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Abstract

In this paper, we suggest to extend the notion of a kernel to permit the kernelization algorithm
to be executed in quasi-polynomial time rather than polynomial time. So far, we are only aware of
one work that addressed this negatively, showing that some lower bounds on kernel sizes proved
for kernelization also hold when quasi-polynomial time complexity is allowed. When we, anyway,
deal with an NP-hard problem, sacrificing polynomial time in preprocessing for quasi-polynomial
time may often not be a big deal, but, of course, the question is – does it give us more power? The
only known work, mentioned above, seems to suggest that the answer is “no”. In this paper, we
show that this is not the case – in particular, we show that this notion is extremely powerful for
derandomization. Some of the most basic kernelization algorithms in the field are based on inherently
randomized tools whose derandomization is a huge problem that has remained (and may still remain)
open for many decades. Still, some breakthrough advances for derandomization in quasi-polynomial
time have been made. Can we harness these advancements to design quasi-polynomial deterministic
kernelization algorithms for basic problems in the field? To this end, we revisit the question of
deterministic polynomial-time computation of a linear representation of transversal matroids and
gammoids, which is a longstanding open problem. We present a deterministic computation of a
representation matrix of a transversal matroid in time quasipolynomial in the rank of the matroid,
where each entry of the matrix can be represented in quasipolynomial (in the rank of the matroid)
bits. As a corollary, we obtain a linear representation of a gammoid in deterministic quasipolynomial
time and quasipolynomial bits in the size of the underlying ground set of the gammoid. In turn, as
applications of our results, we present deterministic quasi-polynomial time kernels of polynomial
size for several central problems in the field.
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1 Introduction

Preprocessing (or data reduction) is an integral part of almost any application: both systematic
and intuitive approaches to tackle difficult problems often involve it. Even in our everyday
lives, we often rely on preprocessing, sometimes without even noticing it. A natural question
in this regard is how to measure the quality of preprocessing rules proposed for a specific
problem, yet for a long time the mathematical analysis of polynomial time preprocessing
algorithms was neglected. One central reason for this anomaly stems from the following
observation: showing that in polynomial time an instance I of an NP-hard problem can be
replaced by an equivalent instance whose size is necessarily smaller than the size of I, even
by a single bit, implies that P=NP. The situation has changed drastically with the advent
of mulivariate complexity theory, known as Parameterized Complexity. By combining tools
from Parameterized Complexity and classical (i.e., univariate) complexity, it has become
possible to derive upper and lower bounds on sizes of reduced instances, or so called kernels.

Formally, a problem Π is parameterized if each instance of Π is associated with a parameter
k. It admits a compression if there exists a (not necessarily parameterized) problem Π′,
and a polynomial-time algorithm that, given an instance (I, k) of Π, outputs an equivalent
instance I ′ of Π′ (i.e., (I, k) is a Yes-instance of Π if and only if I ′ is a Yes-instance of Π′)
such that |I ′| ≤ p(k) where p is any computational function that depends only on k. In
particular, when Π′ = Π, we say that Π admits a kernel. Further, when p is polynomial or
quasi-polynomial, we say that Π admits a kernel of polynomial or quasi-polynomial size (or,
simply, a polynomial or quasi-polynomial kernel), respectively. So, when the parameter is
substantially smaller than the entire input size, we can, just in polynomial time, reduce the
input instance to be significantly smaller than it was before – depending only on how small
or large k is! Nowadays, Kernelization is a major sub-field of research within Parameterized
Complexity, and we refer to books such as [7, 1, 3] for more information.

In this paper, we suggest to extend the notion of a kernel to permit the kernelization
algorithm to be executed in quasi-polynomial time rather than polynomial time. So far, we
are only aware of one work [13] that addressed this negatively, showing that the lower
bounds on kernel sizes proved for kernelization in that paper also hold when quasi-polynomial
time complexity is allowed. When we, anyway, deal with an NP-hard problem, sacrificing
polynomial time in preprocessing for quasi-polynomial time may often not be a big deal, but,
of course, the question is – does it give us more power? The only known work, mentioned
above, seems to suggest that the answer is “no”. In this paper, we show that, for obtaining
deterministic kernelization algorithms, quasipolynomial time can be quite powerful. Some of
the most basic kernelization algorithms in the field are based on inherently randomized tools
whose derandomization is a huge problem that has remained (and may still remain) open for
many decades. Still, some breakthrough advances for derandomization in quasi-polynomial
time have been made. Can we harness these advancements to design quasi-polynomial
deterministic kernelization algorithms for basic problems in the field?

We also note that some recent works [27, 28] have investigated (randomized) quasipoly-
nomial size kernels (i.e. kO logO(1) k)) size) for several problems, such as Edge Multiway
Cut, Group Feedback Edge Set and others.

For this purpose, we revisit the question of deterministic polynomial-time computation of
a linear representation of transversal matroids and gammoids, which is a longstanding open
problem. We build upon the earlier work of Lokshtanov et.al. on union representation [19] to
present a deterministic computation of a representation matrix of a transversal matroid (and,
more generally, of a matching matroid) in time quasipolynomial in the rank of the matroid,
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where each entry of the matrix can be represented in quasipolynomial (in the rank of the
matroid) bits. As a corollary, we obtain a linear representation of a gammoid in deterministic
quasipolynomial time and quasipolynomial bits in the size of the underlying ground set of
the gammoid. Although we were mainly interested in these results for the purpose of the
design of quasipolynomial-time deterministic kernels, and we mainly think of them as the
tools that we present for this purpose, they are of broad and significant independent interest
for computer science researchers outside Parameterized Complexity – indeed, matroids have
become, over the past decade, ubiquitous in many fields in theoretical computer science.

Specifically, we apply the aforementioned tools to derandomize (in quasipolynomial time)
the celebrated kernelization algorithms of Kratsch and Wahlström [17], who gave randomized
polynomial kernels for several problems such as Odd Cycle Transversal, Multiway
Cut with deletable terminals and Almost 2-SAT, based on representation of gammoids
(see Section 4). Notably, the sizes of our kernels are polynomial – the only compensation is
done in terms of time complexity. We remark that the derandomization (in polynomial time)
of these kernels is among the most well-known and central open problems in the field of
Kernelization (see, e.g., [7]). Similarly, we derandomize other kernels based on representation
of gammoids, such as those given in [14, 16]. We also obtain derandomizations of the Cut
Covering Lemma in quasipolynomial time and of the computation of representative sets
regarding matroids, which are of independent interest in (not only) Parameterized Complexity.
So, in particular, given an n-vertex (di)graph G and S, T ⊆ V (G), a set Z ⊆ V of cardinality
O(|S| · |T | · r) such that for every A ⊆ S and B ⊆ T , Z contains a minimum (A, B)-vertex
cut, can be found in time nO(log n). Here, r is the size of a minimum (S, T )-cut in G. For
example, succinct representations of cuts have been studied in network design (see, e.g., [18]),
where our result naturally fits in.

In what follows in this introduction, we present relevant background on matroid repres-
entation and discuss our contribution in this regard. After that, we discuss some related
works, as well as the relation of this paper to the earlier work on union representation.

1.1 Matroid Representation
During the past few decades, matroids have gained particular interest in computer science.
These mathematical objects have taken lead roles in algorithm design, combinatorial optim-
ization and computational complexity. For example, in algorithm design, analysis of these
objects can yield algorithmic meta theorems. Such theorems unify classical results such as
polynomial-time solvability of a wide-variety of problems as central as Minimum Weight
Spanning Tree and Perfect Matching. In fact, if a problem admits a greedy algorithm,
then it can be embedded in a matroid so that solutions correspond to maximum independent
sets in the matroid. Recently, matroids also stand in the forefront of studies of approximation
algorithms, parameterized algorithms and kernels.

A matroid is a pair M = (E, I), where I is a family of subsets of E (called independent
sets), that satisfy three conditions called matroid axioms (see Section 2). As the size of I
can be exponential in the size of E, explicit listing of all independent sets is often rendered
prohibitive. Then, it is necessary to have an independence oracle that, given a subset
X ⊆ E, determines (in polynomial time) whether X is present in I. For a wide class of
matroids, known as linear matroids, such oracle is given by a matrix called a representation.
Roughly speaking, the columns of the matrix are in bijection with the elements in E, and
a set of columns is linearly independent if and only if the set of corresponding elements is
independent. Such representations are immensely useful in algorithmic settings, since a large
class of tools and techniques based on linear algebra become available. Unfortunately, despite
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substantial efforts, some central forms of linear matroids are not yet known to admit efficient
deterministic computations of their representations, where (arguably) the most well-known
and studied such classes of matroids are gammoids and transversal matroids.

Among the most central classes of matroids are the classes of uniform (or, more gener-
ally, partition) matroids, graphic and cographic matroids, matching matroids, transversal
matroids and gammoids. A common property of all of these classes is that all of them are
contained in the wider class of linear matroids. However, for the last three classes in this list
a polynomial-time deterministic computation of a representation is not known. Indeed, devel-
oping polynomial-time deterministic computation of a representation of transversal matroids
and gammoids is a longstanding open problem. Formally, a transversal matroid is a matroid
derived from a bipartite graph G with a fixed bipartition (A, B) as follows: the ground set
E is simply A, and a subset X ⊆ A is independent if and only if G has a matching that
saturates it. Matching constraints are ubiquitous in computational problems, e.g. modelling
scenarios where some given objects should be partitioned into pairs, or allocations of a set of
objects to a set of agents. Transversal matroids and matching matroids are the translation
of these constraints into the language of matroids. A gammoid is a matroid derived from
a (di)graph G with subsets S, T ⊆ V (D) as follows: the ground set E is simply T , and a
subset X ⊆ T is independent if and only if there exists a collection of vertex disjoint paths
P from S to X in G where every vertex in X is the end-vertex of some path in P. As the
dual of a transversal matroid is a (strict) gammoid and vice versa, based on the work of
[21], we know that a polynomial-time computation of a representation for one also yields
such a computation for the other. Representation of gammoids is of particular importance in
parameterized complexity as some of the most celebrated kernels in this field build upon
it [17].

Our main contribution is the resolution of the questions of the representation of transversal
matroids and gammoids under the relaxation of having quasipolynoimal rather than strictly
polynomial time. Specifically, our main theorems are as follows.

▶ Theorem 1 (Quasipolynomial Representation of Transversal Matroids). Let G be an n-vertex
bipartite graph with a fixed vertex bipartition (A, B), and let r be the size of a maximum
matching in G. Then, in time rO(log r)nO(1) we can compute a representation (M, ϕ) of the
transversal matroid of G, where each entry of the matrix is an element of Q that can be
encoded in rO(log r) bits.

▶ Theorem 2 (Quasipolynomial Representation of Gammoids). Let G be an n-vertex (di)graph
and let S, T ⊆ V (G). Then, in time nO(log n) we can compute a representation (M, ϕ) of
the gammoid of G with respect to S on ground set T , where each entry of the matrix is an
element of Q that can be represented in nO(log n) bits.

Matching matroids are a generalization of Transversal matroids to general graphs. Using
the well known Gallai-Edmonds decomposition and Theorem 1, we obtain the following.

▶ Theorem 3 (Quasipolynomial Representation of Matching Matroids). Let G be an n-vertex
graph, and let r be the size of a maximum matching in G. Then, in time rO(log r)nO(1) we
can compute a representation (M, ϕ) of the matching matroid of G, where each entry of the
matrix is an element of Q that can be encoded in rO(log r) bits.

We remark that Theorem 4.9 in [12] can also be applied to obtain a quasi-NC-computable
representation of transversal matroids; although this not immediate.
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1.2 Previous Works and the Relation to Union Representation

Prior to our work, the fastest (deterministic) computations of representations of transversal
matroids and gammoids were only slightly better than trivial brute-force. More precisely,
Misra et al. [22] showed that given a bipartite graph G with a fixed bipartition (A, B), a
representation of the transversal matroid can be computed deterministically in (exponential)
time

(|A|
r

)
|A|O(1) where r is the rank of the matroid, which equals the maximum size of

a matching in G. In this context, it is important to note that a randomized polynomial-
time algorithm to compute a representation of a transversal matroid is well known (see,
e.g., [21, 25]). Here, randomization means that with some (low) probability, the algorithm
may output a matrix that is not a representation of the matroid. This algorithm utilizes
the Schwartz-Zippel lemma [2, 26, 29], and hence it is inherently randomized. The above
mentioned trivial brute-force, which runs in time 2O(|A|2|B|) (see [22]), refers to a loop
through all choices made by the randomized algorithm. Building upon their representation
for transversal matroids, Misra et al. [22] presented a similar result for gammoids.

The notion of union representation was introduced in [19]. Roughly speaking, a union
representation of a matroid M = (E, I) is a collection of matrices such that a subset X of
E is independent in M if and only if for at least one of the matrices, the set of columns
corresponding to X is linearly independent. Standard representation is precisely union
representation where the size of the collection is one. While only linear matroids admit
standard representations, note that all matroids admit union representations: to see this,
for every base of the matroid, create one matrix with a set of linearly independent columns
corresponding to the base, and vectors having only 0 entries as the rest of the columns.
However, this procedure can create a huge number of matrices. In [19], a quasipolynomial-
time union representation of transversal matroids with quasipolynomially many matrices
and with entries represented in quasipolynomially many bits was presented. Unfortunately,
a union representation of transversal matroids, apart from not being a proper representation
in itself, also does not yield even a union representation for gammoids (the duality relation
can only be exploited if a standard representation is provided).

Nevertheless, we use the earlier work as a starting point of the proof of Theorem 1. In
Section 3, we essentially show that a union representation of a transversal matroid can be
merged into a single matrix, using polynomial interpolation. It is pertinent to ask if this can
achieved for any arbitrary matroid. The answer to this question is in the negative, since there
exist well known matroids, such as the Vamos Matroid [25], which are not representable over
any field, while all matroids admit union representations. The key reason this breaks down
is in the reverse direction of Lemma 21, where given a collection of linearly independent
columns of the interpolation matrix, we must show that the corresponding elements form an
independent set in the matroid. Here, we rely on the fact that we deal with a transversal
matroid. However, it is an interesting problem to determine for a class of non-representable
matroids of interest, if a union representation with |B| elements (where B is the set of bases),
which could be of exponential size, can be compressed to a substantially smaller collection
of matrices.

2 Preliminaries

Basic Definitions

Given t ∈ N, we use [t] as a shorthand for {1, 2, . . . , t}. Given a function f : A → B and a
subset A′ ⊆ A, we denote f(A′) = {f(a) : a ∈ A′}, and we define f |A′ as the restriction of f

to A′. We slightly abuse notation, and given a function g : A → N, called a weight function,
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and a subset A′ ⊆ A, we denote g(A′) =
∑

a∈A′ g(a). Whenever we refer to a function that
is a weight function, we use the second notation.

Linear Algebra. Given a matrix M , a set R of rows of M and a set C of columns of M ,
the submatrix of M formed by choosing the rows in R and the columns in C is denoted
by M [R, C]. Moreover, we denote the determinant of M by det(M). We remind that a
set of vectors {v1, v2, . . . , vt} is linearly dependent over some field F if there exist scalars
λ1, λ2, . . . , λt ∈ F, not all equal 0, such that

∑t
i=1 λivi = 0. Moreover, a set of vectors is

linearly independent if it is not linearly dependent.

Graphs. Given a (di)graph G, we denote the vertex set of G and edge(arc) set of G by
V (G) and E(G), respectively. Given a subset U ⊆ V (G), we let G[U ] denote the subgraph
of G induced by U . A subset U ⊆ V (G) is an independent set if there does not exist any
edge in E(G) with both endpoints in U . We say that (A, B) is a vertex bipartition of G if it
is a partition of V (G) such that A and B are independent sets. Moreover, we say that G is a
bipartite graph if it has a vertex bipartition. A matching µ is a family of pairwise-disjoint
edges of E(G). If an edge (u, v) is in a matching µ, then the vertices u and v are said
to be matching partners in µ. The maximum size of a matching is denoted by κ(G). A
subset X ⊆ V (G) is said to be saturated by µ if every vertex in X belongs to some pair in
µ. Moreover, µ is called perfect if it saturates V (G). The set of all vertices saturated by a
matching µ is denoted by V (µ). A graph G is called factor-critical if for every v ∈ V (G) the
subgraph graph G[V (G) \ {v}] has a perfect matching. A path P in G is a subgraph defined
by sequence of distinct vertices v1, v2, . . . , vt, where for each i ∈ [t − 1], we have an edge(arc)
(vi, vi+1) ∈ E(G). The vertices v1 and vt are called the start-vertex and end-vertex of P ,
respectively, and collectively they are called the endpoints of P . Further, P is said to be a
path from v1 to vt. Two paths P and P ′ are vertex disjoint if they have no common vertices.
A path system in G from S ⊆ V (G) to T ⊆ V (G) is a collection of pairwise vertex disjoint
paths with their start-vertices in S and end-vertices in T .

Two graphs G and G′ are said to be isomorphic if |V (G)| = |V (G′)| and there is a
bijection ϕ : V (G) → V (G′) such that {u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈ E(G′). A
graph class G is a collection of graphs closed under isomorphism, i.e., it contains a graph G if
and only if it contains all graphs G′ that are isomorphic to G.

Matroids

Let us begin by presenting the definition of a matroid.

▶ Definition 4 (Matroid, [25]). A pair M = (E, I), where E is a ground set and I is a
family of subsets of E (called independent sets), is a matroid if it satisfies the following
conditions:
(I1) ∅ ∈ I.
(I2) If X ⊆ Y and Y ∈ I, then X ∈ I.
(I3) If X, Y ∈ I and |X| < |Y |, then there exists e ∈ (Y \ X) such that X ∪ {e} ∈ I.

We remark that conditions (I1), (I2) and (I3) are called matroid axioms. An inclusion-wise
maximal independent set in a matroid is called a basis. We say that two matroids M = (E, I)
and M′ = (E′, I ′) are isomorphic if there exists a bijection φ : E → E′ such that for every
X ⊆ E, X ∈ I if and only if φ(X) ∈ I ′. Using (I3) it is easy to show that all the bases
of a matroid have the same size, which is called the rank of the matroid. Using (I2) it is
easy to see that if two matroids have the same set of bases, then they are the same matroid.
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Given two matroids M = (E, I) and M′ = (E, I ′) over the same ground set, we say that
M and M′ are dual matroids, if they satisfy the following: B ⊆ E is a basis of M if and
only if (E \ B) is a basis of M′. The dual of a matroid M is denoted by M∗, and clearly
(M∗)∗ = M. Given a matroid M = (E, I) and F ⊆ E, the deletion of F in M is the
matroid M \ F = (E \ F, I \ F ) where I \ F denotes the collection of sets in I that are
disjoint from F . In this paper, we are specifically interested in transversal matroids and
gammoids.

▶ Definition 5 (Transversal Matroid, [25]). Let G be a bipartite graph with a fixed vertex
bipartition (A, B). The transversal matroid of G is a matroid (A, I) where I is the family
that consists of every subset X ⊆ A such that there exists a matching that saturates X.

▶ Definition 6 (Gammoid, [25]). Let G be a (di)graph, and let S, T ⊆ V (D). The gammoid
of G with respect to S on ground set T is a matroid (T, I) where I is the family that consists
of every subset X ⊆ T that satisfies the following condition: there exists a path system P
from S to X in G where every vertex in X is the end-vertex of some path in P. When
T = V (G), the gammoid is called a strict gammoid.

It is well known that transversal matroids and strict gammoids are duals [25]. Moreover,
it is easy to see that if we consider the strict gammoid of a graph G with respect to some
subset S ⊆ V (G), then for any subset T ⊆ V (G), the gammoid of G with respect to S on
the ground set T can be obtained by deleting V (G) \ T from the strict gammoid.

Having a representation of a matroid, given by a matrix that compactly encodes the
matroid, is a central component in many algorithmic applications [17]. Matroids having a
representation are called linear, as formally defined below.

▶ Definition 7. Let A be a matrix over an arbitrary field F, and let C be the set of columns
of A. The matroid represented by A is the pair (C, I) where a subset X ⊆ C belongs to I if
and only if the columns in X are linearly independent over F.

It is well known that the pair (C, I) in Definition 7 indeed defines a matroid [25].

▶ Definition 8 (Linear Matroid, Representation). A matroid M = (E, I) is a linear matroid
if there exists a matrix A, called a representation of M, such that M and the matroid
represented by A are isomorphic. Furthermore, M is representable over a field F if it has a
representation A over F.

The phrasing that M is represented by (A, φ) is an abbreviation to the statement that
A is a representation of M and φ is an isomorphism that witnesses this. It is easy to see
that that if M = (E, I) is a linear matroid with representation M , then for any F ⊆ E, the
matroid M \ F is also a linear matroid whose representation can be obtained from M by
deleting the columns that correspond to elements in E \ F . The following lemma relates the
representations of a matroid and its dual.

▶ Proposition 9 ([25]). Let M = (E, I) be a linear matroid that is representable over a field
F, and let |E| = n. Then, M∗ is also a linear matroid. Further, given a representation M of
M, a representation M ′ of M∗ can computed in polynomially many (in n) field operations.

Isolation of Perfect Matchings

For the sake of clarity, let us first introduce the following notation. Given n ∈ N, let G be
a bipartite graph with a fixed bipartition (A, B) such that |A|, |B| ≤ n, and fixed injective
functions γA : A → [n] and γB : B → [n]. Given a weight function w : [n]× [n] → N, we define
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the weight of an edge {a, b} ∈ E(G), where a ∈ A and b ∈ B, by w̃({a, b}) = w(γA(a), γB(b)).
Thus, w̃ can be thought of as a function from E(G) to N. Let us remind that for a subset
U ⊆ E(G), w̃(U) =

∑
e∈U w̃(e).

We remark that we need to define a weight function via injective functions of the form
γA and γB as above (rather than letting the domain directly be an edge set) in order to
prove the correctness of our main result, particularly in its general form. Now, for perfect
matchings, isolating weight functions are defined as follows.

▶ Definition 10 (Isolating Weight Function). Let G be a bipartite graph with a fixed bipartition
(A, B) such that |A|, |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B → [n]. A
weight function w : [n] × [n] → N is isolating (for G) if it satisfies the following condition: If
G has a perfect matching, then G also has a unique perfect matching µ of minimum weight
(i.e. for every perfect matching µ′ ̸= µ, w̃(µ) < w̃(µ′)).

Such isolating weight functions are particularly relevant to the detection of a perfect
matching. To see this, we first need to define the matrix associated with an isolating weight
function.

▶ Definition 11. Let G be a bipartite graph with a fixed bipartition (A, B) such that |A|, |B| ≤
n, and fixed injective functions γA : A → [n] and γB : B → [n]. In addition, let w : [n]×[n] →
N be a weight function. Then, W(G,w) is the matrix on |A| columns indexed by the vertices
in A and |B| rows indexed by the vertices in B, where

W(G,w)[b, a] =
{

2w̃({b,a}) if {b, a} ∈ E(G)
0 otherwise

for all a ∈ A and b ∈ B.

The following well-known result, due to Mulmuley et al. [23], reveals a connection between
isolating weight functions, determinants and perfect matchings.

▶ Proposition 12 ([23]). Let G be a bipartite graph with a fixed bipartition (A, B) such that
|A| = |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B → [n]. In addition, let
w : [n] × [n] → N be a weight function. If det(W(G,w)) ̸= 0, then G has a perfect matching.
Moreover, if w is isolating and G has a perfect matching, then det(W(G,w)) ̸= 0.

▶ Definition 13 (Isolating Collection). Let G be a graph class and let n ∈ N. An n-isolating
collection for G is a set Wn of weight functions w : [n] × [n] → N with the following property.
For any bipartite graph G ∈ G with a fixed bipartition (A, B) such that |A|, |B| ≤ n, and fixed
bijective functions γA : A → [n] and γB : B → [n], there exists a weight function w ∈ Wn

such that w is isolating.

Let us remark that the above definition can be generalized to graph classes that do not
contain only bipartite graphs. However, as we are primarily interested in transversal matroids
that are defined using bipartite graphs, the above definition is sufficient (and necessary).
Fenner et al. [5] presented a (deterministic) computation of a collection of weight functions
that, for any bipartite graph, has at least one isolating weight function. Formally,

▶ Proposition 14 ([5]). Let n ∈ N. An n-isolating collection for the class of bipartite graphs,
denoted by Wn, containing nO(log n) weight functions with the following property can be
obtained in time nO(log n): for any weight function w ∈ Wn, every weight assigned by w can
be represented (in binary) using O(log2 n) bits.
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Splitters, Representative Families

Splitters are well-known tools in derandomization, formally defined as follows.

▶ Definition 15 (Splitter). Let n, k, ℓ ∈ N where k ≤ ℓ. An (n, k, ℓ)-splitter is a family F of
functions from [n] to [ℓ] such that for every S ⊆ [n] of size k, there is a function f ∈ F that
satisfies f(i) ̸= f(j) for all distinct i, j ∈ S.

We are specifically interested in an (n, k, k2)-splitter. The following lemma asserts that
such a small splitter can be computed efficiently.

▶ Proposition 16 ([24]). Given n, k ∈ N, an (n, k, k2)-splitter of size kO(1) log n can be
constructed in time kO(1)n log n.

The notion of a representative family (implicitly linked to that of a splitter), introduced
by Fomin et al. [6], plays a central role in the design of fast deterministic parameterized
algorithms.

▶ Definition 17 (Representative Family). Given a matroid M = (E, I) and a family S of
subsets of E, a subfamily Ŝ ⊆ S is q-representative for S, denoted by Ŝ ⊆q

rep S, if the
following holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from
Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I.

Isolation of Maximum Matchings

We begin with the definition of the matrix W(G,w,f) that combines isolating weight functions
with splitter functions, which are functions from [2n] to [(2r)2] where n, r ∈ N will be clear
from context.

▶ Definition 18. Let G be a bipartite graph with a fixed bipartition (A, B) such that |A|, |B| ≤
n, and fixed injective functions γA : A → [n] and γB : B → [n]. In addition, let w :
[(2r)2] × [(2r)2] → N be a weight function and f : [2n] → [(2r)2] be a splitter function for
some r ∈ N. Then, W(G,w,f) is the matrix on |A| columns indexed by the vertices in A and
|B| rows indexed by the vertices in B, where

W(G,w,f)[b, a] =
{

2w(f(γA(a)),f(n+γB(b))) if {b, a} ∈ E(G)
0 otherwise

for all a ∈ A and b ∈ B.

Next, we define good pairs of a weight function and a splitter function with respect to a
subset of vertices, which “isolates” a maximum matching saturating this subset.

▶ Definition 19. Let G be a bipartite graph with a fixed vertex bipartition (A, B) such
that |A|, |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B → [n]. In
addition, let r ∈ N. For a weight function w : [(2r)2] × [(2r)2] → N and a splitter function
fA : [2n] → [(2r)2], the pair (w, f) is good for a subset X ⊆ A if det(W(G,w,f)[Y, X]) ̸= 0 for
some Y ⊆ B.

The following result asserts that by combining splitters and isolating weight functions for
perfect matchings, we can obtain isolating weight functions for maximum matchings.
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▶ Proposition 20 ([19]). Let G be a graph class. Let G ∈ G be a bipartite graph with a fixed
vertex bipartition (A, B) such that |A|, |B| ≤ n, and fixed injective functions γA : A → [n]
and γB : B → [n]. In addition, let W be a (2r)2-isolating collection for G, and F be a
(2n, 2r, (2r)2)-splitter for some r ∈ N. For every subset X ⊆ A of size at most r, if X is
independent in the transversal matroid of G, then there exist w ∈ W and f ∈ F such that
(w, f) is good for X.

3 Representation via Polynomial Interpolation

In this section, we show that a collection of isolating weight functions for maximum matchings
can be converted to a representation matrix for a transversal matroid by using polynomial
interpolation. Our first step is to obtain a representation over Q[Z], the ring of univariate
polynomials with coefficients from Q (in the formal variable Z).

▶ Lemma 21. Let G be a graph class. Let G ∈ G be an n-vertex bipartite graph with a fixed
vertex bipartition (A, B), and let r be the size of a maximum matching in G. Let W be an
r-isolating collection for G. Let b ∈ N be the maximum weight assigned by any function in
W. Then, we can compute a representation (M̂, ϕ̂) of the transversal matroid of G in time
(nb|W|)O(1), where each entry M̂ [β, α] is a polynomial in Q[Z] with integer coefficients in
the form

M̂ [β, α] =
t∑

ℓ=1

(
qℓ ·

∏
j∈[t]\{ℓ}

(Z − j)
)
,

where t = |W|nO(1) and for any ℓ ∈ [t], qℓ ∈ Z is encoded in b + t log t bits.

Proof. Observe that r ≤ n, and let us begin by constructing a family of matrices over
Q with integer entries. First, we apply Proposition 15 to obtain a (2n, 2r, (2r)2)-splitter
F of size rO(1) log n in time rO(1) · n log n. Then, we select arbitrary bijective functions
γA : A → [|A|] and γB : B → [|B|]. Note that the collection {W(G,w,f)}|w∈W,f∈F contains
t = |W| · |F| = |W|rO(1) log n matrices. By Definition 18, every entry in W(G,w,f), w ∈ W
and f ∈ F , is an integer of bit-length b. Thus, the time to construct {W(G,w,f)}|w∈W,f∈F
is bounded by b|W|nO(1). For convenience, let us define τ : [t] → W × F as an arbitrary
bijection, and for i ∈ [t] let Mi denote the matrix W(G,wi,fi) where τ(i) = (wi, fi). Then,
each entry of Mi is an integer that can be represented using b bits. Observe that the rows
and columns of each Mi are indexed by B and A, respectively, where the indexing “agree”
for any two matrices Mi and Mj .

Let us describe the construction of the matrix M̂ using the collection {Mi}|i∈[t]. Let
M̂ [β, α] denote the entry of the matrix in row β and column α. Then, we will define M̂ [β, α]
as the multiplication of some scalar s with a (univariate) polynomial pβ,α(Z) ∈ Q[Z] in the
formal variable Z of degree t − 1 that will have the following property: for each i ∈ [t], we
have pβ,α(Z = i) = Mi[β, α]. It follows that M̂ = M̂(Z) is a matrix over Q[Z], and for each
i ∈ [t], we have M̂(Z = i) = s · Mi. For this purpose, we choose the polynomial pβ,α(Z) to be
the Lagrange polynomial of the points {(i, Mi[β, α])}|i∈[t], which is a degree t − 1 polynomial
in Q[Z]. Specifically, it is described by the following formula.

pβ,α(Z) =
∑t

ℓ=1

( ∏
j∈[t]\{ℓ}

Z − j

ℓ − j

)
Mℓ[β, α]
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Indeed, for any i ∈ [t], if we substitute Z by i above, then for all ℓ ∈ [t] \ {i}, the expression( ∏
j∈[t]\{ℓ}

Z − j

ℓ − j

)
Mℓ[β, α] evaluates to 0, while for ℓ = i it evaluates to Mi[β, α].

Now, we choose s = (t − 1) · (t − 2) · · · · 1 · (−1) · (−2) · · · · · (1 − t). Accordingly, we define

M̂ [β, α] =
t∑

ℓ=1

(
qℓ ·

∏
j∈[t]\{ℓ}

(Z − j)
)
,

where for any ℓ ∈ [t], let qℓ = s · Mℓ[β, α]∏
j∈[t]\{ℓ}(ℓ − j) . Then, for any ℓ ∈ [t], the definition of s

directly yields that qℓ ∈ Z and qℓ ≤ tt · Mℓ[β, α], and because Mℓ[β, α] can be encoded in b

bits, we deduce that qℓ can be encoded in t · log t + b bits.
Clearly, the computation of M̂ is done in time (nb|W|)O(1). Let us note that the rows and

columns of M̂ are indexed by the vertex sets B and A, respectively, as is directly obtained
from the same indexing of the matrices {Mi}|i∈[t]. Hence the mapping ϕ̂ from A to columns
of M̂ is well defined. Furthermore, by Definition 18, we have the following claim.

▷ Claim 22. For any α ∈ A and β ∈ B, if M̂(Z)[β, α] ̸= 0, then {α, β} ∈ E(G).

To see this, consider some α ∈ A and β ∈ B. If M̂(Z)[β, α] ̸= 0, then the polynomial pβ,α(Z)
is not identically zero, therefore in particular there must exist i ∈ [t] such that Mi[β, α] ̸= 0.
However, Definition 18 then directly yields that {α, β} ∈ E(G). (We note that the reverse
direction of the claim also holds, as can be easily seen to follow as a special case from the
arguments in the following paragraph.)

Let us argue that M̂(Z) is indeed a representation of the transversal matroid of G. In
the forward direction, consider a subset X ⊆ A such that there is a matching in G saturating
X, i.e., X is an independent set (of size at most r) in the transversal matroid of G. Then,
we must argue that the columns of M̂(Z) corresponding to X are linearly independent.
Consider a subset Y ⊆ B such that |Y | = |X|, and there is a perfect matching in G[X ∪ Y ].
Then, consider the submatrix M̂(Z)[Y, X] indexed by the rows corresponding to Y and
columns corresponding to X. We claim that det(M̂(Z)[Y, X]) ̸= 0, which implies that this
submatrix has full rank, and hence the columns of M̂(Z) corresponding to X are linearly
independent. Suppose not, that is, det(M̂(Z)[Y, X]) = 0. In particular, this means that
det(M̂(Z = i)[Y, X]) = 0 for every i ∈ [t]. However, by Proposition 20, there exist a pair
of w ∈ W and f ∈ F that is good for X, and thus det(W(G,w,f)[Y, X]) ̸= 0. Now, consider
i ∈ [t] such that τ(i) = (w, f) and observe that we have reached a contradiction since
M̂(Z = i)[Y, X] = s · Mi[Y, X] = s · W(G,w,f)[Y, X].

In the reverse direction, consider X ⊆ A such that the column vectors of M̂ corresponding
to X are linearly independent. Therefore, det(M̂ [Y, X]) ̸= 0 for some Y ⊆ B with |Y | = |X|.
By the definition of determinant, we have that

∑
σ∈S

sign(σ)
∏
y∈Y

(M̂ [Y, X])[y, σ(y)]

 ̸= 0,

where S is the set of all bijective functions from Y to X. Thus, there exists σ ∈ S such that
(M̂ [Y, X])[y, σ(y)] ̸= 0 for all y ∈ Y . By Claim 22, this means that there exists a bijective
function g : Y → X (that is, σ above) such that {g(y), y} ∈ E(G) for all y ∈ Y . Therefore,
G[X ∪ Y ] has a perfect matching. We thus conclude that X is independent in the transversal
matroid of G. ◀
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The above lemma gives us a representation matrix M̂ over the ring of (univariate)
polynomials in Q[Z]. Our next step is to obtain a representation over Q.

▶ Lemma 23. Let G be a graph class. Let G ∈ G be an n-vertex bipartite graph with a fixed
vertex bipartition (A, B), and let r be the size of a maximum matching in G. Let W be an
r-isolating collection for G. Let b ∈ N be the maximum weight assigned by any function in
W. Then, we can compute a representation (M, ϕ) of the transversal matroid of G in time
(nb|W|)O(1), where each entry of M is an integer that can be encoded in bnO(1)|W|2 log |W|
bits.

Proof. We begin by applying Lemma 21 and obtaining the representation M̂ over Q[Z].
Note that each entry M̂ [β, α] is a univariate polynomial in the formal variable Z with integer
coefficients, which is of the form

M̂ [β, α] =
t∑

ℓ=1

(
qℓ ·

∏
j∈[t]\{ℓ}

(Z − j)
)
,

where t = |W|nO(1) and for any ℓ ∈ [t], qℓ ∈ Z is encoded in b + t log t bits. Let γ = 2b+4t log t,
and Γ = (2γ)n + 2. Then, we have the following immediate claim.

▷ Claim 24. The absolute value of any coefficient of M̂ [β, α] is upper bounded by γ.

To see this, consider some ℓ ∈ [t] and r ∈ [t − 1] ∪ {0}, and observe that the absolute value of
the coefficient of Zr in

∏
j∈[t]\{ℓ}(Z − j) is upper bounded by

(
t−1

r

)
tt−1−r ≤ (2t)t. Because

qℓ ≤ 2b+t log t = 2btt, and we sum over ℓ from 1 to t, we derive that the absolute value of any
coefficient of M̂ [β, α] is upper bounded by t · 2btt · (2t)t ≤ γ.

Now, observe that Γ ≤ 2O(n(b+4t log t)), and hence it can be encoded using O(n(b +
4t log t)) ≤ bnO(1)|W| log |W| bits. Consider the matrix M = M̂(Z = Γ). Observe that M

is a matrix whose entries are integers. Each entry of M , say M [β, α] = M̂(Z =Γ)[β, α] at
row β and column α, is the evaluation at Γ of a degree t − 1 polynomial with coefficients
of absolute value at most γ (by Claim 24). Therefore, the absolute value of M [β, α] is
upper bounded by t · γ · Γt−1 ≤ γO(nt) ≤ 2O(ntb+nt2 log t), and hence it can be encoded in
ntb + nt2 log t = bnO(1)|W|2 log |W| bits.

Next, let us argue that M is a correct representation matrix. Consider a square submatrix
M ′ of M , and let M̂ ′ be the corresponding submatrix of M̂ . It is sufficient to argue that
det(M ′) ̸= 0 if and only if det(M̂ ′) ̸= 0. Then, as M̂ ′ is a correct representation, so is M .
Observe that det(M̂ ′) is a univariate polynomial in Q[Z], and det(M ′) is an evaluation of
this polynomial at Z = Γ. Hence, if det(M ′) ̸= 0, then det(M̂ ′) ̸= 0 as well. In the reverse
direction, let us argue that Γ is not a root of the polynomial det(M̂ ′). Then, it follows that
if det(M̂ ′) ̸= 0, then det(M ′) ̸= 0 as well. To obtain that Γ is not a root of det(M̂ ′), we will
apply Cauchy’s upper bound on the absolute value of any root of a univariate polynomial
with coefficients in Q. It states that if a0 + a1Z + a2Z2 + . . . + arZr is a degree r polynomial
with coefficients ai ∈ Q for all i ∈ [r], then the absolute value of any root of this polynomial
is upper bounded by 1 + max{ ar−1

ar
, ar−2

ar
, . . . , a0

ar
}. Now, consider the coefficients of det(M̂ ′).

Observe that det(M̂ ′) is a polynomial that is obtained by summing over at most 2n terms,
each of which is a product of n entries of M̂ ′. Recall that the entries in M̂ ′ are polynomials
with integer coefficients of absolute value at most γ (by Claim 24). Thus, every coefficient of
det(M̂ ′) is an integer that has absolute value at most (2γ)n. Thus, any root of det(M̂ ′) must
have absolute value at most (2γ)n + 1. Since Γ is larger than this upper bound, it cannot be
a root of det(M̂ ′). This concludes the proof of this lemma. ◀
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Now we can obtain a representation as a corollary of Proposition 14 and Lemma 23.

▶ Theorem 1 (Quasipolynomial Representation of Transversal Matroids). Let G be an n-vertex
bipartite graph with a fixed vertex bipartition (A, B), and let r be the size of a maximum
matching in G. Then, in time rO(log r)nO(1) we can compute a representation (M, ϕ) of the
transversal matroid of G, where each entry of the matrix is an element of Q that can be
encoded in rO(log r) bits.

Proof. By Proposition 14, we can compute in time rO(log r) an r-isolating family W for the
class of all bipartite graphs such that |W| = rO(log r), and the maximum weight assigned by
any function in W is b = 2O(log2 r) = rO(log r). Then, by Lemma 23, in time (nb|W|)O(1) =
rO(log r)nO(1) we can compute a representation (M, ϕ) of the transversal matroid of G, where
each entry of M is a integer encoded in bnO(1)|W|2 log |W| = rO(log r)nO(1) bits. ◀

3.1 Representation of Gammoids in Deterministic Quasipolynomial Time
We use the representation of transversal matroids to obtain a representation of gammoids.
First, we consider strict gammoids, and then obtain the result for (not necessarily strict)
as an almost direct consequence. In this context, recall that strict gammoids are duals of
transversal matroids, which is central to the proof.

▶ Lemma 25 (⋆). 1 Let G be an n-vertex (di)graph and let S ⊆ V (G). Then, in time
nO(log n) we can compute a representation (M, ϕ) of the strict gammoid of G with respect to
S, where each entry of the matrix is an element of Q that can be encoded in nO(log n) bits.

▶ Theorem 2 (Quasipolynomial Representation of Gammoids). Let G be an n-vertex (di)graph
and let S, T ⊆ V (G). Then, in time nO(log n) we can compute a representation (M, ϕ) of
the gammoid of G with respect to S on ground set T , where each entry of the matrix is an
element of Q that can be represented in nO(log n) bits.

Proof. Consider the strict gammoid of G with respect to S; then, as noted in Section 2, the
gammoid of G with respect to S on ground set T can be obtained by deleting V (G) \ T from
the strict gammoid. Thus, given a representation matrix M of the strict gammoid of G with
respect to S, by deleting the columns indexed by V (G) \ T we obtain a representation matrix
of the gammoid of G with respect to S on ground set T . Thus, the statement is a direct
consequence of Lemma 25. ◀

3.2 Representative Sets
We now proceed to the computation of representative sets over gammoids in deterministic
quasipolynomial time. We require the following result of Fomin et al. [6].

▶ Proposition 26 ([6]). Let M = (E, I) be a linear matroid of rank p+q, and let S be a family
of ℓ independent sets, each of size p. Let A be an n×|E| matrix representing M over a field F,
and let ω < 2.373 be the exponent of matrix multiplication [8]. Then, there is a deterministic
algorithm computing Ŝ ⊆q

rep S of size
(

p+q
p

)
in O

((
p+q

p

)
ℓpω + ℓ

(
p+q

q

)ω−1)
+ (n + |E|)O(1)

operations over F.

1 The proof of results marked with ⋆ are omitted due to space constraints. They will appear in the
full-version of the paper.
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The algorithm of Proposition 26 requires the multiplication of at most (p + q)2 entries
of M for any computation during its execution. Hence, given a linear matroid with a
representation where each entry requires nO(log n) bits, all intermediate results can be stored
in nO(log n) bits as well. Hence, we obtain the following corollary.

▶ Lemma 27. Let p, q ∈ N. Let M be a linear matroid of rank p + q, and let S be a family
of ℓ independent sets, each of size p. Let M be a representation of this matroid, where each
entry of M is an element of Q that requires nO(log n) bits. Then, there is a deterministic
algorithm computing Ŝ ⊆q

rep S of size
(

p+q
p

)
in O(

((
p+q

p

)
ℓpω + ℓ

(
p+q

q

)ω−1)
· nO(log n)) time,

where ω is the exponent of matrix multiplication.

4 Applications

In this section, we apply our results to derandomize several important results in the area
of kernelization. Specifically, we apply Theorem 2 and Lemma 27 to derandomize the
kernelization algorithms of [17, 16, 14], as well as the cut covering lemma. These algorithms,
first compute an approximate solution for a given problem instance, and then construct a
representation of an associated gammoid, where the construction deployed is a randomized
one (also see [21]). To derandomize these results, we must ensure that there is a deterministic
approximation algorithm for these problems, and then apply Theorem 2 and Lemma 27.
For some of these problems, we have the following proposition from [15], that gives us
deterministic polynomial time FPT-approximation algorithm. These results are obtained
via parameter preserving reductions to a problem called d-Skew Symmetric Multicut.
The other problems are known to admit standard approximation algorithms in deterministic
polynomial time [11, 17].

▶ Proposition 28 ([15]). Odd Cycle Transversal, Almost 2-SAT, Vertex Cover
above (2LP − MM), Vertex Cover parameterized by Konig Deletion Set, Konig
Deletion Set in graphs with a perfect matching, RHorn-Backdoor Deletion Set
admit a deterministic polynomial time FPT-approximation, with approximation factor O(k).

The subsequent step in these algorithms is to compute representative sets over a matroid
of rank (p + q) where p is a (polynomial) function of k and q is a constant. Applying our
results, we directly obtain the following.

▶ Lemma 29 (Cut Covering Lemma). Let G be an n-vertex (di)graph and let S, T ⊆ V (G).
Let r be the size of a minimum (S, T )-cut in G. Then, a set Z ⊆ V of cardinality O(|S| · |T | ·r)
such that for every A ⊆ S and B ⊆ T , Z contains a minimum (A, B)-vertex cut, can be
found in time nO(log n).

▶ Theorem 30. The following problems admit a polynomial kernel in deterministic quasi-
polynomial (i.e., nO(log n)) time: Odd Cycle Transversal, MultiwayCut with deletable
terminals, Group Feedback Vertex Set, Almost 2-SAT, Vertex Cover above
(2LP − MM), Vertex Cover parameterized by Konig Deletion Set, Konig Deletion
Set in graphs with a perfect matching, RHorn-Backdoor Deletion Set and Subset
Feedback Vertex Set.

5 Representation of Matching Matroids

In this section, we give a quasi-polynomial time representation for Matching Matroid which
are a generalization of Transversal Matroid.
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▶ Definition 31 (Matching Matroid, [20]). Let G be a graph. The matching matroid of G is
a matroid (V (G), I) where I is the family that consists of every subset X ⊆ V (G) such that
there exists a matching that saturates X.

▶ Observation 32. Let G be a graph and let M be the matching matroid of G. Then,
X ⊆ V (G) is a basis of M if and only if there is a maximum matching µ in G such that
V (µ) = X.

Our algorithm for computing a representation of matching matroids, requires the Gallai-
Edmonds decomposition of graphs from matching theory. It is defined as follows.

▶ Definition 33 (Gallai-Edmonds Decomposition). Let G be a graph. Let V (G) = O ⊎ N ⊎ P

be a partition of V (G) defined as follows:
O ⊆ V (G) contains all vertices v such that there is a maximum matching µ in G and
v /∈ V (µ).
N = NG(O) is the set of all neighbors of O in G.
P = V (G) \ (N ∪ O), are the remaining vertices.

▶ Proposition 34 ([4, 9, 10, 20]). Let G be a graph, and let V (G) = O ⊎ N ⊎ P be the
Gallai-Edmonds decomposition of G. Then the following hold:

G[O] is a collection of factor-critical graphs.
G[P ] has a perfect matching.
A matching µ in G is a maximum matching if and only if the following hold.

P ∪ N ⊆ V (µ); furthermore µ ∩ E(G[P ]) is a perfect matching in G[P ].
The matching partners of vertices in N are in O.
For each component Oi of G[O], µ ∩ E(Oi) matches all but one vertex oi ∈ V (Oi).
The vertex oi is either matched to a vertex in N or it remains unmatched.

▶ Proposition 35 ([4, 9, 10, 20]). Given a graph G, a Gallai-Edmonds decomposition can be
computed in polynomial time.

▶ Observation 36. Let G be a graph, M be it’s matching matroid and let X be a basis of
M. Then P ∪ N ⊆ X. And for any component Oi of G[O], |V (Oi) ∩ X| ≥ |V (Oi)| − 1.

The above observation implies that in any basis X of M, the “non-trivial” part arises
from the “bipartite graph” between N and O. Intuitively, we can capture this part via a
transversal matroid. The following construction formalizes this intuition.

▶ Lemma 37 (⋆). Given a graph G, there exists a bipartite graph H with vertex bipartition
(U ⊎ W ) such that the matching matroid M of G is isomorphic to the transversal matroid of
H with ground set U .

From Lemma 37 and Theorem 1 we obtain the following.

▶ Theorem 3 (Quasipolynomial Representation of Matching Matroids). Let G be an n-vertex
graph, and let r be the size of a maximum matching in G. Then, in time rO(log r)nO(1) we
can compute a representation (M, ϕ) of the matching matroid of G, where each entry of the
matrix is an element of Q that can be encoded in rO(log r) bits.
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