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Abstract
We study Löwenheim-Skolem and Omitting Types theorems in Transition Algebra, a logical system
obtained by enhancing many sorted first-order logic with features from dynamic logic. The sentences
we consider include compositions, unions, and transitive closures of transition relations, which are
treated similarly to actions in dynamic logics to define necessity and possibility operators. We show
that Upward Löwenheim-Skolem theorem, any form of compactness, and joint Robinson consistency
property fail due to the expressivity of transitive closures of transitions. In this non-compact
many-sorted logical system, we develop a forcing technique method by generalizing the classical
method of forcing used by Keisler to prove Omitting Types theorem. Instead of working within
a single signature, we work with a directed diagram of signatures, which allows us to establish
Downward Löwenheim-Skolem and Omitting Types theorems despite the fact that models interpret
sorts as sets, possibly empty. Building on a complete system of proof rules for Transition Algebra,
we extend it with additional proof rules to reason about constructor-based and/or finite transition
algebras. We then establish the completeness of this extended system for a fragment of Transition
Algebra obtained by restricting models to constructor-based and/or finite transition algebras.
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1 Introduction

Transition Algebra [19], abbreviated TA, offers a logical framework for modeling and reasoning
about state transitions in systems, particularly in concurrency theory and computer science.
Closely related to modal logics and algebraic specification languages executable by rewriting,
it provides a structured approach to describing system evolution based on predefined rules.
The key concepts in transition algebra are (a) states, which are characterized using equational
theories, and (b) transitions, which are represented as labeled relations between states.
Transition algebra can be broadly viewed as an extension of many-sorted first-order logic,
incorporating features from dynamic logic. It includes algebraic operators that define how
transitions combine, such as (a) Sequential composition (;): if a system moves from state t1
to t2 according to transition rule a1, and then from t1 to t2 under transition rule a2, this is
written as a1 ; a2, (b) Choice (∪): represents nondeterministic choices between transitions.
(c) Iteration (∗): denotes repeated transitions, analogous to the Kleene star in formal language
theory. Iteration (∗), has been employed in the literature to enhance the expressive power of
first-order logic, albeit at the expense of compactness. Notably, Fagin’s work on Transitive
Closure Logic (TCL) has been extensively studied within the frameworks of finite model
theory and descriptive complexity [9, 10]. However, apart from the work on TA [19], we are
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55:2 Model-Theoretic Forcing in Transition Algebra

not aware of any model-theoretic studies of first-order logic with iteration beyond the scope of
finite model theory. Moreover, when sorts – possibly infinitely many – and models interpreting
those sorts as sets – possibly empty – are permitted, extending existing techniques to such a
framework poses significant challenges and lacks a straightforward solution.

In [19], it is shown that transition algebra possesses an essential property for modu-
larization, known as the satisfaction condition. This condition states that truth remains
invariant under changes in notation. Here, a change in notation refers to the translation
between local languages constructed from vocabularies, often called signatures. Consequently,
transition algebra is formalized as an institution [11], a category-theoretic framework that
captures the notion of logic by incorporating its syntax, semantics, and the satisfaction
relation between them. Similarly, the logic underlying CafeOBJ [8] satisfies the satisfaction
condition for signature morphisms, allowing it to be formalized as an institution. However,
its models cannot distinguish between different transitions occurring between the same states,
as transitions are represented by preorder relations. In contrast, Rewriting Logic [25] – the
foundation of Maude [4] – offers greater expressivity by treating transitions as arrows in a
category, where states serve as objects. This expressiveness comes at a cost, as the satisfaction
condition does not hold in Rewriting Logic. On the other hand, transition algebra retains
the modular properties of the preorder algebras in CafeOBJ due to its institutional structure
while achieving the same level of expressivity as Rewriting Logic.

Given a set of properties formalized as first-order sentences, practitioners seek to study a
restricted class of transition algebras that satisfy these properties. In fields such as formal
methods and functional programming – where computation and reasoning rely on abstract
data types and term rewriting – many algebraic structures are naturally described using
constructor operators, such as numbers with 0 and succ, or lists with nil and cons. Pattern
matching on constructors further simplifies function definitions. A related example is Finite
Model Theory [24, 12], which focuses on logical structures with a finite domain. This area is
particularly relevant to database theory, complexity theory, and various computer science
applications. Building on a complete system of proof rules for TA, such as the one proposed
in [19], we extend it with additional proof rules to reason about constructor-based and/or
finite transition algebras. We refer the reader to [2, 1, 17] for theoretical foundations of
constructor-based models and to [27] for a formal method developed for reasoning about such
models. We then establish the completeness of this extended system for the fragment of TA
obtained by restricting the semantics to constructor-based and/or finite transition algebras.

In this work, we use Omitting Types Theorem (OTT) to extend completeness of TA to
a fragment obtained by restricting the semantics to constructor-based transition algebras
with finite carrier sets. The OTT states that if a first-order theory Φ does not require a
certain type (a set of formulas describing a potential element) to be realized, then there
exists a model of Φ that omits this type. This ensures the existence of models that exclude
specific unwanted elements. A key challenge arises from the fact that models with potentially
empty carrier sets are allowed in TA. In this model-theoretic framework, extending the initial
signature with an infinite number of constants cannot always be achieved while preserving
the satisfiability of the underlying theory. To address this, we employ a forcing technique
introduced in [19] to prove completeness of TA. Forcing was originally introduced by Paul
Cohen [5, 6] in set theory to show the independence of the continuum hypothesis from the
other axioms of Zermelo-Fraenkel set theory. Robinson [28] developed an analogous theory
of forcing in model theory. The forcing technique has been studied in institutional model
theory at an abstract, category-theoretic level, in works such as [18, 14, 15]. The forcing
method proposed in [19] generalizes classical forcing from a single signature to a category of
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signatures, enabling the dynamic addition of both constants and sentences while preserving
satisfiability. Notably, this dynamic forcing method is particularly suited for logical systems
that are not compact, such as TA.

Additionally, we show that TA theories have some control over the cardinality of their
models. The Upward Löwenheim–Skolem Theorem does not hold in general, as there exist
theories that uniquely determine a model up to isomorphism, provided that the model’s size
is exactly the cardinality of the power of its underlying signature.1 It is interesting to note
that the Downward Löwenheim–Skolem Theorem does hold, as for any model whose size
exceeds the power of its underlying signature, one can construct an elementary submodel
whose size matches the power of the signature.

2 Transition algebra

In this section, we recall the logic of many-sorted transition algebras [19], or transition
algebra (TA), for short. We present, in order: signatures, models, sentences, and the TA
satisfaction relation.

Signatures. The signatures we consider are ordinary algebraic signatures endowed with
polymorphic transition labels. We denote them by triples of the form (S, F, L), where:

(S, F ) is a many-sorted algebraic signature consisting of a set of sorts S and a set of
function symbols F = {σ : w → s | w ∈ S∗ and s ∈ S};
L is a set whose elements we call transition labels.

Given a function symbol σ : w → s ∈ F , we refer to w ∈ S∗ as its arity and s ∈ S as its sort.
When w is the empty arity, we may speak of σ : → s as a constant of sort s.

Throughout the paper, we let Σ, Σ′, and Σi range over signatures of the form (S, F, L),
(S′, F ′, L′), and (Si, Fi, Li), respectively.

As usual in institution theory [7, 29], important constructions such as signature extensions
with constants as well as open formulae and quantifiers are realized in a multi-signature
setting, so moving between signatures is common. A signature morphism χ : Σ → Σ′

consists of a triple χ = (χst, χop, χlb), where (a) χst : S → S′ is a function mapping sorts,
(b) χop : F → F ′ maps each function symbol σ : s1 . . . sn → s ∈ F to a function symbol
χop(σ) : χst(s1) . . . χst(sn) → χ(s) ∈ F ′ and (c) χlb : L → L′ is a function mapping labels.
For convenience, we typically omit the superscripts st, op and lb in the notation.

▶ Remark 1. Signature morphisms compose componentwise. This composition is associative
and has identities, forming a category Sig of signatures.

Models. Given a signature Σ, a Σ-model A consists of:
an (S, F )-algebra A, where each sort s ∈ S is interpreted by A as a set As and each function
symbol σ : s1 . . . sn → s ∈ F is interpreted by A as a function σA : As1 × . . .×Asn → As;
an interpretation of each label ϱ ∈ L as a many-sorted transition relation ϱA ⊆ A × A,
where ϱA = {ϱAs }s∈S and ϱAs ⊆ As × As for all sorts s ∈ S. 2

1 The power of a signature is the cardinality of the set of all sentences that can be formed in its language.
2 In principle, relations of any arity could be defined, and the results presented in this paper would still

hold. However, in algebraic specification languages that are executable via rewriting, the only relations
considered are transitions, which are defined between pairs of elements of the same sort. Furthermore,
the iteration operator (∗) can be applied exclusively to transitions.

MFCS 2025



55:4 Model-Theoretic Forcing in Transition Algebra

A homomorphism h : A → B over a signature Σ is an algebraic (S, F )-homomorphism that
preserves transitions: h(ϱA) ⊆ ϱB for all ϱ ∈ L. It is easy to see that Σ-homomorphisms form
a category, which we denote by ModTA(Σ), under their obvious componentwise composition.
▶ Remark 2. Every signature morphism χ : Σ → Σ′ determines a model-reduct functor
_↾χ : ModTA(Σ′) → ModTA(Σ) such that:

for every Σ′-model A′, (A′↾χ)s = A′
χ(s) for each sort s ∈ S, σ(A′↾χ) = χ(σ)A′ for each

symbol σ ∈ F , and ϱ(A′↾χ) = χ(ϱ)A′ for each label ϱ ∈ L; and
for every Σ′-homomorphism h′ : A′ → B′, (h′↾χ)s = h′

χ(s) for each s ∈ S.
Moreover, the mapping χ 7→ _↾χ is functorial.
For any signature morphism χ : Σ → Σ′, any Σ-model A and any Σ′-model A′ if A = A′↾χ,
we say that A is the χ-reduct of A′, and that A′ is a χ-expansion of A. For example, for a
many-sorted set X (say, of variables) that is disjoint from the set of constants in Σ, consider
the inclusion morphism ιX : Σ ↪→ Σ[X], where Σ[X] = (S, F [X], L) is the signature obtained
from Σ by adding the elements of X to F as new constants of appropriate sort. Then an
expansion of a Σ-model A along ιX can be seen as a pair A′ = ⟨A, f : X → A⟩, where f is a
valuation of X in A.

As in many-sorted algebra, there is a special, initial model in ModTA(Σ), which we denote
by TΣ, whose elements are ground terms built from function symbols, and whose transitions
are all empty. The Σ-model TΣ(X) of terms with variables from X is defined as the ιX -reduct
of TΣ[X]; i.e., TΣ(X) = TΣ[X]↾ιX

.

Sentences. Given a signature Σ, the set A of actions is defined by the following grammar:

a ::= ϱ | a ; a | a ∪ a | a∗

where ϱ is a transition label. We let A denote the set of all actions and extend our notational
convention for signature components to their corresponding sets of actions. Specifically, we
use: (a) A′ to denote the set of actions over a signature Σ′, (b) Ai to denote the set of actions
over a signature Σi, and similarly for other variations. Moreover, through a slight abuse
of notation, we also denote by χ : A → A′ the canonical map determined by a signature
morphism χ : Σ → Σ′.

To define sentences, we assume a countably infinite set of variable names {vi | i < ω}. A
variable for a signature Σ is a triple ⟨vi, s,Σ⟩, where (a) vi is a variable name and (b) s is a
sort in Σ. The third component is used only to ensure that variables are distinct from the
constants declared in Σ, which is essential when dealing with quantifiers. The set SenTA(Σ)
of sentences over Σ is given by the following grammar:

ϕ ::= t = t′ | a(t1, t2) | ¬ϕ | ∨Φ | ∃X ·ϕ′

where (a) t and t′ are Σ-terms of the same sort; (b) a is any action; (c) t1 and t2 are Σ-terms
of the same sort; (d) Φ is a finite set of Σ-sentences; and (e) X is a finite block of Σ-variables,
that is, X is a finite set of variables such that if ⟨vi, s1,Σ⟩, ⟨vj , s2,Σ⟩ ∈ X and s1 ̸= s2 then
i ̸= j; and (f) ϕ′ is a Σ[X]-sentence. A sentence a(t1, t2) is called a transition rule, which can
also be written in infix notation t1 a t2. An atomic sentence is a ground equation t = t′ or a
ground transition rule of the form t1 ϱ t2, where ϱ ∈ L is a transition label.

Besides the above core connectives, we also make use of the following convenient (and
standard) abbreviations: ∧Φ := ¬ ∨ϕ∈Φ ¬ϕ for finite conjunctions; ⊥ := ∨∅ for falsity;
⊤ := ∧∅ = ¬⊥ for truth; ϕ1 ⇒ ϕ2 := ¬ϕ1 ∨ ϕ2 for implications; and ∀X ·ϕ′ := ¬∃X · ¬ϕ′ for
universally quantified sentences.
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▶ Remark 3. Any signature morphism χ : Σ → Σ′ can be canonically extended to a sentence-
translation function χ : SenTA(Σ) → SenTA(Σ′) given by:

χ(t = t′) := (χ(t) = χ(t′));
χ(t1 a t2) := χ(t1) χ(a) χ(t2);
χ(¬ϕ) := ¬χ(ϕ);
χ(∨Φ) := ∨χ(Φ); and
χ(∃X ·ϕ′) := ∃X ′ ·χ′(ϕ′), where X ′ = {⟨vi, χ(s),Σ′⟩ | ⟨vi, s,Σ⟩ ∈ X} and χ′ : Σ[X] →
Σ′[X ′] is the extension of χ : Σ → Σ′ mapping each ⟨vi, s,Σ⟩ ∈ X to ⟨vi, χ(s),Σ′⟩ ∈ X ′.

Moreover, this sentence-translation mapping is functorial in χ.

For the sake of simplicity, we identify variables only by their name and sort, provided
that there is no danger of confusion. Using this convention, each inclusion morphism
ι : Σ ↪→ Σ′ determines an inclusion function ι : SenTA(Σ) ↪→ SenTA(Σ′), which corresponds to
the approach of classical model theory. This simplifies the presentation greatly. A situation
when we cannot apply this convention arises when translating a Σ-sentence ∃X ·ϕ along the
inclusion ιX : Σ ↪→ Σ[X].

Satisfaction relation. Actions are interpreted as binary relations in models. Given a model
A over a signature Σ, and actions a, a1, a2 ∈ A, we have:

(a1 ; a2)A = aA1 ; aA2 (i.e., diagrammatic composition of binary relations);
(a1 ∪ a2)A = aA1 ∪ aA2 (the union of binary relations); and
(a∗)A = (aA)∗ (the reflexive and transitive closure of binary relations).

We define the satisfaction relation between models and sentences as follows:
A |= t = t′ iff tA = t′A;
A |= t1 a t2 iff (tA1 , tA2 ) ∈ aA;
A |= ¬ϕ iff A ̸|= ϕ;
A |= ∨Φ iff A |= ϕ for some sentence ϕ ∈ Φ; and
A |= ∃X ·ϕ′ iff A′ |= ϕ′ for some expansion A′ of A to the signature Σ[X].

▶ Proposition 4 (Satisfaction condition). For all signature morphisms χ : Σ → Σ′, all
Σ′-models A and all Σ-sentences ϕ we have: A↾χ |= ϕ iff A |= χ(ϕ).

The satisfaction condition for TA is given in [19].

Logical framework. Throughout this paper, we work within a fragment L of TA which
is obtained by (a) restricting the category of signatures – without prohibiting signature
extensions with constants – and (b) discarding a subset of sentence or/and action operators
from the grammar which is used to define sentences in TA. When there is no danger of
confusion we drop (a) the subscript L from the notations SigL and SenL, and (b) the
subscript TA from the notation ModTA. We denote by Sen0 : Sig → Set the sub-functor of
Sen : Sig → Set, which maps each signature Σ in L to the set Sen0(Σ) of atomic sentences
from Sen(Σ).

3 Related concepts

We define the necessary concepts and present the existing results for presenting our advance-
ments. We make the following notational conventions:

Recall that in any category C, the notation |C| refers to the class of objects in C.

MFCS 2025



55:6 Model-Theoretic Forcing in Transition Algebra

Let Class denote the large category whose objects are classes and whose morphisms are
class functions. 3

Assume a set C and a cardinal α. Let Pα(C) := {C1 ⊆ C | card(C1) < α}, the set of all
subsets of C of cardinality strictly less than α. We write C1 ⊆α C if C1 ∈ Pα(C).

Presentations. Let Σ be a signature, and assume a class of Σ-models M and a set of
Σ-sentences Φ.

We write M |= Φ if A |= Φ for all models A ∈ M.
Let M• = {φ ∈ Sen(Σ) | M |= Φ}, the set of sentences satisfied by all models in M.
Let Φ• = {A ∈ |Mod(Σ)| | A |= Φ}, the class of models which satisfy Φ.
Let Mod(Σ,Φ) be the full subcategory of Mod(Σ) of models which satisfy Φ.

A presentation is a pair (Σ,Φ) consisting of a signature Σ and a set of Σ-sentences Φ. A theory
is a presentation (Σ,Φ) such that Φ = Φ••. A presentation morphism χ : (Σ,Φ) → (Σ′,Φ′)
consist of a signature morphism χ : Σ → Σ′ such that Φ′ |=Σ′ χ(Φ). A theory morphism is a
presentation morphism between theories.

Substitutions. Let Σ be a signature, C1 and C2 two S-sorted sets of new constants for Σ .
A substitution θ : C1 → C2 over Σ is a mapping from C1 to TΣ(C2). As in case of signature
morphisms, a substitution θ : C1 → C2 determines

a sentence functor Sen(θ) : Sen(Σ[C1]) → Sen(Σ[C2]), which preserves Σ and maps each
constant c ∈ C1 to a term θ(c), and
a reduct functor ↾θ : Mod(Σ[C2]) → Mod(Σ[C1]), which preserves the interpretation of
Σ and assigns to each constant c ∈ C1 the interpretation of the term θ(c) ∈ TΣ(C2) in
the category Mod(Σ[C2]), that is, for all A ∈ |Mod(Σ[C2])| we have (a) (A↾θ)s = As

for all sorts s in Σ, (b) x(A↾θ) = xA for all function or transition symbols x in Σ, and
(c) c(A↾θ) = θ(c)A for all constants c ∈ C1.

As in the case of signature morphisms, we use θ to denote both the substitution θ : C1 → C2
and the functor Sen(θ) : Sen(Σ[C1]) → Sen(Σ[C2]). The following result is a straightforward
generalization of [7, Proposition 5.6].

▶ Proposition 5 (Satisfaction condition for substitutions). For all substitutions θ : C1 → C2,
all Σ[C2]-models A and all Σ[C1]-sentences ϕ we have: A↾θ |= ϕ iff A |= θ(ϕ).

A reachable (transition) algebra [26] defined over a signature Σ is a (transition) Σ-algebra
A such that the unique homomorphism h : TΣ → A is surjective. By [17, Proposition 8], a
Σ-algebra A is reachable iff for all sets of new constants C for Σ and all expansions B of A
to Σ[C], there exists a substitution θ : C → ∅ such that A↾θ = B.

4 Compactness and Upward Löwenheim-Skolem Property

TA is very expressive and its sentences can control the cardinality of all its models under the
the following assumptions:

Generalized Continuum Hypothesis (GCH) holds, that is, for any infinite cardinal number
α, the next larger cardinal is exactly 2α; and
there are no inaccessible cardinals (¬IC).

3 By contrast, a small category is one in which both the collection of objects and the collection of
morphisms form sets, rather than proper classes.
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▶ Theorem 6 (Categoricity). Assume that L = TA. Let A be a model defined over a signature
Σ = (S, F, L). There exists a sort preserving inclusion of signatures ι◦ : Σ ↪→ Σ◦ and a
reachable ι◦-expansion A◦ of A such that any model of (Σ◦, Th(A◦)) is isomorphic to A◦,
where Th(A◦) = {ϕ ∈ Sen(Σ◦) | A◦ |= ϕ}.
Theorem 6 is proven assuming ZFC + GCH + ¬IC. These axioms are consistent relative to
ZFC – that is, if ZFC is consistent, then so is the extended theory. Consequently, Theorem 6
(and its conclusion) cannot be refuted within ZFC. This illustrates that certain logical
properties cannot be established within TA from ZFC alone. The following example shows
that joint Robinson consistency property fails in TA.
▶ Example 7 (Robinson Consistency). Consider a complete (first-order) theory (Σ, T ) with
at least two non-isomorphic models A and B. Construct a pushout as illustrated on the left
side of the diagram below.

Σ◦ Σ′

Σ Σ◦

χ2

ι◦

ι◦ χ1

(Σ◦, Th(B◦)) (Σ′, χ1(Th(A◦)) ∪ χ2(Th(B◦)))

(Σ, T ) (Σ◦, Th(A◦))

χ2

ι◦

ι◦ χ1

Since A |= T and A◦↾Σ = A, we have T ⊆ Th(A◦). Similarly, since B |= T and B◦↾Σ = B,
we have T ⊆ Th(B◦). However, χ1(Th(A◦)) ∪ χ2(Th(B◦)) is not consistent, because any
model of χ1(Th(A◦)) ∪ χ2(Th(B◦)), by Theorem 6, would imply that A is isomorphic to B.
Typically, the cardinality of a model A over a signature Σ = (S, F, L) is defined as the sum of
the cardinalities of its carrier sets, that is, card(A) =

∑
s∈S card(As). The following example

illustrates that the classical Upward Löwenheim-Skolem (ULS) property does not hold when
sorts are treated as unary predicates rather than as distinct domains.
▶ Example 8. Let Σ be a signature with countably infinitely many sorts {sn}n<ω, where
each sort sn has exactly one constant symbol cn :→ sn, and there are no transition labels.
Define the set of equations Γ := {∀xn · (xn = cn) | n < ω}, which asserts that each sort sn

contains exactly one element.
Note that Σ is a first-order signature, and Γ is a set of Σ-sentences that has an infinite model.
However, Γ has no models of cardinality greater than ω, indicating that the ULS property,
as traditionally stated, fails to apply in this setting. The following definition of the ULS
property applies to many-sorted first-order logic.
▶ Definition 9 (Upward Löwenheim-Skolem Property). α-Upward Löwenheim-Skolem property
holds for an infinite cardinal α whenever for all signatures Σ = (S, F, L), all Σ-models A and
all sorts s ∈ S such that α ≥ card(Sen(Σ)) and α ≥ card(As) ≥ ω there exists an elementary
extension B of A such that card(Bs) = α.
Recall that α-compactness holds whenever for all signatures Σ and all sets of Σ-sentences Φ,
Φ has a model iff all subsets Ψ ∈ Pα(Φ) have a model. From Theorem 6, one can show that
both ULS property and compactness fail.
▶ Corollary 10. Assume that L = TA. Then (a) α-ULS fails for all cardinals α > ω, and
(b) α-compactness fails for all infinite cardinals α.
Corollary 10 shows that the iteration operator for actions provides enough expressive power
to control the cardinality of models. Moreover, compactness fails in all its forms. In this
setting, we aim to develop a model construction method that does not rely on compactness,
yet still supports the proof of logical properties such as Downward Löwenheim-Skolem (DLS)
theorem and OTT. It is worth noting that the results presented in the following sections
hold without assuming either GCH or ¬IC.

MFCS 2025
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5 Forcing

In this section, we present a forcing technique, originally proposed in [19], which extends
classical forcing from one signature to a category of signatures in a non-trivial way. To
illustrate the motivation behind our approach, we recall Example 28 from [19].

▶ Example 11. Let Σ be a signature defined as follows: (a) S := {si | i ∈ ω},
(b) F := {c :→ s0, d :→ s0}, and (c) L := {λ}. Let Φ be a set of Σ-sentences which
consists of: (a) λ∗(c, d), and (b) (∃xn · ⊤) ⇒ ¬λn(c, d) for all n ∈ ω, where xn is a variable
of sort sn.

The first sentence asserts that there is a transition from c to d in a finite number of steps.
For each natural number n, the sentence (∃xn · ⊤) ⇒ ¬λn(c, d) states that if the sort sn

is not empty then there is no transition from c to d in exactly n steps. Classical model
construction techniques typically involve introducing an infinite number of constants for
each sort – commonly referred to as Henkin constants – followed by the application of
quantifier elimination methods that select witnesses for existentially quantified variables.
Let C = {Csn

}n<ω be a collection of Henkin constants, that is, newly introduced constants
such that each Csn

is countably infinite for all n < ω. Although the original theory (Σ,Φ) is
satisfiable, its extension (Σ[C],Φ) becomes unsatisfiable upon the addition of these constants.
This discrepancy highlights the limitations of classical approaches and motivates the need
for a novel method to handle the introduction of Henkin constants effectively.

▶ Definition 12 (Forcing property). A forcing property is a tuple P = (P,≤,∆, f), where:

(P, ≤) Set

Sig∆

f

Sen0

⊆

1. (P,≤) is a partially ordered set with a least element 0.
The elements of P are traditionally called conditions.

2. ∆ : (P,≤) → Sig is a functor, which maps each arrow (p ≤ q) ∈ (P,≤) to an inclusion
∆(p) ⊆ ∆(q).

3. f : (P,≤) → Set is a functor from the small category (P,≤) to the category of sets Set
such that f ⊆ ∆; Sen0 is a natural transformation, that is: (a) f(p) ⊆ Sen0(∆(p)) for all
conditions p ∈ P , and (b) f(p) ⊆ f(q) for all relations (p ≤ q) ∈ (P,≤).

4. If f(p) |= ϕ then ϕ ∈ f(q) for some q ≥ p, for all atomic sentences ϕ ∈ Sen0(∆(p)).

A classical forcing property is a particular case of forcing property such that ∆(p) = ∆(q)
for all conditions p, q ∈ P . As usual, forcing properties determine suitable relations between
conditions and sentences.

▶ Definition 13 (Forcing relation). Let P = ⟨P,≤,∆, f⟩ be a forcing property. The forcing
relation ⊩ between conditions p ∈ P and sentences from Sen(∆(p)) is defined by induction
on the structure of sentences, as follows:

p ⊩ φ if φ ∈ f(p), for all atomic sentences φ ∈ Sen0(∆(p)).
p ⊩ (a1 ; a2)(t1, t2) if p ⊩ a1(t1, t) and p ⊩ a2(t, t2) for some t ∈ T∆(p).
p ⊩ (a1 ∪ a2)(t1, t2) if p ⊩ a1(t1, t2) or p ⊩ a2(t1, t2).
p ⊩ a∗(t1, t2) if p ⊩ an(t1, t2) for some natural number n < ω.
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p ⊩ ¬ϕ if there is no q ≥ p such that q ⊩ ϕ.
p ⊩ ∨Φ if p ⊩ ϕ for some ϕ ∈ Φ.
p ⊩ ∃X ·ϕ if p ⊩ θ(ϕ) for some substitution θ : X → T∆(p).

The relation p ⊩ ϕ in P, is read as p forces ϕ.

A few basic properties of forcing are presented below.

▶ Lemma 14 (Forcing properties [19]). Let P = (P,≤,∆, f) be a forcing property. For all
conditions p ∈ P and all sentences ϕ ∈ Sen(∆(p)) we have:
1. p ⊩ ¬¬ϕ iff for each q ≥ p there is a condition r ≥ q such that r ⊩ ϕ.
2. If p ≤ q and p ⊩ ϕ then q ⊩ ϕ.
3. If p ⊩ ϕ then p ⊩ ¬¬ϕ.
4. We can not have both p ⊩ ϕ and p ⊩ ¬ϕ.

The second property stated in the above lemma shows that the forcing relation is preserved
along inclusions of conditions. The fourth property shows that the forcing relation is
consistent, that is, a condition cannot force all sentences. The remaining conditions are
about negation.

▶ Definition 15 (Generic set). Let P = (P,≤,∆, f) be a forcing property. A non-empty
subset of conditions G ⊆ P is generic if
1. G is an ideal, that is: (a) G ̸= ∅, (b) for all p ∈ G and all q ≤ p we have q ∈ G, and

(c) for all p, q ∈ G there exists r ∈ G such that p ≤ r and q ≤ r; and
2. for all conditions p ∈ G and all sentences ϕ ∈ Sen(∆(p)) there exists a condition q ∈ G

such that q ≥ p and either q ⊩ ϕ or q ⊩ ¬ϕ holds.
We write G ⊩ ϕ if p ⊩ ϕ for some p ∈ G.

A generic set G describes a reachable model which satisfies all sentences forced by the
conditions in G.

▶ Remark 16. Since ∆ : (G,≤) → Sig is a directed diagram of signature inclusions, one can
construct a co-limit µ : ∆ ⇒ ∆G of the functor ∆ : (G,≤) → Sig such that µp : ∆(p) → ∆G

is an inclusion for all p ∈ G. 4

The results which leads to DLS and OTT are developed over a signature ∆G such as the one
described in Remark 16.

▶ Definition 17 (Generic model). Let P = (P,≤,∆, f) be a forcing property and G ⊆ P a
generic set. A model A defined over ∆G is a generic model for G iff for every sentence
ϕ ∈

⋃
p∈G Sen(∆(p)), we have A |= ϕ iff G ⊩ ϕ.

The notion of generic model is the semantic counterpart of the definition of generic set. The
following result shows that every generic set has a generic model.

▶ Theorem 18 (Generic Model Theorem [19]). Let P = (P,≤,∆, f) be a forcing property and
G ⊆ P a generic set. Then there is a generic model A for G which is reachable.

4 Note that ∆G refers both to the vertex of the colimit of the diagram ∆, and the constant functor from
the poset (G, ≤) to the category Sig, which maps every object in G to the signature ∆G.
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6 Semantic Forcing

As an example of forcing property, we introduce semantic forcing and study its properties.
Let us fix an arbitrary signature Σ and let α := card(Sen(Σ)) be the power of Σ. Consider
an S-sorted set of new constants C = {Cs}s∈S such that card(Cs) = α for all sorts s ∈ S.
These constants, traditionally known as Henkin constants, are used in the construction of
models. Throughout this section we assume the following:
1. a partially ordered set (K,⪯) with a least element 0K;
2. a signature functor Ω : (K,⪯) → Sig which maps (a) 0K to Σ, (b) each element κ ∈ K

to a signature Σ[Cκ], where Cκ is a subset of C with cardinality strictly less than α,
that is, Cκ ∈ Pα(C), and (c) each relation (κ ⪯ ℓ) ∈ (K,⪯) to an inclusion of signatures
Σ[Cκ] ⊆ Σ[Cℓ];

(K, ⪯) Classop

SigΩ

M

|Mod|

⊆

M(κ) M(ℓ)

|Mod(Ω(κ))| |Mod(Ω(ℓ))|

⊆

↾Ω(k)

⊆

↾Ω(k)

3. a model functor M : (K,⪯) → Classop such that the following hold: 5

a. M ⊆ Ω ; |Mod| is a natural transformation, that is, (a) M(κ) ⊆ |Mod(Ω(κ))| for all
elements κ ∈ K, and (b) M(ℓ)↾Ω(κ) ⊆ M(κ) for all relations (κ ⪯ ℓ) ∈ (K,⪯);

b. Assume an element κ ∈ K, a model A ∈ M(κ) and a set of constants C1 ⊆α C \ Cκ.
For all expansions B of A to Σ[Cκ ∪ C1], there exists ℓ ⪰ κ such that Cℓ = Cκ ∪ C1
and B ∈ M(ℓ).

M(κ) ∋ A Σ[Cκ] Σ[Cκ ∪ C1] = Σ[Cℓ] B ∈ M(ℓ)

↾Σ[Cκ]

The condition 3(b) implies that all sets of constants from Pα(C) appear in some signature
from the image of Ω.

▶ Example 19. Let A be a model defined over a signature Σ.
1. K = {(Σ[C ′],A′) | C ′ ∈ Pα(C) and A′ ∈ |Mod(Σ[C ′])| such that A′↾Σ = A}, and

(Σ[C ′],A′) ⪯ (Σ[C ′′],A′′) iff C ′ ⊆ C ′′ and A′′↾Σ[C′] = A′;
2. Ω : (K,⪯) → Sig is the forgetful functor mapping each (Σ[C ′],A′) to Σ[C ′];
3. M : (K,⪯) → Classop is the model functor which maps each (Σ[C ′],A′) ∈ K to {A′}.

Example 19 shows that (K,⪯) can have a more complex structure than (Pα(C),⊆).

▶ Example 20. Let Φ be any set of sentences defined over a signature Σ.
1. K = {(Σ[C ′],Φ) | C ′ ∈ Pα(C)}, and (Σ[C ′],Φ) ⪯ (Σ[C ′′],Φ) iff C ′ ⊆ C ′′;
2. Ω : (K,⪯) → Sig is the forgetful functor mapping each (Σ[C ′],Φ) to Σ[C ′];
3. M : (K,⪯) → Classop is the functor which maps each (Σ[C ′],Φ) ∈ K to |Mod(Σ[C ′],Φ)|,

the class of Σ[C ′]-models which satisfy Φ.

5 Classop is the opposite category of Class, which means: (a) it has the same objects as Class, that is,
classes, but (b) morphisms are reversed, that is, a morphism f : A → B in Classop corresponds to a
class function f : B → A in Class.
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▶ Definition 21 (Semantic Forcing Property). The semantic forcing property P(Ω,M) =
(P,≤,∆, f) is defined as follows:
1. A condition p is a pair (κp,Φp), where κp ∈ K and Φp ⊆α Sen(Ω(κp)) such that M(κp) ∩

Φ•
p ̸= ∅, that is, there exists at least one model in M(κp) which satisfies Φp.

2. p ≤ q iff κp ⪯ κq and Φp ⊆ Φq, for all conditions p = (κp,Φp), q = (κq,Φq) ∈ P .
3. ∆ : (P,≤) → Sig is the functor mapping each condition p = (κp,Φp) ∈ P to Ω(κp) ∈ |Sig|.
4. Let f(p) = Sen0(Ω(κp)) ∩ (M(κp) ∩ Φ•

p)•, for all conditions p ∈ P . In other words, f(p)
is the set of atomic sentences satisfied by all models of Φp from M(κp).

From a category theory perspective, several observations are worth noting.

▶ Remark 22. Definition 21 describe the following mathematical structures:
Λ : (P,≤) → (K,≺), defined by Λ(p) = κp for all p ∈ P , is a monotone function such
that ∆ = Λ ; Ω.
Γ : (P,≤) → Set, defined by Γ(p) = Φp for all p ∈ P , is a functor such that the inclusion
⊆ : Γ ⇒ (Λ ; Ω ; Sen) is a natural transformation, that is:
1. Γ(p) ⊆ Sen(∆(p)) for all conditions p ∈ P , and
2. Γ(p) ⊆ Γ(q) for all relations (p ≤ q) ∈ (P,≤).

(P, ≤) Set

(K, ⪯) Sig

Γ

Λ

Ω

⊆

Sen

(K, ⪯) Classop

SigΩ

M

|Mod|

⊆

Let p ∈ P be a condition.
1. We let Mod(p) denote M(Λ(p)) ∩ Γ(p)•, the class of models in M(Λ(p)) satisfying Γ(p).
2. We write p |= ϕ iff ϕ is satisfied by all models in Mod(p), in symbols, Mod(p) |= ϕ.
The perspective of category theory can be disregarded if the reader is not familiar with it.
However, Remark 22 lays the groundwork for a generalization to an abstract level, as defined
by the notion of institution [11].

We define a notion of distance between conditions, which provides a principled method
for regulating the addition of Henkin constants from C to the starting signature Σ.

▶ Definition 23 (Distance & weak forcing). The distance between two conditions p and q,
with p ≤ q, is defined as the number of constants and sentences that must be added to p to
obtain q, that is, d(p, q) := card(∆(q) \ ∆(p)) + card(Γ(q) \ Γ(p)). A condition p weakly forces
ϕ, in symbols, p ⊩w ϕ, if for all q ≥ p there exists r ≥ q such that d(q, r) < ω and r ⊩ ϕ.

Using Lemma 14 (2) and the reflexivity of ≤, it is not difficult to show that p ⊩ ϕ implies
p ⊩w ϕ. In the classical setting, weak forcing does not involve any notion of distance: p ⊩w ϕ

if and only if, for all q ≥ p, there exists r ≥ q such that r ⊩ ϕ; and this, in turn, holds
if and only if p ⊩ ¬¬ϕ. The notion of distance is introduced in this paper to extend the
applicability of the results to all signatures – including those of singular cardinality – by
controlling the number of constants introduced during the construction of the generic sets.

▶ Theorem 24 (Semantic Forcing Theorem). For all conditions p ∈ P and all sentences
ϕ ∈ Sen(∆(p)), we have: (a) p |= ϕ iff (b) p ⊩w ϕ
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7 Downward Löwenheim-Skolem Theorem

Consider a semantic forcing property P(Ω,M) such that the functors Ω and M are defined as
in Example 19. We use P(Ω,M) to give a proof of Downward Löwenheim-Skolem Theorem.
The key to proving any result based on forcing is the construction of a generic set for a given
condition p.

▶ Lemma 25 (Existence). Let P(Ω,M) = (P,≤,∆, f) be a semantic forcing property such
that the functors Ω and M are defined as in Example 19. Any condition p ∈ P belongs to a
generic set Gp.

Proof. Let pair : α × α → α be any bijection such that for all ordinals i, j, β < α if
β = pair(i, j) then i ≤ β. For any condition q ∈ P , let γ(q) : α → Sen(∆(q)) be an
enumeration of the sentences in Sen(∆(q)).

First, we define an increasing chain of conditions p0 ≤ p1 ≤ . . . ≤ pβ ≤ . . . with the
following property: for all ordinals β < α there exists n < ω such that d(p, pβ) ≤ n · card(β).6
We proceed by induction on ordinals β < α.

(β = 0) Let p0 := p.
(β ⇒ β + 1) Let (i, j) := pair−1(β). Notice that i ≤ β, which means pi is already defined.

Condition pβ+1 is obtained by adding a finite set of constants from C and a finite set of
sentences to pβ , according to a case distinction detailed below:
(q ⊩ γ(pi, j) for some q ≥ pβ) Since q ⊩ γ(pi, j), by Theorem 24, q |= γ(pi, j). It

follows that r := (Λ(pβ),Γ(pβ) ∪ {γ(pi, j)}) ∈ P . Since r ⊨ γ(pi, j), by Theorem 24,
there exists pβ+1 ≥ r such that pβ+1 ⊩ γ(pi, j) and d(r, pβ+1) < ω. By induction
hypothesis, there exists n < ω such that d(p, pβ+1) ≤ n · card(β + 1).

(q ̸⊩ γ(pi, j) for every q ≥ pβ) Let pβ+1 := pβ . In this case, pβ+1 ⊩ ¬γ(pi, j).
(β < α is a limit ordinal) At this point, for all i < β we have defined pi = (Λ(pi),Γ(pi)),

where Λ(pi) = (∆(pi),Ai) and Ai is an expansion of A to ∆(pi).
Let CΛ(pβ) :=

⋃
i<β CΛ(pi) and ∆(pβ) = Σ[CΛ(pβ)] and Γ(pβ) :=

⋃
i<β Γ(pi). Since

card(CΛ(pi)) ≤ card(β) for all i < β, we get card(CΛ(pβ)) ≤ card(β) < α. Similarly,
card(Γ(pβ)) ≤ card(β) < α.
A model Ai ∈ M(Λ(pi)), where i < β, can be regarded as a pair (A, gi : CΛ(pi) → A),
consisting of the model A and an interpretation of the constants in CΛ(pi) into the
elements of A given by the function gi. Define gβ :=

⋃
i<β gi, let Aβ := (A, gβ) and

Λ(pβ) := (∆(pβ),Aβ).
Let pβ := (Λ(pβ),Γ(pβ)). By its definition, Aβ↾∆(pi) = Ai for all i < β. Since
Ai |= Γ(pi) for all i < β, by satisfaction condition, Aβ |= Γ(pβ). Hence, pβ is well-
defined. Since for all i < β there exists ni ∈ N such that d(p, pi) ≤ ni · card(i), we get
d(p, pβ) ≤ card(β).

Secondly, one can easily show that Gp := {q ∈ P | q ≤ pβ for some β < α} is a generic
set. ◀

▶ Theorem 26 (Downward Löwenheim-Skolem Theorem). Let A be a model over a signature
Σ = (S, F, L) of power α such that card(As) ≥ α for some sort s ∈ S. Then there exists an
elementary submodel B of A such that card(Bs) = α.

6 When α is a singular cardinal, the entire set of constants C may be used along a chain {pi}i<β with
β < α. To avoid this uncontrolled increase in the size, we use the distance measure d.
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8 Omitting Types Theorem

Consider a semantic forcing property P(Ω,M) such that Ω and M are defined as in Ex-
ample 20. We use P(Ω,M) to give a proof of Omitting Types Theorem in TA.

▶ Definition 27 (Types). A type for a signature Σ of power α is a set of sentences T defined
over Σ[X], where X is a block of variables for Σ such that αcard(X) ≤ α. A Σ-model A realizes
T if B |= T for some expansion B of A to Σ[X]. A omits T if A does not realize T .

For all infinite cardinals α we have α < αcf(α), where cf(α) is the cofinality of α. Consequently,
the condition αcard(X) ≤ α implies that card(X) < cf(α). The converse also holds under the
assumption of GCH. The inequality αcard(X) ≤ α ensures that the number of mappings from
X to the set of ground terms – that is, substitutions θ : X → ∅ – does not exceed α. Note
that if α is the cardinality of real numbers and X is countable then αcard(X) ≤ α holds.

▶ Definition 28 (Isolated types). Let Σ be a signature of power α. A set of sentences
Φ ⊆ Sen(Σ) is said to isolate a type T ⊆ Sen(Σ[X]) iff there exist:

an S-sorted set of new constants D for Σ with card(D) < α,
a set Γ ⊆ Sen(Σ[D]) with card(Γ) < α and such that T ∪ Γ is satisfiable over Σ[D], and
a substitution θ : X → D,

such that Φ ∪ Γ |=Σ[D] θ(T ). We say that Φ locally omits T if Φ does not isolate T .

Our definitions for type, realization, and isolation align with those provided in [16], with
one key difference: we do not restrict the block of variables X to be finite. Definition 28 is
similar to the definition of locally omitting types for first-order logic without equality from
[22]. If the fragment L of TA is closed under Boolean operators and first-order quantifiers,
the above definition coincides with the classical one for isolated types.

▶ Lemma 29. Assume that (a) L is semantically closed under Boolean operators and
first-order quantifiers, and (b) L is compact or α = ω. Then Φ ⊆ Sen(Σ) isolates a type
T ⊆ Sen(Σ[X]) iff there exists a set of sentences Γ ∈ Pα(Sen(Σ[X])) such that T ∪ Γ is
satisfiable over Σ[X] and Φ ∪ Γ |=Σ[X] T .

The proof is conceptually identical with the proof of [16, Lemma 45].

▶ Definition 30 (Omitting Types Property). Let α be an infinite cardinal. The fragment L
has α-Omitting Types Property (α-OTP) whenever
1. for all signatures Σ of power α,
2. all satisfiable sets of sentences Φ ⊆ Sen(∆), and
3. all families of types {Ti ⊆ Sen(Σ[Xi]) | i < α},
such that Φ locally omits Ti for all i < α, there exists a Σ-model of Φ which omits Ti for all
i < α. If α = ω then we say that L has OTP rather than L has ω-OTP.

▶ Theorem 31 (Omitting Types Theorem). Let Σ be a signature of power α. If α > ω then
we assume that fragment L is compact. Then L has α-OTP.

Any fragment L obtained from TA by (a) discarding a subset of sentence or/and action
operators, and (b) restricting the category of signatures – without prohibiting signature
extensions with constants – has ω-OTP. Any star-free fragment L of TA is compact and
therefore has α-OTP for all cardinals cardinal α ≥ ω. In particular, many-sorted first-order
logic has α-OTP for all cardinals cardinal α ≥ ω.
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▶ Lemma 32. Assume that L is closed under Boolean operators and first-order quantifiers.
Let Σ = (S, F ) be a signature, where S := {sn | n > 0} and F := ∅.

Let ϕn := ∃zn · ⊤ ⇒ ∃x1, . . . , xn ·
∧

i ̸=j xi ̸= xj be a Σ-sentence, where n > 0, where zn

is a variable of sort sn, and x1, . . . , xn are variables of sort s1. Note that ϕn states that
if there exists an element of sort sn then there exists at least n elements of sort s1.
Let T := {∃x1, . . . , xn ·

∧
i ̸=j xi ≠ xj ∧

∧n
i=1 y ̸= xi | n > 0} be a type with one variable y

of sort s1, expressing that there are infinitely many elements of sort s1.
Then Φ := {ϕn | n > 0} locally omits T .

Let Σ, Φ and T be as defined in Lemma 32. Recall that the set of Henkin constants is
C = {Csn

}n<ω, where card(Csn
) = ω for all n < ω. Note that (Σ,Φ) is a satisfiable first-order

presentation that does not involve the transitive closure operator ∗, as it contains no relation
symbols. By Lemma 32, Φ locally omits T . By Theorem 31, there exists a model A for Φ
which omits T . Since every model of (Σ[C],Φ) realizes T , the model A must be constructed
over a proper subset of C, in contrast to the classical first-order logic approach, where results
are developed over the entire Σ[C]. Consequently, the OTT as presented in [23, 3, 21, 14, 16]
does not apply in this context.

▶ Lemma 33. Let Σ = (S, F ) be a signature such that S := {s} and F := {c :→ s | c ∈ R},
where R denotes the set of real numbers. Let T := {xi ̸= c | c :→ s ∈ F and i < ω} be a type
with a countably infinite number of variables from X := {xi | i < ω}. Then Φ locally omits
T , where Φ is any countable and satisfiable set of Σ-sentences.

By Theorem 31, there exists a model A of Φ which omits T . Consequently, the number of
elements in A that are not denotations of real numbers – considered unwanted elements –
is finite and may therefore be regarded as negligible. Lemma 33 demonstrates that types
involving infinitely many variables are not difficult to construct and can naturally arise in
applications.

9 ω-Completeness

Although a transition algebra may satisfy a given set of sentences, it may not be relevant to
the intended semantics. In many cases, formal methods practitioners are interested in the
properties of a restricted class of transition algebras, such as: (a) those reachable through a
set of constructor operators, (b) those with a finite number of elements, or (c) those satisfying
both conditions. Using Omitting Types Theorem we can extend the completeness result
in [19] to fragments obtained from L by restricting the semantics to the aforementioned
transition algebras. Concretely, given a sound and complete proof system for L, we introduce
additional proof rules so that the resulting system remains sound and complete for fragments
of L obtained by restricting the class of transition algebras to those of interest.

▶ Definition 34 (Entailment relation). An entailment relation is a family of binary relations
between sets of sentences ⊢= {⊢Σ}Σ∈|SigL| with the following properties:

(Monotonicity)Φ1 ⊆ Φ2

Φ2 ⊢ Φ1
(T ransitivity)Φ1 ⊢ Φ2 Φ2 ⊢ Φ3

Φ1 ⊢ Φ3

(Union)Φ1 ⊢ φ2 for all ϕ2 ∈ Φ2

Φ1 ⊢ Φ2
(T ranslation) Φ1 ⊢Σ Φ2

χ(Φ1) ⊢Σ′ χ(Φ2) where χ : Σ → Σ′

An entailment relation ⊢ is sound (complete) if ⊢⊆|= (|=⊆⊢).
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Completeness fails when L is closed under ∗ and includes uncountable signatures [19,
Proposition 15]. Therefore, throughout this section, we assume that the fragment L has only
countable signatures if it is closed under ∗. Additionally, we assume that L is semantically
closed under Boolean operators.

Constructor-based algebras. Many algebraic structures can be naturally described using a
set of constructor operators. For instance, numbers can be defined using a constant zero and
a unary function symbol succ, while lists can be defined using a constant nil and a binary
function symbol cons.

▶ Definition 35 (Constructor-based algebras). Let Σ = (S, F, L) be a signature and F c ⊆ F a
subset of constructor operators. We let Σc denote the signature of constructors (S, F c). The
constructors create a partition of the set of sorts S.
1. A sort s ∈ S that has a constructor – i.e., there exists a constructor (σ : w → s) ∈ F c –

is called constrained. We denote the set of all constrained sorts by Sc.
2. A sort that is not constrained is called loose. We denote the set of all loose sorts by Sl.
A constructor-based transition algebra A is a transition algebra for which there exist (a) a
set of loose variable Y = {Ys}s∈Sl and (b) an expansion B of A to Σ[Y ], such that B↾Σc[Y ]
is reachable.

▶ Example 36 (Lists). Let Σ = (S, F ) be an algebraic signature such that (a) S = {Elt, List}
and (b) F = {empty :→ List,_; _ : List Elt → List, add : List List → List}. Let
F c = {empty :→ List,_; _ : List Elt → List} be a set of constructors.

Elt is a loose sort while List is a constrained sort.
Let A be a constructor-based algebra obtained from TΣc(ω) by interpreting add as follows:
(a) addA(ℓ, empty) = ℓ, and (b) addA(ℓ, ℓ′;n) = addA(ℓ, ℓ′);n for all lists of natural
numbers ℓ, ℓ′ ∈ AList and all natural numbers n ∈ AElt.

By refining the syntax with a subset of constructor operators and restricting the semantics
to constructor-based transition algebras, we obtain a new logic Lc from L. This restriction
in semantics alters the satisfaction relation |= between sets of sentences: Φ |=c ϕ means that
all constructor-based transition algebras of Φ are models of ϕ. Consequently, there may exist
non-restricted models of Φ that do not satisfy ϕ. In order to obtain an institution, we need to
restrict the class of signature morphisms such that the reduct of a constructor-based algebra
is again a constructor-based algebra [17, 13, 2]. So, the category of signatures of Lc has
1. objects of the form (S, F c ⊆ F,L), where (S, F, L) is a signature in L, and
2. signature morphisms of the form χ : (S, F c ⊆ F,L) → (S′, F ′c ⊆ F ′, L′), where

(a) χ : (S, F, L) → (S′, F ′, L′) is a signature morphism in L, (b) constructors are preserved,
that is, χ(F c) ⊆ F ′c, and (c) constructors are reflected, that is, for all σ′ : w′ → χ(s) ∈ F ′c

there exists σ : w → s ∈ F c such that χ(σ : w → s) = σ′ : w′ → χ(s).

Finite algebras. Computer science applications often focus on properties that hold in finite
structures. Therefore, we refine the fragment Lc defined above to include constructor-based
transition algebras, where certain distinguished sorts are interpreted as finite sets. Let Lf be
a fragment of Lc obtained by (a) refining the syntax with a subset of sorts of finite domains,
and (b) by restricting constructor-based models such that the sorts for finite domains are
interpreted as finite sets. This means that the category of signatures in Lf has
1. objects of the form (Sf ⊆ S, F c ⊆ F,L), where (S, F c ⊆ F,L) is a signature in Lc, and
2. arrows of the form χ : (Sf ⊆ S, F c ⊆ F,L) → (S′f ⊆ S′, F ′c ⊆ F ′, L′) such that

(a) χ : (S, F c ⊆ F,L) → (S′, F ′c ⊆ F ′, L′) is a signature morphism in Lc, and (b) the
finite sorts are preserved, that is, χ(Sf ) ⊆ S′f .
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▶ Definition 37. Let ⊢ be an entailment relation for L. The entailment relation ⊢f for Lf is
the least entailment relation that includes ⊢ and it is closed under the following proof rules:

1. (CB) Φ ⊢f ∀var(t) ·ψ(t) for all t ∈ TΣc(Y )
Φ ⊢f ∀x ·ψ(x) , where (a) x is a variable of constrained

sort, (b) Y is a Sl-sorted block of variables such that card(Ys) = ω for all loose sorts
s ∈ Sl, and (c) var(t) is the set of all variables occuring in t.

2. (FN) Φ ∪ {Γn} ⊢f ψ for all n ∈ ωα

Φ ⊢f ψ
, where

a. α := card(Sf ) and {si}i<α is an enumeration of Sf ,
b. Γn denotes the set of sentences {γsi,n(i) | i < α} for all tuples n ∈ ωα, where

n(i) is the natural number in position i from n, for all tuples n ∈ ωα and all
i < α;
γs,n denotes the sentence ∀x1, . . . , xn+1 · ∨i ̸=j xi = xj, for all natural numbers
n < ω, all sorts s ∈ Sf and all variables x1, . . . , xn+1 of sort s.

Note that γs,n states that the sort s has at most n elements. If n = 0 then γ0,s = ∀x1 · ∨∅,
which is satisfied only by transition algebras whose carrier set for the sort s is empty.

(CB) asserts that to prove the property ψ for an arbitrary element x, it suffices to establish
ψ for all constructor terms t in T(S,F c)(Y ). (CB) should be disregarded if the base logic L is
not closed under first-order quantification. (FN) states that the number of elements of any
sort in Sf is finite. It is straightforward to show that ⊢f is sound for Lf provided that ⊢ is
sound for L. Establishing completeness is generally more challenging, but it can be achieved
with the help of the OTP.

▶ Theorem 38 (Completeness). The entailment relation ⊢f is complete for Lf if ⊢ is complete
for L and L has OTP.

10 Conclusions

In this contribution, we focused on two main aspects of TA. First, we examined its model-
theoretic properties, including the Löwenheim-Skolem and Omitting Types properties. Due
to its increased expressivity, TA does not possess the Löwenheim-Skolem property. We then
developed a semantic forcing property based on recent developments from [19], which enabled
us to prove the Löwenheim-Skolem Theorem and the Omitting Types Theorem. Given that
the full expressivity of TA is not required in many practical case studies, our study was
conducted on a fragment of TA that restricts the syntax while preserving the semantics.

Secondly, we explored applications of the Omitting Types Theorem to formal methods.
Software engineers often seek a restricted class of models for a given theory, such as constructor-
based and/or finite models. We extended the system of proof rules proposed in [19] with new
rules that are sound for these models of interest, ensuring that completeness is maintained.
This approach provides sound and complete proof rules for fragments of TA obtained by
restricting the syntax and/or the semantics.

An interesting future research direction involves developing specification and verification
methodologies based on the proof rules we have defined for the fragments of TA. Additionally,
we aim to propose a notion of Horn clauses for TA, which could make specifications defined
in TA executable through rewriting or narrowing.
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