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Abstract
We investigate the reachability problem in symmetric vector addition systems with states (vass),
where transitions are invariant under a group of permutations of coordinates. One extremal case,
the trivial groups, yields general vass. In another extremal case, the symmetric groups, we show
that the reachability problem can be solved in PSpace, regardless of the dimension of input vass
(to be contrasted with Ackermannian complexity in general vass). We also consider other groups, in
particular alternating and cyclic ones. Furthermore, motivated by the open status of the reachability
problem in data vass, we estimate the gain in complexity when the group arises as a combination of
the trivial and symmetric groups.
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1 Introduction

Petri nets, equivalently presentable as vector addition systems with states (vass), are an
established model of concurrency with widespread applications. The central algorithmic
problem for this model is the reachability problem which asks whether from a given initial
configuration there exists a sequence of valid execution steps reaching a given final configura-
tion. The decidability of the problem was established in 1981 by Mayr [19], and subsequently
improved by Kosaraju [11] and Lambert [12]. The exponential space lower bound was shown
by Lipton already in 1976 [18]. For around 40 years these were the only known complexity
bounds, and the complexity of the problem remained for a long time as one of the hardest
open questions in the verification of concurrent systems. Only in the last few years we
have seen a sudden progress, namely an Ackermannian upper bound [17], a breakthrough
non-elementary lower bound [3, 4], and finally the matching Ackermannian lower bound
(independently [5] and [16]).

All the above-mentioned bounds are more fine-grained and apply to the problem para-
metrised by the dimension, where the input is restricted to d-dimensional vass (d-vass) for
fixed d ∈ N. Both the upper and lower bounds have been subsequently further improved
[14, 2, 9], and currently the reachability problem for d-vass is known to belong to the
complexity class Fd, and for (2d + 3)-vass it is known to be Fd-hard. Here Fd denotes the
dth level of the hierarchy of complexity classes corresponding to Grzegorczyk’s fast growing
function hierarchy. For instance, the currently best lower bound of [2] shows the reachability
problem for 9-vass to be hard for the class F3 = Tower. Subsequently, [6] proved the same
complexity bound even for 8-vass. Summing up, for sufficiently large dimensions the lower
bound is prohibitive.
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Symmetric VASS. In this paper we investigate subclasses of d-vass which are symmetric,
meaning their sets of transitions are invariant under certain permutations of the coordinates
{1, . . . , d}. Our study is parametric in the choice of a group of permutations G ≤ Sd of
coordinates, and our objective is to analyze the gain in complexity to be achieved when
the input to the reachability problem is restricted to G-vass, the subclass of those d-vass
whose sets of transitions are invariant under permutations σ ∈ G. In one extreme case,
when G is the trivial permutation group Id containing just the identity permutation, G-vass
are just general d-vass. In another extreme case, when G = Sd is the symmetric group of
degree d, transitions of G-vass are invariant under all permutations of coordinates. The
two extreme cases may be combined. For instance, one can consider the permutation group
G = In ≀ Sd ≤ Snd of degree nd containing all permutations that are identity inside each of
the n-element blocks:

{1, . . . , n}, {n + 1, . . . , 2n}, . . . , {n(d − 1) + 1, . . . , nd},

but permute arbitrarily the whole blocks.
Our principal motivation is to exploit symmetry of a model in order to lower the

prohibitively high complexity of the reachability problem in the general case. Another
motivation comes from the model of data vass [13, 15, 20] extending plain vass with data.
In terms of Petri nets, the extension allows tokens to carry data value coming from some
infinite countable set, and allows transitions to test (dis)equalities between data values of
involved tokens. When G = In ≀ Sd ≤ Snd, the G-vass are exactly data vass of dimension
n, where the set of data values is restricted to be finite1, of size d. It is not known if the
reachability problem is decidable for data vass, and our current study may shed some more
light on this hard open problem.

Contribution. Intuitively speaking, the larger the group G, the lower the complexity of
the reachability problem, since whenever G ≤ H, every H-vass is automatically a G-vass.
The main contribution of this paper is twofold. First, we concentrate on the potentially
easiest cases, namely symmetric groups Sd, and discover a huge complexity drop: regardless
of dimension d ≥ 2, the reachability problem is PSpace-complete for vass invariant under
symmetric groups.2 We also prove the same complexity for another potentially easy case,
namely for the alternating groups Ad: again, regardless of dimension d ≥ 3, the reachability
problem is PSpace-complete for vass invariant under alternating groups. Both the PSpace
decision procedures are designed for a fixed dimension d, but work equally well when d is part
of input. We thus get uniform PSpace upper bound for vass invariant under symmetric
(resp. alternating) groups. At the other side, we prove that cyclic groups Zd are hard, namely
the reachability problem for d-vass invariant under Zd is as hard as in Θ(d)-vass.

The case of trivial group G = Id coincides with general d-vass. As our second contribution
we investigate combinations of symmetric groups and trivial groups, providing one positive
and one negative result. On one hand, when G = In ≀ Sd ≤ Snd (as discussed above) and
n ≥ 2, the reachability problem is as hard as in case of (n − 1)d-vass. From the perspective
of data vass this may be interpreted as a bad news: the complexity grows with the increasing
number d of data values. On the other hand, we investigate another combination of the

1 The other way around, the n-dimensional data vass can be defined as G-vass, where G = In ≀ Sω

combines the trivial group In with the symmetric group Sω of infinite countable degree.
2 In dimension 1 the permutation group G is irrelevant, and the problem is NL- or NP-complete, for

input represented in unary or binary, respectively [10].
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two groups, namely G = Sd ≀ In ≤ Sdn containing all permutations that independently and
arbitrarily permute each of d-element blocks:

{1, . . . , d}, {d + 1, . . . , 2d}, . . . , {d(n − 1) + 1, . . . , dn},

but preserve each of the blocks. In this case we provide an exponential-time reduction to
n-vass, i.e., this time the complexity is independent of the degree d of the symmetric group.
The complexity in this case is thus (significantly) lower than for In ≀ Sd. This is in agreement
with In ≀ Sd being a subgroup of Sd ≀ In, up to isomorphism of permutation groups.

2 Symmetric VASS

As usual, let Z,N denote integers and nonnegative integers, respectively. The value of the
ith coordinate of a vector w ∈ Zd is written as w(i), namely w = (w(1), . . . , w(d)), i.e., we
identify a vector with a function w : [d] → Z, where [d] = {1, . . . , d}. The norm of a vector
v ∈ Zd is the maximum of absolute values of its coordinates, i.e., ||v|| = maxi∈[d] |v(i)|. Then
the norm of a set of vectors X is defined as ||X|| = maxv∈X ||v||. For n ∈ Z, by n we denote
the constant vector n = (n, . . . , n) ∈ Zd, in the dimension d to be always determined by the
context. For a finite set X, by |X| ∈ N we denote its size.

Vector addition systems with states. For d ∈ N+ = N\{0}, we define d-dimensional vector
addition systems with states, denoted shortly as d-vass, or simply vass when the dimension
d is irrelevant or clear from the context. A d-vass V = (Q, T ) consists of a finite set Q of
states and a finite set of transitions T ⊆ Q × Zd × Q. A configuration c of V consists of
a state q ∈ Q and a nonnegative vector w ∈ Nd, and is written as c = q(w). A transition
t = (q, v, q′) induces steps

q(w) t−→ q′(w′) (1)

between configurations, where w′ = w + v. We refer to the vector v ∈ Zd as the effect of the
transition (q, v, q′) or of an induced step. The norm of a transition t = (q, v, q′) is defined as
||t|| := ||v||. Similarly, for a configuration c = q(w), we define ||c|| := ||w||. The norm of a
vass V is the maximal norm of its transitions, i.e., ||V|| := maxt∈T ||t||.

A run π in V is a sequence of steps with the proviso that the target configuration of every
step matches the source configuration of the next one:

π = c0
t1−→ c1 −→ . . .

tn−→ cn. (2)

We say that the run π is from c0 to cn, call c0, cn the source and the target configuration of
the run, respectively, and write c0

π−→ cn. When the source configuration c0 is clear from
the context, we may identify a run (2) from c0 with the sequence t1 . . . tn of transitions fired.
The effect of a run is the sum of effects of all steps, and its length is the number n of steps.
We also write c −→ c′ if there is some run from c to c′. We often use the natural operation
of concatenation of runs: if α : c −→ c′ and β : c′ −→ c′′ then (α; β) : c −→ c′′, assuming
that the target configuration of the former run coincides with the source configuration of
the latter one. For convenience, we allow ourselves to drop this assumption and use the
convention that the latter run β is implicitly shifted so that its source matches the target
of α, as long as the shifted β is still a run. Under this convention, we write αn for n-fold
concatenation of α.

In the sequel we refer to the state graph of a vass V = (Q, T ), a directed graph (Q, E)
whose nodes are states Q, and edges E ⊆ Q2 are those pairs (q, q′) for which there is a
transition (q, v, q′) ∈ T , for some v ∈ Zd. This graph may contain self-loops.
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Reachability problem. One of the most fundamental computational problems studied in the
setting of vass is the reachability problem (for the sake of this paper we prefer to formulate
the problem for a fixed dimension d):

d-vass-Reach: given a d-vass V together with two configurations, source s and target
t, one asks if V has a run from s to t.

Complexity of this problem in subclasses of symmetric vass, to be defined below, is the
main topic studied in this paper. An input to the problem is a triple (V, s, t). For simplicity,
such a triple (V, s, t), or a pair (V, s) with just the source state, we also call a vass, hoping
that this does not lead to confusion. We also use shorthands ||V, s|| := max{||V||, ||s||} and
||V, s, t|| := max{||V||, ||s||, ||t||}.

Symmetric VASS. Let Sd denote the symmetric group containing all permutations of [d].
Permutations of [d] act on vectors w ∈ Zd by permuting dimensions, namely σ ∈ Sn maps
w to the vector σ(w) defined by σ(w)(i) = w(σ−1(i)), or equivalently σ(w)(σ(i)) = w(i).
Treating a vector as a function w : [d] → Z, we may write

σ(w) = w ◦ σ−1, or equivalently σ(w) ◦ σ = w.

We naturally extend this action to transitions, t = (q, v, q′) 7−→ σ(t) = (q, σ(v), q′), and
likewise to steps, runs, etc., as expected. Given a group of permutations G ≤ Sd, by a
G-vass, we mean any d-vass V = (Q, T ) whose transitions are invariant under the action of
G, namely for every permutation σ ∈ G and transition t ∈ T we have σ(t) ∈ T . Thus, for
every G ≤ Sd, we identify a subclass of d-vass admitting the invariance property. In the most
restrictive case of G = Sd, we get the subclass of d-vass invariant under all permutations of
dimensions. In the less restrictive case of trivial group Id = {Idd}, we get the whole class of
all d-vass.

Reachability problem for symmetric VASS. In our investigations we always assume that
a group G ≤ Sd (and hence also the dimension of vass) is fixed.3 The vass reachability
problem, when its input is restricted to G-vass for a fixed permutation group G, we call
G-vass-Reach. For the trivial group G = Id = {Idd} we get d-vass-Reach.

The set of transitions of a G-vass is determined uniquely by representatives of orbits,
i.e., by representatives of the equivalence relation on transitions: t ≡G t′ if t = σ(t′) for
some σ ∈ G. Unfolding the action of G on transitions, (q, v, p) ≡G (q′, v′, p′) if and only if
q = q′, p = p′, and v = σ(v′) for some σ ∈ G. Equivalence classes of ≡G are called G-orbits
of transitions, or simply orbits when the group is clear from the context. When measuring
the size of input we assume a succinct representation, where transitions T of a G-vass are
given by orbit representatives, i.e., by a subset T̃ ⊆ T containing one transition from every
orbit. By the size of such a representation (Q, T̃ ) of a G-vass V we mean the bitsize of its
description, e.g.,

|V| = |T̃ | ·
(
2 · |Q| + d · ⌈log(2 · ||T̃ || + 1)⌉

)
,

where ||T̃ || = max
t∈T̃

||t||. Note that |V| is independent of a choice of orbit representatives,
and logarithmic in terms of ||T̃ ||.

3 Nevertheless, all our subsequent PSpace decision procedures are uniform with respect to dimension,
namely they work within the same complexity bounds if dimension d is part of input.
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Whenever G′ ≤ G ≤ Sd, i.e., G′ is a permutation subgroup of G, (a representation of) a
G-vass may be canonically transformed into (a representation of) a G′-vass in two different
ways. Let V = (Q, T ) be a G-vass. On one hand, V is itself a G′-vass, as its transitions
are automatically invariant under the action of G′, but the representation of V seen as a
G′-vass may be exponentially larger than its representation when seen as G-vass (since the
number of G′-orbits of T may be exponentially larger than the number of G-orbits of T ).
This yields an exponential (but not necessarily polynomial) reduction from G-vass-Reach to
G′-vass-Reach. On the other hand, a representation of V is automatically a representation
of another G′-vass V ′ = (Q, T ′), where the set of transitions T ′ ⊆ T may be of exponentially
smaller size than T , but the number of G′-orbits of T ′ is the same as the number of G-orbits
of T . Clearly, every run of V ′ is a run of V, but the converse does not hold in general.

Z-reachability. An important relaxation of reachability is Z-reachability, where one considers
a relaxed notion of configurations, namely Z-configurations Q×Zd instead of Q×Nd. Contrary
to configurations, values in Z-configurations may drop below 0. We define Z-runs exactly
like runs, but using Z-configurations instead of configurations. Each Z-run, and hence also
each run, induces a unique path in the state graph. Conversely, every path in the state
graph gives rise to multiple different Z-runs, depending on the choice of source vector, and
of transitions witnessing consecutive edges of a path.

The Z-reachability problem asks, given a G-vass (V, s, t), if V has a Z-run from s to t.
We prove that the problem lies in NP, regardless of the choice of dimension d of vass and of
the group G ≤ Sd. This observation will be used later in proofs of main results.

▶ Lemma 1. For every permutation group G, the Z-reachability problem for G-vass is
NP-complete.

The lemma does not follow immediately from NP upper bound for Z-reachability in
vass, as the input is represented more succinctly in our case. In the proof we use the integer
analogue of Caratheodory’s theorem [7] to get a small solution property: if there is a Z-run
between two given configurations then there is one using only a subset of transitions of
polynomial size. By guessing this subset we reduce to the Z-reachability problem in vass,
which is in NP.

3 Lower bound

This section contains a proof of PSpace-hardness of the reachability problem in G-vass, for
any G ≤ Sd with d ≥ 2. Later, we will indicate cases where this lower bound is tight, for
instance G = Sd.

▶ Lemma 2. For every d ≥ 2 and G ≤ Sd, G-vass-Reach is PSpace-hard.

Proof. We show a reduction from the bounded reachability problem for 1-vass, which is
known to be PSpace-complete [8]. The input to this problem consists of a 1-vass (V, s, f)
and a number M ∈ N represented in binary, and we ask if V has a run s −→ f with all
configurations bounded by M . For simplicity, we assume that the vector of a configuration
of a 1-vass q(n) is just a nonnegative integer n ∈ N, and the effect of a transition (q, z, p) is
just an integer z ∈ Z. W.l.o.g. we assume that effects of transitions of a 1-vass are nonzero
and at most M .

MFCS 2025
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Fix an arbitrary dimension d ≥ 2. Given a 1-vass (V, s, f) and M , where V = (Q, T ), we
construct a G-vass V ′ = (Q′, T ′) of dimension d whose states Q′ := Q ∪ {⟨q, t⟩ | q ∈ Q, t ∈ T}
extend Q by additional auxiliary states, and whose transitions T ′ are defined below. The
idea is to represent a configuration q(n) of V bounded by M (n ≤ M), by a configuration

q(n) := q(n, . . . , n, 2M − n)

of V ′, while pairs ⟨q, t⟩ are additional auxiliary states. We define the set T ′ of transitions by
providing a set of orbit representatives T̃ ⊆ T ′. Below, we use z ∈ N+ to range over positive
integers, and use the vectors

vz = (M + z, . . . , M + z, −M − z) v−z = (−M − z, . . . , −M − z, M + z)

that have value M + z (resp. −M − z) on all coordinates except coordinate d which has the
opposite value. We also use v = (M, . . . , M, −M). The set T̃ is defined as follows:

For every t = (p, z, q) ∈ T , we put into T̃ two transitions (recall that z ∈ N+)

t̃ = (p, vz, ⟨q, t⟩) t− = (⟨q, t⟩, −v, q);

For every t = (p, −z, q) ∈ T , we put into T̃ two transitions

t+ = (p, v, ⟨p, t⟩) t̃ = (⟨p, t⟩, v−z, q).

As all vectors vz, v−z and v are constant except for one coordinate, we notice that the size
of T ′ =

{
σ(t)

∣∣∣ t ∈ T̃ , σ ∈ G
}

is at most |T ′| ≤ d · |T̃ |. This is however not relevant for the

reduction, as V ′ is represented by T̃ , and not by T ′.
We argue that there is a run s −→ f in V whose all configurations are bounded by M , if

and only if s −→ f in V ′. For the “only if” direction we observe that every step c
t−→ c′ in V

which is bounded by M is simulated by two steps c −→ c′ −→ c′ in V ′, for some intermediate
configuration c′ with an auxiliary state. Indeed, when t = (p, z, q), a step p(n) t−→ q(n + z)
of V which is bounded by M (n + z ≤ M), is simulated in V ′ by the following two steps:

p(n) t̃−→ ⟨q, t⟩(M + n + z, . . . , M + n + z, M − n − z) t−

−→ q(n + z). (3)

In the other case, when t = (p, −z, q), a step p(n) t−→ q(n − z) of V which is bounded by M

(n ≤ M), is simulated in V ′ by the following two steps:

p(n) t+

−→ ⟨p, t⟩(M + n, . . . , M + n, M − n) t̃−→ q(n − z). (4)

For the “if” direction, we consider a configuration q(n) = q(n, . . . , n, 2M − n), and analyze
all possible two-step runs in V ′ starting from q(n): q(n) −→ c′ −→ c′′. By definition of T ′,
we deduce that the only possible such two-step runs are of the form (3) or (4). Indeed, the
first transition may be only t̃ for some t = (q, z, p) ∈ T , or t+ for some t = (q, −z, p) ∈ T ,
and then the next transition is uniquely determined by the auxiliary state. In particular, we
observe that only transitions from T̃ can be used, i.e., all other transitions T ′ \ T̃ are useless
if one starts from a configuration of the form p(n). In consequence, if s −→ f in V ′, we have
also a run s −→ f in V whose all configurations are bounded by M , as required. Correctness
of the reduction follows. ◀

▶ Remark 3. In particular, PSpace-hardness for S2-vass improves upon PSpace-hardness
for 2-vass [1].
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4 Transitive and fair groups

Within this section we fix an arbitrary transitive group G ≤ Sd, i.e., we assume that for
every i, j ∈ [d] there exists σ ∈ G such that σ(i) = j. The results of this section will be
applied later to specific transitive groups G.

Pumpable VASS. Consider a G-vass (V, s, t), where s = q(w) and t = q′(w′). We say that
(V, s) is forward pumpable if V has a run q(w) −→ q(w + e) for some e ≥ 1. Symmetrically,
(V, t) is backward pumpable if (V rev, t) is forward pumpable where V rev, the reverse of V, is
obtained by replacing each transition (q, v, q′) of V by its reverse (q′, −v, q). Equivalently,
V has a run q′(w′ + e′) −→ q′(w′) for some e′ ≥ 1. Finally, (V, s, t) is pumpable if (V, s) is
forward pumpable, and (V, t) is backward pumpable. We prove that reachability reduces to
Z-reachability, when the group G is transitive and vass are pumpable.

▶ Lemma 4. If G is transitive then every pumpable G-vass (V, s, t) admitting a Z-run from
s to t, admits a run from s to t.

Proof. Let G ≤ Sd. We start by proving the following equality for all i, j ∈ [d]:

| {σ ∈ G | σ(i) = j} | = |G|
d

. (5)

When i = j, the equality follows immediately from the Orbit-Stabilizer Theorem. Otherwise,
suppose i ̸= j and take any permutation σij ∈ G such that σij(i) = j (it exists as G is
transitive). By post-composing with σij we get a bijection σ 7→ σij ◦ σ between permutations
σ ∈ G that satisfy σ(i) = i, and permutations σ ∈ G that satisfy σ(i) = j. In consequence,
we get the equality (5):

| {σ ∈ G | σ(i) = j} | = | {σ ∈ G | σ(i) = i} | = |G|
d

.

Consider a G-vass V and two configurations s = q(v) and t = q′(v′), and suppose V has
a Z-run γ from q(v) to q′(v′), and two runs

α : q(v) −→ q(v + e) α′ : q′(v′ + e′) −→ q′(v′),

for some e, e′ ≥ 1. We argue that V has a run q(v) −→ q′(v). W.l.o.g. we can assume that
α is increasing, i.e., every coordinate of v + e is greater than the greatest coordinate of v
(otherwise we replace α by its n-fold concatenation αn : q(v) −→ q(v + ne), for sufficiently
large n ∈ N). Symmetrically, we can assume that α′ is decreasing, i.e., every coordinate of
v′ + e′ is greater than the greatest coordinate of v′.

Let G = {σ1, . . . , σm}, where σ1 = Idd is the identity permutation on [d], and let

∆ :=
m∑

i=1
σi(e), ∆′ :=

m∑
i=1

σi(e′).

As α is increasing and σ1(α) = α, the concatenation of runs

α̃ = σ1(α); σ2(α); . . . ; σm(α)

is forcedly a run from q(v) to q(v + ∆). Symmetrically, as α′ is decreasing and σ1(α′) = α′,
the concatenation of runs α̃′ = σm(α′); . . . ; σ2(α′); σ1(α′) is forcedly a run from q′(v′ + ∆′)

MFCS 2025



60:8 Reachability in Symmetric VASS

V1 V2 ... Vk

u1 u2 uk−1

Figure 1 A sequential vass.

to q′(v′). We argue that ∆(j) = ∆(k) for every j, k ∈ [d], i.e., the effect of α̃ is a constant
vector. Indeed, by point-wise expansion of the equality

∆ =
m∑

i=1
σi(e) =

m∑
i=1

e ◦ σi,

and using the equality (5) to deduce that for every ℓ, the value of ℓth coordinate e(ℓ) of e
appears the same number of times on both sides of the equality below, we compute:

∆(j) =
d∑

ℓ=1

∑
i : σi(ℓ)=j

e(ℓ) (5)=
d∑

ℓ=1

∑
i : σi(ℓ)=k

e(ℓ) = ∆(k).

Therefore, ∆ = n for some n ∈ N+. Analogously we prove that ∆′ = n′ for some n′ ∈ N+.
Let ∆̃ = (n · n′). Since ∆̃ = n′ · ∆ = n · ∆′, we may construct two runs that pump forward
and backward by the same vector ∆̃:

β = α̃(n′) : q(v) −→ q(v + ∆̃) β′ = (α̃′)n : q′(v′ + ∆̃) −→ q′(v′).

Thus, for sufficiently large m ∈ N+, the m-fold iterations of β and β′ are enough to lift the
Z-run γ into a run, i.e., to ensure that βm; γ; (β′)m is a run from q(v) to q′(v′). ◀

Fair groups. Given d ∈ N+ and a transitive permutation group G ≤ Sd, we say that G

is fair if there is a polynomial P such that for every R ∈ N and every G-vass (V, s) with
S := ||V, s|| and N := ||V||, the implication (1) =⇒ (2) holds, where
(1) V has a run s −→ p(w) for some p ∈ Q and w of norm ||w|| > P (N) · (S + R),
(2) V has a run s −→ p(w) for some p ∈ Q and w ≥ S + R + 1.
In words: whenever (V, s) has a run whose target vector exceeds P (N) · (S + R) on some
coordinate, (V, s) is guaranteed to have a run whose target vector is greater than S + R on
all coordinates; and the property holds for any chosen R ∈ N.

▶ Lemma 5. If G is transitive and fair, then G-vass-Reach is in PSpace.

Proof. We start with some preparatory definitions. A vass is called strongly connected if
its state graph is so. A vass V = (Q, T ) is called sequential, if it can be partitioned into a
number of strongly connected vass V1 = (Q1, T1), . . . , Vk = (Qk, Tk) with pairwise disjoint
state spaces, called components of V, and k − 1 transitions ui = (qi, vi, q′

i), for i ∈ [k − 1],
where qi ∈ Qi and q′

i ∈ Qi+1, called bridges of V (see Fig. 1). For every non-sequential
vass (V, s, t) there is a finite set W = {V1, . . . , Vℓ} such that each Vj is a sequential vass,
and s −→ t in V if and only if s −→ t in Vj for some j ∈ [ℓ]. The set W , called sequential
decomposition of V in the sequel, may be computed based on the decomposition of the state
graph of V into strongly connected components.

Assume an input G-vass (V, s, t), where V = (Q, T ), s = q(v) and t = p(w), represented
by orbit representatives T̃ ⊆ T . The PSpace decision procedure to check if s −→ t, to be
described below, proceeds in several steps.

As the first step, the decision procedure decomposes the state graph of V into strongly
connected components, and nondeterministically picks up one sequential vass from the
sequential decomposition of (V, s, t). From now on we may thus assume, w.l.o.g., that V is
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sequential with k components V1, . . . , Vk, the configuration s belongs to the first component,
and t to the last one. The number k of components is bounded by the number |Q| of states
of V. Let R := |Q| · ||V||. Thus, for every two states p, p′ from the same component of V,
there is a path from p to p′ that decreases each counter by at most R.

For M ∈ N+, we say that a configuration p(w) is bounded by M if ||w|| ≤ M . We also
say that the first component (V1, s) is bounded by M if every configuration c reachable in
this component from s (i.e, c satisfying s −→ c) is bounded by M . Symmetrically, we say
that the last component (Vk, t) is reverse bounded by M if every configuration c reverse
reachable from t (i.e., c satisfying c −→ t) in this component is bounded by M .

As the second step, the decision procedure iteratively removes either the first or the
last component from (V, s, t) until the following two conditions are met, for N := ||V|| and
S = ||V, s, t||:

the first component is not bounded by P (N) · (S + R), and
the last component is not reverse bounded by P (N) · (S + R),

where P is the polynomial given by the definition of a fair group. In particular, the first
condition implies (1) for (V1, s), and the second one implies (1) for (V rev

k , t). Suppose the
first component is bounded by P (N) · (S + R) (the symmetric case, when the last component
is reverse bounded by P (N) · (S + R), is treated in the same way). One iteration of the
removal procedure proceeds as follows, depending on whether k = 1 or k > 1:

Case I: k = 1. If this component is the only one, the procedure checks in PSpace if
s −→ t, and terminates. The check is done by a standard nondeterministic walk through the
graph of configurations reachable from s, which starts at the source configuration s, and in
every iteration moves to a nondeterministically chosen successor of the current configuration.
It terminates when t is reached (and answers positively), or when the counter of so far visited
configurations exceeds

|Q| ·
(
P (N) · (S + R) + 1

)d
,

the total number of configurations bounded by P (N) · (S + R). The memory size, namely
the bitsize of a single configuration, and of the value of the counter, are both polynomially
bounded, and hence the whole procedure works in (nondeterministic) PSpace.

Case II: k > 1. Otherwise, let u1 = (p, u, p′) be the first bridge. We observe that if V has a
run s −→ t, then its last configuration p(w) in the first component is necessarily bounded by
P (N) · (S + R). In consequence, since the bridge transition may increase the norm by at most
N , the first configuration p′(w′) of the run in the second component, where w′ = w + u, is
forcedly bounded by P (N) · (S + R) + N . Relying on this observation, the decision procedure
nondeterministically chooses a vector w with ||w|| ≤ P (N) · (S + R), and checks in PSpace
if q(v) −→ p(w) in the first component, similarly as above. Then the procedure removes the
first component from V, and takes s′ = p′(w′) = p′(w + u) as the source configuration, thus
obtaining a new G-vass (V ′, s′, t) with one less component than (V, s, t).

This removal is iteratively repeated until either the procedure terminates, or produces a
(V ′, s′, t) with the first component not bounded by P (N ′) · (S′ + R), and the last component
not reverse bounded by P (N ′) · (S′ + R), where N ′ := ||V ′|| and S′ := ||V ′, s′, t′||. The bound
on the norm N ′ of the vass cannot increase, and so N ′ ≤ N . However, in each iteration the
bound on norm S′ of the new source vector w′ increases, compared to the bound S on the
norm of the previous source vector v, by a multiplicative factor O(P (N) · |Q|), namely

S′ ≤ P (N) · (S + R) + N ≤ (P (N) · (1 + |Q|) + 1) · S,
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and therefore the bitsize of the source vector increases by (bounding roughly) at most
O(log(P (N) · |Q|)) · d. As the number of iterations is bounded by |Q|, the final bitsize is
polynomial in the input size, and therefore all the iterations are doable in PSpace. Note
that due to iterative increase of S′, the first (resp. last) component not bounded (resp. not
reverse bounded) by P (N ′) · (S′ + R) in some iteration may become bounded (resp. reverse
bounded) in subsequent iterations.

Finally, the procedure arrives at a sequential G-vass (V, s, t), s = q(v), t = p(w), whose
first component is not bounded by P (N) · (S + R), and whose last component is not reverse
bounded by P (N) · (S + R). As G is fair, there is a configuration c reachable from s in the
first component, and a configuration c′ reverse reachable from t in the last component (i.e., t

is reachable from c′), both with vectors ≥ S + R + 1:

q(v) −→ c c′ −→ p(w).

As R is large enough so that every two states in the same component are connected by a
path that decreases each counter by at most R, we have some runs

c −→ q(v) p(w) −→ c′

in the first and the last component, respectively, with v, w ≥ S + 1. As ||s||, ||t|| ≤ S, this
means that V ′ is pumpable. Since G is transitive, Lemma 4 applies. In the last step, the
decision procedure checks if there is a Z-run from s to t, which is doable in NP due to
Lemma 1. ◀

5 Symmetric group

In this section we prove PSpace-completeness of the reachability problem in case of the
symmetric groups Sd, d ≥ 2. Our PSpace upper bound works not only for arbitrary fixed
dimension d ≥ 2, but even in the uniform setting when d is part of input. When d = 1, the
problem is known to be NP-complete [10].

The upper bound is shown using Lemma 5, which requires proving that Sd satisfies its
assumptions. The symmetric groups are obviously transitive, it is thus sufficient to show:

▶ Lemma 6. Sd is fair, for every d ∈ N+.

Proof. Consider an Sd-Vass V = (Q, T ) and a configuration s = q(v). Let S := ||V, s||,
let R ∈ N be any constant, and B := 3S + 2R. We demonstrate that Sd is fair, and that
this property is witnessed by the constant polynomial P (x) = 3d. Towards this we prove a
slightly stronger fact: we assume that V has a run π : q(v) −→ p(w) with ||w|| > B · d, and
construct a run π′ : q(v) −→ p(w′) whose target vector satisfies w′ ≥ S + R + 1.

W.l.o.g. assume that w(d) > B · d. For i = 1, . . . , d − 1 we inductively construct runs
πi : q(v) → p(wi) satisfying

wi(d) > B · (d − i) wi(j) > S + R (for all j ≤ i). (6)

We start with π0 := π. Assuming πi−1 has already been constructed, we construct πi

as follows. If wi−1(i) > S + R then we take πi := πi−1. Otherwise, we split πi−1 into
πi−1 = α; β,

q(v) α−→ r(u) r(u) β−→ p(wi−1),
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u(d) ≥ B · (d − i)

v(d)

wi−1(d) > B · (d − i + 1)

α β

where β is the longest suffix of the run in which the value of coordinate d does not drop
below B · (d − i). Therefore, u(d) < B · (d − i) + S, as otherwise β would be longer. Let
∆ = wi−1 − u be the difference between the target and source of β. We observe that the
value of coordinate d is increased by β by at least

∆(d) > B · (d − i + 1) − B · (d − i) − S = 2S + 2R,

while the value of coordinate i is increased by at most ∆(i) ≤ wi−1(i) ≤ S + R. Therefore,
∆(d) − ∆(i) > S + R. In consequence, β contains some k steps

q1(u1) t1−→ q′
1(u′

1) . . . qk(uk) tk−→ q′
k(u′

k)

induced by transitions t1 = (q1, e1, q′
1), . . . , tk = (qk, ek, q′

k) with effects

e1 = u′
1 − u1 . . . ek = u′

k − uk,

such that eℓ(d) > eℓ(i) for ℓ ∈ [k], that is, each of the steps increases the difference between
the values of coordinate d and i, and moreover

e1(d) + . . . + ek(d) > e1(i) + . . . + ek(i) + S + R, (7)

that is, the steps jointly increase the difference between the values of coordinate d and i

by more than S + R. We may choose a minimal set of transitions t1, . . . , tk satisfying (7).
Hence, knowing that one step can change the difference between the values of coordinate d

and i by at most by 2S, we may safely assume

e1(d) + . . . + ek(d) ≤ e1(i) + . . . + ek(i) + 3S + R, (8)

that is, the steps jointly increase the difference between the values of coordinate d and i by at
most 3S + R. Let σ = (

i d
d i

)
∈ Sn be the permutation that swaps coordinates d and i and

preserves the others. We define a run πi : q(v) −→ p(wi) by replacing each transition tℓ in
πi−1 with the transition σ(tℓ). Due to the inequality (8), the coordinate d never drops below

u(d) − (3S + R) > B · (d − i) − (3S + R) > 0

in πi, and wi(d) > B · (d − i + 1) − (3S + R) > B · (d − i). Furthermore, due to the inequality
(7) we get wi(i) > S + R, because the coordinate i was increased by more than S + R. Other
coordinates are not affected, i.e., their values are the same in πi−1 and πi. Therefore, the
run πi satisfies the condition (6), as required.

Finally, we arrive at a run π′ = πd−1 : q(v) −→ p(wd−1) with wd−1(i) ≥ S + R + 1 for
every i ∈ [d], and this completes the proof. ◀

▶ Theorem 7. Sd-vass-Reach is PSpace-complete, for every d ≥ 2.

Proof. Membership in PSpace follows immediately by Lemmas 5 and 6, and PSpace-
hardness follows by Lemma 2. ◀
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6 Combining groups

In this section we investigate groups arising as combinations of smaller permutation groups.
The way of combining two permutation groups G ≤ Sg and H ≤ Sh will be their wreath
product G ≀ H ≤ Sgh. The set [gh] = {1, . . . , gh} we conveniently split into h blocks:

{1, . . . , g} {g + 1, . . . , 2g} . . . {g(h − 1) + 1, . . . , gh} ,

and write ⟨i, j⟩ to denote gj + i ∈ [gh], for i ∈ [g] and j ∈ [h]. Given a h-tuple (σ1, . . . , σh) of
permutations from G and one permutation δ from H, we define the permutation (σ1, . . . , σh) ≀
δ ∈ Sg·h that applies, for each j, the permutation σj on the block {g(j − 1) + 1, . . . , gj}
independently, plus permutes the blocks according to δ, namely

(σ1, . . . , σh) ≀ δ : ⟨i, j⟩ 7−→ ⟨σj(i), δ(j)⟩.

The wreath product4 of G and H consists of all so constructible permutations of [gh]:

G ≀ H := {(σ1, . . . , σh) ≀ δ | σ1, . . . , σh ∈ G, δ ∈ H} .

In the sequel we are mostly interested in combining trivial permutation groups In with
symmetric groups Sd, and relating the complexity of the reachability problem for the combined
group to the complexity of the problem for component groups. As we show in Theorems 8 and
10 below, it turns out that the complexity significantly depends on the order of composing
the groups. In the case of the group G = In ≀ Sd which allows for arbitrary permutations
of d blocks (of size n each) but disallows permutations inside blocks, the complexity of
G-vass-Reach is at least as high as the complexity of

(
(n − 1)d

)
-vass-Reach (Theorem 8).

On the other hand, in the dual case of the group G = Sd ≀ In, which disallows permutations of
n blocks (of size d each) but allows arbitrary simultaneous independent permutations inside
blocks, we prove (in Theorem 10 below) that the complexity of G-vass-Reach drops to the
complexity of n-vass-Reach. Summing up, in the former case the impact of symmetric
group Sd is essentially nullified as both degrees n and d contribute significantly to the
complexity of the combined group, while in the latter case the impact of symmetric group Sd

is preserved, as the degree d of the symmetric group is irrelevant for complexity. We notice
that the difference of complexities is in agreement with the fact that up to the isomorphism
⟨i, j⟩ 7→ ⟨j, i⟩ of permutation groups, In ≀ Sd is a subgroup of Sd ≀ In.

Trivial symmetry inside blocks. The first result we formulate slightly more generally, with
an arbitrary group G ≤ Sd in place of the symmetric group Sd. The reachability problem for
wreath product of the trivial permutation group In with any G ≤ Sd, regardless of the choice
of G (which seems to be quite surprising), is at least as hard as the reachability problem for
vass of dimension (n − 1)d:

▶ Theorem 8.
(
(n − 1)d

)
-vass-Reach reduces in polynomial time to (In ≀ G)-vass-Reach,

for every n ≥ 2, d ≥ 1 and G ≤ Sd.

Proof. Given a vass V = (Q, T ) of dimension (n−1)d, we define a (In ≀G)-Vass V ′ = (Q′, T ′)
simulating V, whose states extend Q by a number of auxiliary states:

Q′ = Q ∪ {⟨q, i, t⟩ | q ∈ Q, i ∈ [d − 1], t ∈ T} .

4 The operation is definable more concisely, as semidirect product of h-fold direct product of G with H.
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A configuration q(w) ∈ Q×N(n−1)d of V , will be simulated by a configuration q(w) = q(w) ∈
Q × Nnd of V ′ whose vector w extends w, on the last nth coordinate of every block, by

w(n, j) = j − 1 (for j ∈ [d]) (9)

(we write w(n, j) instead of w(⟨n, j⟩), for readability). We define transitions T ′ of V ′

by its orbit representatives T̃ ⊆ T ′. For every vector v ∈ Z(n−1)d we define d vectors
v1, . . . , vd ∈ Znd as follows:

vk(i, j) =


−d + 1 i = n, j = k

1 i = n, j ̸= k

v(i, j) i < n, j = k

0 i < n, j ̸= k.

Thus, the value vk(n, k) on the last coordinate of kth block equals −d + 1, while on the last
coordinate of other blocks equals 1. Furthermore, vk coincides with v on the remaining n − 1
coordinates of kth block, while it is 0 on the remaining n − 1 coordinates of other blocks.
For every transition t = (p, v, q) ∈ T , we put to the set T̃ the following d transitions:

td = (p, vd, ⟨q, d − 1, t⟩) td−1 = (⟨q, d − 1, t⟩, vd−1, ⟨q, d − 2, t⟩)
. . .

t2 = (⟨q, 2, t⟩, v2, ⟨q, 1, t⟩) t1 = (⟨q, 1, t⟩, v1, q).

We need to prove that there is a run p(w) −→ q(v) in V if and only if there is a run
p(w) −→ q(v) in V ′. The “only if” direction follows due to observation that every step
p(w) t−→ q(v) in V is simulated by a sequence of transitions αt = td, td−1, . . . , t1, namely

p(w) αt−→ q(v) (10)

in V ′, as every transition tk updates coordinates 1 . . . n − 1 of block k, and the effect of αt

on last nth coordinate of every block is 0.
For the “if” direction, we observe that due to the auxiliary states in Q′, every run

p(w) −→ q(v) in V ′, starting and ending in a state from Q, necessarily splits into segments
of length d, where each segment is of the form

σd(td), σd−1(td−1), . . . , σ1(t1), (11)

for some σ1, . . . , σd ∈ In ≀ Sd and t = (p, v, q) ∈ T . In particular, the segment starts in p ∈ Q

and ends in q ∈ Q. It is thus enough to argue that whenever p(w) −→ q(v′) in V ′ along a
single segment (11), there is a vector v such that v′ = v and p(w) −→ q(v) in V (∗).

A single segment updates coordinates 1 . . . n−1 in all the d blocks, in the order determined
by σ1, . . . , σd. The crucial observation is that this order is necessarily d, d − 1, . . . , 1. Indeed,
by the definition of the vector w in (9), the first update is in the dth block as the last nth
coordinate is ≥ d − 1 only in this block. As a result of this update, the (d − 1)th block is the
only one with value ≥ d − 1 on the last n-th coordinate, and therefore the second update
necessarily happens in this block. And so on, until the last update in the first block. In
consequence, σi(ti) = ti for all i ∈ [d]. Therefore, the segment (11) is necessarily of the form
(10), and the implication (∗) is shown. In particular, we have shown that only transitions
from T̃ can be used in V ′ when starting from a configuration p(w). ◀
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Trivial symmetry between blocks. Now we investigate the other case of wreath product of
the symmetric group of degree d with the trivial permutation group of degree n, and show
the complexity of the reachability problem in this case to be essentially the same as of the
reachability problem for vass of dimension n.

We start with a definition and a lemma, both stated for any G ≤ Sn in place of In. A
configuration q(w) of a

(
Sd ≀ G

)
-vass V is B-balanced if

|w(i, j) − w(i′, j)| ≤ B (12)

for every i, i′ ∈ [d] and j ∈ [n]. In words: in every block, the maximal difference of values is
at most B. A run s −→ t of V is B-balanced if all its configurations are so. Finally, (V, s, t)
is B-balanceable if an existence of a run s −→ t implies an existence of a run s −→ t which is
B-balanced.

▶ Lemma 9. There is a polynomial P such that for every d, n ≥ 1 and G ≤ Sn, every
(Sd ≀ G)-Vass (V, s, t) is P (||V, s, t||)-balanceable.

Proof. Let (V, s, t) be an arbitrary (Sd ≀ G)-Vass, and let N := ||V, s, t||, B0 := 4N2, and
B := B0 + 2N + 8N3. Suppose V has a run s

π−→ t. We iteratively modify this run until it
becomes B-balanced.

By definition ||s||, ||t|| < B0 ≤ B, and therefore the source configuration s and the target
one t are B-balanced. We make π balanced in n stages. For each j ∈ [n], in an arbitrary order,
we modify the run π to make it balanced inside the jth block, i.e., to make all configurations
of π satisfy (12) where i, i′ range over [d] but j is fixed. As the modification does not affect
the other blocks, the final run is thus balanced.

From now on we concentrate on one stage, for a fixed j ∈ [n]. For a vector u ∈ Zdn

and i, i′ ∈ [d], we use the notation ∆ii′(u) := u(i, j) − u(i′, j) for the difference between the
values of u on coordinates ⟨i, j⟩ and ⟨i′, j⟩. The stage amounts to iteratively modifying the
run until it finally becomes balanced inside the jth block. Each such individual modification
we call a microstage. Below we describe a single microstage, and argue that it decreases a
certain nonnegative rank, which ensures termination of the whole stage.

Microstage. Suppose the run π is not balanced in the jth block, namely π contains a
configuration p(v) such that ∆ii′(v) > B for some i, i′ ∈ [d]. Consider the longest infix

q(w) α−→ p(v) β−→ q′(w′) (13)

of π, such that all its configurations p′(v′) satisfy ∆ii′(v′) ≥ B0. Since one step may change
the difference between the values of coordinates (i, j) and (i′, j) by at most by 2N , we notice
that ∆ii′(w) < B0 + 2N , as otherwise α would be longer. Likewise, ∆ii′(w′) < B0 + 2N .
In consequence B − ∆ii′(w) ≥ 8N3 and B − ∆ii′(w′) ≥ 8N3, and therefore α contains at
least 4N2 steps that increase the difference between the values of coordinates ⟨i, j⟩ and ⟨i′, j⟩
and similarly β contains at least 4N2 steps that decrease this difference. As there are at
most 2N different values by which a single step can increase (or decrease) this difference, by
the pigeonhole principle α contains some 2N steps that increase this difference by the same
value a, and likewise β contains some 2N steps that decrease this difference by the same
value b. We pick any b among the 2N steps in α, executing transitions t1, . . . , tb, say, and
replace them by σ(t1), . . . , σ(tb), where σ ∈ Sd ≀ G is a permutation that swaps (i, j) and
(i′, j). Likewise, we choose any a among the 2N steps in β, executing transitions t′

1, . . . , t′
a,

say, and replace them by σ(t′
1), . . . , σ(t′

a). Importantly, this modification of the run does
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not change its target configuration. The only coordinate whose value decreases in some
configurations along the run is (i, j), but it never drops below zero since the decrease is never
larger than 4N2, and B0 ≥ 4N2. Therefore, the modification produces a run.

We claim that the following nonnegative rank decreases as a result of the microstage
(where the first sum ranges over configurations r(u) along the run):∑

r(u)

∑
ℓ<ℓ′∈[d]

|∆ℓℓ′(u)|,

on the basis of the following three observations. First, the value |∆ii′(u)| never increases,
and decreases for some u, namely for p(v) in (13), the value |∆ii′(v)| = |∆i′i(v)| decreases
by ab > 0 (but ∆ii′(v) remains positive). Second, in all cases when the value |∆ii′(u)|
changes (i.e., decreases) in the microstage, this is due to adding opposite values to u(i, j)
and u(i′, j). Therefore, for every ℓ /∈ {i, i′} and every configuration r(u) in π, the value
of |∆iℓ(u)| + |∆i′ℓ(u)| does not increase. Finally, for ℓ, ℓ′ /∈ {i, i′}, the value of ∆ℓℓ′(u) is
preserved. In consequence, the rank of the whole run decreases, as required. ◀

▶ Theorem 10. (Sd ≀ In)-vass-Reach reduces in exponential time to n-vass-Reach, for
every d, n ≥ 1.

Proof. Let V = (Q, T ) be (Sd ≀ In)-Vass and s, t its configurations. Let B := P (N), where
P is the polynomial of Lemma 9 and N = ||V, s, t||. Let B := [B] ∪ {0}. Relying on Lemma 9
we construct an n-vass V ′ = (Q′, T ′), where Q′ = Q × Bnd, that simulates B-balanced runs
of V . Specifically, every jth block of d coordinates of V is simulated by a single coordinate j

of V ′ whose value is invariantly equal to the largest value in the jth block. The simulation
is possible due to the auxiliary component Bnd of states that keeps the difference between
the value of every coordinate (i, j) of V , and the largest value inside the jth block (to which
(i, j) belongs). The transitions T ′ of V ′ simulate transitions of T , and accordingly update
the auxiliary component of states. We claim that V has a B-balanced run s −→ t if and
only if V ′ has a run s′ −→ t′, where s′, t′ are obtained from s, t by computing the auxiliary
component of states, and replacing the values of each block of coordinates by the largest
value in this block. The reduction is thus completed. ◀

7 Other groups

We complete Section 5 by showing that alternating groups admit similar complexity drop
as symmetric groups. We also demonstrate that sole transitivity is not enough to achieve
significant drop, namely the complexity of the reachability problem in case of cyclic groups
is comparable to general vass.

Alternating group. Let Ad ≤ Sd denote the alternating group of degree d, i.e., the group
of all even permutations of [d]. The group is generated by 3-cycles, permutations of the

form σijk =
(

i j k

j k i

)
, for pairwise distinct i, j, k ∈ [d]. When d = 2 the alternating group

is trivial, A2-vass = 2-vass, and the reachability problem is PSpace-complete [1]. In the
sequel we thus consider degrees d ≥ 3.

▶ Lemma 11. Ad is fair, for d ≥ 3.
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The argument elaborates on the proof of Lemma 6, and proceeds in two steps. First, assuming
a run π with one sufficiently large coordinate at the end, by applying a permutation from
Ad to a properly chosen suffix of π we construct a run with two large coordinates at the end.
Second, we further modify the run to increase all coordinates above a required threshold,
similarly to the proof of Lemma 6.

▶ Theorem 12. Ad-vass-Reach is PSpace-complete, for every d ≥ 3.

Proof. Membership in PSpace follows immediately by Lemmas 5 and 11, while PSpace-
hardness follows by Lemma 2. ◀

Cyclic groups. Let Zn denote the cyclic group of degree n, i.e., the group Zn ={
σi

∣∣ i ∈ {0, 1, . . . , n − 1}
}

generated by the single cyclic shift σ =
( 1 2 . . . n

2 3 . . . 1

)
.

▶ Theorem 13. n-vass-Reach reduces in polynomial time to (Z2n+8)-vass-Reach, for
every n ≥ 1.

In the proof, an n-vass is simulated using n consecutive counters of a Z2n+8-vass. The
remaining n + 8 counters are used to enforce that only one transition from each Z2n+8-orbit
can be applied, which assures faithfulness of the simulation.

8 Final remarks

In this paper we have investigated the impact of symmetry in vass on the complexity of
the reachability problem. The permutation groups considered in this paper split clearly
into two groups. On one side there are “easy” groups, which includes both symmetric and
alternating groups featuring PSpace-completeness, but also the combinations Sd ≀ In of
symmetric groups and trivial ones, where the complexity is independent of the degree d of
the symmetric group (dependence on the degree n of the trivial group is unavoidable). On
the other side there are “hard” groups, which includes both trivial and cyclic groups, which
not differ significantly in complexity, but also the dual combinations In ≀ Sd of symmetric
groups and trivial ones, where the complexity is dependent on both d and n. We end up with
a research question left for further research: can one classify all finite permutation groups
into “easy” and “hard” ones?

The model of data vass is definable in our setting as (In ≀Sω)-vass. Therefore, “hardness”
of In ≀ Sd may suggest that the reachability problem for data vass is harder than for plain
vass. On the other hand, “easiness” of Sd ≀ In suggests that the reachability problem for
the subclass of data vass invariant under independent data permutations in each dimension
(definable as (Sω ≀ In)-vass in our setting) is not significantly harder than for plain vass
(and, in particular, decidable). Our initial results seem to confirm both these suggestions.
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