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Abstract
We investigate quantum relaxations of two key decision problems in computer science: the con-
straint satisfaction problem (CSP) and the structure isomorphism problem. CSP asks whether
a homomorphism exists between two relational structures, while structure isomorphism seeks an
isomorphism between them. In recent years, it has become increasingly apparent that many special
cases of CSP can be reformulated in terms of the existence of perfect classical strategies in non-local
games, a key topic of study in quantum information theory. These games have allowed us to
study quantum advantage in relation to many important decision problems, such as the k-colouring
problem, and the problem of solving binary constraint systems. Abramsky et al. (2017) have shown
that all of these games can be seen as special instances of a non-local CSP game. Moreover, they
show that perfect quantum strategies in this CSP game can be viewed as Kleisli morphisms of a
graded monad on the category of relational structures, which they dub the quantum monad. In
this way, the quantum monad provides a categorical characterisation of quantum advantage for the
non-local CSP game.

In this work we solidify and expand the results of Abramsky et al., answering several of their
open questions. Firstly, we compare the definition of quantum graph homomorphisms arising from
this work with an earlier definition of the concept due to Mančinska and Roberson and show that
there are graphs which exhibit quantum advantage under one definition but not the other. Our
second contribution is to extend the results of Abramsky et al. which only hold in the tensor product
framework of quantum mechanics to the commuting operator framework. Next, we study a non-local
structure isomorphism game, which generalises the well-studied graph isomorphism game. We show
how the construction of the quantum monad can be refined to provide categorical semantics for
quantum strategies in this game. This results in a category where morphisms coincide with quantum
homomorphisms and isomorphisms coincide with quantum isomorphisms.
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1 Introduction

1.1 CSP and structure isomorphism
The fundamental structures of computation –graphs, strings, databases, programs, etc. all
find a convenient mathematical representation in terms of (finite) logical structures, known
as relational structures. It is not surprising then that many of the most important challenges
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61:2 Quantum Relaxations of CSP and Structure Isomorphism

and achievements of theoretical computer science can be phrased in terms of the properties
of these structures, and how they interact with one another. We will focus on two decision
problems about relational structures that are of central importance in theoretical computer
science. The first is known as the constraint satisfaction problem1 (CSP). In modern terms,
it can be phrased as follows.

Constraint Satisfaction Problem: Given as input a pair of relational structures X ,Y over
the same signature, decide if there exists a homomorphism X → Y.

The importance of CSP is underscored by the fact that instances of it arise naturally
in practically every area of modern science. For example, in bioinformatics, CSPs arise in
protein folding, where the challenge is to determine a protein’s 3D structure while satisfying
constraints related to chemical bonds and angles. In database theory, CSPs capture the
problem of query evaluation, where determining whether a query can be satisfied involves
finding a homomorphism between the query structure and a database. In robotics, the path
planning problem, in which a robot aims to navigate from some starting position to a goal
position while avoiding obstacles can be formulated as a CSP.

The second problem is known as structure isomorphism.

Structure isomorphism: Given as input a pair of relational structures X ,Y over the same
signature, decide if there exists an isomorphism X ∼= Y.

The study of structure isomorphism is of central importance in computational complexity
theory. It is clear that this problem is in NP, however, structure isomorphism is not known
to be solvable in polynomial time nor to be NP-complete. Babai’s recent breakthrough [5]
places the problem in quasi-polynomial time which lends some support to the idea that
structure isomorphism might be an NP-intermediate problem.

1.2 Quantum relaxations
Ever since the pioneering works of Bell [6] and Kochen-Specker [19] in the 1960s physicists
have known that a system which operates according to the laws of quantum physics is capable
of producing correlations that a system operating according to classical physics cannot.
Today, this phenomenon is referred to as quantum advantage and is being extensively studied
with the hope that it will allow us to build devices such as quantum computers that can
perform information processing tasks which are out of reach for classical computers.

An important theoretical tool for understanding quantum advantage is the framework of
non-local games. In these games, two collaborating players (usually called Alice and Bob) are
placed in separate rooms so that they are unable to communicate with each other. A referee
then asks each of them some questions and compares their answers. The two players win
the game if the referee is satisfied that their answers agree with some pre-defined winning
conditions. The remarkable feature of these games is that if the players are allowed to share
an entangled quantum state between them, they can sometimes win games that they would
have otherwise lost. In these cases we say that the players have a quantum winning strategy
but no classical winning strategy. The study of non-local games has led to tremendous
advances in our understanding of quantum theory, and has even helped solve a major open
problem in mathematics, known as the Connes embedding question [18].

1 This problem is also known as structure homomorphism problem. We shall use the two terms inter-
changeably.
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Over the past few decades, it has become clear that many standard decision problems
studied in theoretical computer science, which are special instances of CSP, can be rephrased
in the language of non-local games. This prompted the authors of [1] to recast CSP as a
non-local game. For the purposes of this introduction, we aim to convey some intuition for
the game by describing its operation in the special case where the relational structures in
question are graphs.

▶ Example 1. Consider graphs X ,Y. The (X ,Y)-CSP game is played as follows:
1. Verifier sends Alice an edge (x1, x2) of X , and Bob an element x ∈ X.
2. Alice returns a pair (y1, y2) of vertices from Y and Bob returns an element y of Y.
3. Alice and Bob win the game if:

a. (y1, y2) is an edge of Y.
b. x = x1 =⇒ y = y1 and x = x2 =⇒ y = y2.

We say that Alice and Bob have a perfect strategy in the above game if they can always
win the game regardless of what questions the verifier decides to ask them. If only classical
(and non-signalling) strategies are allowed then Alice and Bob have a perfect strategy precisely
when CSP(X ,Y) is solvable. In other words, they win the game perfectly if and only if
there exists a graph homomorphism X → Y. However, when the players are allowed to use
quantum resources, they can sometimes win this game perfectly even if X ̸→ Y. Based on
these facts, we can say that there exists a quantum homomorphism from X to Y and write
X q→ Y whenever Alice and Bob have a perfect quantum strategy in the (X ,Y)-CSP game.
Clearly, every classical homomorphism is also a quantum homomorphism. This is why we are
justified to say that quantum homomorphisms are a relaxation of classical homomorphisms.

A further important step taken in [1] was the introduction of a graded monad on R(σ),
which they refer to as the quantum monad. We denote the functor component of this monad
(which is parameterised by some Hilbert space H) by QHHH . As with any monad QHHH has a
Kleisli category associated to it. The objects of this category are the objects of R(σ) while
morphisms between objects X and Y are maps in R(σ) of the form X → QHHHY . The authors
of [1] prove the following theorem which shows that such Kleisli morphisms are precisely
quantum homomorphisms.

▶ Theorem 2 ([1]). For graphs X and Y there is a one-to-one correspondence between:
1. X q→ Y.
2. X → QHHHY.

In this sense, QHHH provides a categorical abstraction which perfectly captures the notion
of quantum homomorphism.

1.3 Structure and contributions
In this paper we will solidify and extend the results of [1] by answering several open questions
mentioned in their work. After introducing preliminary material in Section 2, we shall
study the non-local CSP game in Section 3. Our first contribution in this section will be a
comparison of the two alternative definitions of quantum graph homomorphisms introduced
in [23] and [1]. We show that there exists a pair of graphs which are quantum homomorphic
under the definition given in [23] but not under the definition in [1]. Our next contribution
is to extend the characterisation of quantum homomorphisms in [1] which only holds in
the tensor product framework to the commuting operator framework. In Section 4 we shall
introduce a non-local structure isomorphism game, and show that much like the CSP game
perfect quantum strategies in this game have a very special form. This will allow us to
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61:4 Quantum Relaxations of CSP and Structure Isomorphism

define the concept of quantum structure isomorphism. Finally, in Section 5 we explore
categorical characterisations of quantum homomorphisms and quantum isomorphisms. As
we have mentioned, it was already observed in [1] that quantum homomorphisms coincide
with Kleisli morphisms of the graded quantum monad QHHH . Perhaps surprisingly we shall
show that Kleisli isomorphism for this graded monad corresponds to classical isomorphism
rather than quantum isomorphism. Thus, we shall adopt a different approach to provide a
categorical account of quantum isomorphism. Namely, we will show that the functor QHHH
can be equipped with the structure of a “monad” with a partial multiplication operation.
We will then show that Kleisli isomorphisms for this partial quantum monad coincide with
quantum isomorphisms. This construction is motivated by the importance of partial algebraic
structures in quantum information, which was first noticed in the seminal work of Kochen
and Specker [19]. Detailed proofs are provided in the appendix.

2 Notation and preliminaries

We assume some basic familiarity with linear algebra, and category theory, and quantum
information.

2.1 Relational structures
A finite relational signature σ is a set of relation symbols σ = {R1, . . . , Rn} where each
symbol R ∈ σ has an associated non-negative integer ar(R) called its arity. A relational
structure X with signature σ is then a tuple (X,RX

1 , . . . , R
X
n ) where X is a set known as the

universe of X and for each R ∈ σ,RX ⊆ Xar(R) is a relation of length ar(R). A relational
structure is said to be finite if its universe is finite.

Let X and Y be two relational structures over the same signature σ. A function f : X → Y

is said to preserve a relation R ∈ σ with arity k if ∀xxx = (x1, . . . , xk) ∈ Xk : xxx ∈ RX =⇒
f(x)f(x)f(x) = (f(x1), . . . , f(xk)) ∈ RY . Here we have adopted the convention that boldface
lowercase letters denote tuples xxx = (x1, . . . , xk) ∈ Xk. Moreover, whenever we use the
notation xi we are implicitly implying that xi is the element at position i of a tuple xxx. We
say that f reflects a relation if the above holds with the implication reversed. f is said to
be a homomorphism if it preserves every R ∈ σ. If f is bijective and reflects every relation
it is called an isomorphism. A partial homomorphism is a partial function g ⊆ X × Y

which preserves all relations. The category R(σ) has σ-structures as objects and σ-structure
homomorphisms as morphisms.

2.2 Quantum theory
We write B+(H) for the set of positive bounded operators on a Hilbert space H and Proj(H)
for the set of (orthogonal) projectors on H. We refer to two projectors M,N as being
orthogonal to each other if MN = 000. We write M ≤ N iff N −M is positive semi-definite.
M and N commute iff MN −NM = 000. The product of two projectors is a projector iff they
commute. For any family of projectors {Pi}i it holds that

∑
i Pi ≤ IHHH iff PiPj = 000 whenever

i ̸= j.
We recall two mathematical formalisms for studying different types of measurements

on physical system. The first is known as a projection valued measurement (PVM). A
PVM is a function P : O → Proj(H) which satisfies

∑
o∈O p(o) = IH. Here, the elements

of O represent the possible outcomes of a measurement. We shall also consider positive
operator-valued measurements (POVMs). A POVM is a function P : O → B+(H) which
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satisfies
∑
o∈O p(o) = IH. As Proj(H) is contained in B+(HHH), it is clear that every PVM is a

POVM. If a POVM P : O → B+(H) is performed on a pure state ψ ∈ H outcome o ∈ O

will be observed with probability ψ†p(o)ψ. A set of POVMs {Pi : Oi → B+(H)}i ∈ [n]
is commeasurable2 iff there exists a POVM P :

∏
i∈[n] Oi → B+(H) which marginalises to

each of the Pi. A remarkable feature of quantum theory (one which is in fact necessary
for quantum advantage [36]) is that not all observations are commeasurable. We will write
P1 ⊙ P2 whenever P1 and P2 are commeasurable. We remark that it is possible to have
POVMs P1, P2, P3 which are pairwise commeasurable but not triplewise commeasurable
[15]. Two POVMs are said to commute iff every element of their image commutes. If we
restrict our attention to PVMs then commeasurability has particularly nice characteristics
summarised by the following lemma (see e.g. [14]).

▶ Lemma 3. For a set of PVMs {Pi}i the following are equivalent:
1. The Pi are pairwise commuting.
2. There exists a unique joint measurement PPP which is projective and defined as

PPP (o1, . . . , on) =
∏
i∈[n] Pi(oi).

2.3 Non-local games
Non-locality and its generalisation in the form of contextuality are important non-classical
features of quantum mechanics. These phenomena have been extensively studied as a source
of quantum advantage beginning with the pioneering works of Bell [6] and Kochen-Specker
[19].

A (bipartite) non-local game is a cooperative game played between a verifier and two
players, usually referred to as Alice and Bob. Formally, following [9] a non-local game is
defined as G = (Xa, Xb, Ya, Yb, π, V ) where Xa, Xb are finite input sets, Ya, Yb are finite
output sets, π is a probability distribution on Xa × Xb, and V : Xa × Xb × Ya × Yb → R
is called the payoff function. For our purposes, it suffices to think of V as a {0, 1} valued
boolean predicate. We will also assume that π has full support. The game proceeds according
to the following protocol:
1. The verifier samples a pair (xa, xb) ∈ Xa ×Xb using π and sends xa to Alice and xb to

Bob.
2. Without communicating, Alice and Bob respond with ya ∈ Ya and yb ∈ Yb respectively.
3. The players win the game if V (xa, xb, ya, yb) = 1.

We focus on cases where the game consists of one round of the above protocol.
The goal of Alice and Bob is to maximise their winning probability. To achieve this goal

they are allowed to agree on a fixed strategy S for the game beforehand. A correlation3

p(ya, yb|xa, xb) represents the joint conditional probability of Alice and Bob responding with
ya and yb on inputs xa and xb respectively.

There are several classes of strategies that Alice and Bob can employ in a non-local game.
We are interested in three of these classes.

1. A deterministic classical strategy Sc = (fa, fb) is defined by two functions fa : Xa → Ya
and fb : Xb → Yb which map inputs to outputs for each of Alice and Bob respectively.
Hence we have p(fa(xa), fb(xb)|xa, xb) = 1.

2 Also known as compatible or jointly measurable.
3 Also known as a behaviour or empirical model.

MFCS 2025
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2. A quantum tensor strategy S∗ = (ψ,E, F ) consists of a shared state ψ ∈ HAHAHA ⊗HBHBHB for
finite dimensional complex Hilbert spacesHAHAHA,HBHBHB , and two sets, E = {Ex} and F = {Fx}
where Ex = {Exy : y ∈ Ya} for each x ∈ Xa and Fx = {Fxy : y ∈ Yb} for each x ∈ Xb are
POVMs over HAHAHA and HBHBHB respectively. Upon receiving xa ∈ Xa and xb ∈ Xb Alice and
Bob perform the measurements Exa

and Fxb
respectively and return the results. Hence

we have p(ya, yb|xa, xb) = ψ†(Exaya ⊗ Fxbyb
)ψ.

3. A quantum commuting strategy Sco = (ψ,E, F ) consists of a shared state ψ ∈ X for
some potentially infinite dimensional Hilbert space X , and two sets of POVMs E and F ,
representing Alice and Bobs measurements as above. Note that in these strategies all of
Alice’s measurement operators must commute with all of Bob’s measurement operators.
Then we have p(ya, yb|xa, xb) = ψ†ExayaFxbyb

ψ.

For t ∈ {c, ∗, co} we will often refer to a t-strategy for a non-local game. Here t describes
the type of strategy being used, c for classical, ∗ for tensor, and co for commuting. We focus
exclusively on perfect strategies, where the game is won with probability 1. In this case we
must have p(ya, yb|xa, xb) = 0 when V (xa, xb, ya, yb) = 0.

Any c-strategy is a ∗-strategy since we can simply ignore entanglement in the latter case.
Remarkably, it can be shown that in some cases a perfect ∗-strategy for a non-local game
exists even when a perfect c-strategy cannot exist. In such cases, we say that a non-local game
exhibits pseudotelepathy. Moreover, it can be straightforwardly shown that any ∗-strategy is
a co-strategy. A non-trivial result of Tsirelson shows that if we restrict to finite-dimensional
Hilbert spaces these two classes of strategies coincide [35, 34]. A recent breakthrough result
[18] shows that co-strategies form a strictly larger set than ∗-strategies.

A non-local game is said to be synchronous if Alice and Bob have the same question
set X, the same answer set Y , and the equation V (y, y′|x, x) = 0 ∀x ∈ X, y ̸= y′ ∈ Y is
satisfied.

This means that given the same inputs Alice and Bob must always respond with the
same outputs to win the game. we write Gs = (X,Y, V ) to denote synchronous games.
Perfect strategies for these games have nice properties which make them easier to analyse.
In particular variations of the following lemmas have appeared throughout the literature (see
e.g. [4, 31]).

▶ Lemma 4. Let Gs = (X,Y, V ) be a synchronous game. If there exists a perfect ∗-strategy
for this game then there exists a perfect ∗-strategy (ψ, {Ex}x ∈ X, {Fy}y ∈ Y ) where:

The state ψ is the maximally entangled state ψ = 1√
d

∑d
i=1 ei ⊗ ei;

The POVMs Ex and Fy are projective;

Ex,y = FTy,x for all x ∈ X, y ∈ Y ;

p(y, y′|x, x′) = 0 iff Ex,yEx′,y′ = 0.

▶ Lemma 5. Let Gs = (X,Y, V ) be a synchronous game. There exists perfect co-strategy
for this game iff there exists a unital C∗-algebra A which admits a faithful tracial state
s : A → C, and projections Exy ∈ A for x ∈ X and y ∈ Y satisfying:∑

y∈Y Exy = I;

ExyEx′y′ = 0 if V (x, x′, y, y′) = 0.
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3 CSP game

Let us begin by describing the CSP game4 introduced in [1]. For simplicity, we focus
throughout this paper on the case where our signature σ consists of a single relation R of
arity k.

▶ Example 6. Consider relational structures X ,Y. The (X ,Y)-homomorphism game is
played as follows:
1. Verifier sends Alice a tuple xxx ∈ Xk, and Bob an element x ∈ X.
2. Alice returns a tuple yyy ∈ Y k, and Bob returns an element y ∈ Y .
3. Alice and Bob win if (a): xxx ∈ RX =⇒ yyy ∈ RY , and (b): ∀i ∈ [k] : x = xxxi =⇒ y = yyyi.

For t ∈ {c, ∗, co} we write X t→ Y and say that there exists a t-homomorphism between X
and Y whenever Alice and Bob have a perfect t-strategy in the (X ,Y)-homomorphism game.
A simple observation is that perfect classical strategies correspond to homomorphisms.

▶ Proposition 7 ([1]). X c→ Y ⇐⇒ X → Y.

3.1 Tensor strategies
We now recall the characterisation of ∗-strategies for the CSP game that was derived in [1].
Our first observation is that if a perfect ∗-strategy for the CSP game exists, then there must
exist a (possibly different) perfect ∗-strategy which exhibits some very strong properties.

▶ Theorem 8 ([1]). The existence of a perfect ∗-strategy in the (X ,Y)-CSP game implies
the existence of a perfect ∗-strategy (ψ′, {Exxx}xxx∈RX , {Fx}x∈X ) which satisfies:

The POVMs Eixxx and Fx are projective where we define Eixxx :=
∑
yyyi=y Ex,yx,yx,y.

The state ψ is a maximally entangled state ψ = 1√
d

∑d
i=1 ei ⊗ ei.

x = xixixi =⇒ Eixxx,y = FTx,y.
If xxx ∈ RX and yyy ̸∈ RY then Ex,yx,yx,y=0.

The authors then note that this theorem shows that all the information determining
the strategies is contained in Alice’s operators E. Hence, they define projectors Px,y := Eixxx
whenever x = xxxi. These projectors are well-defined since we have Eixxx,y = Px,y = Ej

x′x′x′ whenever
x = xxxi = x

′

jx
′

jx
′

j . Moreover, for each xxx ∈ RX we have PVMs {Pxxxi} which are jointly measurable
by the PVM Exxx. Thus, Exxx is equivalent to the PVM Pxxx given by Px,yx,yx,y = Pxxx1,yyy1 , . . . , Pxxxk,yyyk

.

Based on the above observations the authors define the notion of a ∗-homomorphism as
follows:

▶ Definition 9. Let HHHd be a finite-dimensional Hilbert space of dimension d. A ∗-homomor-
phism from X ∈ R(σ) to Y ∈ R(σ) in HHHd is given by a family of projectors {Px,y}x∈X,y∈Y
in Proj(HHHd) satisfying:
(P1) For all x ∈ X, we have

∑
y∈Y Px,y = I.

(P2) For all x, x′ adjacent in the Gaifman graph of X , and all y, y′ ∈ Y , we have Px,y⊙Px′,y′ .
(P3) If x ∈ RX and y /∈ RY , then P(x,y)(x,y)(x,y) = 0.

This definition is justified by the following theorem:

▶ Theorem 10 ([1]). The following are equivalent:
1. X ∗→ Y
2. There exists a ∗-homomorphisms from X to Y.

4 Referred to as the relational structure homomorphism game in [1].

MFCS 2025
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3.2 Comparing two definitions of tensor homomorphism for graphs
In this section, we restrict our attention to the case where the relational structures X and Y are
both graphs. As we saw in example 1 the CSP game restricts to a graph homomorphism game
when the relational structures X and Y are both graphs. There is however an alternative
non-local game for graph homomorphisms, due to Mančinska and Roberson which was
introduced in [23]. We refer to this game as the MR graph homomorphism game. It is played
as follows:

▶ Example 11. Given graphs G = (Vg, Eg) and H = (Vh, Eh), the MR graph homomorphism
game is played as follows:

Verifier sends a vertex xa ∈ Vg to Alice and a vertex xb ∈ Vg to Bob.
Alice responds with a vertex ya ∈ Vh and Bob responds with a vertex yb ∈ Vh.
Alice and Bob win the game if:

1. xa = xb =⇒ ya = yb.
2. xa ∼ xb =⇒ ya ∼ yb.

This variant of the graph homomorphism game gives rise to an alternative notion of
quantum graph homomorphism.

▶ Definition 12. An MR quantum graph homomorphism over a finite-dimensional Hilbert
space HHH from a graph G to a graph H is given by a family of projectors {Pg,h}g∈V (g),h∈V (h)
satisfying (P1) and (P3).

Clearly, every quantum homomorphism is an MR quantum homomorphism. We now set
out to answer the following question from [1].

▶ Question 13. Does the existence of an MR quantum homomorphism from G to H imply
the existence of a quantum homomorphism from G to H?

We answer this question in the negative by explicitly constructing graphs G and H

such that an MR quantum homomorphism from G to H exists but where a quantum
homomorphism does not exist. Our separation will be achieved by studying the k-colouring
game which is a special case of the graph homomorphism game (Obtained by taking H to be
the complete graph of size k.). Restricting the above definitions to this specific case we have:

▶ Definition 14. An MR quantum k-colouring of a graph G is given by a family of projectors
{vi}v∈V (G),i∈[k] satisfying:
1. ∀v ∈ V (G),

∑
i∈[k] vi = I.

2. viwi = 0 for all v ∼ w and all i ∈ [k].

▶ Definition 15. A quantum k-colouring of a graph G is given by a family of projectors
{vi}v∈V (G),i∈[k] satisfying conditions 1 and 2 from the previous definition and the additional
condition
3. vi ⊙ wj for all v ∼ w and all i, j ∈ [k].

We now consider the case where G = G14 is the 14 vertex graph from [24]. To construct
this first consider the following family of vectors in R3:

V :=
{(

1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)}
∪

{(
1
1
0

)
,
( 1

−1
0

)
,
(

1
0
1

)
,
( 1

0
−1

)
,
(

0
1
1

)
,
( 0

1
−1

)}
∪

{(
1
1
1

)
,
( 1

1
−1

)
,
( 1

−1
1

)
,
( −1

1
1

)}
.
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We then define a graph G13 from this set by assigning a node to every vertex and an edge
between any two nodes which represent orthogonal vectors5. This graph is drawn in figure 1.

Figure 1 The graph G13 (Taken from [24].).

The graph G14 is obtained by adding an apex node to G13 which we denote by Ω. The
following results were already shown in [24].

▶ Proposition 16 ([24]). There exists no classical 4-colouring of G14.

▶ Theorem 17 ([24]). There exists an MR quantum 4-colouring of G14.

Thus, this graph provides an example of quantum advantage in the MR graph colouring
game. In fact, in [24] they conjecture that G14 is the smallest graph with this property. A
recent preprint claims a computational proof of this conjecture [21]. We prove the following
theorem, which separates MR quantum homomorphisms from quantum homomorphisms.

▶ Theorem 18. There exists no quantum 4-colouring of G14.

3.3 Commuting operator strategies
We now aim to analyse commuting operator strategies in the CSP game. For the case of
the MR graph homomorphism game, such strategies have been explored in [33, 32, 31]. The
following result is known:

▶ Theorem 19. Let G and H be graphs. In the MR graph homomorphism game G co→ H

iff there exists a unital C∗-algebra A which admits a faithful tracial state, and projections
Pg,h ∈ A for g ∈ V (g) and h ∈ V (h) such that (P1) and (P3) are satisfied.

To derive these results the authors rely heavily on the fact that the MR graph homo-
morphism game is synchronous. We wish to derive an analogue of the above result for the
CSP game. Unfortunately, this game is not synchronous so we cannot immediately make use
of Lemma 5. Our first step is thus to define a synchronous version of the CSP game and
show that its perfect strategies coincide with the original game of [1].

5 It is worth noting that the graph G13 has also appeared in a somewhat different context in [37], where
it was used to provide a proof of the state-independent Kochen-Specker theorem with only 13 rays. This
has since been shown to be the minimum number of vectors necessary for such a proof [8].

MFCS 2025
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▶ Example 20. Consider relational structures X ,Y . The synchronous (X ,Y)-homomorphism
game is played as follows:
1. Verifier sends Alice and Bob tuples xaxaxa,xbxbxb ∈ Xk respectively.
2. Alice and Bob return tuples yayaya, ybybyb ∈ Y k respectively.
3. Alice and Bob win the game if:

xai = xbj =⇒ yai = ybj .
xaxaxa ∈ RX =⇒ yayaya ∈ RY and xbxbxb ∈ RX =⇒ ybybyb ∈ RY .

▶ Theorem 21. For t ∈ {c, ∗, co} there exists a perfect t-strategy in the (X ,Y)-CSP game
iff there exists a perfect t-strategy in the synchronous (X ,Y)-CSP game.

Thus, any result that applies to perfect strategies in the synchronous CSP game also
applies to the original game.

We now prove a commuting operator framework analogue of Theorem 10.

▶ Theorem 22. The following are equivalent:
X co→ Y.
There exists a unital C∗-algebra A which admits a faithful tracial state s : A → C, and
projections Pxy ∈ A for x ∈ X and y ∈ Y satisfying (P1), (P2), and (P3).

4 Structure isomorphism game

A non-local graph isomorphism game has been introduced in [4] and studied extensively
since (see e.g. [25, 22, 28, 29, 30]). This game can be generalised to arbitrary relational
structures. An open question mentioned in [1] is to figure out how this game fits into the
quantum monad framework. This is the question which we address in this section. Let us
begin by explaining the structure isomorphism game. As with the CSP game, this game can
be formulated in both a synchronous and non-synchronous fashion. To simplify some proofs
we focus on the synchronous formulation.

▶ Example 23. Consider relational structures X ,Y . The (X ,Y)-isomorphism game is played
as follows:
1. Verifier sends Alice and Bob tuples cacaca, cbcbcb ∈ Xk ∪ Y k respectively.
2. Alice and Bob return tuples dadada, dbdbdb ∈ Xk ∪ Y k respectively.
3. Alice and Bob win the game if:

cacaca ∈ RX ⇐⇒ dadada ∈ RY and cbcbcb ∈ RX ⇐⇒ dbdbdb ∈ RY .
Assuming this condition is met we define xaxaxa to be the unique tuple in RX among cacaca
and dadada, and we define yayaya,xbxbxb, ybybyb similarly. To win, the following condition must also be
satisfied:

∀i, j ∈ [k] : xai = xbj ⇐⇒ yai = ybj .

We write X
t∼= Y whenever a perfect t-strategy exists in this game for t ∈ {c, ∗, co, ns}.

Notice that unlike in the case of the homomorphism game Alice and Bob do not necessarily
receive inputs from the same structure. Moreover, the winning conditions of the game dictate
that to win Alice and Bob’s responses must be from whichever structure their input was not
from.

4.1 Classical strategies
As before we can verify that perfect classical strategies are isomorphisms.

▶ Proposition 24. X
c∼= Y ⇐⇒ X ∼= Y.
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4.2 Tensor strategies
We now turn our attention to ∗-strategies in the isomorphism game. Our goal is to characterise
such strategies in a manner analogous to what was done for the homomorphism game in [1].
We begin by showing that strategies can be assumed to have a special form.

▶ Theorem 25. The existence of a perfect ∗-strategy in the (X ,Y)-isomorphism game implies
the existence of a perfect ∗-strategy (ψ′, {Eccc}ccc∈Xk∪Y k , {Fccc}ccc∈Xk∪Y k ) which satisfies:
1. Eixxx and F ixxx are PVMs where we define Eixxx :=

∑
yyyi=y Ex,yx,yx,y, and similarly for F ixxx;

2. The state ψ is a maximally entangled state ψ = 1√
d

∑d
ix=1 ei ⊗ ei;

3. Eixxx,y = F i
T

xxx,y;
4. Ex,yx,yx,y = Ey,xy,xy,x for all xxx,yyy ∈ Xk ∪ Y k;
5. If (xxx ∈ RX ⇐⇒ yyy ∈ RY) does not hold then Ex,yx,yx,y=0;
6. if xi = x′

j then Eixxx,y = Ej
x′x′x′,y

.

We note that using the synchronous nature of the game allows us to simplify some of the
steps in the corresponding proof of Theorem 8 in [1]. Now let us once again define projectors
Px,y = Eixxx,y whenever x = xi for some i ∈ [k]. Item (6) in Theorem 25 shows that these
are well-defined projectors. As in the homomorphism case we then have for each xxx ∈ RX

PVMs {Pxi
} which are jointly measurable. Hence Exxx is equivalent to the PVM Pxxx given by

Px,yx,yx,y = Px1,y1 ., . . . , .Pxk,yk
. We can then define a ∗-isomorphism as follows.

▶ Definition 26. Let HHHd be a finite-dimensional Hilbert space of dimension d. A ∗-
isomorphismm in HHHd between X ∈ R(σ) and Y ∈ R(σ) is given by a family of projectors
{Px,y}x∈X,y∈Y in Proj(HHHd) satisfying (P1), (P2), and:
(P4) For all y ∈ Y :

∑
x∈X Px,y = I;

(P5) For all y, y′ adjacent in the Gaifman graph of Y and all x, x′ ∈ X we have Px,y ⊙Px′y′ .
(P6) If xxx ∈ RX ⇐⇒ yyy ∈ RY does not hold Px,yx,yx,y = 0.

A helpful alternative definition is to note that a ∗-isomorphism is given by a family of
projectors {Px,y}x∈X,y∈Y such that {Px,y} is a ∗-homomorphism from X to Y and {Py,x} is
a ∗-homomorphism from Y to X .

To justify this definition we prove the following:

▶ Theorem 27. The following are equivalent:
1. X

∗∼= Y
2. There exists a ∗-isomorphism between X and Y.

4.3 Commuting operator strategies
As in the case of the homomorphism game, we can provide a characterisation of perfect
co-strategies as follows. We omit a detailed proof as this makes use of Lemma 5 and then
follows exactly the same argument as Theorem 27.

▶ Theorem 28. The following are equivalent:
X

co∼= Y.
There exists a perfect co-strategy in the (synchronous) (X ,Y)-CSP game iff there exists
a unital C∗-algebra A which admits a faithful tracial state s : A → C, and projections
Pxy ∈ A for x ∈ X and y ∈ Y satisfying (P1), (P2), (P4), (P5), and (P6).
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5 Categorical characterisations

In this section, we explain how quantum homomorphisms and isomorphisms can be captured
categorically in the Kleisli category of a suitable generalisation of the concept of a monad.

5.1 The graded quantum monad
We start by describing the graded quantum monad introduced in [1]. Let us define graded
monads.

▶ Definition 29 ([11]). A graded monad is a (lax) monoidal functor (M,⊗, I) →
([C,C], ◦, idC) from a monoidal category to the category of endofunctors over C .

Now let N+ denote the monoid of natural numbers under the usual multiplication
operation. The graded quantum monad of [1] is defined as follows.

▶ Example 30. The (finite-dimensional) graded quantum ({Qd}d∈N+ , {µd,d′}d,d′∈N+ , η) is
an N+ graded monad defined by the following components:

Qd : R(σ) → R(σ) is the functor defined by:
Qd(X) is the set of all functions of the form φ : X → Proj(Cd) satisfying the normal-
isation condition

∑
x∈X φ(x) = Id.

Qd(f) maps φ to λy.Σx∈f−1(y)φ(x).
(φ1, . . . , φn) ∈ RQdX iff the following conditions are satisfied:
∗ ∀i, j ∈ [k], x, x′ ∈ X : φi(x) ⊙ φj(x′).
∗ ∀xxx ∈ Xk,xxx ̸∈ RX : φ(xxx)φ(xxx)φ(xxx) = 0 where φ(xxx)φ(xxx)φ(xxx) = φ1(x1), . . . φk(xk).

ηX(x) = ∆x where ∆x(x) = I1 and ∆x(y) = 0 for y ̸= x.
µX(φ) = λx.Σψ∈Qd(X)φ(ψ) ⊗ ψ(x).

The following result links the graded quantum monad to quantum homomorphisms.

▶ Theorem 31 ([1]). The following are equivalent for X ,Y ∈ R(σ):
1. X ∗→ Y.
2. X → QdY.

We now point out that one can define an alternative version of the quantum monad which
can be used to study representations of graph homomorphisms over any Hilbert space, not
just those which are finite-dimensional. For this purpose, consider the monoidal category
(HilbU,⊗,C), which has Hilbert spaces as objects, unitary maps as morphisms, the tensor
product of Hilbert spaces as its monoidal product, and the Hilbert space C as its unit object.

▶ Example 32. There exists a (HilbU,⊗,C)-graded quantum monad
({QHHH}HHH∈H, {µHHH,H

′H′H′}HHH,H′H′H′∈H, η) which is defined in the same way as Qd, where we re-
place the unit 1 with the Hilbert space C and the multiplication operation . with the tensor
product ⊗. Moreover, since a graded monad is a lax monoidal functor we must also construct
a natural transformation αU : QHHH → QH′ whenever there exists a unitary map U : H → H′.
This is defined as αUXφ = Σx∈XUφ(x)U†.

▶ Proposition 33. ({QHHH}HHH∈H, {µHHH,H
′H′H′}HHH,H′H′H′∈H, η) is a graded monad.

We then have the following analogue of our previous theorem:

▶ Theorem 34. The following are equivalent for X ,Y ∈ R(σ):
There exists a quantum homomorphism from X to Y in the Hilbert space HHH.
X → QHHHY.
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5.2 The partial quantum monad
So far we have introduced suitable definitions for quantum homomorphisms and quantum
isomorphisms of relational structures. Moreover, we have described a graded quantum monad
QHHH whose Kleisli morphisms correspond precisely to quantum homomorphisms. Given
these results, one might expect that Kleisli isomorphisms of QHHH coincide with quantum
isomorphisms. Our next result shows that this is not the case.

▶ Proposition 35. The following are equivalent:
1. X ∼= Y

2. X
Kl(QHHH )∼= Y

Therefore, even though Kleisli morphisms of QHHH correspond to quantum homomorphisms
we see that Kleisli isomorphisms coincide with classical isomorphisms.

We now describe a method for overcoming this limiting result. Recall that the set Proj(HHH)
admits the structure of a partial semiring whereby the operation + is only defined when
two projectors are orthogonal and . is only defined when two projectors commute. Based
on this observation we now define an alternative partial notion of Kleisli composition for
the functor QHHH where we use the matrix product instead of the Kronecker product. To
explain this in more detail recall from [1] that given two Kleisli morphisms f : X → QHHHY
and g : Y → QH′H′H′Z their composition g ◦ f : X → QHHH⊗H′H′H′Z can be explicitly described by
the formula

(g ◦ f)(x)(z) =
∑
y∈Y

f(x)(y) ⊗ g(y)(z).

Now consider instead two morphisms X → QHHHY and Y → QHHHZ. If these morphisms
satisfy the condition that for all x ∈ X , y ∈ Y, z ∈ Z : f(x)(y) ⊙ g(y)(z) we can define a
composite morphism g • f : X → QHHHZ given by

(g • f)(x)(z) =
∑
y∈Y

f(x)(y).g(y)(z).6

Moreover, for any Hilbert space HHH there is a natural notion of Kleisli identity map given

by ηHHHX : X → QHHHX which sends x ∈ X to δx ∈ QHHHX where for x ≠ x′ :
{
δx(x) = Id

δx(x′) = 000d
. It is

straightforward to verify that whenever the composition of morphisms under • is well-defined
the associativity and unitality axioms of a category are satisfied. Thus we almost have a
category, except that composition operation • is a partial rather than total operation. These
observations prompt us to define the concept of a partial category.

▶ Definition 36. A partial category C consists of:
A collection of objects, denoted Ob(C).
For each pair of objects X,Y ∈ Ob(C), a set of morphisms (or arrows) HomC(X,Y ).
For each object X ∈ Ob(C), the identity morphism idX ∈ HomC(X,X).
For each triple of objects X,Y, Z ∈ Ob(C), a composition law:

• : HomC(Y, Z) × HomC(X,Y ) → HomC(X,Z)

Given by a partial operation • where for all f ∈ HomC(X,Y ), g ∈ HomC(Y, Z), and
h ∈ HomC(Z,W ), the following axioms hold :
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Associativity: (h • g) • f is well-defined iff h • (g • f) is well-defined. Moreover, when
this is the case (h • g) • f = h • (g • f)
Identity: idY • f and g • idY are always well-defined. Moreover, idY • f = f and
g • idY = g.

This can equivalently be seen as a category enriched in the category of sets and partial
functions.

The partial category we have described above then arises as the Kleisli category of a
partial version of the quantum monad which we now describe.

▶ Example 37. The partial quantum monad (QHHH , η, µ) is a partial monad:
QHHH is defined as previously.
ηX(x) = ∆x where ∆x(x) = IHHH and ∆x(y) = 0HHH for y ̸= x.
µX(φ) is defined whenever ∀ψ ∈ QHHH(X),∀x ∈ X : φ(ψ) ⊙ ψ(x). In this case we have
µX(φ) = λx.Σψ∈QHHH (X)φ(ψ).ψ(x).

Note that µ here fails to be a natural transformation since the morphism µX assigned
to each object is a partial rather than a total homomorphism. Nevertheless, whenever
compositions are well-defined this operation does satisfy the naturality axiom. From this
point onwards we shall write Kl(

•
QHHH) and Kl(

⊗
QHHH) to distinguish the (partial) kleilsi categories

of the partial and graded version of the quantum monad respectively.
We can now explore what a suitable notion of isomorphism in Kl(

•
QHHH) would look like. In

a Kleisli category, the identity map is given by the monad unit. Thus, let us write X
Kl(QHHH )•

∼= Y
whenever there exists a pair of Kleisli morphisms f : X → QHHHY and g : Y → QHHHX satisfying:

∀x ∈ X , y ∈ Yf(x)(y) ⊙ g(y)(x),
g • f = ηX ,
f • g = ηY .

Our next theorem shows that such isomorphisms are precisely quantum isomorphisms.

▶ Theorem 38. The following are equivalent:
1. There exists a quantum isomorphism X

q∼= Y in HHH.

2. X
Kl(

•
QHHH )∼= Y.

This theorem shows that by replacing the Kronecker product with matrix multiplication
we can overcome the collapse of Kleisli isomorphisms for QHHH to classical isomorphism.
▶ Remark 39. It is a standard fact that given any semiring one can define a version of
the probability distribution monad over that semiring (see e.g. [17]). The partial monad
structure we have placed on the functor QHHH can be seen as arising from this construction
using the partial semiring structure of the set Proj(HHH).

5.3 Overcoming partiality

Our final result is a method for overcoming the partiality inherent in Kl(
•
QHHH) to derive

a (total) category where morphisms are quantum homomorphisms and isomorphisms are
quantum isomorphisms. The idea is to change the objects of Kl(

•
QHHH) so that they contain

more fine-grained type information. In this way, we will be able to limit the morphisms
in and out of each object to precisely those morphisms which are composable via •. Our
approach to formalising this idea is based on a refinement of the notion of specification
structures introduced in [2].
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▶ Definition 40. Let C be a partial category. A specification structure S over C is defined
by the following data:

A set PA of properties over A for each object A in Ob(C).
A relation RA,B ⊆ PA× homC(A,B) × PB for each pair of objects A,B in Ob(C).

Given f : A → B, g : B → C, pA ∈ PA, pB ∈ PB, pC ∈ PC, this relation is required to
satisfy the following conditions:

Skip: (pA, idA, pA) ∈ RA,A.
Sequential Composition: (pA, f, pB) ∈ RA,B and (pB , g, pC) ∈ RBC =⇒ (pA, g •
f, pC) ∈ RA,C .
Totality: (pA, f, pB) ∈ RA,B and (pB , g, pC) ∈ RBC =⇒ (g, f) ∈ •C.

Note that our definition of a specification structure is not the same as in [2]. In particular,
since they assume that C is a category they do not need to enforce a totality condition.

Given C and S as above one can define a (total) category CS . The objects are pairs
(A, pA) with A ∈ Ob(C) and pA ∈ PA. A morphism f : (A, pA) → (B, pB) is a morphism
f : A → B such that (pA, f, pB) ∈ RA,B . The composition of f and g is simply g •C f . Our
next result verifies that this construction indeed yields a valid category.

▶ Proposition 41. Let S be a specification structure on a partial category C. CS is a
category.

We now describe the specification structure that shall be placed on Kl(
•
QHHH). For this

purpose, it will be helpful to think of a morphism X → Y for finite structures X ,Y ∈ R(σ)
as |Y | × |X| column stochastic matrices with entries in Proj(HHH). Column stochastic means
that each column of the corresponding matrix must sum to I (and hence represents a PVM).
In this case, the composition operation • is simply the usual notion of matrix multiplication
with addition and multiplication given by the corresponding operations in the partial semiring
Proj(HHH). Moreover, a PVM with outcomes in X can be thought of as a vector indexed by
elements of X whose entries are projectors summing to I. Given a morphism f : X → QHHHY
let us use capital letters F to clarify that we are thinking of it as a matrix in this form.
Likewise, given a PVM m : X → Proj(HHH) we write m⃗ to clarify that we are thinking of it as
a vector.

▶ Theorem 42. The following data describes a specification structure S on Kl(
•
QHHH).

An element pX of PX consists of a set of PVMs with outcomes in X. These must include
all delta distributions (i.e. ∀x ∈ X : η(x) ∈ pX ).
Given pX ∈ PX , pY ∈ PY, and a morphism f : X → QHHHY we have (pA, f, pB) ∈ RX ,Y
iff ∀m ∈ pA : F × m⃗ ∈ pB.

Thus, we now have a category Kl(
•
QHHH)S whose morphisms correspond to quantum

homomorphisms and whose isomorphisms correspond to quantum isomorphisms.
As a final point, it is important to make sure that in passing from Kl(

•
QHHH) to Kl(

•
QHHH)S we

do not lose any quantum homomorphisms. This means we need to make sure that whenever
a quantum homomorphism exists between X and Y there exist properties pX and pY such
that there is a morphism (X , pX ) → (Y, pY).

▶ Proposition 43. For relational structures X and Y the following are equivalent:
1. There exists a morphism f : X → QHHHY.
2. There exists properties pX ∈ PX and pY ∈ PY such that (pX , f, pY) ∈ RX ,Y
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6 Conclusions and Outlook

We have explored the framework of quantum CSPs that was first studied in [1]. We answered
several open questions about quantum homomorphisms mentioned in this paper and showed
how the notion of quantum isomorphism of relational structures can fit into the categorical
framework of the quantum monad QHHH . To achieve this we considered QHHH not as a graded
monad but as a monad with a partial multiplication operation which is intimately connected
with the partial semiring structure of the set Proj(HHH). We then showed that this monad
gives rise to a partial Kleisli category where morphisms are quantum homomorphisms
and isomorphisms are quantum isomorphisms. Finally, we used the idea of a specification
structure, which is inspired by Hoare logic [16] to turn this partial Kleisli category into a
total category. We outline some directions for future work:

Partial semiring semantics: Semirings play a prominent role in many areas of logic
in computer science. In automata theory for example it has long been recognised that
semirings provide semantics for weighted automata [20, 26, 10]. In database theory,
they can be used to define concepts such as probabilistic or incomplete databases [13].
Semiring valued CSPs have also been studied in [7]. Motivated by these applications there
attention has been devoted to studying semiring valued semantics for first-order logic
where logical statements can take on values from a commutative semiring rather than just
being treated as true or false [12, 27]. If we extend this idea to define partial semiring
valued semantics for first-order logic based on the structure of Proj(HHH) we would obtain
a first-order variant of the propositional version of quantum logic introduced by Kochen
and Specker [19]. Would such a logic be helpful for “quantising” standard concepts from
automata theory, databases, or CSPs? Moreover, can our partial quantum monad provide
a unified categorical abstraction for such results in the same way that distribution monads
do for total semirings [17]?
Parameterised monads: We would like to explore connections between our partial
quantum monad QHHH and the notion of parameterised monad introduced in [3]. Much
like specification structures parameterised monads are inspired by the idea of Hoare
logic. The Kleisli category of a parameterised monad over R(σ) has objects which are
pairs (X , c) where X ∈ R(σ) and c is an object from a parameterising category C. The
composition of morphisms is then “guarded” by suitable pre and post-conditions related to
this parameterising category. There is some similarity between this construction and our
category Kl(

•
QHHH)S. The main difference appears to be that in our case the parameterising

category C depends on the object X . Thus it would be interesting to see if one can refine
the definition of parameterised monads to define a parameterised quantum monad whose
Kleisli category is equivalent to Kl(

•
QHHH)S.
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