf , 0) and (sf , 0) ∼∼∼�∗ (s0, 0) in
VP .

Sketch of Proof. Assume that there exist C ∈ I and C ′ ∈ C such that C →∗ C ′ and, for
all e ∈ [1, ||C ′||], C ′(e) = qf . Since the main body of VP is the same as in Section 3.2 we
can, like in Lemma 3.11, build a run of VP from (s0, 0) to (sf , 0). By construction of VP ,
(sf , 0) ∼∼∼� (s0, 0).Assume now that (s0, 0) ∼∼∼�∗ (sf , 0) (and (sf , 0) ∼∼∼� (s0, 0)). Observe
that it might be the case that the run looks like (s0, 0) ∼∼∼�∗ (sf , v1) ∼∼∼� (s0, v1) ∼∼∼�∗

(sf , v2) . . . (s0, vk) ∼∼∼�∗ (sf , 0). By construction of the VASS, we know that there is an
execution (s0, 0) ∼∼∼�∗ (∅, v′

0) ∼∼∼�∗ (∅, v′′
0 ) ∼∼∼� (s′

f , v′′′
0 ) ∼∼∼� (sf , v′′

0 ) ∼∼∼�∗ (sf , v1). Here v′
0

is the valuation obtained after having increased the counter xqin , v′′
0 is the valuation obtained

just before going to s′
f , and v1 is obtained after having decremented counter xqf

. Adapting
the proof of Lemma 3.9 to this case, we deduce the existence of an execution of the protocol
from an initial configuration C0 to a configuration C ′

0 such that |C ′
0

−1(q)| = 0 for all q ∈ QW ,
and |C ′

0
−1(q)| = v′′

0 (xq) +
∑

i=1,...,|QW |+1 v′′
0 (x(q,i)) for all q ∈ QA. From the portion of run

of the VASS (s0, v1) ∼∼∼�∗ (∅, v′
1) ∼∼∼�∗ (∅, v′′

1 ) ∼∼∼� (s′
f , v′′′

1 ) ∼∼∼� (sf , v′′
1 ) ∼∼∼�∗ (sf , v2), we

similarly get another sequence of configurations of the protocol from a configuration C1 (not
necessarily initial because v1 might not be equal to 0 for some counters other than xqin) to a
configuration C ′

1 such that C1 →∗ C ′
1 and |C ′

1
−1(q)| = 0 for all q ∈ QW . Observe however

that these two sequences can be merged into a single one, of size v′
0(xqin) + (v′

1(xqin) − v1(xqin))
(the second part corresponds to processes added in qin with transition (s0, δin, s0), and
δin(xqin) = 1). The execution then first behaves like the execution from C0 to C ′

0, potentially
leaving some processes in the initial state (in particular processes from v′

1(xqin) − v1(xqin)).
Once this first part is over, all the processes are either in the initial state, or in an action
state (because C ′

0
−1(q) = 0 for all q ∈ QW ). Then, one can simulate the second sequence,

(processes already in qf from the first execution won’t be affected because they are in an
action state, so they won’t receive any message. This would not be true if qf ∈ QW ). Since
the execution of VP eventually reaches (sf , 0), it means that it reaches (sf , vk+1) where
vk+1(x) = 0 for all x ̸= xqf

. Then, by iterating the construction described above, one obtains
an execution of P from an initial configuration to a configuration Cf such that Cf (e) = qf

for all e ∈ [1, ||Cf ||]. ◀

As runs of doubly exponential length can be guessed in exponential space in the size of
the VASS and ExpSpace = NExpspace, we get the following theorem using Remark 3.7
and Theorem 4.1. Observe that even if the number of locations is doubly exponential in the
size of the protocol, the bound of Theorem 4.1 is polynomial in |Loc| and doubly exponential
in |X|, hence lengths of the runs to guess remain doubly exponential in the size of the protocol.

▶ Theorem 4.3. Synchro for Wait-Only protocols is in ExpSpace when qf ∈ QA.

Lower bound. ExpSpace-hardness follows from a reduction of the coverability problem in
VASS, which is ExpSpace-hard [19], and stated as follows: given a VASS V = (Loc, ℓ0, X, ∆)
of dimension d ∈ N, and a location ℓf ∈ Loc, decide whether there is an execution from
(ℓ0, 0) to (ℓf , v) for some v ∈ Nd.
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The reduction uses the protocol depicted in Figure 5, this time including the dashed
edge but excluding the thick edges: qf is now an action state. Then ℓf is coverable iff there
exists an execution C0 →∗ Cf in which all processes reach qf . The execution of the VASS
can be simulated in the protocol like in Section 3.3. The processes that may still remain in
the states unitx can reach z-end even when ℓ′

f is populated (recall that all the thick edges
have been removed). Once this is done, all processes can gather in qf . Conversely, if there
exists an execution in which all processes reach qf , it means that ℓf is coverable. Let e0 be
the first process to broadcast start, then an execution of the VASS covering ℓf can be built
based on the sequence of states visited by e0 between ℓ0 and ℓf . This relies on three keys
observations: (1) The process e0 must visit ℓf , otherwise it cannot reach qf . (2) When e0 is
between ℓ0 and ℓf , e0 is the only process in this region. If another process attempts to join
by broadcasting start, e0 will receive the message and go to err, preventing it from reaching
qf . (3) When e0 reaches ℓ0 for the first time, no other process is in the states {unitx | x ∈ X},
since start is sent for the first time at this point. Hence, with Theorem 4.3, it establishes the
following result.

▶ Theorem 4.4. Synchro for Wait-Only protocols is ExpSpace-complete when qf ∈ QA.

5 Solving the Repeated Coverability problem for Wait-Only Protocols

Upper Bound. We show that RepCover on Wait-Only protocols is in ExpSpace, via the
repeated coverability problem in VASS: given a VASS V = (Loc, ℓinit, X, ∆) and a location
ℓf ∈ Loc, is there an infinite execution (ℓinit, 0) ∼∼∼� (ℓ1, v1) ∼∼∼� . . . such that, for all i ∈ N,
there exists j > i such that ℓj = ℓf ? We rely on the following theorem.

▶ Theorem 5.1 (Theorem 3.1 of [13]). For a VASS V = (Loc, ℓinit, X, ∆), the repeated
coverability problem is solvable in O(log(l) + log(|Loc|))2c|X| log(|X|) nondeterministic space for
some constant c independent of V, and where the absolute values of components of vectors in
∆ are smaller than l.

Let P = (Q, Σ, qin, T ) be a Wait-Only protocol and tf = (q, !!a, q′) the transition that
has to occur infinitely often. We build a VASS VP based on the construction presented
in Section 3.2. This time, we add a new set of states CoSets, = {(S,,) | S ∈ CoSets}.
and the set of transitions {(S, δ, (S ′,,)) | (S, δ, S ′) ∈ ∆tf

} ∪ {(S,,), 0, S) | S ∈ CoSets}.
Hence, when a process takes the transition tf , it is highlighted in VP by going in a location
tagged with ,, before continuing the execution. Taking the protocol of Figure 1, with tf =
(qin, !!d, q1), the previous transition from the location of the VASS {({q3}, q4, 1)} to the loca-
tion {({q3}, q4, 1), ({q1}, q6, 1)} (see Figure 4) is now transformed into two transitions in the
VASS we build here: one from ({({q3}, q4, 1)}) to the location ({({q3}, q4, 1), ({q1}, q6, 1)},,)
and one from ({({q3}, q4, 1), ({q1}, q6, 1)},,) to {({q3}, q4, 1), ({q1}, q6, 1)}. There is an
execution of P with a process that takes tf infinitely often iff there is an execution
of VP where one state in CoSets, is visited infinitely often. The procedure to decide
RepCover is then: guess a location ℓf in CoSets, and solve the repeated coverabil-
ity problem for VP and ℓf . From Remark 3.7 and Theorem 5.1, this can be done in
O(log(2) + (|Q| + 1)2 × 2|Q| + 2)2c(|Q|+1)3 log((|Q|+1)3) nondeterministic space. The overall
procedure is then in NExpSpace = ExpSpace. Hence, the following theorem.

▶ Theorem 5.2. RepCover is in ExpSpace.

▶ Remark 5.3. One could define RepCover with a reception transition that has to occur
infinitely often. The VASS we described hereabove can be adapted by enlarging each location
with the current state of the witness process. This can also be done in ExpSpace.
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qin q1 q2 q3 qn+1

/

qn+2

!!#

?#, ?endi,

1 ≤ i ≤ n

?$ ?end1

?endn!!,

?Σ ?Σ

?Σ

. . .

Figure 7 The part of P with transition tf =
(qn+2, !!,, q1). We write ?Σ for ?m, ∀m ∈ Σ.

qin q0
i qf

i q$
i

qe
i

/

!!i ?$ !!endi

?,

?m, m ̸∈ {end
i+1 ,

. . . , end
n}

Pi

?$, ?i

?en
d1,..

.,n

Figure 8 The part of P simulating
automaton i.

Lower bound. We reduce the intersection non-emptiness problem for deterministic finite
automata, which is known to be PSpace-complete [15], to RepCover. Let A1, . . . , An be
deterministic, complete finite automata, with Ai = (A, Qi, q0

i , qf
i , ∆i) for 1 ≤ i ≤ n. The

reduction assumes a single accepting state per automaton, which does not affect complexity.
We denote by A∗ the set of words over the alphabet A, and extend each transition function
∆i to A∗ by defining: ∆∗

i (q, ε) = q, and ∆∗
i (q, wa) = ∆i(∆∗

i (q, w), a) for all w ∈ A∗ and
a ∈ A.

We define a protocol P = (Q, Σ, qin, T ) composed of several components. For each
automaton Ai, P includes a component Pi = (Qi, T i) (see Figure 8), where Qi = Qi and
T i = {(qi

1, ?a, qi
2) | (qi

1, a, qi
2) ∈ ∆i}. The main control component (see Figure 7) includes

the transition tf = (qn+2, !!,, q1), which must occur infinitely often. A process taking tf

infinitely often also receives infinitely many sequences of messages $ · end1 · end2 . . . endn,
where each endi is broadcast by the component simulating Ai. In addition to transitions
in Figures 7 and 8, T also includes: {(qin, !!a, qin) | a ∈ A} ∪ {(qin, !!$, qin)}. One can show
that there exists a word w = a1 . . . an in the intersection of the n automata iff there is an
execution in which tf is taken infinitely often.

▶ Theorem 5.4. RepCover is PSpace-hard.
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