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Abstract

Classical results of Bennett and Gill (1981) show that with probability 1, PA ̸= NPA relative to a
random oracle A, and with probability 1, Pπ ̸= NPπ ∩ coNPπ relative to a random permutation π.
Whether PA = NPA ∩ coNPA holds relative to a random oracle A remains open. While the random
oracle separation has been extended to specific individually random oracles–such as Martin-Löf
random or resource-bounded random oracles–no analogous result is known for individually random
permutations.

We introduce a new resource-bounded measure framework for analyzing individually random
permutations. We define permutation martingales and permutation betting games that characterize
measure-zero sets in the space of permutations, enabling formal definitions of polynomial-time
random permutations, polynomial-time betting-game random permutations, and polynomial-space
random permutations.

Our main result shows that Pπ ̸= NPπ ∩ coNPπ for every polynomial-time betting-game random
permutation π. This is the first separation result relative to individually random permutations,
rather than an almost-everywhere separation. We also strengthen a quantum separation of Bennett,
Bernstein, Brassard, and Vazirani (1997) by showing that NPπ ∩coNPπ ̸⊆ BQPπ for every polynomial-
space random permutation π.

We investigate the relationship between random permutations and random oracles. We prove that
random oracles are polynomial-time reducible from random permutations. The converse–whether
every random permutation is reducible from a random oracle–remains open. We show that if
NP ∩ coNP is not a measurable subset of EXP, then PA ̸= NPA ∩ coNPA holds with probability
1 relative to a random oracle A. Conversely, establishing this random oracle separation with
time-bounded measure would imply BPP is a measure 0 subset of EXP.

Our framework builds a foundation for studying permutation-based complexity using resource-
bounded measure, in direct analogy to classical work on random oracles. It raises natural questions
about the power and limitations of random permutations, their relationship to random oracles, and
whether individual randomness can yield new class separations.
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1 Introduction

The seminal work of Bennett and Gill [4] established two foundational separations in
computational complexity theory:
1. PA ̸= NPA relative to a random oracle A with probability 1.
2. Pπ ̸= NPπ ∩ coNPπ relative to a random permutation π with probability 1.
Subsequent research extended the first separation to hold for specific, individually random
oracles, including algorithmically (Martin-Löf) random oracles [5], polynomial-space-bounded
random oracles [16], and polynomial-time betting-game random oracles [12]. However, the
second separation has not yet been strengthened in an analogous way. Whether PA ̸=
NPA ∩ coNPA holds relative to a random oracle A remains an open question.

In this paper, we develop a novel framework for resource-bounded permutation measure
and randomness, introducing permutation martingales and permutation betting games. These
concepts generalize classical martingales and betting games to the space Π of all length-
preserving permutations π : {0, 1}∗ → {0, 1}∗ where |π(x)| = |x| for all x ∈ {0, 1}∗.

1.1 Background
Bennett and Gill [4] initiated the study of random oracles in computational complexity,
proving that PA ≠ NPA for a random oracle A with probability 1. Subsequent work extended
this to individual random oracles. Book, Lutz, and Wagner [5] showed that PA ̸= NPA for
every oracle A that is algorithmically random in the sense of Martin-Löf [17]. Lutz and
Schmidt [16] improved this further to show PA ≠ NPA for every oracle A that is pspace-
random in the sense of resource-bounded measure [14]. Hitchcock, Sekoni, and Shafei [12]
extended this result to polynomial-time betting-game random oracles [6].

The complexity class NP ∩ coNP is particularly significant because it comprises problems
that have both efficiently verifiable proofs of membership and non-membership. This class
includes important problems such as integer factorization and discrete logarithm, which are
widely believed to be outside P but are not known to be NP-complete. These problems play
a central role in cryptography, as the security of widely-used cryptosystems relies on their
presumed intractability [22, 7]. Furthermore, under derandomization hypotheses, NP ∩ coNP
has been shown to contain problems such as graph isomorphism [13], further underscoring
its importance in complexity theory. Thus, understanding the relationship between P and
NP ∩ coNP relative to different notions of randomness could shed light on the structure of
these classes and the limits of efficient computation.

1.2 Our Approach: Permutation Martingales and Permutation Measure
In this work, we develop a novel framework for resource-bounded permutation measure
and randomness. We introduce permutation martingales and permutation betting games,
extending classical notions of random permutations. Our theory captures essential properties
of random permutations while enabling complexity separations. We prove that random
oracles can be computed in polynomial time from a random permutation; however, the
converse remains unresolved.

First, we recall the basics of resource-bounded measure. A martingale in Cantor space may
be viewed as betting on the membership of strings in a language. The standard enumeration
of {0, 1}∗ is s0 = λ, s1 = 0, s2 = 1, s3 = 00, s4 = 01, . . .. In the ith stage of the game, the
martingale has seen the membership of the first i strings and bets on the membership of si in
the language. The martingale’s value is updated based on the outcome of the bet. Formally,
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a classical martingale is a function d : {0, 1}∗ → [0,∞) satisfying the fairness condition

d(w) = d(w0) + d(w1)
2

for all strings w. Intuitively, d(w) represents the capital that a gambler has after betting on
the sequence of bits in w according to a particular strategy. The fairness condition ensures
that the expected capital after the next bit is equal to the current capital. A martingale
succeeds on a language A ⊆ {0, 1}∗ if lim sup

n→∞
d(A↾n) = ∞, where A↾n is the length-n prefix

of A’s characteristic sequence. The success set of d is S∞[d], the set of all sequences that d
succeeds on. Ville [25] proved that a set X has Lebesgue measure zero if and only if there is
a martingale that succeeds on all elements of X. Lutz [14] defined resource-bounded measure
by imposing computability and complexity constraints on the martingales in Ville’s theorem.

We take a similar approach in developing resource-bounded permutation measure. Unlike
a classical martingale betting on the bits of a language’s characteristic sequence, a permutation
martingale bets on the function values of a permutation π. Instead of seeing the characteristic
string of a language, a permutation martingale sees a list of permutation function values.
More precisely, after i ≥ 0 rounds of betting, a permutation martingale has seen a prefix
partial permutation

g = [g(s0), . . . , g(si−1)]

where |g(si)| = |si| for all i. The permutation martingale will bet on the next function value
g(si). The current betting length is l(g) = |si|, the length of the next string si in the standard
enumeration. The set of free strings available for the next function value is

free(g) =
{
x ∈ {0, 1}l(g) |x is not listed in g

}
.

For any prefix partial permutation g, a permutation martingale d outputs a value d(g, x) ≥ 0
for each x ∈ free(g). The values satisfy the averaging condition

d(g) = 1
|free(g)|

∑
x∈free(g)

d(g, x).

Here g, x denotes appending the string x as the next function value in prefix partial permuta-
tion g.

Prefix partial permutations may be used as cylinders to define a measure in Π that is
equivalent to the natural product probability measure. We detail this in Section 3. Briefly, a
class X ⊆ Π has measure 0 if for every ϵ > 0, there exists a sequence of cylinders {JgiK | i ∈ N}
that has total measure at most ϵ and covers X. This is difficult to work with computationally
as the covers may be large and require exponential time to enumerate.

We prove an analogue of Ville’s theorem [25], showing that permutation martingales
characterize measure 0 sets in the permutation space Π: a class X ⊆ Π has measure 0 if and
only if there a permutation martingale d with X ⊆ S∞[d]. This permutation martingale
characterization allows us to impose computability and complexity constraints in the same
way Lutz did for resource-bounded measure in Cantor space [14]. In the following, let ∆ be
a resource bound such as p, p2 , pspace, or p2space (see Section 3.5 for more details).

▶ Definition 1.1. Let ∆ be a resource bound. A class of permutations X ⊆ Π has ∆-measure
0 if there is a ∆-computable permutation martingale that succeeds on X.

MFCS 2025
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Betting games [6, 18] are a generalization of martingales that are allowed to bet on strings
in an adaptive order rather than the standard order. We analogously introduce permutation
betting games as a generalization of both permutation martingales and classical betting
games by allowing the betting strategy to adaptively choose the order in which it bets on the
permutation’s values. We use these betting games to define resource-bounded permutation
betting-game measure.

▶ Definition 1.2. Let ∆ be a resource bound. A class of permutations X ⊆ Π has ∆-betting
game measure 0 if there is a ∆-computable permutation betting game that succeeds on X.

We also define individually random permutations.

▶ Definition 1.3. Let π ∈ Π be a permutation and let ∆ be a resource bound.
1. π is ∆-random if no ∆-permutation martingale succeeds on π.
2. π is ∆-betting game random if no ∆-permutation betting game succeeds on π.

1.3 Our Results
Our main result strengthens the Bennett–Gill permutation separation by proving that
P ̸= NP ∩ coNP relative to every polynomial-time betting-game random permutation π.
Formally, Theorem 5.1 establishes that

Pπ ̸= NPπ ∩ coNPπ

for every p-betting-game random permutation π. In fact, we obtain even stronger separations
in terms of bi-immunity [8, 2], a notion formalizing the absence of infinite, easily-decidable
subsets (see Section 5 for more details). We show that for a p-betting-game random permuta-
tion π, the class NLINπ ∩ coNLINπ contains languages that are bi-immune to DTIMEπ(2kn)
for all k ≥ 1, where NLIN denotes nondeterministic linear time. Moreover, relative to a
p2 -betting-game random permutation, we derive that NPπ ∩ coNPπ contains languages that
are bi-immune to DTIMEπ(2nk ) for every k ≥ 1.

Bennett et al. [3] showed that NPπ ∩ coNPπ ̸⊆ BQTIMEπ(o(2n/3)) relative to a random
permutation π with probability 1. We apply our resource-bounded permutation measure
framework to improve this to individual space-bounded random oracles. Specifically, we show
that relative to a p2space-random permutation π,

NPπ ∩ coNPπ ̸⊆ BQPπ.

This illustrates the power of our framework for analyzing the interplay between randomness,
classical complexity, and quantum complexity.

1.4 Random Oracles and Measure 0-1 Laws in EXP
Tardos [23] proved that if AM ∩ coAM ̸= BPP, then PA ̸= NPA ∩ coNPA with probability 1
for a random oracle A. This is proved using ALMOST complexity classes. For a relativizable
complexity class C, its ALMOST-C class consists of all languages that are in the class with
probability 1 relative to a random oracle: ALMOST-C = {L | Pr[L ∈ CA] = 1}. We have
ALMOST-P = BPP [4] and ALMOST-NP = AM [20]. The condition AM ∩ coAM ̸= BPP
implies that there exist problems in ALMOST-NP∩ALMOST-coNP that are not in ALMOST-P.
Since the intersection of measure 1 classes is measure 1, this implies NPA ∩ coNPA ̸= PA
relative to a random oracle A with probability 1. Recent work of Ghosal et al. [9] shows
that if UP ̸⊆ RP, then PA ̸= NPA ∩ coNPA with probability 1 for a random oracle A. In
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Section 7 we pivot from permutation randomness to classical random oracles and show that
resolving the long-standing question “does PR = NPR∩ coNPR with probability 1?” is tightly
linked to quantitative structure inside EXP. Leveraging the conditional oracle separations
of Tardos [23] and of Ghosal et al. [9], we prove that if PR = NPR ∩ coNPR holds almost
surely, then several familiar subclasses of EXP obey strong 0-1 laws: specifically, either
NP ∩ coNP, UP ∩ coUP, (and, in a weaker form, UP vs. FewP) each has p-measure 0 or else
fills all of EXP. Consequently, non-measurability of any one of these classes immediately
forces PR ̸= NPR ∩ coNPR with probability 1. We further show that placing the same oracle
separation in p2 measure would collapse BPP below EXP, thereby framing the random-oracle
problem in terms of concrete measure-theoretic thresholds inside exponential time.

1.5 Organization
This paper is organized as follows: Section 2 contains preliminaries. Section 3 develops
permutation martingales, resource-bounded permutation measure, and random permutations.
Elementary properties of p-random permutations are presented in Section 4. In Section 5, we
prove our main results on random permutations for P vs. NP ∩ coNP. Section 6 contains our
results on NP ∩ coNP versus quantum computation relative to a random permutation. In
Section 7 we present our results on random oracles and 0-1 laws. We conclude in Section 8
with some open questions.

2 Preliminaries

The binary alphabet is Σ = {0, 1}, the set of all binary strings is Σ∗, the set of all binary
strings of length n is Σn, and the set of all infinite binary sequences is Σ∞. The empty
string is denoted by λ. We use the standard enumeration of strings, s0 = λ, s1 = 0, s2 =
1, s3 = 00, s4 = 01, . . .. The characteristic sequence of a language A is the sequence χA ∈ Σ∞,
where χA[n] = 1 ⇐⇒ sn ∈ A. We refer to χA[sn] = χA[n] as the characteristic bit of
sn in A. A language A can alternatively be seen as a subset of Σ∗, or as an element of
Σ∞ via identification with its characteristic sequence χA. Given strings x, y we denote by
[x, y] the set of all strings z such that x ≤ z ≤ y. For any string sn and natural number k,
sn + k is the string sn+k; e.g. λ+ 4 = 01. Similarly we denote by A[x, y] the substring of
the characteristic sequence χA that corresponds to the characteristic bits of the strings in
[x, y]. We use parentheses for intervals that do not include the endpoints. We write A↾n for
the length n prefix of A. A statement Sn holds infinitely often (written i.o.) if it holds for
infinitely many n, and it holds almost everywhere (written a.e.) if it holds for all but finitely
many n.

3 Permutation Martingales and Permutation Measure

3.1 Permutation Measure Space
Resource-bounded measure is typically defined in the Cantor Space C = {0, 1}∞ = 2N of all
infinite binary sequences. For measure in C, we use the open balls or cylinders Cw = w · C
that have measure µ(Cw) = 2−|w| for each w ∈ Σ∗. Let C be the σ-algebra generated by
{Cw | w ∈ {0, 1}∗}. Resource-bounded measure and algorithmic randomness typically work
in the probability space (C, C, µ).

We only consider permutations in Π, the set of permutations on {0, 1}∗ that preserve
string lengths. Given a permutation π ∈ Π, we denote by πn the permutation π restricted to
{0, 1}n i.e., πn is a permutation on {0, 1}n. Similarly, Πn denotes the set of permutations in

MFCS 2025
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Π restricted to {0, 1}n. Bennett and Gill [4] considered random permutations by placing the
uniform measure on each Πn and taking the product measure to get a measure on Π. We
now define this measure space more formally so we may place martingales on it.

Standard resource-bounded measure identifies a language A ⊆ {0, 1}∗ with its infinite
binary characteristic sequence χA ∈ C. For permutations, we analogously use the value
sequence consisting of all function values.

▶ Definition 3.1. The value sequence of a permutation f ∈ Π is the sequence

νf = [f(s0), f(s1), f(s2), . . .]

of function values where s0, s1, s2, . . . is the standard enumeration of {0, 1}∗.

We identify a permutation f ∈ Π with its value sequence νf . Initial segments of permutations
are called prefix partial permutations.

▶ Definition 3.2. A prefix partial permutation is a list g = [g(s0), . . . , g(sN−1)] of function
values for some N ≥ 0 where no value is repeated and |g(si)| = |si| for all 0 ≤ i < N . We let
PPΠ denote the class of all prefix partial permutations.

We write each g ∈ PPΠ as a list g = [g(s0), . . . , g(sN−1)]. The length of g is N , the
number of function values assigned, and is denoted |g|. We use [ ] to denote the empty list,
the list of length 0. We write f ↾N for the length N prefix partial permutation of f ∈ Π.

▶ Definition 3.3. For each g = [g(s0), . . . , g(sN−1)] ∈ PPΠ, the cylinder of all permutations
in Π that extend g is

JgK = {h ∈ Π | h(s0) = g(s0), . . . , h(sN−1) = g(sN−1)}.

For measure in Π, we are taking the uniform distribution on the set of all Πn of length-
preserving permutations for all n. Our basic open sets are {JgK | g ∈ PPΠ}. Suppose g ∈ PPΠ
has |g| = 2n − 1 for some n ≥ 0. Then, following Bennett and Gill [4], the measure

µ(JgK) =
n−1∏
k=0

1
(2k)!

is easy to define because the distribution is uniform over the (2k)! permutations at each
length. If 2n − 1 ≤ |g| < 2n+1 − 1, let m = |g| − 2n + 1 and then

µ(JgK) =
(
n−1∏
k=0

1
(2k)!

)
(2n −m)!

(2n)! =
(
n−1∏
k=0

1
(2k)!

)
1

P (2n,m) ,

where P (n, k) = n!
(n−k)! denotes the number of k-permutations on n elements. For convenience,

we commonly write µ(g) = µ(JgK).
Let FΠ = σ(PPΠ) be the σ-algebra generated by the collection of all JgK where g ∈ PPΠ.

By Carathéodory’s extension theorem, µ extends uniquely to FΠ, yielding the probability
space (Π,FΠ, µ). We will work in this probability space. Because µ is outer regular, we have
the typical open cover characterization of measure zero:

▶ Theorem 3.4. A class X ⊆ Π has measure 0 if and only if for every ϵ > 0, there is an
open covering G = {g0, g1, . . . , } ⊆ PPΠ such that

∞∑
i=0

µ(gi) < ϵ and X ⊆
∞⋃
i=0

JgiK.
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3.2 Permutation Martingales
In resource-bounded measure in Cantor Space, a martingale is a function d : Σ∗ → [0,∞)
such that for all w ∈ Σ∗, we have the following averaging condition:

d(w) = d(w0) + d(w1)
2 .

A martingale in Cantor space may be viewed as betting on the membership of strings in a
language. The standard enumeration of {0, 1}∗ is s0 = λ, s1 = 0, s2 = 1, s3 = 00, s4 = 01, . . ..
In the ith stage of the game, the martingale has seen the membership of the first i strings
and bets on the membership of si in the language. The martingale’s value is updated based
on the outcome of the bet. For further background on resource-bounded measure, we refer
to [14, 15, 1, 6, 10].

A permutation martingale operates similarly, but instead of betting on the membership
of a string in a language it bets on the next function value of the permutation. Instead of
seeing the characteristic string of a language, a permutation martingale sees a prefix partial
permutation, which is a list of permutation function values g = [g(s0), . . . , g(si−1)] satisfying
|g(si)| = |si| for all i. The permutation martingale will bet on the next function value g(si).
The current betting length is the length of the next string s|g| in the standard enumeration:
l(g) = |s|g||. The set of free strings available for the next function value is

free(g) = {x ∈ {0, 1}l(g) | x is not in g}.

For example, free([λ]) = {0, 1}, free([λ, 1, 0, 11]) = {00, 01, 10}, and free([λ, 1, 0, 11, 00, 01]) =
{10}.

We now introduce our main conceptual contribution, permutation martingales.

▶ Definition 3.5. A permutation martingale is a function d : PPΠ → [0,∞) such that for
every prefix partial permutation g ∈ PPΠ,

d(g) = 1
|free(g)|

∑
x∈free(g)

d(g, x),

where (g, x) is the result of appending x to g.

Success is defined for permutation martingales analogously to success for classical martin-
gales.

▶ Definition 3.6. Let d be a permutation martingale. We say d succeeds on f ∈ Π if

lim sup
N→∞

d(f ↾N) = ∞.

The success set of d is

S∞[d] = {f ∈ Π | d succeeds on f}

and the unitary success set of d is the set

S1[d] = {f ∈ Π | (∃n) d(f ↾n) ≥ 1}.

We establish the analogue of Ville’s theorem [25] for measure in Π and permutation
martingales:

▶ Theorem 3.7. The following statements are equivalent for every X ⊆ Π:
1. X has measure 0.
2. For every ϵ > 0, there is a permutation martingale d with d(λ) < ϵ and X ⊆ S1[d].
3. There is a permutation martingale d with X ⊆ S∞[d].

MFCS 2025
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3.3 A Permutation Martingale Example
We construct a permutation martingale d that succeeds on any length-preserving permutation
whose restriction to length n is a cycle permutation for all but finitely many n. We partition
the initial capital into infinitely many shares ai = 1/i2. For each i, the share ai is used to
bet on the event that, for all n ≥ i, the length-n restriction of the permutation is a cycle
permutation.

The betting strategy is simple: when moving from length n − 1 to n, the martingale
wagers all relevant capital on the image of the n-bit string 1n−10. In the final step of forming
a cycle of length 2n, there are exactly two choices for the image of 1n−10. One choice yields
a cycle of length 2n; the other does not. Since it is a binary choice, the martingale places its
entire stake ai (for all i ≤ n) on the cycle outcome, thereby doubling its capital whenever
the cycle is formed.

Hence, on any permutation whose restriction to length n is a cycle permutation for all
but finitely many n, infinitely many of these bets succeed. Consequently, each of those
corresponding shares ai grows without bound, and so the overall martingale d succeeds on
all such permutations.

3.4 Permutation Martingales as Random Variables
Hitchcock and Lutz [11] showed how the martingales used in computational complexity are
a special case of martingales used in probability theory. We explain how this extends to
permutation martingales. Given a martingale d : {0, 1}∗ → [0,∞), Hitchcock and Lutz
define the random variable ξd,n : C → [0,∞) by ξd,n(S) = d(S ↾ n) for each n ≥ 0. Let
Mn = σ({Cw | w ∈ {0, 1}n}) be the σ-algebra generated by the cylinders of length n. Then
the sequence (ξd,n | n ≥ 0) is a martingale in the probability theory sense with respect to
the filtration (Mn | n ≥ 0): for all n ≥ 0, E[ξd,n+1 | Mn] = ξd,n.

Similarly, given a permutation martingale d : PPΠ → [0,∞), for each N we can define
the random variable Xd,N : Π → [0,∞) by Xd,N (f) = d(f ↾N) for each N ≥ 0. Let

GN = σ({JgK | g ∈ PPΠ and |g| = N})

be the σ-algebra generated by the cylinders in PPΠ of length N . Then (Xd,N | N ≥ 0) is a
martingale in the probability theory sense with respect to the filtration (GN | N ≥ 0): for all
N ≥ 0, E[Xd,N+1 | GN ] = Xd,N .

3.5 Resource-Bounded Permutation Measure
We follow the standard notion of computability for real-valued functions [14] to define
resource-bounded permutation martingales.

▶ Definition 3.8. Let d : PPΠ → [0,∞) be a permutation martingale.
1. d is computable in time t(n) if there is an exactly computable d̂ : PPΠ × N → Q such

that for all f ∈ PPΠ and r ∈ N, |d(f) − d̂(f, r)| ≤ 2−r and d̂(f, r) is computable in time
t(|f | + r).

2. d is computable in space s(n) if there is an exactly computable d̂ : PPΠ × N → Q such
that for alll f ∈ PPΠ and r ∈ N, |d(f) − d̂(f, r)| ≤ 2−r and d̂(f, r) is computable in space
s(|f | + r).

3. If d is computable in polynomial time, then d is a p-permutation martingale.
4. If d is computable in quasipolynomial time, then d is a p2-permutation martingale.
5. If d is computable in polynomial space, then d is a pspace-permutation martingale.
6. If d is computable in quasipolynomial space, then d is a p2space-permutation martingale.
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We are now ready to define resource-bounded permutation measure.

▶ Definition 3.9. Let ∆ ∈ {p, p2 , pspace, p2space}. Let X ⊆ Π and Xc = Π − X be the
complement of X within Π.
1. X has ∆-measure 0, written µ∆(X) = 0, if there is a ∆-computable permutation martin-

gale d with X ⊆ S∞[d].
2. X has ∆-measure 1, written µ∆(X) = 1, if µ∆(Xc) = 0

▶ Definition 3.10. Let ∆ ∈ {p, p2 , pspace, p2space}. A permutation π ∈ Π is ∆-random if π
is not contained in any ∆-measure 0 set.

Equivalently, π is ∆-random if no ∆-martingale succeeds on π.

3.6 Permutation Betting Games
Originated in the field of algorithmic information theory, betting games are a generalization
of martingales [19, 18], which were introduced to computational complexity by Buhrman
et al. [6]. Similar to martingales, betting games can be thought of as strategies for betting
on a binary sequence, except that with betting games we have the additional capability of
selecting which position in a sequence to bet on next. In other words, a betting game is
permitted to select strings in a nonmonotone order, with the important restriction that it
may not bet on the same string more than once (see Buhrman et al. [6] for more details).

A permutation betting game is a generalization of a permutation martingale, implemented
by an oracle Turing machine, where it is allowed to select strings in nonmonotone order.
Prefixes of permutation betting games can be represented as ordered partial permutations
defined below.

▶ Definition 3.11. An ordered partial permutation is a list g = [(x1, y1), . . . , (xn, yn)] of
pairs of strings for some n ≥ 0 where for all 1 ≤ i < j ≤ n, xi ̸= xj and yi ̸= yj, and
|xi| = |yi| for all 1 ≤ i ≤ n. We let OPΠ denote the class of all ordered partial permutations.

For a permutation betting game, the averaging condition takes into consideration the length
of the next string to be queried as follows. Let w ∈ OPΠ be the list of queried strings paired
with their images, and a ∈ {0, 1}n be the next string the betting game will query. Define
free(w, n) to be the set of length-n strings that are available for the next function value,
i.e., length-n strings that are not the function value of any of the queried strings. Then the
following averaging condition over free strings of length n must hold for the permutation
betting game d : OPΠ → [0,∞)

d(w) =
∑

b∈free(w,n)

d(w[a, b])
|free(w, n)|

where w[a, b] is the list w appended with the pair (a, b).

▶ Definition 3.12. A betting game is a t(n)-time betting game if for all n, all strings of
length n have been queried by time t(2n).

We define betting game measure 0 and betting game randomness analogously.

▶ Definition 3.13. Let ∆ ∈ {p, p2 , pspace, p2space}.
1. A class X ⊆ Π has ∆-betting-game measure 0 if there is a ∆-computable permutation

betting game d with X ⊆ S∞[d].
2. A permutation π ∈ Π is ∆-betting game random if no ∆-betting game succeeds on π.
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3.7 Measure Conservation
Lutz’s Measure Conservation Theorem implies that resource-bounded measure gives nontrivial
notions of measure within exponential-time complexity classes: µp(E) ̸= 0 and µp2

(EXP) ̸= 0.
Let PermE be the class of length-preserving permutations that can be computed in 2O(n)

time and PermEXP be the class of length-preserving permutations that can be computed in
2nO(1) time. We show that our notions of permutation measure have conservation theorems
within these classes of exponential-time computable permutations.

▶ Lemma 3.14. For any t(2n)-time permutation martingale D, we can construct a permuta-
tion in time O(22nt(2n)) that is not covered by D.

The following theorem follows from Lemma 3.14.

▶ Theorem 3.15.
1. PermE does not have p-permutation measure 0.
2. PermEXP does not have p2-permutation measure 0.

Proving similar results for betting games turns out to be more challenging, given that
they are allowed to bet on strings in an adaptive order. To address this, we define the
following class of honest betting games.

▶ Definition 3.16. A log(t(2n))-honest t(n)-permutation betting game is a t(n)-time per-
mutation betting game such that for all languages A, for all n, all non-zero bets by time t(2n)
are for strings of length at most log(t(2n)).

We use this definition in the following Lemma:

▶ Lemma 3.17. For any log(t(2n))-honest t(2n)-permutation betting game G, we can con-
struct a permutation in O(2nt(2n)2) time that is not covered by G.

▶ Theorem 3.18.
1. PermE does not have O(n)-honest p-permutation betting game measure 0.
2. PermEXP does not have O(nk)-honest p2-permutation betting game measure 0.

Since pspace-permutation martingales can simulate O(n)-honest p-betting-games, and
p2space-permutation martingales can simulate O(nk)-honest p2 -betting-games, we have the
following:

▶ Proposition 3.19. Let π be a permutation.
1. If π is a pspace-random permutation, then π is O(n)-honest p-betting game random.
2. If π is a p2space-random permutation, then π is O(nk)-honest p2-betting game random.

4 Elementary Properties of Random Permutations

In this section, we explore fundamental properties of random permutations that provide
insights into how permutation martingales and betting games operate. Understanding these
properties is crucial for applying permutation randomness in computational complexity. We
show that random permutations are computationally difficult to compute and to invert. We
then investigate the relationship between random permutations and random oracles, showing
how random permutations can generate random oracles.
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4.1 Intractability of Random Permutations
▶ Definition 4.1. A permutation π ∈ Π is noticeably polynomial time if there are polynomials
p, q and TM M such that for infinitely many n, M computes π on at least 2n/p(n) strings
of length n in q(n) time for each string.

▶ Theorem 4.2. The set X = {π ∈ Π | πn is noticeably polynomial time} has p-permutation
measure 0.

The proof uses a simple averaging argument: we partition the set of length-n strings into
2n/nlgn subintervals, each of size nlgn. By the noticeably-polynomial-time property of the
permutations in X, at least one subinterval contains superpolynomially many strings whose
images are computable. The martingale then identifies a sufficiently small subset of these
strings and makes correct predictions often enough to succeed.

▶ Corollary 4.3. If π ∈ Π is p-random, then any polynomial-time TM will be able to compute
π on at most a 1/poly fraction for all sufficiently large n.

Similarly, we can show that random permutations are hard to invert on a noticeable subset
infinitely often. The main difference is that we search for TMs inverting the permutation
rather than TMs that compute the permutation.

▶ Definition 4.4. A permutation π ∈ Π is noticeably invertible if there is a polynomial-time
TM M and a polynomial p such that for infinitely many n, |{x ∈ {0, 1}n | M(π(x)) = x}| ≥
2n/p(n).

▶ Theorem 4.5. The set X = {π ∈ Π | πn is noticeably invertible} has p-permutation
measure 0.

4.2 Random Permutations versus Random Oracles
Bennett and Gill used random permutations, rather than random languages, to separate P
from NP ∩ coNP. It is still unknown whether random oracles separate P from NP ∩ coNP. In
this section, we examine how random permutations yield random languages. We show that a
p-random permutation can be used to generate a p-random language. All of the results in
this section are stated for p-randomness. They also hold for p2 -randomness.

Given a permutation π ∈ Π, we define the language

Lπ = {x | the first bit of π(02|x|x) is 1}.

For a set of permutations X ⊆ Π, we define the set of languages

LX = {Lπ | π ∈ X}.

▶ Lemma 4.6. For any set of permutations X ⊆ Π, if a p-computable martingale d succeeds
on the set of languages LX = {Lπ | π ∈ X}, then there is a p-computable permutation
martingale that succeeds on X.

▶ Corollary 4.7. If π is a p-random permutation, then Lπ is a p-random language.

We now extend the previous lemma to honest p-permutation betting games. By Lemma
3.17, honest p-permutation betting games do not cover PermE and honest p2-permutation
betting games do not cover PermEXP.
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▶ Lemma 4.8. For any set of permutations X ⊆ Π, if an honest p-betting game g succeeds
on the set of languages LX = {Lπ | π ∈ X}, then there is an honest p-permutation betting
game that succeeds on X.

▶ Definition 4.9. Give a language L, we define ΠL to be set of permutations

ΠL =

π ∈ Π

∣∣∣∣∣∣
for all n > 0 and x ∈ {0, 1}n,
π(02nx) = by for some y ∈ {0, 1}3n−1

if and only if L[x] = b

 .

Given a set of languages X, we define ΠX as the set of permutations ΠX =
⋃
L∈X ΠL.

▶ Lemma 4.10. For any set of languages X ⊆ {0, 1}∞, if a p-computable permutation
martingale d succeeds on the set of permutations ΠX , then there is a p-computable martingale
that succeeds on X.

▶ Corollary 4.11. If π is a p-betting game random permutation, then Lπ is a p-betting game
random language.

5 Random Permutations for NP ∩ coNP

Bennett and Gill [4] studied the power of random oracles in separating complexity classes.
In particular, they showed that PA ̸= NPA relative to a random oracle with probability 1.
However, they were not able to separate P from NP ∩ coNP relative to a random oracle. They
also made the observation that if PA = NPA ∩ coNPA for a random oracle A, then PA must
include seemingly computationally hard problems such as factorization. They also proved
that any non-oracle-dependent language that belongs to PA with probability 1, also belongs to
BPP. As a result, if PA = NPA ∩ coNPA for a random oracle A with probability 1, then these
difficult problems in NP ∩ coNP would be solvable in probabilistic polynomial time (BPP).
To achieve a separation between PA and NPA ∩ coNPA, they considered length-preserving
permutations on {0, 1}∗ and showed that Pπ ≠ NPπ∩coNPπ for every random permutation π.

Using resource-bounded permutation betting games on the set of all length preserving
permutations of {0, 1}⋆, we strengthen the Bennett-Gill permutation separation, proving
that Pπ ̸= NPπ ∩ coNPπ for any p-betting-game random permutations π. More generally,
we show that the set of permutations π such that, NPπ is not DTIMEπ(2kn)-bi-immune
has p-permutation-betting-game measure 0. Recall that a language L is bi-immune to a
complexity class C if no infinite subset of L or its complement is decidable in C [8, 2].

The following is our main theorem where its first part states that relative to a p-betting-
game random permutation π, there is a language L in NLINπ ∩ coNLINπ such that no infinite
subset of L or its complement is DTIMEπ(2kn)-decidable.

▶ Theorem 5.1.
1. If π is a p-betting-game random permutation, then NLINπ ∩ coNLINπ contains a

DTIMEπ(2kn)-bi-immune language for all k ≥ 1.
2. If π is a p2-betting-game random permutation, then NPπ∩coNPπ contains a DTIMEπ(2nk )-

bi-immune language for all k ≥ 1.
Our headline result is a corollary of Theorem 5.1.

▶ Corollary 5.2. If π is a p-betting-game random permutation, then Pπ ̸= NPπ ∩ coNPπ.
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To prove Theorem 5.1, we first define the following test languages. For each k ≥ 1, define
the “half range” test languages

HRNGπk = {x | ∃ y ∈ {0, 1}k|x|−1, π(0y) = xk}

= {x | ∀ y ∈ {0, 1}k|x|−1, π(1y) ̸= xk},

and

POLYHRNGπk = {x | ∃ y ∈ {0, 1}|x|k−1, π(0y) = x|x|k−1
}

= {x | ∀ y ∈ {0, 1}|x|k−1, π(1y) ̸= x|x|k−1
}.

A string x ∈ {0, 1}n belongs to HRNGπk if the preimage of xk (k copies of x) in {0, 1}kn
begins with 0. If x does not belong to HRNGπk , then the preimage of xk begins with 1. In
either case, the preimage serves as a witness for x. The language POLYHRNGπk is similar,
but we are looking for a preimage in {0, 1}nk of xnk−1 (nk−1 copies of x). It follows that

HRNGπk ∈ NLINπ ∩ coNLINπ

and

HRNGπk ∈ NTIMEπ(nk) ∩ coNTIMEπ(nk)

for all k ≥ 1.
The following lemma implies Theorem 5.1.

▶ Lemma 5.3. Let k ≥ 0.
1. The set X = {π ∈ Π | HRNGπk+3 is not DTIME(2kn)π−immune} has O(n)-honest p-

permutation-betting-game measure 0.
2. The set X = {π ∈ Π | POLYHRNGAk+1 is not DTIME(2nk )π−immune} has O(nk)-honest

p2-permutation-betting-game measure 0.

By symmetry of NLINπ ∩ coNLINπ and NTIMEπ(nk) ∩ coNTIMEπ(nk), Lemma 5.3 also
applies to the complement of HRNGπk+3 and POLYHRNGπk+1. Therefore, both languages are
bi-immune and Theorem 5.1 follows.

Combining Lemma 5.3 with Proposition 3.19 also gives the following corollary. In the
next section we will prove more results about pspace-random permutations.

▶ Corollary 5.4.
1. If π is a pspace-random permutation, then NLINπ ∩ coNLINπ contains a DTIMEπ(2kn)-bi-

immune language for all k ≥ 1.
2. If π is a p2space-random permutation, then NPπ ∩ coNPπ contains a DTIMEπ(2nk )-bi-

immune language for all k ≥ 1.

6 Random Permutations for NP ∩ coNP versus Quantum
Computation

Bennett, Bernstein, Brassard, and Vazirani [3] showed that NPπ∩coNPπ ̸⊆ BQTIMEπ(o(2n/3))
relative to a random permutation π with probability 1. In this section we investigate how
much of their result holds relative to individual random oracles at the space-bounded level.

We begin with a general lemma about test languages and QTMs. We write PPΠ≤n =
{g ∈ PPΠ | |g| ≤ 2n+1 − 1} for all prefix partial permutations defined on strings in {0, 1}≤n.
For a string si in the standard enumeration, we write g ↾si for the length i prefix of g. In
other words, g ↾si = [g(s0), . . . , g(si−1)].
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▶ Lemma 6.1. Let π be a permutation with an associated test language Lπ and let p(n)
and q(n) be polynomials. If for some oracle QTM M and some function l(n) the following
conditions hold, then π is not a pspace-random permutation.
1. The membership of 0n in Lπ depends on the membership of the strings of length at most

p(n).
2. Mπ decides Lπ with error probability δ, for some constant 0 < δ < 1, and queries only

strings of length at most l(n).
3. For any partial prefix permutation ρ ∈ PPΠ≤l(n), the conditional probability

Pr
|ψ|=l(n)

[
Mψ(0n) = Lψ(0n)

∣∣ ρ ⊑ ψ
]

is computable in (|ρ| + 2n)O(1) space.
4. For some constant 1 > ϵ > δ and for all but finitely many n,

Pr
|ψ|=l(n)

[
Mψ(0n) = Lψ(0n)

∣∣ π ↾0n ⊑ ψ
]
< 1 − ϵ.

In the following Theorem, we use Lemma 6.1 to extend the result by Bennett, Bernstein,
Brassard, and Vazirani [3] to pspace-random permutations.

▶ Theorem 6.2. If π is a pspace-random permutation, then NLINπ∩coNLINπ is not contained
in BQPπ.

We now refine the previous result by considering more restricted quantum machines
that only query strings of O(n) length. This restriction allows us to extend the result to
machines with running time o(2n/3), analogous to the result of Bennett et al. [3]. Whether
this extension holds without the restriction on query length remains an open problem.

▶ Theorem 6.3. If π is a pspace-random permutation and T (n) = o(2n/3), then NLINπ ∩
coNLINπ is not contained BQTIMEπ,O(n)-honest(T (n)).

Together, these theorems extend the classical separation of Bennett et al. [3] to individual
pspace-random permutations, both in the general and the honest-query setting.

7 Random Oracles for NP ∩ coNP and 0-1 Laws for Measure in EXP

Tardos [23] used the characterizations

BPP = ALMOST-P =
{
A
∣∣PrR

[
A ∈ PR

]
= 1

}
[4]

and

AM = ALMOST-NP =
{
A
∣∣∣PrR

[
A ∈ NPR

]
= 1

}
[20]

to prove the following conditional theorem separating P from NP ∩ coNP relative to a random
oracle.

▶ Theorem 7.1 (Tardos [23]). If AM ∩ coAM ̸= BPP, then PR ̸= NPR ∩ coNPR for a random
oracle R with probability 1.

Recently, Ghosal et al. [9] used non-interactive zero-knowledge (NIZK) proofs to prove a
similar conditional theorem.
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▶ Theorem 7.2 (Ghosal et al. [9]). If UP ̸⊆ RP, then PR ̸= NPR ∩ coNPR for a random
oracle R with probability 1.

In this section we use Theorems 7.1 and 7.2 to connect the open problem of P versus
NP∩coNP relative to a random oracle to open questions about the resource-bounded measure
of complexity classes within EXP. In particular, we relate the problem to measure 0-1 laws
and measurability in EXP. First, we need the following derandomization lemma. The first
two parts follow from previous work, while the third part of the lemma is a new observation
as far as we know, though its proof uses the techniques from the proofs of the first two parts.

▶ Lemma 7.3.
1. If µp(NP) ̸= 0, then BPP ⊆ NP ∩ coNP = AM ∩ coAM.
2. If µp(UP ∩ coUP) ̸= 0, then BPP ⊆ UP ∩ coUP.
3. If µp(FewP) ̸= 0, then BPP ⊆ FewP ∩ coFewP.

In the following theorem, we have three hypotheses where a complexity class X is assumed
to be not equal to EXP and the p-measure of a subclass of X is concluded to be 0.

▶ Theorem 7.4. Suppose that PR = NPR ∩ coNPR for a random oracle R with probability 1.
Then all of the following hold:
1. NP ̸= EXP ⇒ µp(NP ∩ coNP) = 0.
2. UP ̸= EXP ⇒ µp(UP ∩ coUP) = 0.
3. FewP ̸= EXP ⇒ µp(UP) = 0.

Theorem 7.4 has the following corollary about measure 0-1 laws in EXP. We recall the
definitions µ(X | EXP) = 0 if µp2

(X ∩ EXP) = 0 and µ(X | EXP) = 1 if µp2
(Xc | EXP) = 0

[14].

▶ Corollary 7.5. Suppose that PR = NPR ∩ coNPR for a random oracle R with probability 1.
Then all of the following hold:
1. µ(NP ∩ coNP | EXP) ∈ {0, 1}.
2. µ(UP ∩ coUP | EXP) ∈ {0, 1}.
3. µ(UP | EXP) = 0 or µ(FewP | EXP) = 1.

In the third case of Corollary 7.5, we almost have a 0-1 law for UP. Can a full 0-1 law be
obtained?

The contrapositives of the implications in Corollary 7.5 show that the random oracle
question for P versus NP∩coNP is resolved under nonmeasurability hypotheses. A complexity
class X is defined to be not measurable in EXP if µ(X | EXP) ̸= 0 and µ(X | EXP) ̸= 1
[15, 21].

▶ Corollary 7.6.
1. If NP ∩ coNP is not measurable in EXP, then PR ≠ NPR ∩ coNPR for a random oracle R

with probability 1.
2. If UP ∩ coUP is not measurable in EXP, then PR ̸= NPR ∩ coNPR for a random oracle R

with probability 1.
3. If UP and FewP are both not measurable in EXP, then PR ̸= NPR ∩ coNPR for a random

oracle R with probability 1.

On the other hand, if the consequence of Corollary 7.6 can be proved with measure in
EXP, then we would have BPP ̸= EXP, which implies µ(BPP | EXP) = 0 by the 0-1 law for
BPP [24].
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▶ Theorem 7.7. If {A | PA = NPA∩coNPA} has measure 0 in EXP, then µ(BPP | EXP) = 0.

These results suggest that resolving whether PR = NPR ∩ coNPR relative to a random
oracle requires a deeper understanding of the resource-bounded measurability within EXP of
fundamental subclasses such as BPP, NP, UP, and FewP.

8 Conclusion

We have introduced resource-bounded random permutations and shown that Pπ ≠ NPπ ∩
coNPπ for all p-betting-game random permutations. We remark that all of the results in
Sections 5 and 6 about NLIN ∩ coNLIN and NP ∩ coNP hold for their unambiguous versions
ULIN∩coULIN and UP∩coUP, respectively. An interesting open problem is whether our main
theorem can be improved from betting-game random permutations to random permutations.

▶ Question 8.1. Does Pπ ̸= NPπ ∩ coNPπ for a p-random permutation π?

More generally, the relative power of permutation martingales versus betting games
should be investigated.

▶ Question 8.2. Are polynomial-time permutation martingales and permutation betting
games equivalent?

We proved two restricted versions of the Bennett et al. [3] random permutation separation.
Does the full version hold relative to individual random permutations?

▶ Question 8.3. If π is a pspace-random permutation and T (n) = o(2n/3), is NLINπ∩coNLINπ

not contained in BQTIMEπ(T (n))?
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