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—— Abstract

In this work we study shortest path problems in multimode graphs, a generalization of the min-
distance measure introduced by Abboud, Vassilevska W. and Wang in [SODA’16]. A multimode
shortest path is the shortest path using one of multiple “modes” of transportation that cannot be

combined. This represents real-world scenarios where different modes are not combinable, such as
flights operated by different airline alliances. The problem arises naturally in machine learning in
the context of learning with multiple embedding. More precisely, a k-multimode graph is a collection
of k graphs on the same vertex set and the k-mode distance between two vertices is defined as the
minimum among the distances computed in each individual graph.

We focus on approximating fundamental graph parameters on these graphs, specifically diameter
and radius. In undirected multimode graphs we first show an elegant linear time 3-approximation
algorithm for 2-mode diameter. We then extend this idea into a general subroutine that can be
used as a part of any a-approximation, and use it to construct a 2 and 2.5 approximation algorithm
for 2-mode diameter. For undirected radius, we introduce a general scheme that can compute a
3-approximation of the k-mode radius for any k£ and runs in near linear time in the case of k = O(1).
In the directed case we establish an equivalence between approximating 2-mode diameter on DAGs
and approximating the min-diameter, while for general graphs we develop novel techniques and
provide a linear time algorithm to determine whether the diameter is finite.

We also develop many conditional fine-grained lower bounds for various multimode diameter and
radius approximation problems. We are able to show that many of our algorithms are tight under
popular fine-grained complexity hypotheses, including our linear time 3-approximation for 3-mode
undirected diameter and radius. As part of this effort we propose the first extension to the Hitting
Set Hypothesis [SODA’16], which we call the ¢-Hitting Set Hypothesis. We use this hypothesis to
prove the first parameterized lower bound tradeoff for radius approximation algorithms.
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1 Introduction

The study of shortest paths algorithms in directed graphs has introduced various distance
measures. The most standard notion of distance between two vertices u and v is the minimum
length of a path from u to v, d(u,v). This asymmetric one-way notion of distance is not
always the most natural. In some applications the roundtrip distance d(u,v)+d(v, u), defined
by Cowen and Wagner [8], is most useful, since unlike its one-way counterpart, it is a metric.
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In directed acyclic graphs (DAGs), however, both the standard notion of distance and
the roundtrip notion produce infinite distances for all or a large fraction of the distance
pairs. A more useful notion of distance in this case was defined by Abboud, Vassilevska
W. and Wang [1]. In this work they introduced the min-distance, defined as dpin(u,v) =
min{d(u,v),d(v,u)}. Under one-way distance or roundtrip distance, almost all points in
a DAG have infinite eccentricity. Introducing min-distance opened an avenue of research
which lead to intricate algorithms for computing or approximating min-diameter, radius and
eccentricities in DAGs [1, 9] as well as for general graphs [3, 7, 12].

One real-world motivation for studying the min-distance problem is computing the optimal
location for a hospital, as one has the choice of either going to the hospital or having a doctor
come to them. The min-distance therefore measures the fastest way to receive care and the
point with smallest min-eccentricity in the graph functions as the optimal location for a
hospital. Imagine now that the doctor can take a helicopter, whereas a patient can only take
a cab to the doctor. Then the two routes are no longer part of the same graph - the routes
by which a helicopter can travel are very different from those available to a taxi. The new
distance between the patient and the doctor is now the minimum between the distances in
two different graphs.

Consider another common scenario. We want to fly from city A to city B. We can take
any valid itinerary, except that each itinerary needs to stay within the same airline alliance.
Now the fastest flight time is the minimum of the distances over several different “graphs”,
one for each airline alliance. All of these graphs share a vertex set representing the different
cities, while each graph has edges representing the flights of a single airline alliance.

Let us formalize a new shortest paths problem that captures both scenarios. Consider a
collection of k graphs over the same vertex set V. Let their edge sets be E, ..., E;. Together
they form a “k-multimode graph” G = (V, Eq, ..., Ex). One can associate each E; with a
“mode of transportation”, where these modes are separate and cannot be combined.

The k-mode distance between two vertices u,v € V in a k-multimode graph G =
(V,Eq,... Ey) is defined as

dg(u,v) = mindg, (u, v),

where dg, is the distance in the graph G; = (V, E;). Intuitively, dg(u,v) is the length of the
shortest path connecting u and v using a single mode of transportation.

The k-mode distance naturally arises in practice in the context of multiple embeddings
in machine learning (see [21, 15, 18] and many more). In many scenarios, given a high
dimensional data set, there is no clear distance function that accurately captures semantic
relationships within the data. To address this, deep learning is now commonly used to obtain
a data embedding that encodes semantic information. As research in this field advances,
we observe a proliferation of embeddings which can vary due to differences in network
architecture, learning paradigms or training data, to name a few. This results in a single set
of data points with multiple sets of edges representing distances in the different embeddings
spaces. For every pair of points we are interested in the embedding in which they are
closest together and often care about finding a pair of points which are furthest apart in all
embeddings (i.e. computing the k-mode diameter) or a point which is closest to all others in
some embedding (i.e. computing the k-mode radius).

Let us first consider the All-Pairs Shortest Paths (APSP) problem in k-multimode graphs
on n vertices: compute the k-mode distance between all pairs of vertices of G = (V, Ey, ... Ey).
One can always run any APSP algorithm on each (V) E;) separately, resulting in a running
time which is k£ times that of the standard APSP algorithm. This approach will also trivially
compute the k-mode radius of the multimode graph. In fact, we show that in general no
algorithm can have polynomial improvements over this trivial solution.
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» Theorem 1. Under the APSP hypothesis [17], no O((kn3)'=¢) time algorithm can solve
k-mode APSP or k-mode radius for any € > 0.

While it is clear for APSP that one can compute all k-multimode distances by solving k
instances of APSP separately on each graph, it is no longer obvious how to solve k-multimode
radius or diameter using algorithms that compute the radius or diameter in a standard graph.

To illustrate why the k-mode diameter is not directly related to the standard diameters of
the individual graphs Gy, ..., Gy, denote the diameter of G; = (V, E1) by Dy = D(G;) and
let u1,v1 € V be such that dg, (u1,v1) = D;. Similarly, denote the diameter of Go = (V, E3)
by Dy = D(G3) and let ug, vy € V' be such that dg, (u2,v2) = Da. We cannot merely take
the minimum of Dy, Do to get the diameter in the multimode graph G = (V, E1, E5). This
is because it could be that dg,(u1,v1) < D1 and dg, (u2,v2) < Dy so that the multimode
distance between u; and vy is not D; but rather dg, (u1,v1) and similarly for us and vy. The
multimode diameter can be the distance between some completely different pair of vertices
and thus can be arbitrarily smaller than both D; and Ds. It could even be the case that
D1, Dy are infinite, while the multimode diameter D(G) is finite.

However, if we wish to compute the exact k-mode diameter or radius of a k-multimode
undirected graph, we show that we can in fact use any algorithm for computing standard
diameter or radius in a blackbox way.

» Theorem 2. If there exists a T'(n,m) time algorithm for computing the diameter/radius
of a weighted, undirected graph with n-nodes and m-edges, then there exists an algorithm for
computing the k-mode diameter of a k-multimode undirected graph in time T(O(kn),O(m +

The proofs of both Theorem 1 and Theorem 2 follows from a straightforward application
of standard techniques. We therefore defer their proofs to the full version of this work. We
instead turn our focus to approximating these parameters.

There exists a plethora of algorithms and conditional lower bounds for approximating
diameter and radius under both the standard notion of (directed or undirected) distance
and the min-distance measure [2, 1, 7, 9, 10, 11, 6, 16, 4, 13]. As the k-multimode distance
generalizes both these distance measures, we would like to develop approximation algorithms
and prove tight conditional lower bounds for approximating diameter and radius in the
multimode setting as well.

The known fine-grained hardness results for the min-distance and standard diameter,
radius and eccentricities would trivially carry over for the multimode distance case (as it
generalizes both). We are thus interested in when stronger hardness is possible, and when
similar approximation algorithms can be attained.

Devising approximation algorithms for the min-distance measure is particularly difficult
and therefore significantly new techniques had to be developed over the standard diameter
ones (see e.g. [12, 7, 9]). The main difficulty lies in the fact that the triangle inequality no
longer holds: it could be that d,,;,(u,v) = 1 and dpin (v, w) = 1 but dpn(u, w) = oo, as
in the graph with vertices {u,v,w} and edges {(v,u), (v,w)}. This difficulty persists and
is even more prominent in the multimode distance setting, as now the various graphs that
represent modes of transportation may not share any edges. We can therefore expect that
the distance parameters of interest can be even more difficult to approximate.

1.1  Our results

We develop various new techniques that work in the multimode distance setting, both for
directed and undirected graphs, and for fine-grained conditional lower bounds. Table 1
summarizes our results. Here we present some highlights.

63:3

MFCS 2025



63:4

Shortest Paths in Multimode Graphs

Table 1 Our Results. Algorithms that match their lower bound are in bold.
The runtimes marked with * assume w = 2.

k Approx. ‘ Runtime Comments Reference

Undirected k-mode Diameter Upper Bounds

2 3 O(m) Weighted Theorem 9

3 3 O(m) Weighted. Theorem 13
Non negative edge weights < M.

2 (2,2M) O(mm®/*)* If w > 2 the runtime is See full version

1.5 m\ 1/ (w=2)
m: ((m\n/ﬁ)l/‘*’ + (;) )
Non negative edge weights < M.
2 (2.5,2.5M) | O(my/n)* If w > 2 the runtime is See full version

n m\1/(w=2)
m: <m1/u + (%) >
Undirected k-mode Diameter Lower Bounds (Under SETH)

2 2-9 Q(m2°W) Unweighted See full version

3 3-2-5§ Q(miH/E=D—o(l) Unweighted. See full version
Q(logn) Any Q(m?~°W) Unweighted. See full version
Directed k-mode Diameter Upper Bounds

2 n O(m) Weighted. See full version

2 2 O(m) Weighted DAG. See full version

2 (%, 1) O(m0414p 1522 4 2oy | Unweighted DAG. See full version
Directed k-mode Diameter Lower Bounds (Under SETH)

2 2—-90 Q(m27°W) Unweighted. See full version

3 Any Q(m?oW) Unweighted DAG. See full version
Undirected k-mode Radius Upper Bounds

k 3 O(mk!) \Ty‘gzlhgthtfisl("l.constant k>3 Theorem 14
Undirected k-mode Radius Lower Bounds (Under the HS Hypothesis)

2 2—-90 Q(m?=°W) Unweighted. See full version

3 3-i-90 Qm ) ‘évoerlli}il:ieoted on the new ¢-HSC. See full version
Q(logn) Any Q(m2?7°W) Unweighted. See full version
Directed k-mode Radius Upper Bounds for DAGs

2 ‘ n ‘ O(m) ‘ Weighted DAG. See full version
Directed k-mode Radius Lower Bounds (Under the HS Hypothesis)

2 Any Q(m27°W) Unweighted. See full version

2 2-9 Q(m2°W) Unweighted DAG. See full version

3 Any Q(m?°W) Unweighted DAG. See full version

Our hardness results are based on the Strong Exponential Time Hypothesis (SETH)
[14, 5] and the Hitting Set Hypothesis [1] (see also [19]). We further extend the Hitting
Set Hypothesis to the stronger ¢-Hitting Set Hypothesis. Based on this new hypothesis we
are able to obtain a lower bound tradeoff for approximating the k-mode radius. As the
introduction of the Hitting Set Lemma in [1] allowed for the proof of the first lower bounds
on radius approximation, we hope this extension will enable future work on lower bound
tradeoffs for radius in various distance frameworks.

» Theorem 3. Let k > 3. Under SETH, there can be no O(m?~¢) time (for e > 0) algorithm
that achieves any finite multiplicative approximation for the k-mode diameter in directed
unweighted m-edge multimode graphs, even if all graphs in the multimode graph are DAGs.



Y. Kirkpatrick and V. Vassilevska Williams

The result appears as Theorem 5.3 in the full version of the text. It implies that, under
SETH, to get any approximation algorithm for directed multimode diameter, even for DAGs,
one must focus on k =1 or kK = 2. The case k = 1 is just the standard diameter problem,
and so we consider the case where k = 2 next.

For 2-mode diameter in directed graphs we provide (1) a near-linear time algorithm
that can decide whether the diameter is finite, and (2) a near-linear time 2-approximation
algorithm for the case when both graphs in the multimode graph are DAGs. Both of these
results are tight, in the sense that for k£ > 2 such results are impossible under SETH. The
results appear in the full version.

For k-mode diameter and radius in undirected graphs we obtain several tight results as
well. Here are two highlights:

» Theorem 4. For every constant k, there is an O(m) time! 3-approximation algorithm for
the radius of m-edge undirected k-multimode graphs. This is tight under the (-Hitting Set
Hypothesis, in that no 3 — e-approximation is possible in O(m) time, even for k = 2.

This algorithmic result is stated in Theorem 14 while the lower bound appears in the full
version. It achieves the conditionally best possible result for radius in near-linear time.

» Theorem 5. Under SETH, there can be no 2 — §-approzimation algorithm for diameter
running in O(mn'~¢) time for ,8 > 0 for m-edge 2-mode undirected unweighted graphs. If
w = 2,2 there is an O(mn3/4) time algorithm that achieves a 2-multiplicative, 2-additive
approximation to the diameter in m-edge, n-node undirected 2-multimode graphs.

This result appears in the full version. Up to the small additive error, the approximation
algorithm is optimal due to the SETH-based lower bound. The running time of the algorithm
is still faster than mn, even with the current bound on w.

1.2 Technical Overview

In this subsection we describe an outline of some of our results, and highlight their connections
to other, well studied problems.

Approximating Undirected 2 and 3 Mode Diameter

Our first result is a simple, linear time 3-approximation for 2-mode diameter. Given a
threshold D, we would like to either show that the 2-mode diameter is less than D or find
a pair of points u, v whose 2-mode distance is greater than D/3, meaning dg, (u,v) > D/3
and dg, (u,v) > D/3.

To find such a pair, run BFS from an arbitrary point z. Let X be the points within
distance D/3 of z in G; and let Y be the points within distance D/3 of z in Go. If any
vertex is contained in neither X nor Y, then it has multimode distance greater than D/3
from z and we are finished.

Next, run BFS from X (as a set) in G; to identify the vertices in Y that have distance
> D/3 in Gy from all vertices in X. Similarly, run BFS from Y in G5 to identify all vertices
in X that have distance > D/3 in G from all vertices in Y. If there exists a pair of vertices
x € X,y €Y such that dg, (y, X) > D/3 and dg,(z,Y) > D/3 then the multimode distance

1 As is standard, O hides polylogarithmic factors.
2 Here w denotes the fast matrix multiplication exponent, w < 2.371552 [20].
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of x,y is greater than D/3 and we are done. Otherwise, we can show that any pair of points
has multimode distance < D, and thus the 2-mode diameter is < D. Indeed, if z,y € X then
dg, (z,y) < 2D/3 using a path through z in Gy. Similarly, if z,y € Y then dg, (z,y) < 2D/3.
Otherwise, we can assume w.l.o.g that z € X,y € Y and dg,(y,X) < D/3. Then there
exists a point 2’ € X such that dg, (2',y) < D/3. Now, following a path in G; from y to 2’
to z to « we have that dg, (z,y) < D/3+ D/3+ D/3 = D. Thus, for any pair of vertices we
have dg(z,y) < D.

This completes our 3-approximation for undirected 2-mode diameter in linear time. Next
we generalize this approach to a subroutine that can be used for any S-approximation for
2 < B < 3. Informally, we take X to be the neighborhood in Gy of some point z and Y
to be the neighborhood in G5 of some point y. We perform a similar search, running BF'S
from the set X in G and from Y in G5 to find a pair of points in X x Y that is far apart
in both graphs. In order to conclude that the graph has a small diameter in the case that
we do not find a pair of large distance, we need to consider all pairs =,y where x is in the
G neighborhood of a vertex z and y is in the G2 neighborhood of the same vertex z. This
results in a subroutine that, given a point z with small G; and G2 neighborhoods, we can
compute a S-approximation to the 2-mode diameter. For details see Lemma 12.

We can now use this idea to construct S-approximation algorithms using a classic large-
small neighborhoods tradeoff. We show two ways in which to use this subroutine in a
complete algorithm, obtaining a 2-approximation and a 2.5-approximation.

For our 2-approximation, if we have a point z with small G; and G5 neighborhoods, we use
the aforementioned subroutine. Otherwise, all vertices have a large G; or G2 neighborhood,
including the endpoints of the diameter. We leverage this fact and sample a hitting set,
hitting the G; or G2 neighborhood of a diameter endpoint. For every point z in this hitting
set, we compute the set of points A of distance < D/4 from z in G; and the set of points B
of distance > 3D/4 from z in G;. We show that if the 2-mode diameter is > D and z hits
the G1 neighborhood of a diameter endpoint, then the ST-diameter of the sets A, B in Gg
will be D. We can therefore use an ST-diameter approximation algorithm in a black box
way to obtain our desired approximation.

To obtain our 2.5-approximation we use a similar approach, leveraging a blackbox
ST-diameter 2.5-approximation. Using a slightly different method, we apply the simple
3-approximation of ST-diameter to turn our linear time 2-mode diameter approximation
into an approximation for 3-mode diameter, incurring only poly-logarithmic factors in the
running time.

Connections to ST-Diameter

As hinted to above, the ST-diameter problem turns out to be intricately connected to the
problem of computing the multimode diameter. In many cases, one can reduce the problem
of computing a multimode diameter to that of computing the ST-diameter of some subsets
of the vertices in one of the edge sets. It turns out, this connection between the problems
persists in the lower bounds as well.

Consider a lower bound construction showing that an a-approximation of ST-diameter
requires T'(n) time: a graph G = (V, E) with S,7 C V such that approximating the ST-
diameter of S, T beyond a factor of a takes Q(T'(n)) time. We can now construct a simple
lower bound for the problem of approximating 3-mode diameter as follows. Take the 3-
multimode graph with F as its first edge set, using a second set of edges connect the vertices
of S with the vertices of V' \ T and using a third set of edges connect T' with V'\ S. Now,
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the 3-mode diameter of this 3-multimode graph will be the ST-diameter of S and T in the
original graph. Therefore approximating the 3-mode diameter beyond a factor of « requires
Q(T(n)) time as well.

We use an existing lower bound tradeoff for ST-diameter to establish a lower bound
tradeoff for 3-mode diameter approximation. However, for radius approximation no such
tradeoff is known. We further extend this result to a lower bound tradeoff for 3-mode
radius approximation, establishing the first lower bound tradeoff for any form of radius
approximation problem. This result also suggests a potential “radius equivalent” of the
ST-diameter problem, which could be an avenue for future work.

Approximating Directed Multimode Distances

While the problem of approximating diameter and radius of multimode graphs is closely
related to the ST-diameter problem, and often ST-diameter techniques allow to “reduce the
number of modes” in the graph, the directed case is very different. In directed graphs we
cannot hope for techniques like this to work as we show that any approximation to 3-mode
diameter or 2-mode radius requires quadratic time.

We are able to show, however, that in directed acyclic graphs, the problem of approximat-
ing 2-mode diameter is in fact equivalent to the problem of approximating the min-diameter
of each of the 2 graphs making up the multimode graph. In the case of a general directed
2-mode graph, we construct a linear time algorithm which can differentiate between finite
and infinite 2-mode diameter. It does so by considering the min-distances in the graphs of
the strongly connected components of G; and G2, and the intersections of these two sets of
SCCs with each other.

2 Preliminaries

Let G = (V, E) be a graph with n = |V| vertices and m = |E| edges. For a k-multimode
graph G = (V,En,...,Ey), denote n = |V| and m = |E1| + ..., +|Ex|, we will also use
e(G) to denote the number of edges in G. Define G; = (V, E;) and for any u,v € V let
dg, (u,v) be the length of the shortest path from u to v in the graph G;. When G is clear
from context, we denote this distance by d;(u,v). The k-mode distance of u, v is defined as
dg(u,v) = min;ep di(u, v).

Throughout this paper, we will often associate each “mode” with a color. We can assign
a color to each set of edges F; and think of G as the graph G = (V, E = J, E;) where
every edge is assigned at least one color. A path that uses a single mode corresponds to a
monochromatic path under this coloring.

Consider the special case of 2-multimode graphs with edge sets E1, Fo. We use “red
distance” to refer to dg,, meaning paths using only edges in E; (“red edges”). Likewise,
we use “blue distance” to refer to dg,. In 3-multimode graphs, G = (V, E1, Ea, Es3), we use
“green distance” to refer to dg,.

In this work we present many approximation algorithms to k-mode diameter, radius and
eccentricities of k-multimode graphs. We define an («, §)-approximation algorithm for a
value D to be such that outputs D satisfying D < D < aD + 3. When = 0 we have a
multiplicative approximation and call it an a-approximation.

We call a directed k-multimode graph G = (V, Eq, ..., Ex) a k-multimode DAG (Directed
Acyclic Graph) if Gy, ..., Gy are all DAGs.

Denote the ball around a vertex v in a graph G, or the neighborhood of v, by Bg(v,r) ==
{u eV :dg(u,v) <r}. In a k-multimode graph, we will use B;(v,r) to denote Bg, (v, 7).
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Given a vertex subset A C V, denote by G[A] the induced subgraph defined by G[A] ==
(A,ElﬂA XA, ..., ExNAX A)

The eccentricity of a vertex v in a graph G is defined as eccg(u) = max,cy dg(u,v).
The diameter of G, or D(G), is defined as the largest eccentricity in the graph and the radius,
or R(G), is defined as the smallest eccentricity. We naturally extend these definitions
to k-multimode graphs using the k-mode distance. We refer to points u,v such that
deg(u,v) = D(G) as “diameter endpoints” and say that these points “achieve the diameter”.
We refer to a point ¢ such that eccg(c) = R(G) as a “center” of G.

The k-mode distance is a generalization of the well studied min-distance. In a
directed graph, the min-distance between two vertices w,v is defined as dpin(u,v) =
min {d(u,v),d(v,u)}. Approximating the diameter of a graph under the min-distance (or
min-diam) has been studied in [1], [7], [9], [12]. In our approximation algorithms we will use
the following lemma from [1]:

» Lemma 6 ([1], Lemma C.2). There is a O(m + n)-time algorithm that determines which
vertices in a directed graph G have finite min-eccentricity.

A variant of the diameter that we use throughout this paper is the ST-diameter. Given
two sets S,T C V, the ST-diameter is defined as Dgr = maxseg e d(s,t). Backurs,
Roditty, Segal, Vassilevska W. and Wein explored this variant in [2]. We will use many of
their results throughout this paper. We will use the following algorithms in approximating
the undirected k-mode diameter.

» Lemma 7 ([2], Claim 24, Theorem 25). Given G = (V, E) and S,T CV, there exists an
O(m+/n) time algorithm that computes a 2-approzimation for the ST-diameter and a O(m)
time algorithm that computes a 3-approximation for the ST-diameter.

Backurs et al. [2] also proved conditional lower bounds surrounding the hardness of
approximating the ST-diameter.

» Lemma 8 ([2], Theorem 7). Under the Strong Ezponential Time Hypothesis (SETH),
for every integer £ > 2, any 3 — % — §-approximation algorithm for ST-diameter requires
mM Y/ E=D=0() time for any 6 > 0.

3 Approximating Undirected k-mode Diameter and Radius

In the following section we focus on k-multimode graphs with small values of k, k£ < poly log(n).
Under SETH and the Hitting Set Hypothesis, computing the exact k-mode diameter or
radius requires Q((nm)'=°1)) time, as it is at least as hard as computing these values in
ordinary graphs [1]. Therefore, we have little hope of computing the exact diameter or
radius polynomially faster than the trivial O(mn) time algorithm. Instead, we focus on
approximating these parameters.

In this work we focus on undirected graphs, for directed graphs refer to the full version.
First, we present a simple algorithm running in linear time that provides a 3-approximation
to the k-mode diameter when k& = 2. We then show how to extend the idea of this algorithm
to use in the context of a general a-approximation. We use this extended idea to obtain a
near 2-approximation and a near 2.5-approximation algorithm for 2-mode diameter in the
full version of this paper.
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Next, we extend the 3-approximation algorithm for 2-mode diameter to the case of k = 3
and obtain a near linear® time 3-approximation algorithm for the 3-mode diameter.

Finally, we turn our attention to approximating the k-mode radius of a k-multimode
graph. Here we are able to show a 3-approximation algorithm for the k-mode radius for any
k, with a running time of O(mk!).

In the full version we prove that for k > 3, any 3 — § approximation algorithm for k-mode
diameter must run in super linear time, showing that our near linear time 3-approximation
algorithm for 3-mode diameter is in fact tight. Similarly, in the full version we also show that
for k£ > 3, any 3 — § approximation algorithm for k-mode radius must run in super linear
time. Therefore, for any constant k > 3 our 3-approximation algorithm for k-mode radius
runs in near linear time and is tight.

3.1 Linear Time 3-Approximation for 2-mode Diameter

In this section we show our first approximation algorithm for undirected 2-mode diameter,
running in linear time and providing a multiplicative 3-approximation. We prove this result
for unweighted graphs but note that by replacing BFS with Dijkstra’s algorithm we obtain
the same result for weighted graphs while increasing the runtime complexity by only a logn
factor.

» Theorem 9. There exists an O(m) time algorithm that computes a 3-approzimation of the
2-mode diameter of an unweighted, undirected 2-multimode graph.

Proof. Given a 2-multimode graph G = (V, Eq, E5) with 2-mode diameter D, our algorithm
will output a pair of points a, b such that % <dg(a,b) < D.

Start by running BFS in the red graph G; and the blue graph G from an arbitrary node
z€V. Let X ={veV|di(v,2) <da(v,z)}, the points closer to z in red than in blue. Let
Y =V \ X. Denote by «g := max,cx di(z,v), the largest distance between z and a node in
X. Likewise define By := max,cy da(z,v).

Run BFS in G; from the set X by contracting the set X into a single vertex and running
BFS from it. Let y € Y be the point furthest away from X in red. Similarly, run BFS in Gs
from the set Y and find the point € X furthest away from Y in blue.

Return D = max(dg(z,y), ao, Bo). We claim that D/3 < D < D.

Clearly D < D. We are left to show D > D/3. If ag > D/3 or By > D/3, we are finished.
Otherwise, consider a pair of diameter endpoints s, ¢. Since any two points in X are within
distance < 2ap < D, the points s,t cannot both be in X. Likewise, they cannot both be in
Y. Thus, we can assume without loss of generality s € Yt € X.

Denote by a; = d;i(y, X). By our choice of y, we have d; (s, X) < a;. Therefore, there is
some point &’ € X such that d;(s,z’) < ay. Thus,

D =dy(s,t) <di(s,2) + di(2,2) + di(2,t) < a1 + 2ap.

Since oy < D/3 we conclude oy > D/3. By a similar argument, if we define 51 = da(z,Y),
we conclude that 81 > D/3. Therefore, di(x,y) > di(y,X) = a1 > D/3 and da(z,y) >
da(z,Y) = 1 > D/3. The pair of points z,y have both red and blue distance greater than
D/3 and so their 2-multimode distance is dg(z,y) > D/3.

We conclude that D > D/3. <

3 Running in O(m) time.
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3.2 Subquadratic Time < 3-Approximation Technique

Still considering a 2-multimode graph, our next goal is to obtain a better-than-3 approximation
for the 2-mode diameter. The main tool we will use in this section is a generalization of
our linear time 3-approximation algorithm. For the following algorithms we will be given a
value of D and determine whether D(G) < D or D(G) > aD. Thus, binary searching over
D will give a é-approximation to the diameter. For simplicity, we will assume 1*T"‘D is an
integer and G is unweighted. If that is not the case, we get an additional additive error to
our approximation, which we address in the full version of this work.

Given D, we can rephrase the above 3-approximation algorithm as follows: pick an
arbitrary node z and run BFS from it to compute its “red neighborhood” X; = B; (z, %)
and its “blue neighborhood” Y7 := B> (z, %) Find the points in the blue neighborhood Y;
that are within red distance < % of some point in the red neighborhood, call these points
X5. Similarly, take the points in X; that are within blue distance < % of some point in the
blue neighborhood and call them Ys. If we take a pair of points a € X7 \ Y2,b € Y7 \ X>
we know that their distance from each other in both red and blue is greater than % and
thus the pair (a, b) provides a 3-approximation to the diameter. Furthermore, we know any
point in X5 is within red distance < D of all points in X; and within blue distance < %
of all points in Y;. Thus, if the diameter is > D, no diameter endpoint can be in X5 and
similarly no diameter endpoint can be in Y. We conclude that if X; \ Y2 and Y7 \ X, are
not empty we can find points a, b that provide a 3-approximation to the 2-mode diameter,
and otherwise D(G) < D.

For a general approximation factor «, instead of considering the red and the blue
neighborhoods of a single point z, consider a pair of points x, y and take the red neighborhood
of one and the blue neighborhood of the other. Define the red neighborhood of z, X; =
By (z, 1’?@‘D) and the blue neighborhood of y, Y1 = Ba(y, 1’7@‘D) Consider the points in Yy
that are within red distance oD of some point in X;, Xo = Bj(x, 1+7“D) NY;. Similarly,
define Yo = Bi(y, 1+?O‘D) N X1. The sets are illustrated in figure 1, where d; distance is
illustrated in red and dy distance is illustrated in blue.

aD

Figure 1 Defining the sets X1, X2, Y1, Ya.

As with the 3-approximation, these sets have two useful properties.

> Claim 10. If X7 \ Y5 # 0 and Y; \ X5 # 0 then we can find a pair of points a,b with
dg(a,b) > aD.

Proof. Take an arbitrary a € X; \ Y2 and b € Y7 \ Xa. If d1(a,b) < aD, then

1+«

D
2

1—
dy(z,b) < dy(z,a) + dy(a,b) < aD + TaD =

and so b € Xo, a contradiction. Thus d;(a,b) > oD and similarly ds(a,b) > aD. Therefore
dg(a,b) > aD. <
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> Claim 11. Let s,t have distance dg(s,t) > D. If s € X7 and t € Y7, then X7\ Y2 # 0 and
Y1\ Xo #0.

Proof. If X1 = Y3, then s € X1 = Y, and therefore dy(s,y) < 15%D. Thus, da(s,t) <
da(s,y) +da(y,t) < 22D + 152D = D, in contradiction to dg(s,t) > D. We arrive at a
similar contradiction if Y7 = Xs. <

Therefore, our goal is now to find a pair of points x, y such that s € X; and ¢t € Y;. Using

the above claims, this will allow us to find a pair of points with dg(a,b) > aD in linear time.

To do so, consider running BFS from an arbitrary point z in both the red and the blue
graphs G1, Gy. If the algorithm found no point p such that dg(z,p) > aD, then z is close to
s and t in either red or blue. Since a < %, we can assume without loss of generality that
di(z,s) < aD and dy(z,t) < aD. Now, if di(z,a) > 152D, since we assumed 52D € N,
there is some point x on the shortest red path between z and s such that d;(x, s) = 1*TO‘D,
and so

1-— —1
dy(z2) = di(2,8) — di (2, 8) < (a— 2“) p-lp

If di(z,a) < 152D then there exists a point z on this shortest path such that d;(z,s) <
152D and dy(z,2) < 321D,

Similarly, there exists a point y such that da(y,t) < 52D and dy(z,y) < 2%-1D.

Therefore, by considering all pairs of points « € By(z, 3"‘2*1 D),y € Bs(z, 3C‘Qle) we can find
a pair that satisfy the conditions of claim 11 and thus also the conditions of claim 10. Now, by
running a linear time algorithm for every pair of points « € B (z, 252 D),y € Bo(z, 2452 D)
we can find a pair of points of distance > aD. In fact, we don’t need to run the above
algorithm for every pair of potential points x,y independently. We can improve our running
time using fast rectangular matrix multiplication. We use the standard notation M (J, K, L)
to indicate the time it takes to multiply a J x K matrix by a K x L matrix using fast

rectangular matrix multiplication.

We are now ready to claim the following generalization to our 2-approximation algorithm.

» Lemma 12. Let G be a 2-multimode graph with 2-mode diameter > D. Given % <a< %

and a point z with |By(z, 2452 D)| < n’ and |Bs(z, 352 D)| < n°, we can find a pair of

points a,b with dg(a,b) > aD in time O(n’m) + M(n’,n,n?).

2 2
dy to compute X, = By (z, 1_TQD) and X5 := By (z, H'TQD) as illustrated in figure 1 (without

taking an intersection with Y7). Let M be a n® x n matrix with rows indexed by X and
columns indexed by V and let M% be a n x n® matrix with rows indexed by V and columns
indexed by X. Define M% and M% as follows,

Proof. Define X = B; (z, 30‘_1D) and Y = By (27 da—l ) From every x € X run BFS in
(

1 iquXl,

0 otherwise.

M|z, u] = {
{1 if u ¢ Xo,

M2 [u,z] =
x[u 7] 0 otherwise.

Similarly, run BFS from every y € Y in dy and define M., M by,
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1 ifue Yl = Bg(y, ]‘_TQD),

0 otherwise.

My [y,u] = {

0 otherwise.

Finally, compute the boolean matrix product
Z =My - M A My - M%.

For any z € X,y € Y, we have Z[z,y] =1 <= X;\Y2 # 0 and Y7 \ X3 # 0. Therefore,
by claim 10, if Z[z,y] = 1 we can find a pair of points with dg(a,b) > aD. If D(G) > D,
there exist some x,y for which s € X; and ¢ € Y7, and so by claim 11 at least one pair will
have Z[z,y] = 1.

To summarize, in order to find a pair of points with dg(a,b) > aD we first run BFS from
every point in X and Y. We construct the matrices M, M%, M{., M and use them to
compute Z. We then find a pair z, y such that Z[z,y] = 1. For this pair, we compute the sets
X1, X2,Y1,Y; and return a € X3 \ Y3 and b € Y7 \ X5. These points satisfy dg(a,b) > aD.
If we are unable to find such points we conclude that D(G) < D.

The final running time is dominated by O(n’m) for the BFS searches and M (n°,n,n%)
to preform the matrix multiplications. |

3.3 Linear Time 3-Approximation for 3-mode Diameter

In this section we consider a 3-multimode graph G = (V, Ey, E», E5) and attempt to approx-
imate its 3-mode diameter. We extend our result for 2-multimode graphs and provide a near
linear time 3-approximation algorithm for the 3-mode diameter.

To find a 3-approximation to the 3-mode diameter we will look for a pair of points with
dg(a,b) > %. We will use a similar approach to the 2-mode case, finding two sets in which
all points are far apart in both the red and blue graphs (G1,G2). We can then compute
the ST-diameter of the two sets in green (G3), finding two points with large ds distance as
well. As in previous sections, we provide an algorithm for unweighted graphs and note that
by replacing BFS with Dijkstra’s algorithm the algorithm works for weighted graphs, while
adding a logn factor to the running time.

» Theorem 13. Given a 3-multimode undirected, unweighted graph G and integer D, there
exists an O(m) time algorithm that does one of the following with high probability:

1. Finds a pair of points a,b with dg(a,b) > %.

2. Determines that the 3-mode diameter of G is < D.

By performing a binary search over the possible values of D we obtain our desired result.

Proof. Choose an arbitrary vertex p € V and run BFS from it in all three graphs, G1, G2, G3.
Let X = B1(p,D/3),Y = Ba(p,D/3)\ X and Z = V' \ (X UY). If there exists a vertex
z € Z such that d3(p,z) > D/3, then z ¢ U?Zl Bi(p,D/3) and so dg(p,z) > D/3. We can
therefore return (p, z) and finish. Otherwise Z C Bs(p, D/3).

As was the case for 2-mode diameter, we note that for any pair of points u,u’ € X,
di(u,u’) < di(u,p) + di(p,u’) < 2D/3 and so dg(u,u’) < 2D/3. Likewise, for any pair
v,v" €Y or w,w € Z we have dg(v,v’) < 2D/3 and dg(w,w’) < 2D/3.
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Thus, any pair of points within one of the sets X,Y, Z has 3-mode distance < D. Next,
consider pairs of points z € X and y € Y. Run BFS in red from the set X and run BFS
in blue from the set Y. Let Xo = Y N By(X,D/3) be the points in Y of red distance
< D/3 from the set X. We claim that any pair of points 2’ € X,y’ € X, have 3-mode
distance < D. For any point y € X there exists 2’ € X with d;y(2’,y) < D/3. Therefore,
dy(z,y) < dj(z,2')+di(2',y) <2D/3+ D/3 = D.

Now define Yy = X N B2(Y, D/3). Using a symmetric argument we can show every pair
of points y € Y,z € Y have dsy distance < D. Therefore, if X =Y, or Y = X, then every
pair of points z € X,y € Y have distance dg(z,y) < D.

Denote X7 = X \ Xp and Y7 =Y \ Y. We are left to handle the case when both X3,V
are non-empty. Every pair of points z € X1,y € Y7 has di(x,y) > D/3 and da(z,y) > D/3
so in order to determine if dg(z,y) > D/3 we only need to consider ds(z,y).

To do so, preform a simple approximation to the ST-diameter of the sets X7,Y; in G3 as
follows. Pick two arbitrary nodes & € X;,¢ € Y7 and run BFS from each one of them in Gs.
If Y1 € Bs(%, D/3) then we will have found a point y € Y7 such that d3(Z,y) > D/3 and so
dg(#,y) > D/3. Similarly, if X; ¢ Bs(g, D/3), we will have found a point z € X such that
dg(z,9) > D/3.

Otherwise, X1 C Bs(y,D/3) and Y1 C B3(Z,D/3). Thus, for every pair of points
r e X,y €Y,

And so we conclude that any pair of points € X,y € Y have dg(z,y) < D.

We can now repeat this algorithm for the pairs of sets X, Z and Y, Z and their respective
pairs of colors. If the algorithms finds no pair of points with dg(u,v) > D/3, we conclude
that the 3-mode diameter of G is < D. <

3.4 Linear Time 3-Approximation for k-mode Radius

In the following section we consider the problem of approximating the k-mode radius of a
k-multimode graph. Unlike the algorithms we constructed for approximating the k-mode
diameter, in this case we provide a general algorithm for all k, with running time parameterized
by k and m. Our algorithm provides a 3-approximation for the k-mode radius and runs
in time O(mk!). Thus, for a constant k we have a near linear time algorithm. We again
present our algorithm for unweighted graphs and note that by replacing BFS with Dijkstra’s
algorithm we can extend the result to weighted graphs while adding logn to the running
time.

» Theorem 14. There exists an O(mk!) time algorithm that computes a 3-approzimation of
the k-mode radius of an unweighted, undirected k-multimode graph.

Proof. Our algorithm receives a threshold R and either finds a vertex v with ecc(v) < 3R or
determines that R(G) > R. Performing a binary search over the values of R will give the
desired approximation.

First we consider the 2-mode radius (k = 2) and then we will show how to generalize
this algorithm to any k. Assuming R(G) < R, our approach will be to find a point that is
close to the center ¢ of the graph in both colors. If we find a vertex x with dy(c,z) < 2R
and da(z,¢) < 2R, then for any vertex v we have d;(c,v) < R for some i € {1,2} and so
di(z,v) < 3R.

63:13

MFCS 2025



63:14

Shortest Paths in Multimode Graphs

To find such a point, run BFS from an arbitrary node z. If ecc(z) < 3R we are finished,
otherwise we have a point w with dg(z,w) > 3R. The points z, w are both within distance
R of the center c in either red or blue, if z, w were both within distance R of the center
in the same color we would have a contradiction. Thus, if dg(z,¢) = di(z,¢) < R, then
me must have dg(w,c) = da(w,c) < R and if dg(z,¢) = da(z,¢) < R, then me must have
dg(w,c) = dy(w,c) < R.

Let X := By(z, R)NBa(w, R) and Y := By(z, R)NB;(w, R). By the above observation, ¢ is
eitherin X orinY. If ¢ € X, then any point x € X will have d; (z, ¢) < dy(z, 2)+d1(z,¢) < 2R
and da(x,c¢) < da(x,w) + da(w, c¢) < 2R. This would imply ecc(z) < 3R. Similarly, if c€ Y
then any point y € Y will have ecc(y) < 3R. Therefore, by choosing arbitrary z € X,y € Y’
and running BFS from each, we will have found a vertex of eccentricity < 3R.

This algorithm runs a constant number of BFSs and if R(G) < R it finds a point with
ecc(v) < 3R. Otherwise, we can conclude R(G) > R. Therefore, in O(m) time our algorithm
provides a 3-approximation the the 2-mode radius. We can now extend this idea to any value
of k.

For a general k£ we can define a recursive algorithm, where at each node we “guess” the
color (or mode) in which it achieves its distance to the center (in fact we try all possible
colors). We run algorithm 1, RADIUS-3-APPROX, on input G, R, a subset of colors C and a
subset of vertices W C V. We would like G, R, C, W to have the following property:

(P1) If R(G) < R, then ¢ € W and d;(w,c) < 2R for w € W,i € C.

Algorithm 1 RADIUS-3-APPROX.

Input: Graph G = (V, E), threshold R, color subset C' C [k] and vertex subset W C V.
Output: Node x with ecc(z) < 3R or determine R(G) > R.
Select arbitrary z € W.
if ecc(x) < 3R then return z.
end if
Let y be a point with dg(x,y) > 3R.
for i € [k]\ C do
C'+ CU{i} ,W' « WnB;(y, R).
RADIUS-3-APPROX (G, R, C', W").
end for

—
@

Correctness. We run algorithm 1 on W = V and C = () at first, at which point (P1) trivially
holds. Subsequently, we claim that if C, W satisfy (P1), then in at least one of the recursive
calls in line 9, the sets C', W’ satisfy (P1).

Let x € W and y be such that dg(z,y) > 3R (as chosen in lines 3,6). Since d;(z,c) < 2R
for any j € C, we must have d;(c,y) > R. Thus, there exists ¢ € [k] \ C such that
di(c,y) < R. For this iteration of the for the loop in line 7, we have ¢ € B;(y, R) and so any
point z € B;(y, R) has d;(z,¢) < 2R. Hence C’, W’ satisfy property (P1).

Therefore, there exists at least one path of length % in the recursion tree for which (P1) is
maintained at all levels of the recursion. Since each call adds a color to C, after k calls
we will have C' = [k]. In this case, W is a nonempty set which has d;(c,z) < 2R for any
x € W,i € [k]. Thus, any € W will have ecc(x) < 3R and will be returned in line 4. If no
x is returned by the algorithm we can conclude that R(G) > R.

Runtime. Every call to RADIUS-3-APPROX(G, R, C, W) preforms a constant number of
BFS searches and k — |C| calls to RADIUS-3-APPROX with |C'| = |C| + 1. Therefore, the
total running time of the algorithm is O(mk!). <
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