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Abstract
We define and study classes of ω-regular automata for which the nondeterminism can be resolved by
a policy that uses a combination of memory and randomness on any input word, based solely on
the prefix read so far. We examine two settings for providing the input word to an automaton. In
the first setting, called adversarial resolvability, the input word is constructed letter-by-letter by an
adversary, dependent on the resolver’s previous decisions. In the second setting, called stochastic
resolvability, the adversary pre-commits to an infinite word and reveals it letter-by-letter. In each
setting, we require the existence of an almost-sure resolver, i.e., a policy that ensures that as long as
the adversary provides a word in the language of the underlying nondeterministic automaton, the
run constructed by the policy is accepting with probability 1.

The class of automata that are adversarially resolvable is the well-studied class of history-
deterministic automata. The case of stochastically resolvable automata, on the other hand, defines a
novel class. Restricting the class of resolvers in both settings to stochastic policies without memory
introduces two additional new classes of automata. We show that the new automata classes offer
interesting trade-offs between succinctness, expressivity, and computational complexity, providing a
fine gradation between deterministic automata and nondeterministic automata.
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1 Introduction

The trade-offs between determinism and nondeterminism is a central theme in automata
theory. For automata over infinite words, nondeterministic Büchi automata are strictly more
expressive than their deterministic counterpart. In fact, they are as expressive as deterministic
parity automata, and at the same time, are exponentially more succinct [27, 30]. Even
though nondeterminism seems attractive because of these favourable qualities, it presents
difficulties in contexts like reactive synthesis or runtime verification when the specifications
are expressed as automata. The fundamental challenge here arises because any algorithm
operating with nondeterministic automata needs to account for all possible future inputs.

Several attempts have evolved that involve modifying algorithms to avoid or minimise the
blow-up using determinisation procedures [24, 25, 17]. Many recent attempts instead focus
on classes of automata that aim to bridge this gap between determinism and nondeterminism,
while avoiding exponential determinisation procedures. The latter of the attempts have lead to
the introduction of several classes of automata like history-deterministic (HD) automata [20],
good-for-MDP automata [19], and tight Büchi automata [22], to name a few.
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Figure 1 A reachability automaton that is
not HD.
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Figure 2 A HD coBüchi automaton where
nondeterminism can be resolved randomly.

The notion of history determinism, in particular, which has inspired this work, has gained
significant attention in recent years. History-deterministic automata are nondeterministic
automata whose nondeterminism can be resolved on-the-fly, only based on the prefix of a
word read so far. More precisely, history determinism of an automaton can be characterised
by the following history-determinism game (HD game) on that automaton. The HD game
is played between two players, Eve and Adam, on an arena of the automaton where Eve
initially has a token at the start state. In each round of a play, Adam picks a letter, and Eve
moves her token along a transition on the letter picked by Adam, thereby constructing a
run on the word that Adam has picked so far. The game proceeds for an infinite duration,
where Adam constructs an infinite word, and Eve produces a run on this word. Eve wins if
she has a strategy that ensures that she constructs an accepting run whenever the infinite
word constructed by Adam is in the language of the automaton. HD automata are defined
as automata in which Eve wins the HD game.

Games whose winning objectives are given by HD automata can be solved as efficiently
as if they were given by deterministic automata, and thus they were dubbed as good-for-
games automata at the time of its introduction [20, Theorem 3.1]. This property makes
history-deterministic automata relevant for the problems of reactive synthesis and model
checking [11, Section 7]. Furthermore, they are exponentially more succinct than deterministic
automata [23, Theorem 1], and history-deterministic coBüchi automata give rise to a canonical
representation of coBüchi as well as ω-regular languages [1, 16].

Although history determinism is a useful concept, it is based on a highly adversarial
setting for the player who resolves the nondeterminism. In the context of reactive synthesis,
specifications written using history-deterministic automata can be used directly to synthesise
reactive systems such that the synthesised system satisfy the specification against all possible
adversarial environment actions. However, this might be an overly restrictive notion in
settings where the synthesised systems react with an environment that is not privy to its
current internal state. Furthermore, the strategies to resolve nondeterminism from such
automata need to be explicitly maintained as controllers of the synthesised system, but HD
automata require resolvers that use exponential memory [23].

For example, consider the infinite word reachability automaton in Figure 1, which accepts
all infinite words over ta, bu. In order to resolve the nondeterministic decision in state q0 and
eventually reach state qf , the next letter that is to be read must be guessed. If successive
letters are chosen adversarially and based on the current state of the automaton, no resolver
can successfully resolve the nondeterminism on all words. Therefore, this automaton is not
HD. However, in a more lenient setting where the adversary pre-commits to an infinite word
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(or equivalently, does not have access to the current internal state), a resolver that resolves
the nondeterminism by choosing uniformly at random one of the two transitions from q0
produces an accepting run almost surely (with probability 1).

Allowing for stochastic resolvers can also simplify the resolvers for HD automata. Consider
the coBüchi automaton in Figure 2 inspired from the work of Kuperberg and Skrzypczak [23,
Theorem 1]. Accepting runs in this automaton contain only finitely many rejecting (red,
dashed) transitions. The language of the automaton is over the alphabet t , , , u and
therefore, each word over this alphabet naturally constructs a graph, by recognising the right
dots of a letter with the left dots of the next letter. For instance, the finite word
represents the graph , which has two distinct finite paths of length 4. The infinite word
p qω represents a graph with two infinite paths. However, the word p qω does not
have any infinite path, as the letter breaks each path infinitely often. It can be verified
that the automaton in Figure 2 accepts an infinite word if and only if the corresponding
graph has at least one infinite path. Indeed, the two nondeterministic choices correspond to
verifying if the path starting from the “bottom dot” is infinite or if the path starting from
the “top dot” is infinite, respectively. A correct guess ensures that rejecting transitions never
occur in the run and a wrong guess brings the run back to the start vertex from which a
guess needs to be made again. This automaton is HD. Consider the resolver that chooses the
transition from state s that follows the longest unbroken path so far, in order to verify that it
extends to an infinite path. If there is an infinite path then eventually it would be the longest
unbroken path, and such a resolver would correctly resolve the nondeterminism to produce
an accepting run. The simpler resolver that selects a transition from s uniformly at random
also constructs an accepting run on any infinite word in the language almost surely (with
probability 1), even if letters are chosen adversarially. This is because the run constructed by
this resolver would almost surely eventually coincide with one of the longest unbroken paths.

In line with these examples, we introduce classes of automata inspired by history determ-
inism, extending them in two ways. First, we consider resolvers that use both memory and
stochasticity, and second, we study settings where the letter-giving adversary commits to a
word in advance, or equivalently, is unaware of the current state.

New classes of automata. Intuitively, stochastic resolvers propose an outgoing transition
using both memory and randomness. We study classes of automata for which there is an
almost-sure resolver, a policy for resolving the nondeterminism (which can use memory or
randomness) such that for all words in the language, the run produced is almost-surely
accepting, that is, with probability 1.

We consider the existence of almost-sure resolvers in the following two settings for the
letter-giving adversary. The first setting, called adversarial resolvability, is where the input
words to the automaton are from an adversary that generates the input letter-by-letter based
on the resolution of the nondeterminism in the past. The resolvers here represent the strategy
of Eve in the HD game defined for history determinism, where we allow for a larger class
of resolvers which allow for randomness. The second, and novel setting, called stochastic
resolvability, is where the adversary commits to an entire input-word, but only reveals the
input letter-by-letter to their opponent who is resolving the nondeterminism.

We call the class of automata that have an almost-sure resolver in the adversarial
resolvability setting adversarially resolvable automata, and that have an almost-sure resolver
in the stochastic resolvability setting as stochastically resolvable automata, or SR automata,
for short. We further study the classes of automata where weaker resolvers are used. If the
resolvers of nondeterminism are restricted to policies where only stochasticity is used, then
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Figure 3 Landscape of the automata classes.

the resolving strategy is just a probability distribution among the outgoing transition for each
state. We call such classes of resolvers memoryless resolvers, and the class of automata that
are adversarially resolvable using memoryless almost-sure resolvers memoryless-adversarially
resolvable, or MA for short. Likewise, we call the class of automata that are stochastically
resolvable using memoryless almost-sure resolvers memoryless-stochastically resolvable, or
MR for short. The class of adversarially resolvable automata, without any restrictions on
resolvers, are equivalent to HD automata due to determinacy of ω-regular games.

SR automata form intermediate class of nondeterministic automata that can be used
without determinisation during reactive synthesis or runtime verification in settings where
the environment has no access to the system’s internal states. Both the memoryless variants
MA and MR, are also practically relevant subclasses of HD and SR, respectively, since they
have memoryless resolvers which can serve as simple controllers for specifications represented
by such automata (as opposed to the exponential memory required by their more general
counterparts). Converting temporal logic specifications to HD and other automata is an
ongoing research area [15], and our new classes like MR and SR provide a larger target for
such conversions to aim for.

Our results. We introduce and then make comparisons between the three newly introduced
classes of automata, and also with existing notions such as HD automata and semantically
deterministic (SD) automata [2] (see Section 3). We study the succinctness, expressivity, and
computational complexity of the class-membership problem for these automata classes.
In Section 3, we compare our novel automata classes with each other and also with HD and
SD automata. We show separating examples or prove the equivalences between the classes
(Theorem 6). A landscape of these automata can be found in Figure 3. In the same section,
we show the exponential succinctness of SR coBüchi to deterministic coBüchi automata,
and of SR Büchi automata to HD Büchi automata (Theorem 8). For coBüchi automata, we
show the surprising result that every SR (and thus, every HD) coBüchi automaton can be
converted into an MA automaton with the same number of states (Theorem 7). As a corollary,
although in HD coBüchi automata, Eve might need exponential memory resolvers to surely
win the HD game [23, Theorem], we can efficiently transform it into an automaton where a
memoryless random resolver suffices for Eve to win almost-surely in the resultant coBüchi
automaton. Therefore, SR coBüchi automata are as succinct as HD coBüchi automata, while
Büchi SR automata are exponentially succinct (Theorem 8).

In Section 4, we tackle the problem of expressivity. HD (and therefore also MA) parity
automata that use priorities from ti, i ` 1, . . . , ju are as expressive as deterministic automata
that use the same set of priorities [8]. We show that the same holds for SR and MR automata
(Theorem 22), and thus, the parity-index hierarchy is strict for SR and MR automata.
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Table 1 Complexity of checking membership of an automaton in a class.

Safety Reachability/Weak Buchi coBüchi Parity
Checking MA (The-
orem 23) P P NP NP NP-complete

Checking HD P [23, 10] P [23, 10] P [23] P [4] PSPACE [26],
NP-hard [28]

Checking SR/ MR
(Theorem 24) P PSPACE-comp Open Open Open
Resolver checking
for SR/MR (The-
orem 24)

P PSPACE-comp undec. undec. undec.

In Section 5, we tackle the problems of deciding if an automata is MA and SR. The exact
complexity of the problem of deciding if an automaton is HD is nearly a two-decade old open
problem [20], with recent improvements giving the problem a NP-hardness lower bound [28]
and a PSPACE upper bound [26, 2-Token Theorem]. We show that checking if a given
automaton is MA is NP-complete (Theorem 23). The upper bound relies on showing that a
slight modification of the 2-token game [4, 26], a game used to characterise HD automata,
also characterises MA automata. With such a characterisation, we show that to check if
an automata is MA, one first needs to guess a strategy in the modified two-token game.
Checking correctness of this strategy reduces to solving a Markov decision process (MDP)
with Muller objectives that are represented by a Zielonka DAG. We show that this can be
computed in polynomial time (Theorem 27) known previously only known for a restricted
subclass of Muller objectives [13]. We also consider problems related to checking whether an
automaton is in the class MR and SR and summarise these results in Table 1.

2 Automata and resolution of nondeterminism

We use N to denote the set of natural numbers t0, 1, 2, . . . u. For two natural numbers i, j

with i ă j, we use ri, js to denote the set ti, i ` 1, . . . , ju consisting of natural numbers that
are at least i and at most j. For a natural number i, we use ris to denote the set r0, is. We
use U to denote the unit interval, i.e., U “ tx | 0 ď x ď 1u. For a finite set X, a probability
distribution on X is a function f : X −Ñ U that maps each element in X to a number in U,
such that

ř

aPX fpXq “ 1 and write DistributionspXq for the set of probability distributions.

Parity automata. An ri, js-nondeterministic parity automaton A “ pQ, Σ, ∆, q0q, ri, js-
parity automaton for short, consists of a finite directed graph with edges labelled by letters
in Σ and priorities in ri, js for some i, j P N with i ă j. The set of states Q constitutes
the vertices of this graph, and the set of transitions ∆ Ď Q ˆ Σ ˆ ri, js ˆ Q represents the
labelled edges of the graph. Each automaton has a designated initial state q0 P Q. For states
p, q P Q and a letter a P Σ, we use p

a:c
−−Ñ q to denote a transition from p to q on the letter a

that has the priority c. We assume that for any two states p, q and letter a, there is at most
one transition of the form p

a:c
−−Ñ q. We also assume our automata to be complete, i.e., for

each state and letter, there is at least one transition from that state on that letter.
A run on an infinite word w in Σω is an infinite path in the automaton, starting at the

initial state and following transitions that correspond to the letters of w in sequence. A run
is accepting if the highest priority occurring infinitely often amongst the transitions of that
run is even, and a word w in Σω is accepting if the automaton has an accepting run on w.
The language of an automaton A, denoted by LpAq, is the set of words that it accepts. We

MFCS 2025



57:6 Resolving Nondeterminism with Randomness

write that the automaton A recognises a language L if LpAq “ L. A parity automaton A is
said to be deterministic if for any given state in A and any given letter in Σ, there is exactly
one transition from that state on that letter.

We will say that ri, js with i “ 0 or 1 is the parity index of A. A Büchi (resp. co-
Büchi) automaton is a r1, 2s (resp. r0, 1s) parity automaton. A safety automaton is a Büchi
automaton where all transitions with priority 1 occur as self-loops on a sink state. Dually, a
reachability automaton is a Büchi automaton A such that all transitions with priority 2 in A
occur as self-loops on a sink state. A weak automaton is a Büchi automaton, in which there
is no cycle that contains both a priority 2 transition and a priority 1 transition.

We write pA, qq to denote the automaton A with its initial state as q, and LpA, qq to denote
the language it recognises. Two states p and q are language-equivalent if LpA, pq “ LpA, qq.

Probabilistic automata. A probabilistic parity automaton P “ pQ, Σ, ∆, ρ, q0q – a natural
extension of probabilistic Büchi automata defined by Baier, Größer, and Bertrand [6] – has
the semantics of a parity automaton. Additionally, we assign a probability to each transition
in ∆ using the function ρ : ∆ −Ñ U, such that for each state and each letter, the sum of ρpδqs
for outgoing transitions δ from that state on that letter add up to 1. We write ∆q,a to denote
the set of outgoing transitions from the state q on the letter a.

Given a probabilistic automaton P as above, the behaviour of P on an input word w is
formalised by an infinite Markov chain that captures all the possible runs of P on w. For
the word w “ a0a1a2 . . . , consider the Markov chain Mw defined over the vertices Q ˆ N.
After “processing” the finite word a0a1 . . . ai´1, the Markov chain will be at some state pq, iq,
where q is a state that can be reached from q0 on the word a0a1 . . . ai´1. The run of the
Markov chain then moves from pq, iq to the state pp, i ` 1q with probability ρpδq, where
δ “ q

ai:ci−−−Ñ p is a transition in A. The initial state of Mw is pq0, 0q, and we say that a run in
Mw is accepting if the run corresponding to ρ in A is accepting.

For an input word w and a probabilistic automaton P , we define the probability ProbPpwq

to be the probability measure of accepting runs in Mw. We mostly deal with almost-sure
semantics of probabilistic automata, and therefore, we refer to language of a probabilistic
automaton P as LpPq “ tw P Σω | ProbPpwq “ 1u.

Resolution of nondeterminism

We will deal with nondeterministic automata where the nondeterminism can be resolved
using a combination of memory and randomness. We begin by recalling history-deterministic
automata, which is characterised by the following history-determinism game.

▶ Definition 1 (History-determinism game). Given a nondeterministic parity automaton
A “ pQ, Σ, ∆, q0q, the history-determinism (HD) game on A is a two-player game between
Eve and Adam that starts with Eve’s token at q0 and proceeds for infinitely many rounds.
For each i P N, round i starts with Eve’s token at a state qi in Q, and proceeds as follows.
(1) Adam selects a letter ai P Σ; (2) Eve selects a transition qi

ai:ci−−−Ñ qi`1 P ∆ along which
she moves her token. Eve’s token then is at qi`1 from where the round pi ` 1q is played.
Thus, in the limit of a play of the HD game, Adam constructs a word letter-by-letter, and
Eve constructs a run on her token transition-by-transition on that word. Eve wins such a
play if Adam’s word is not in LpAq or if the run on her token is accepting.

An automaton is history deterministic (HD) if Eve has a winning strategy in the HD game
on A. If an automaton is HD then Eve has a finite memory winning strategy in its HD
game [29, Theorem 3.12], that is, a mapping from the set of finite plays of the HD game
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to the next transition that Eve chooses, where the mapping is only based on the current
position and a finite memory structure. We will formalise this concept as pure resolvers, but
we first define resolvers where we allow for stochasticity as well.

Resolver. For a nondeterministic parity automaton A “ pQ, Σ, ∆, q0q, a stochastic resolver,
or just a resolver, for A is given by M “ pM, m0, µ, nextmoveq, where M is a finite set of
memory states, m0 is the initial memory state. The function nextmove assigns to every
three-tuple of memory state m, state q of A, and letter a in Σ, a probability distribution
nextmovepm, q, aq in Distributionsp∆q,aq, where ∆q,a is the set of outgoing transitions from
state q on letter a. The function µ is the transition function and is given by µ : M ˆ ∆ Ñ M .

Eve plays in the HD game on A using the resolver M as follows. At state q, when
the memory state is m, suppose Adam chooses the letter a. Eve then selects an outgoing
transition δ from q on a with the probability pnextmovepm, q, aqq ˝ pδq, and updates the
memory state to m1 “ µpm, δq. We say that a resolver M for Eve constitutes a winning
strategy in the HD game on A if she wins almost-surely (i.e., with probability 1) when she
plays using M as described above. We say that a resolver M is pure, if for each memory
state m, each state q, and letter a, the probability distribution nextmovepm, q, aq assigns
probability 1 to some outgoing transition in ∆q,a and probability 0 to every other transition.

In ω-regular games, which HD games are a subclass of, Eve has a strategy to win with
positive probability if and only if she has a pure strategy to win surely [12] (see [7, Theorem
8.3] for a modern exposition). Thus, if Eve has a stochastic resolver to win the HD game on
A almost surely, then she also has a pure resolver to win surely. We say that a resolver is
memoryless if that resolver has one state.

An automaton A is memoryless-adversarial resolvable (MA) if there is a memoryless
resolver using which Eve wins the HD game on A almost-surely, i.e., with probability 1.

If there is a memoryless resolver M for Eve using which she wins the HD game almost
surely, then she wins almost surely using any memoryless resolver M1 that assigns nonzero
probabilities to the same transitions as M.

Nonadversarial resolvability. We introduce a less-adversarial notion than adversarial resolv-
ability discussed earlier. For a parity automaton A and a resolver M for A, we say that M
is a almost-sure resolver for A if for every word w in LpAq, the run constructed on w using
M in the HD game on A is almost-surely accepting.

More concretely, consider the probabilistic automaton P “ M ˝ A that is obtained by
composing the resolver M with A. That is, the states of P are Q ˆ M , the initial state of P
is p0 “ pq0, m0q. The automaton P has the transition pq, mq

a:c
−−Ñ pq1, m1q of probability p if

δ “ q
a:c
−−Ñ q1 is a transition in A, pnextmovepm, q, aqq ˝ δ “ p and m1 “ µpm, δq. Then, we

write that M is an almost-sure resolver for A if LpAq “ LpPq. For M, A, and P as above,
we call P the resolver-product of M and A.

An automaton A is stochastically resolvable (SR) if there is an almost-sure resolver for A.
An automaton A is memoryless stochastically resolvable (MR) if there is an almost-sure
resolver for A that is memoryless.

▶ Example 2. Consider the example of the reachability automaton A in Figure 1, where
the accepting transitions are double-arrowed. We will show that A is MR but not HD. This
automaton accepts all infinite words over the alphabet ta, bu. At the only nondeterministic
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state q0 on reading a or b, if the resolver correctly guesses the next letter, then it will reach
the accepting state. Consider a resolver that chooses the transitions to qa and qb with 1

2
probability. For any fixed infinite word, this resolver produces an accepting run that will
almost surely, eventually guess the letter one step ahead correctly. However, Adam has a
winning strategy in the HD game on A: whenever Eve’s token in the HD game is at qb, Adam
chooses the letter a and chooses the letter b whenever Eve’s token is at qa. This adversarial
choice of letters ensures that Eve’s run is rejecting, and thus Adam wins the HD game on A.

We next describe an equivalent game-based definition for SR and MR automata.

Stochastic resolvability game. The stochastic resolvability game (SR game) on an auto-
maton A proceeds similarly to the HD game. In each round, Adam selects a letter and then
Eve responds with a transition of A on that letter; thus, in the limit, Adam constructs an
infinite word and Eve constructs a run on that word. Eve wins if her transitions form an
accepting run whenever Adam’s word is in the language. However, unlike the HD game,
Adam does not observe Eve’s run, and therefore his strategy must not depend on the position
of Eve’s token in the automaton. We define this game more formally as a partial-observation
game in the full version of the paper, where we also prove the following result.

▶ Lemma 3. For every parity automaton A, a resolver M is an almost-sure resolver for A
if and only if M is a finite-memory strategy that is almost-surely winning for Eve against all
strategies of Adam in the SR game on A.

3 Comparisons between the different notions

In this section, we compare the notions of SR, MR, and MA with each other and other
related notions of nondeterminism in the literature.

We start with the notion of semantic determinism. These were originally introduced as
residual automata [23], but we follow the more recent works that call them semantically
deterministic (SD) automata instead [3, 2]. A transition δ from p to q on a letter a in a
parity automaton A is language-preserving if LpA, qq “ a´1LpA, pq. A parity automaton is
semantically deterministic (SD) if all its transitions are language-preserving. The following
observation concerning SD automata can be shown by an inductive argument on word length.

▶ Observation 4. For every SD automaton A, all states in A that can be reached from a
state q upon reading a finite word u recognise the language u´1LpA, qq.

We observe that all SR automata are SD, up to removal of some transitions.

▶ Lemma 5. Every SR parity automaton A has a language-equivalent SD subautomaton B.

Proof sketch. We fix an almost-sure resolver M for A, and let B be the subautomaton
consisting of transitions that M takes with nonzero probability. We show that every transition
in B is language-preserving, and thus, B is SD and language equivalent to A. ◀

A pre-semantically deterministic (pre-SD) automaton is an automaton that has a language-
equivalent SD subautomaton. The following result gives a comprehensive comparison between
the notions of nondeterminism we have discussed so far. The results of Theorem 6 are
summarised by the Venn diagram in Figure 3.
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▶ Theorem 6.
1. For safety automata, the notions of pre-SD, SR, MA, MR, and HD are all equivalent.
2. For reachability and weak automata, the following statements hold.

a. Pre-SD, SR, and MR are equivalent and are strictly larger classes than HD automata.
b. HD and MA are equivalent notions.

3. For Büchi, coBüchi, and parity automata, the following statements hold.
a. Pre-SD automata are a strictly larger class than SR automata.
b. SR automata are a strictly larger class than HD automata.
c. SR automata are a strictly larger class than MR automata.
d. There are HD automata that are not MR, and there are MR automata that are not HD.
e. Both HD and MR automata are strictly larger classes than MA automata.

Even though the five notions of nondeterminism discussed for coBüchi automata are all
different, we show that every SR coBüchi automaton (the second largest class after SD) can
be efficiently converted to a language-equivalent MA coBüchi automaton (smallest class).

▶ Theorem 7. There is a polynomial-time algorithm that converts SR coBüchi automata
with n states into language-equivalent MA coBüchi automata with at most n states.

SD coBüchi are exponentially more succinct than HD coBüchi automata [2, Theorem 14], and
therefore, the above result does not hold for SD coBüchi automata. However, we show the
succinctness of SR Büchi automata against HD Büchi automata and MA coBüchi automata
against deterministic coBüchi automata.

▶ Theorem 8.
1. There is a class of languages Ln such that, there are MR Büchi automata recognising Ln

with Opnq states, and any HD Büchi automaton recognising Ln requires at least 2n states.
2. There is a class of languages L1

n, such that there are MA coBüchi automata recognising
L1

n with Opnq states and any deterministic coBüchi automaton recognising L1
n requires at

least Ωp2n{2n ` 1q states.

We organise the proofs of Theorems 6–8 based on the acceptance conditions.

3.1 Safety automata
We showed in Lemma 5 that every SR automaton is SD. The next result shows that every
safety automaton S is SD if and only if S is determinisable-by-pruning, that is, S contains a
language-equivalent deterministic subautomaton.

▶ Lemma 9 (Folklore). Every SD safety automaton is determinisable-by-pruning.

Observe that any determinisable-by-pruning automaton is MA, where Eve’s strategy is to
take transitions in a fixed language-equivalent deterministic subautomaton. Thus, Lemma 9
implies the following result.

▶ Lemma 10. The notions of pre-SD, SR, MA, MR, and HD coincide on safety automata.

3.2 Reachability and weak automata
We compare notions of nondeterminism on reachability and weak automata. Recall that
Example 2 shows an MR reachability automaton that is not HD.

▶ Lemma 11. There is an MR reachability automaton that is not HD.
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Figure 4 SD but not SR coBüchi automaton.
Dashed arrows denote rejecting transitions.
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Figure 5 A HD coBüchi automaton that is not
MR. Dashed arrows denote rejecting transitions.

We show that SD weak automata are MR, by proving that the resolver that selects
transitions uniformly at random in an SD weak automaton A is an almost-sure resolver.

▶ Lemma 12. Every SD weak automaton is MR.

From Lemmas 5 and 11, we obtain that SR weak automata are also MR and that
they strictly encompass HD automata. HD weak automata (and also MA automata) are
determinisable-by-pruning (DBP) [8], and thus, we obtain the following result.

▶ Lemma 13. The notions of DBP, HD and MA coincide on weak automata.

3.3 CoBüchi automata
We now compare our notions of nondeterminism on coBüchi automata. We will show that no
two notions amongst SD, SR, HD, MR, and MA are equivalent for coBüchi automata. We
will then give a polynomial-time algorithm that converts SR coBüchi automata with n states
into language-equivalent MA coBüchi automata with at most n states. This shows that SR
and MR coBüchi automata are no more succinct than MA (and also HD) coBüchi automata.

Consider the automaton in Figure 4, which is an SD coBüchi automaton that recognises
all words. This automaton is not SR, however, since Adam choosing a letter among ta, bu

with probability 1{2 in the SR game (see Lemma 3) ensures that Eve cannot almost-surely
construct an accepting run.

▶ Lemma 14. There is an SD coBüchi automaton that is not SR.

In Section 3.2, we showed an MR reachability automaton that is not HD (Lemma 11). It
follows that there is a MR coBüchi automaton that is not HD. We next show a HD coBüchi
automaton that is not MR, and hence, also not MA.

▶ Lemma 15. There is a HD coBüchi automaton that is not MR.

Proof sketch. Consider the coBüchi automaton C shown in Figure 5. The automaton C has
nondeterminism on the letter x in the initial state q0. Informally, Eve, from the state q0 in
the HD game or the SR game, needs to “guess” whether the next sequence of letters till
an a or b is seen forms a word in x˚a or in x`b. The automaton C recognises the language
L “ px ` a ` bq˚ppxqω ` px˚aqω ` px`bqωq. C is HD: Eve’s strategy to select the x-self
loop on q0 or to move to q1 based on whether the last letter distinct from x was an a or b,
respectively, is a winning strategy in the HD game on A. To show that C is not MR, we first
show that any memoryless resolver for C must take both x-outgoing transitions from q0 with
positive probability, and then show that no such memoryless resolver accepts the infinite
word x2ax3ax4a . . . with probability 1, as desired. ◀
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We have thus shown so far that each of the five classes in Figure 3 are different for
coBüchi automata. We now show that every SR coBüchi automaton can be converted into a
language-equivalent MA coBüchi automaton without any additional states.

▶ Theorem 7. There is a polynomial-time algorithm that converts SR coBüchi automata
with n states into language-equivalent MA coBüchi automata with at most n states.

We next describe a proof sketch of Theorem 7, throughout which we fix an SR coBüchi
automaton A. We first relabel the priorities on A to obtain C as follows. Consider the graph
consisting of all states of A and 0 priority transitions of A. For any 0 priority transition of
A that is not in any strongly connected component (SCC) in this graph, we change that
transition to have priority 1 in C. Priorities of other transitions in A is preserved as is in C.
This relabelling of priorities does not change the acceptance of any run (Appendix B in full
version), and thus, C is SR and language-equivalent to A. We next introduce a few notions
to describe a proof sketch of Theorem 7.

Safe-approximation. For the automaton C, define its safe-approximation, denoted Csafe,
as the safety automaton with the same states as C, plus an additional rejecting sink state.
Transitions of priority 0 in C are preserved in Csafe with the same priority. Transitions of
priority 1 are redirected to the rejecting sink state and have priority 1.

Weak-coreachability. We call two states p, q in C as coreachable, denoted by p, q P CRpCq,
if there is a finite word u on which there are runs from the initial state of C to p and q.
We denote the transitive closure of this relation as weak-coreachability, which we denote
by WCRpCq. Note that weak-coreachability is an equivalence relation.

SR covers. For two parity automata B and B1, we say that B SR-covers B1, denoted by
B ąSR B1, if Eve has an almost-sure winning strategy in the modified SR game as follows.
Eve, similar to the SR game on B, constructs a run in B, but Eve wins a play of the game if,
in that play, Eve’s constructed run in B is accepting whenever Adam’s word is in LpB1q.

SR self-coverage. We say that a coBüchi automaton B has SR self-coverage if for every state
q there is another state p that is coreachable to q in C such that pBsafe, pq SR-covers pBsafe, qq.
The crux of Theorem 7 is in proving the following result.

▶ Lemma 16. The coBüchi automaton C has SR self-coverage.

SR-covers is a transitive relation, i.e., if A1, A2, A3 are nondeterministic parity automata
such that A1 ąSR A2 and A2 ąSR A3, then A1 ąSR A3. The following result then follows
from the definition of SR self-coverage and the fact that C has finitely many states.

▶ Lemma 17. For every state q in C, there is another state p weakly coreachable to q in C
such that pCsafe, pq SR-covers pCsafe, qq and pCsafe, pq SR-covers pCsafe, pq.

Note that if pCsafe, pq SR-covers pCsafe, pq then pCsafe, pq is SR. Since SR automata are
semantically deterministic (Lemma 5) and SD safety automata are determinisable-by-pruning
(Lemma 9), we call such states p as safe-deterministic.

We build a MA automaton H, whose states are the safe-deterministic states in C. This
construction is similar to the one used by Kuperberg and Skrzypczak for giving a polynomial
time procedure to recognise HD coBüchi automata [23, Section E.7 in the full version]. We
fix a uniform determinisation of transitions from each safe-deterministic state in Csafe and
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we add these transitions in H with priority 0. If there are no outgoing transitions in H from
the state p on letter a so far, then we add outgoing transitions from p on a as follows. Let q

be a state in C such that there is a transition from p to q on a in C. For each state r that is
weakly coreachable to q in C and that is safe-deterministic, we add a transition from q to r

in H with priority 1. This concludes our construction of H.
We show that H is MA by showing that Eve wins the HD game on H almost-surely by

picking transitions uniformly at random (Appendix B in full version). Both this fact and the
language equivalence of H to C primarily relies on Lemma 17. Since a safety automaton is
DBP if and only if that automaton is HD, and every HD safety automaton can be determinised
in polynomial-time [10], the safe-deterministic states of C can be identified, and outgoing safe
transitions from these states can be determinised in polynomial-time. Thus, the construction
of H takes polynomial-time overall. This completes our proof sketch for Theorem 7.

Since every HD automata is SR, Theorem 7 together with the result of Kuperberg and
Skrzypczak that HD coBüchi automata are exponentially more succinct than deterministic
coBüchi automata [23, Theorem 1] implies that the same holds for MA coBüchi automata.

▶ Corollary 18. There is a family L2, L3, L4, . . . of languages such that for every n ě 2,
there is a MA automaton recognising Ln that has 2n ` 1 states and any deterministic coBüchi
automaton recognising Ln needs at least Ωp2n{2n ` 1q states.

3.4 Büchi automata
Similar to coBüchi automata, we show that for Büchi automata, no two notions amongst the
notions of SD, SR, HD, MR, and MA coincide. We then later show that MR Büchi automata
are exponentially more succinct than HD Büchi automata: recall that this is not the case for
coBüchi automata (Theorem 7). We start by giving a SD Büchi automaton that is not SR.

▶ Lemma 19. There is an SD Büchi automaton that is not SR.

Consider the Büchi automaton B in Figure 7. This automaton B has nondeterminism on the
initial state q0, and it recognises the language ppx ¨ pa ` bq ¨ yq˚px ¨ pa ` bq ¨ zqqω.

It is easy to verify that B is SD. We describe a strategy for Adam in the SR game on B
using which he wins almost surely, implying that B is not SR (Lemma 3). When Eve’s token
is at q0 in the SR game, she needs to guess if the next letter after x is going to be a or b. If
she guesses incorrectly, then her token moves to the left states – states l1, l2, and l3, where
she stays until a z is seen.

Adam’s strategy in the SR game is as follows. Let Y be the regular expression xay`xby and
Z be the regular expression xaz ` xbz. Adam picks a word from the set Y ZY 2ZY 3ZY 4Z . . .

in the SR game, where from each occurrence of Y or Z, he picks one of the two words in
the regular expression with half probability. We show that the probability that Eve’s token
takes an accepting transition on reading a word chosen randomly from Y nZ is 1

2n`1 . From
the Borel-Cantelli lemma, we conclude that the probability that Eve’s token takes infinitely
many accepting transitions in the SR game is 0.

We showed, in Lemma 11, that there are MR reachability automaton that are not HD.
Thus, the same holds for Büchi automata. We now show the opposite.

▶ Lemma 20. There is a HD Büchi automaton that is not MR.

Proof sketch. Consider the automaton in Figure 6, whose language is as follows. Let
Σ˛ “ ta, b, c, ˛u and Σ “ ta, b, cu. Let L1 and L2 be languages of finite words over the
alphabet Σ˛ where L1 “ Σ˛

˚c`˛ and L2 “ Σ˛
˚aΣ˚b`˛. The automaton A accepts the

language rpL1 ` L2q˚pL1L1 ` L2L2qs
ω. We prove that this automaton is HD but not MR in

the full version of the paper, with a proof similar to the proof of Lemma 15. ◀
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Next, we show that SR Büchi automata are exponentially more succinct than HD Büchi
automata. To do this, we will use the language family from Abu Radi and Kupferman [2,
Theorem 5] that shows exponential succinctness of SD Büchi over HD automata, and we
show in the full version that the SD Büchi automata they construct are also MR.

▶ Lemma 21. There is a family L2, L3, L4, . . . of languages such that for every n ě 2, there
is an MR automaton recognising Ln that has 3n ` 3 states and any HD Büchi automaton
recognising Ln needs at least 2n states.

4 Expressivity

In Section 3, we compared the novel classes of nondeterministic automata we defined with
each other and the existing notions of SD and HD, focusing on the questions of succinctness
and when they coincide. In this section, we compare these notions in terms of expressivity.
We show that, similar to history-determinism, stochastically resolvable ri, js-parity automata
are as expressive as deterministic ri, js-parity automata.

▶ Theorem 22. Stochastically resolvable ri, js-parity automata recognise the same languages
as deterministic ri, js-parity automata.

Since deterministic automata are also SR, one direction is clear. For the other direction, we
show that any ω-regular language that is not recognised by any deterministic ri, i ` ds-parity
automaton cannot be recognised by any SR ri, i ` ds-parity automaton. We reduce this to
showing that the language Lri`1,i`d`1s of the ri ` 1, i ` d ` 1s-parity condition – the set of
infinite words over the alphabet ri ` 1, i ` d ` 1s in which the highest number occurring
infinitely often is even – is not recognised by any SR ri, i ` ds-parity automaton.

To prove that no SR ri, i ` ds-parity automaton recognises Lri`1,i`d`1s, consider any
SR automaton A that recognises the language Lri`1,i`d`1s and that has an almost-sure
resolver σ. We inductively construct words u0, u1, ¨ ¨ ¨ , ud, such that from every state q, a
run from q on the word uk in automaton A constructed using σ contains a transition with
priority at least pi ` k ` 1q and of the same parity as pi ` k ` 1q with positive probability.
This part of the proof is nontrivial and requires careful analysis of probabilities. Once we
have proved this result inductively, we obtain that A has at least as many priorities as in the
interval ri ` 1, i ` d ` 1s, and in particular, is not an ri, i ` ds-parity automaton, as desired.
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5 Complexity of recognition

We now turn our attention to the computational complexity for the problems of deciding if a
given automaton is MR, SR, or MA, respectively. The exact complexity of deciding if a given
automaton is HD is an open problem, with only recent results showing NP-hardness [28] and
membership in PSPACE [26]. Unlike the complexity gap for deciding if a parity automaton
is HD, we show that the problem for MA is NP-complete.

▶ Theorem 23. The problem of deciding if a given parity automaton is MA is NP-complete.

We also show undecidability for the problems of deciding if a given resolver is an almost-
sure resolver for a given Büchi or coBüchi automata. For safety and weak automata, the
complexities mentioned in the result below follow due to Theorem 6 and the complexities of
recognising HD and SD automata.

▶ Theorem 24. The problem of deciding if a given
1. safety automaton is SR or MR is in P,
2. reachability or weak automaton is SR or MR is PSPACE-complete, and
3. finite-memory resolver of a Büchi or coBüchi automaton is an almost-sure resolver of

that automaton is undecidable.

5.1 Memoryless adversarially resolvable automata

We first prove Theorem 23 and show NP-completeness for the problem of deciding if an
automaton is MA. To prove the upper bound of NP (Lemma 25), we show that an automaton
is MA if and only if there is a specific type of strategy in the so-called 2-token game on that
automaton. The 2-token game is a two-player game that was introduced by Bagnol and
Kuperberg [4], and it was shown by Lehtinen and Prakash that Eve wins the 2-token game on
a parity automaton if and only if it is HD [26, 2-token theorem]. We use their result to show
our characterisation of MA via the specific type of strategy in 2-token games in Lemma 26,
and we then provide an algorithm to verify if a given strategy is indeed a winning strategy.

We then show the lower bound in Lemma 28 by showing that the problem is NP-hard,
similar to the proof of NP-hardness for deciding history-determinism [28].

▶ Lemma 25. Checking if a given parity automaton is MA is in NP.

We describe a proof sketch for Lemma 25, where we will use the following notions.

2-token game. The 2-token game on an automaton is a game played between Adam and
Eve with three tokens at the starting state of the automaton, one “owned” by Eve and two
owned by Adam. The game proceeds in infinitely many rounds, where in each round, Adam
selects a letter, Eve moves her token along a transition on that letter, and finally Adam
moves each of his two tokens along transitions on the same letter. Therefore, in a play of
this game, Eve builds a run and Adam two runs, all on the same word. A play is won by
Adam if at least one of the runs on his tokens is accepting and Eve’s run on her token is
rejecting, and Eve wins otherwise. Given an automaton A, we write G2pAq to represent the
2-token game on A, and we use G2pB; Aq to represent a modified 2-token game where Eve
moves her token in the automaton B, while Adam moves his two tokens in the automaton A.



T. A. Henzinger, A. Prakash, and K. S. Thejaswini 57:15

Muller condition. Muller objectives on graphs are specified by a finite set of colours C and
a set of accepting subsets F Ď 2C . Each edge of the graph is labelled by a colour from C.
An infinite path of this graph is accepting if the set of colours that appears infinitely often in
this path is a member of F . Muller objectives can be represented using Zielonka trees.

Zielonka tree [14] and Zielonka DAG [21]. For a Muller objective defined by colours C

and accepting set F , its Zielonka tree is a labelled rooted tree. We call vertices of this tree
nodes. Each node ν of the Zielonka tree is labelled by a nonempty subset of C. The root is
labelled by C. For a node νX labelled by X, its children are nodes νY labelled by distinct
maximal nonempty subsets Y of X such that Y P F if and only if X R F . If there are no
such subsets Y , then νX has no children. A Zielonka DAG is a succinct representation of
Zielonka tree, where nodes with the same labels are merged.

We show that we can characterise MA automata by the existence of a memoryless
(random) strategy for Eve in the 2-token game.

▶ Lemma 26. An automaton A is MA if and only if there is a subautomaton B of A such
that the strategy of Eve where she picks available transitions uniformly at random is an
almost-sure winning strategy in the game G2pB; Aq.

To check if an automaton is MA in NP, we guess a subautomaton B of A, construct
the 2-token game G2pB; Aq, and verify if Eve playing randomly is an almost-sure winning
strategy. Subsequently, we construct a game where Eve’s vertices in G2pB; Aq are substituted
with stochastic vertices, resulting in a Markov Decision Process (MDP) – a single-player
complete-observation stochastic game where Adam is the only player.

If A is MA, Adam satisfies his objective with probability 0 in this MDP resulting out
of the 2-token game. The winning condition of the 2-token game (and thus this MDP) for
Adam can be represented by a Muller objective [29, Page 70], whose Zielonka DAG has size
that is at most polynomial in the number of priorities of A [29, Page 72].

In Theorem 27, we show that it can be verified in polynomial time if Adam in an MDP
has a strategy to satisfy a Muller objective with positive probability, where the objective is
input as a Zielonka DAG. Therefore, we can verify if Eve wins G2pB; Aq almost-surely in
polynomial time. This concludes our proof of Lemma 25.

▶ Theorem 27. There is an algorithm to decide if Adam positively (resp. almost-surely)
wins MDPs M with Muller objectives represented by a Zielonka DAG Z in time Op|M||Z|q,
where |M| is the number of edges in M and |Z| is the number of edges in Z.

For MDPs with Muller objectives that are union closed, Chatterjee in 2007 gave a polynomial-
time algorithm to decide if Adam has a strategy to win almost surely (or positively) [13,
Section 4]. Since such conditions can be represented by a Zielonka DAG where all nodes
other than the root are leaf nodes, Theorem 27 is a significant generalisation of their result.

We show the lower bound for the problem of recognising MA automata using the result of
NP-hardness of recognising HD automata by Prakash [28], and show that the same reduction
can be modified to show the NP-hardness of recognising MA automata.

▶ Lemma 28. Checking if a given parity automaton is MA is NP-hard.

5.2 Memoryless-stochastically resolvable automata and stochastically
resolvable automata

We now discuss decision problems related to MR or SR automata. Our results for safety,
reachability, and weak automata follows, due to Theorem 6, from known results for HD
automata [9, Theorem 19] and semantically deterministic automata [3, Theorem 3], thus
yielding the following proposition.
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▶ Proposition 29. Deciding if a safety automaton is SR is in P, and deciding if a reachability
or weak automaton is SR is PSPACE-complete.

Resolver-(co)Büchi: Given a finite memory resolver R for a (co)Büchi automaton A, is R
an almost-sure resolver for A?

▶ Lemma 30. The problems Resolver-coBuchi and Resolver-Buchi are undecidable.

We prove undecidability of the problem of Resolver-coBuchi by reducing from the problem
of checking the emptiness of probabilistic Büchi automaton under the positive acceptance
semantics (word is accepted if there is an accepting run of non-zero probability) [5, Theorem 2].
We prove undecidability of Resolver-Buchi by reducing from the zero-isolation problem for
finite probabilistic automata (if there are finite words for which probability of acceptance is
positive and reaches arbitrarily close to 0), which is also undecidable [18, Theorem 4].

6 Discussion

We conclude with a brief discussion on a few related notions and pose some open problems.
In an effort to also reason about HD and SD automata, Abu Radi, Kupferman, and

Leshkowitz [3] introduced and studied a class of automata they called almost-determinisable
by pruning (almost-DBP). While their definition is related to the probability that a run
on a randomly generated word in the language is accepting, we study the notion where a
randomly generated run by a resolver on every word in the language is accepting. To further
highlight the difference, almost-DBP Büchi auomtata are the same as SD Büchi automata,
whereas SR Büchi automata are a different class than SD Büchi auomtata.

Good-for-MDP automata are automata that admit compositionality with MDPs that
make them relevant for reinforcement learning and MDP model checking [19]. We remark
that SR automata are good-for-MDP, since an almost-sure resolver for an automaton can
be used as a strategy for syntactic satisfaction objective for the product of automaton with
any MDP. However, the converse is not true since good-for-MDP Büchi automata recognise
all ω-regular languages [19, Section 3.2] but SR Büchi automata are only as expressive as
deterministic Büchi automata (Theorem 22).

We now discuss some open questions. For the class of MA automata, the exact probability
distributions of the resolver does not matter. However, the same remains unknown for SR
and MR automata.

▶ Question. Are almost-sure resolvers in stochastically resolvable settings indifferent to the
exact probability distribution?

Despite the undecidability of resolver checking for Büchi or coBüchi automata, the complexity
status of the class membership problem for SR and MR automata is open. The undecidability
of Resolver-coBuchi (Lemma 30) is somewhat surprising since we also showed (Theorem 7)
that every SR coBüchi automaton can be efficiently converted to an MA coBüchi automaton,
where membership is in NP, providing hope for decidability.

▶ Question. Is it decidable to check if a given (co)Büchi automaton is SR?

Theorem 7 also implies that HD coBüchi automata have language-equivalent MA coBüchi
automata with at most as many states, thus trading exponential memory required for HD
coBüchi automata for only randomness. We ask whether the same holds for parity automata.

▶ Question. Does every HD parity automaton have a language-equivalent MA parity auto-
maton of the same size?
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